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Abstract. Weakly relational domains have enjoyed tremendous success
in the area of program analysis, since they offer a decent compromise
between precision and efficiency. Octagons, in particular, have widely
been studied to obtain efficient algorithms which, however, come with
intricate correctness arguments. Here, we provide simplified cubic time
algorithms for computing the closure of Octagon abstract relations both
over the rationals and the integers which avoid introducing auxiliary
variables. They are based on a more general formulation by means of
2-projective domains which allows for an elegant short correctness proof.
The notion of 2-projectivity also lends itself to efficient algorithms for
incremental normalization. For the Octagon domain, we also provide
an improved construction for linear programming based best abstract
transformers for affine assignments.

Keywords: weakly relational domains · octagons · 2-decomposable
relational domains · Floyd-Warshall algorithm

1 Introduction

While for intricate verification tasks, monolithic relational domains such as
the polyhedra abstract domain [8] are indispensable, they are considered pro-
hibitively expensive. Therefore, weakly relational domains have been proposed
which can only express simple relational properties, but scale better to larger
programs. Examples of such domains to capture numerical properties are the
Two Variables Per Inequality domain [27], or domains given by a finite set of
linear templates [25]. The most prominent example of a template numerical
domain is the Octagon domain [20,21] which allows tracking upper and lower
bounds not only of program variables but also of sums and differences of two
program variables. One such octagon abstract relation could, e.g., be given by
the conjunction

(−x ≤ −5) ∧ (x ≤ 10) ∧ (x + y ≤ 0) ∧ (x − z ≤ 1)

Octagons thus can be considered as a mild extension of the non-relational domain
of Intervals for program variables. An efficient comparison of octagon abstract
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relations for inclusion, is enabled by canonical representations where all implied
bounds are made explicit. Such representations are called closed. In the given
example, the upper bounds

(y ≤ −5) ∧ (−z ≤ −4)

are implied and therefore are included into the closed representation.
Procedures for computing closures of octagons over rationals or integers have

been given by Miné [20] where an improved closure algorithm for integers later
has been provided by Bagnara et al. [1,2]. Further practical improvements are
discussed in [4]. All these algorithms have in common that they introduce aux-
iliary variables for negated program variables −z in order to represent each
octagon as a difference bound matrix (DBM), and then apply dedicated tech-
niques for these [19], namely, the Floyd-Warshall algorithm [6]. The auxiliary
variables, however, must additionally be taken care of by the algorithm which
blurs the simplicity of the idea, and also complicates the correctness argument.

Here, we take another approach. To provide efficient procedures for the
Octagon domain with simple proofs, we identify two generic properties of rela-
tional domains which are sufficient for an abstract version of the Floyd-Warshall
algorithm to provide normal forms. Normalization takes calculations on abstract
relations between 1, 2, and 3 variables as black boxes and uses these to infer
abstract 1 or 2-variable relations mediated by other variables. Our normalization
algorithm can be instantiated for rational octagons as well as integer octagons or
other instances of the class of weakly relational domains satisfying our criteria.

The first criterion is 2-decomposability as introduced in [26] which requires
that each abstract relation can be uniquely reconstructed from its projections
onto sub-clusters of variables of size at most 2. The second criterion is called
2-projectivity. This property means that each variable x can be eliminated from
an abstract relation by considering projections onto at most 2-variable clus-
ters. If both criteria are satisfied, our algorithm returns the normal form. The
key correctness argument can be provided on two pages. Our abstract setting
also provides an elegant algorithm for incremental normalization, i.e., for re-
establishing the normal form after improving the relationship between two vari-
ables. In practice, such improvements may occur as the abstract effect of guards
in the program which are expressible as abstract relations. For the Octagon
domain over rationals or integers, we provide improved abstract transformers
for affine assignments based on linear programming.

2 Relational Domains

Let us recall basic definitions for relational domains. We mostly follow the nota-
tion used in [26] where the notion of 2-decomposability has been introduced. Let
X be some finite set of variables. A relational domain R is a lattice with least
element ⊥ and greatest element � which provides the monotonic operations

�x ← e�� : R → R (assignment to variable x with right-hand e)
r|Y : R → R (restriction to Y ⊆ X )

�?c�� : R → R (guard for condition c)
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for some languages e of expressions and c of conditions, respectively.
The given operations are meant to provide the abstract transformers for the

basic operations of programs. Restricting a relation r to a subset Y of variables
amounts to forgetting all information about variables in X\Y . Thus, we require
that

r|X = r
r|∅ = �
r|Y1

	 r|Y2
when Y1 ⊆ Y2

(r|Y1
)
∣
∣
Y2

= r|Y1∩Y2

(1)

Restriction therefore is idempotent. For guards with condition c, we require that

�?c��r = r 
 �?c��(r|V ) (2)

where V is the set of variables occurring inside c.
For a numerical relational domain, we additionally require for Y ⊆ X that

(�x ← e��r)
∣
∣
Y
= r|Y (x �∈ Y ) (3)

(�x ← e��r)
∣
∣
Y
= (�x ← e��(r|Y ∪V ))

∣
∣
Y

(x ∈ Y ) (4)

where V is the set of variables occurring in e. Intuitively, this means that an
assignment to the variable x does not affect relational information for any set Y of
variables with x �∈ Y . To determine the effect for a set Y of variables containing x,
it suffices to additionally take the variables into account which occur in the right-
hand side e. This property may, e.g., be violated if the relational domain also
represents points-to information so that updates to x may also affect relational
information for sets of variables not containing x.

Example 1. For numerical variables, a variety of such relational domains have
been proposed, e.g., (conjunctions of) affine equalities [16,22,23] or affine
inequalities [8]. For affine equalities or inequalities, projection onto a subset of Y
of variables corresponds to the geometric projection onto the sub-space defined
by Y , combined with arbitrary values for variables z �∈ Y . The abstract effect
of a guard c onto a given conjunction r can be realized as r ∧ c = r ∧ (c ∧ r|V )
if c is a linear equality or inequality, respectively, using variables from V . The
abstract effect of an assignment x ← e with affine right-hand side e, finally, can
be reduced to the addition of new constraints and projection onto sub-spaces.
Relational domains may also be constructed for non-numerical values, e.g., by
maintaining finite subsets of value maps. 


3 Weakly Relational Domains

One way to tackle the high cost of relational domains is to track relationships
not between all variables, but only between subclusters of variables. We call such
domains Weakly Relational Domains.

For a subset Y ⊆ X , let RY = {r | r ∈ R, r|Y = r} the set of all abstract
values from R that contain only information on those variables in Y . For any
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collection S ⊆ 2X of clusters of variables, a relation r ∈ R can be approximated
by a meet of relations from RY , Y ∈ S since for every r ∈ R,

r � �{r|Y | Y ∈ S} (5)

holds. Schwarz et al. [26] introduce the notion of 2-decomposable relational
domains. These are domains where the full value can be recovered from the
restriction to all clusters [X ]2 of variables of size at most 2, and all finite least
upper bounds can be recovered by computing within these clusters only, i.e.,
where

r =
� {

r|p | p ∈ [X ]2
}

(6)

(
⊔

R)|p =
⊔

{

r|p | r ∈ R
}

(p ∈ [X ]2) (7)

holds for each abstract relation r ∈ R and each finite set of abstract relations
R ⊆ R. The most prominent example of a 2-decomposable domain is the Octagon
domain [20] – either over rationals or integers, while affine equalities or affine
inequalities are examples of domains that are not 2-decomposable.

Each value r from a 2-decomposable relational domain R can be represented
as the meet of its restrictions to 2-clusters, i.e., by the collection

〈

r|p
〉

p∈[X ]2
. This

representation is called 2-normal, and an algorithm to compute it, normalization.
Consider an arbitrary collection 〈sp〉p∈[X ]2 with sp ∈ Rp with r =

�{sp | p ∈
[X ]2}. Then r|p � sp always holds, while equality need not hold. In the Octagon
domain over the rationals or the integers, the 2-normal representation of an
octagon value corresponds to its strong closure and tight closure, respectively,
as described in [1,20]. Here, we do not distinguish between different types of
closure for rational and integer octagons. Instead, we call a non-⊥ octagon O
over a numerical set of values I ∈ {Q,Z} closed if for each octagon combination
�, the upper bound b� equals the minimal value b ∈ I such that � ≤ b is implied
by O, or ∞ if no such bound exists.

While for rational octagons, closure in cubic time was already proposed by
Miné [20], it is much more recent that a corresponding algorithm was provided
for integer octagons [1,2]. Here, we re-consider these results. By referring to
2-decomposable domains instead of to octagons, we succeed in providing a con-
ceptually simple normalization algorithm with a simple correctness proof, from
which cubic closure algorithms for the Octagon domains can be derived.

4 2-Projectivity

Subsequently, we assume that R is an arbitrary 2-decomposable domain over
some set X of variables. Assume that r ∈ R is given by r =

�{sp | p ∈ [X ]2, sp ∈
Rp}. Then, we consider the following constraint system in the unknowns rp, p ∈
[X ]2, over R,

r{x,y} � s{x,y} 
 (

r{x,z} 
 r{z,y}
)∣
∣
{x,y} (8)

for x, y, z ∈ X . All right-hand sides of the constraint system (8) are monotonic.
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Proposition 1. The collection 〈r|p〉p∈[X ]2 is a solution of constraint system (8).

Proof. Let x, y, z ∈ X . Then

r|{x,y} = r|{x,y} 
 r|{x,y} � s{x,y} 
 r|{x,y} � s{x,y} 

(

r|{x,z} 
 r|{z,y}
)∣
∣
∣
{x,y}


From Proposition 1, we conclude that the greatest solution of (8) – if it
exists – is an overapproximation of the normal representation of r. In general,
the Kleene fixpoint iteration for computing greatest solutions of constraint sys-
tems (8) may not terminate. Let us call a 2-decomposable relational domain
R 2-projective when from each abstract relation r, each single variable can be
eliminated by using projections onto clusters from [X ]2 only, i.e., when for every
Y ⊆ X , z ∈ X\Y , yj ∈ Y ∪ {z}, r′ ∈ RY , and r{z,yj} ∈ R{z,yj},

(

r{z,y1} 
 . . . 
 r{z,yk} 
 r′)∣∣
Y
= r′ 
 �k

i,j=1

(

r{z,yi} 
 r{z,yj}
)∣
∣
Y ∩{yi,yj} (9)

Proposition 2. The following 2-decomposable domains are 2-projective:

1. rational octagons;
2. integer octagons;
3. 2-variable rational affine inequalities;
4. 2-variable rational affine equalities.

Proof. Let us consider the claims (1) and (2) for octagons. Intuitively, their cor-
rectness follows from the correctness of Fourier-Motzkin elimination of a single
variable z from a system of inequalities. In general, this holds only for ratio-
nal inequalities as considered for claim (1). However, it also holds for systems
of integer inequalities – given that all coefficients are integer and all non-zero
coefficients of z are either 1 or −1.

Let us call a linear combination
∑

x∈X ax · x an octagon combination if at
most two of the coefficients ax are non-zero and these are then from {−1, 1}. For
a subset Y of variables, let LY denote the set of all octagon combinations with
variables from Y . An integer octagon constraint is of the form � ≤ b where � is
a linear octagon combination and the bound b is integer or ∞.

Subsequently, we represent an abstract octagon relation over Y by a closed
conjunction

∧

�∈LY
� ≤ b� (10)

of octagon constraints with variables from Y if the octagon is satisfiable, or ⊥
if it is not. Here, the conjunction (10) is satisfiable and closed iff

0 ≤ b� + b−� if � ∈ LY

b� ≤ (b�1 + b�2)/c if �1 �= �2 and c · � = �1 + �2

holds for some c ∈ {1, 2}. Here, factor 2 occurs if one variable x occurs both
in �1 and �2 with the same sign, while another variable y occurs with different
signs, i.e.,

c · � = (x + y) + (x − y) = 2 · x
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In case of octagons over rationals, the operator “/” denotes division, whereas
in case of octagons over integers, it denotes integer division, i.e., may include
rounding downwards. By definition, the closed representation of an abstract
octagon relation is also 2-normal.

For computing the closure for an arbitrary conjunction r of octagon con-
straints with one or two variables only, we may first determine the least given
upper bound b� for each occurring octagon linear combination �. As a result,
we obtain at most 8 octagon constraints for which satifiability (over rationals or
integers) can be decided in constant time. Provided the conjunction is satisfiable,
all implied tighter upper bounds (over rationals or integers) can be inferred.

Example 2. Consider the integer octagon given by conjunction of the constraints

x + y ≤ −2 x − y ≤ 5 − x + y ≤ 0

By adding up constraints with positive and negative occurrences of the same
variable, we derive that

y ≤ −1 x ≤ 1

must also hold, while no further bounds can be inferred. If the conjunction of
octagon constraints additionally has the inequality

−x − y ≤ 0

then, by adding this to the first inequality, we derive

0 ≤ −2

– which is false – implying that the octagon equals ⊥. 

Assume that each non-⊥ value r{yj ,z}, yj ∈ Y ∪{z}, is represented as a closed

conjunction of octagon constraints with variables from {yj , z}. Assume likewise,
that r′ �= ⊥ is represented by a conjunction of octagon constraints with variables
from Y only.

For each pair yi, yj of variables from Y ∪ {z}, the abstract value
(

r{yi,z} ∧ r{yj ,z}
)∣
∣
Y ∩{yi,yj} (11)

can be obtained by means of Fourier-Motzkin elimination of z, applied to
the closed conjunctions of octagon constraints representing r{yi,z}, and r{yj ,z},
respectively. In order to see this, we note that all occurring non-zero coefficients
of z in the constraints of r{yi,z} as well as r{yj ,z} are from {−1, 1}. Consider a
constraint � ≤ b of the resulting conjunction. Three cases may occur.

– � may contain occurrences of both variables yi and yj – each with coefficients
in {−1, 1}.

– � may contain a single occurrence of one variable, w.l.o.g., yi, whose coefficient
now is in {−2,−1, 1, 2}. In case the coefficient of yi is in {−2, 2}, � is still
equivalent to an octagon constraint for yi only. If the constraint, e.g., is 2·yi ≤
7, then it is equivalent to yi ≤ 3.5 over rationals, and to yi ≤ 3 over the
integers.
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– � does not contain any occurrences of variables. In this case, it is either equiv-
alent to true and can be abandoned, or equivalent to false – implying that
(11) equals ⊥.

We conclude that the expression (11), when satisfiable, can be represented by
a conjunction of octagon constraints using variables yi and yj . Thus, the right-
hand side of Eq. (9) for rational as well as integer octagons is equivalent to the
result of Fourier-Motzkin elimination of z. This implies claim (2).

Example 3. Assume an integer octagon r = r′ ∧ r{y1,z} ∧ r{y2,z} where

r′ = y1 + y2 ≤ 7
r{y1,z} = (y1 + z ≤ −1) ∧ (y1 ≤ 3) ∧ (−z ≤ 4)
r{y2,z} = (y2 − z ≤ 5) ∧ (−y2 ≤ 1)

Fourier-Motzkin elimination of z adds the additional constraint

y1 + y2 ≤ 4

Projection onto the subset Y = {y1, y2} according to (9) therefore results in the
conjunction of constraints

(y1 + y2 ≤ 7) ∧ (y1 ≤ 3) ∧ (y1 + y2 ≤ 4) ∧ (−y2 ≤ 1)

which can be further simplified to (y1 ≤ 3) ∧ (y1 + y2 ≤ 4) ∧ (−y2 ≤ 1). 

Example 4. The following 2-decomposable domains are not 2-projective:

1. Finite sets of 2-variable maps;
2. Implications between interval constraints. 

Proof. For (1), let X = {a, x, y, z} where variables range over values from the
set {1, 2, 3} and maps from variables to such sets are used as the abstraction.
Consider now:

r{a,x} = {a �→ {1, 2}} r{a,y} = {a �→ {2, 3}} r{a,z} = {a �→ {3, 1}}
where all other rp, p ∈ [X ]2 have the value �. Then,

(

r{a,x} 
 r{a,y} 
 r{a,z} 
 �)∣
∣
{x,y,z} = ⊥

but, in violation of property (9),

� 
 (r{a,x} 
 r{a,x})
∣
∣
{x} 
 (r{a,y} 
 r{a,y})

∣
∣
{y} 
 (r{a,z} 
 r{a,z})

∣
∣
{z}


(r{a,x} 
 r{a,y})
∣
∣
{x,y} 
 (r{a,x} 
 r{a,z})

∣
∣
{x,z} 
 (r{a,y} 
 r{a,z})

∣
∣
{y,z}

= � 
 � 
 � 
 � 
 ({a �→ {1, 2}} 
 {a �→ {2, 3}})|{x,y}

({a �→ {1, 2}} 
 {a �→ {3, 1}})|{x,z} 
 ({a �→ {2, 3}} 
 {a �→ {3, 1}})|{y,z}

= ({a �→ {2}})|{x,y} 
 ({a �→ {1}})|{x,z} 
 ({a �→ {3}})|{x,z}

= � 
 � 
 � = �
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The domain of implications between interval constraints consists of finite
conjunctions of the form

x ∈ I =⇒ y ∈ I ′

for variables x and y and I, I ′ either intervals or the empty set, ordered by
implication. In particular, x ∈ ∅ may be written as False, while x ∈ [−∞,∞] is
denoted by True.

Now, consider the same set X = {a, x, y, z} of variables as for claim (1) and
let

r{a,x} = {True =⇒ a ∈ [1, 2]}
r{a,y} = {True =⇒ a ∈ [2, 3]}
r{a,z} = {a ∈ [2, 2] =⇒ False}

where all other rp, p ∈ [X ]2 have the value �. Then,
(

r{a,x} 
 r{a,y} 
 r{a,z} 
 �)∣
∣
{x,y,z} = False = ⊥

but

� ∧ (r{a,x} ∧ r{a,x})
∣
∣
{x} ∧ (r{a,y} ∧ r{a,y})

∣
∣
{y} ∧ (r{a,z} ∧ r{a,z})

∣
∣
{z}

∧(r{a,x} ∧ r{a,y})
∣
∣
{x,y} ∧ (r{a,x} ∧ r{a,z})

∣
∣
{x,z} ∧ (r{a,y} ∧ r{a,z})

∣
∣
{y,z}

= � ∧ � ∧ � ∧ � ∧ ({True =⇒ a ∈ [1, 2]} ∧ {True =⇒ a ∈ [2, 3]})|{x,y}∧
({True =⇒ a ∈ [1, 2]} ∧ {a ∈ [2, 2] =⇒ False})|{x,z}∧
({True =⇒ a ∈ [2, 3]} ∧ {a ∈ [2, 2] =⇒ False})|{y,z}

= (True =⇒ a ∈ [2, 2])|{x,y} ∧ (True =⇒ a ∈ [1, 1])|{x,z}∧
(True =⇒ a ∈ [3, 3])|{x,z}

= � ∧ � ∧ � = �

which means property (9) is violated. 

Subsequently, assume that the 2-decomposable domain R is 2-projective. We

show that under this assumption, the greatest solution of the constraint system
(8) exists and coincides with the normal representation. Moreover, we provide
an efficient algorithm for performing the normalization.

Assume that X = {x1 . . . xn}, and let Xr = {x1, . . . , xr}, and X̄r = X\Xr

for r = 0, . . . , n. Assume that we are given sp ∈ Rp, (p ∈ [X ]2). For x, y ∈ X ,
we define the sequence

s
(0)
{x,y} = s{x} 
 s{y} 
 s{x,y}

s
(r)
{x,y} = s

(r−1)
{x,y} 


(

s
(r−1)
{x,xr} 
 s

(r−1)
{xr,y}

)∣
∣
∣
{x,y}

for r > 0 :

Proposition 3. Let s̄ =
�{sp | p ∈ [X ]2} be the abstract relation represented

by 〈sp〉p∈[X ]2 . Let p ∈ [X ]2. For r = 0, . . . , n,

1. s
(r)
p � s

(r)
{x} for each x ∈ p;

2.
s̄|X̄r∪{x,y} =

�{

s(r)p | p ⊆ X̄r ∪ {x, y}, 1 ≤ |p| ≤ 2
}

(12)
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Proof. For r = 0, the proposition holds by definition. Now assume that r > 0
and the assertion already holds for r − 1. For p = {x, y}, we calculate

s
(r)
{x,y} = s

(r−1)
{x,y} 


(

s
(r−1)
{x,xr} 
 s

(r−1)
{xr,y}

)∣
∣
∣
{x,y}

� s
(r−1)
{x} 
 s

(r−1)
{x,xr}

∣
∣
∣
{x,y}

� s
(r−1)
{x} 
 s

(r−1)
{x,xr}

∣
∣
∣
{x}

= s
(r)
{x}

and the first claim follows. For the second claim Eq. (12), consider the case
xr �∈ {x, y}. Then

s̄|X̄r∪{x,y} =
(
s̄|X̄r−1∪{x,y}

)∣∣∣
X̄r∪{x,y}

=
(� {

s
(r−1)
p | p ⊆ X̄r−1 ∪ {x, y}, 1≤|p|≤2

})∣∣∣
X̄r∪{x,y}

(by induction hypothesis)

=
(� {

s
(r−1)
p | p ⊆ X̄r ∪ {x, y}, 1≤|p|≤2

}
� � {

s
(r−1)
{z,xr} | z ∈ X̄r−1 ∪ {x, y}

})∣∣∣
X̄r∪{x,y}

=
� {

s
(r−1)
p | p ⊆ X̄r ∪ {x, y}, 1≤|p|≤2

}
�

�
{(

s
(r−1)
{z1,xr} � s

(r−1)
{xr,z2}

)∣∣∣
(X̄r∪{x,y})∩{z1,z2}

| z1, z2 ∈ X̄r ∪ {x, y}
}

�
�

{(
s
(r−1)
{z1,xr} � s

(r−1)
{xr}

)∣∣∣
(X̄r∪{x,y})∩{z1}

| z1 ∈ X̄r ∪ {x, y}
}

�s(r−1)
{xr}

∣∣∣
(X̄r∪{x,y})∩{xr}

(by Eq. (9))

=
� {

s
(r−1)
p | p ⊆ X̄r ∪ {x, y}, 1≤|p|≤2

}
�

�
{(

s
(r−1)
{z1,xr} � s

(r−1)
{xr,z2}

)∣∣∣
{z1,z2}

| z1, z2 ∈ X̄r ∪ {x, y}
}

�
�

{(
s
(r−1)
{z1,xr} � s

(r−1)
{xr}

)∣∣∣
{z1}

| z1 ∈ X̄r ∪ {x, y}
}

� s
(r−1)
{xr}

∣∣∣
∅

=
� {

s
(r−1)
p | p ⊆ X̄r ∪ {x, y}, 1≤|p|≤2

}
�

�
{(

s
(r−1)
{z1,xr} � s

(r−1)
{xr,z2}

)∣∣∣
{z1,z2}

| z1, z2 ∈ X̄r ∪ {x, y}
}

(by claim (1))

=
� {

s
(r)
p | p ⊆ X̄r ∪ {x, y}, 1≤|p|≤2

}

and the assertion holds. For the second but last equality, we used that the meet
in the second but last row is non-empty, since

s
(r−1)
{xr}

∣
∣
∣
∅

	 s
(r−1)
{xr}

∣
∣
∣
{z1}

	 s
(r−1)
{z1,xr}

∣
∣
∣
{z1}

	 s
(r−1)
{z1,xr}

∣
∣
∣
{z1,z2}

	 s
(r−1)
{z1,xr} 
 s

(r−1)
{z1,xr}

∣
∣
∣
{z1,z2}

holds for each z1, z2 ∈ X̄r ∪ {x, y}. Now let xr ∈ {x, y}. Then X̄r ∪ {x, y} =
X̄r−1 ∪ {x, y}. W.l.o.g., let x = xr. Then s

(r−1)
{x,xr} = s

(r−1)
{x} and s

(r−1)
{xr,y} = s

(r−1)
{x,y} .

Hence by claim (1), s
(r)
{x,y} = s

(r−1)
{x,y} . Accordingly,

s̄|X̄r∪{x,y} = s̄|X̄r−1∪{x,y}
=

� {

s
(r−1)
p | p ⊆ X̄r−1 ∪ {x, y}, 1≤|p|≤2

}

(by induction hypothesis)

=
� {

s
(r−1)
{z1,z2} 
 s

(r−1)
{z1,x} 
 s

(r−1)
{x,z2} | z1, z2 ∈ X̄r−1 ∪ {x, y}

}

=
� {

s
(r)
p | p ⊆ X̄r ∪ {x, y}, 1≤|p|≤2

}
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Thus, provided R fulfills Eq. 9, we obtain for k = n:

s̄|{x,y} = s
(n)
{x,y} 
 s

(n)
{x} 
 s

(n)
{y} = s

(n)
{x,y}

Subsequently, we consider Algorithm 1. It consists of one application of the
Floyd-Warshall algorithm, as is. For that to be sufficient, an initialization round
is performed upfront to ensure that each value t{x,y} not only subsumes s{x,y},
but also s{x} and s{y}. The complexity of the proposed algorithm is O(n3) if
calculations with abstract relations over at most three variables, i.e., from RY

for every Y ⊆ X with |Y | ≤ 3, can be performed in constant time. For Algorithm
1, we find:

Theorem 1. Assume that 〈tp〉p∈[X ]2 is the collection of values returned by Algo-
rithm 1 for the collection 〈sp〉p∈[X ]2 . Let s̄ =

�{sp | p ∈ [X ]2} the abstract
relation represented by 〈sp〉p∈[X ]2 . Then for each p ∈ [X ]2,

1. s̄|p � tp;
2. If the 2-decomposable domain R is 2-projective, then s̄|p = tp holds. In that

case, 〈tp〉p∈[X ]2 is the greatest solution of the constraint system (8).

Thus, Algorithm 1 provides a cubic time normalization procedure – whenever
R is 2-decomposable and 2-projective. We remark that the initializing first loop
cannot be abandoned. When R is not 2-projective, but 2-decomposable, the
algorithm still computes overapproximations of normal representations.

Proof. Let p ∈ [X ]2. By Proposition 1, s̄|p � tp holds, since the right-hand
sides of the constraint system (8) are all monotonic, and starting from the initial
values provided in the first loop, each update to some t{x,y} in the second loop,
corresponds to one update performed by the evaluation of some right-hand side
of (8). Therefore, the first assertion follows.

Now assume that the 2-decomposable relational domain R additionally is 2-
projective. Let t

(r)
p denote the value of tp attained after the iteration of the second

loop for the variable xr. By induction on r, we verify by means of Proposition
3 that for all p ∈ [X ]2, t

(r)
p � s

(r)
p holds for all r = 0, . . . , n. In particular,

tp = t
(n)
p � s̄|p, and the second assertion of the theorem follows. 


Algorithm 1: The variant of the Floyd-Warshall algorithm to compute
(an overapproximation of) normalization.
for x, y ∈ X do

t{x,y} := s{x,y} � s{x} � s{y} // initialization

for z ∈ X do
for x, y ∈ X do

t{x,y} := t{x,y} � (
t{x,z} � t{z,y}

)∣∣
{x,y}

return 〈tp〉p∈[X ]2
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Example 5. Given a (finite) set of constants, the Pairs domain consists of false
or conjunctions

∧{φp | p ∈ [X ]2} where for p ∈ [X ]2, φp is true or a disjunction
of conjunctions of atomic propositions x = c, x ∈ p. It is ordered by logical
implication. Consider, e.g., r = φ{x,y} ∧ φ{y,z} with φ{x,y} ≡ (x = a) ∨ (x =
b∧y = c) and φ{y,z} ≡ (y = d∧z = b). Then r|{x,y} = (x = a∧y = d). Likewise,
r|{y,z} = (y = d ∧ z = b) and r|{x,z} = (x = a ∧ z = b).

Assume each r ∈ R is represented by r =
∧{r|p | p ∈ [X ]2}, and define for

p ∈ [X ]2, φp as the least upper bound of formulas r|p, r ∈ R. Then r̄ =
∧{φp |

p ∈ [X ]2} is an upper bound of R and, in fact, the least upper bound. For some
p ∈ [X ]2, then by definition, r̄|p ⇒ φp. By monotonicity of the restriction, on the
other hand, r|p ⇒ r̄|p for all r ∈ R. Therefore, φp ⇒ r̄|p as well, and the claim
follows. While being 2-decomposable, the Pairs domain is not 2-projective. Let,
e.g.,

s{w,x} = (w = "fun1" ∧ x = &f1) ∨ (w = "fun3" ∧ x = &f2)
s{w,y} = (w = "fun2") ∨ (w = "fun3")
s{w,z} = (w = "fun1" ∧ z = &f1) ∨ (w = "fun2" ∧ z = &f1)

and all other sp = true. Then, Algorithm 1 computes

t{w} = t{w,x} = t{w,y} = t{w,z} = false t{y} = true
t{x} = t{x,y} = (x = &f1) ∨ (x = &f2) t{y,z} = t{z} = (z = &f1)
t{x,z} = (x = &f1 ∧ z = &f1) ∨ (x = &f2 ∧ z = &f1)

which is an overapproximation of the normalization given by s̄|p = false for
p ∈ [X ]2. Here, the normalization happens to coincide with the greatest solution
of constraint system (8). 

Example 6. According to Proposition 2, the domains of rational as well as integer
octagons are 2-decomposable and 2-projective. Therefore, Algorithm 1 computes
the exact 2-normal form, and thus provides us with cubic time closure algorithms
for these. 


5 Incremental Normalization

If the condition c of a guard can be abstracted by some abstract relation rc ∈
R, then the transfer function �?c�� can be chosen as �?c��r = r 
 rc. Assume
that the relational domain R is 2-decomposable as well as 2-projective, and
that rc is represented as the meet rp1 
 . . . 
 rpk

for pj ∈ [X ]2. Then, the
normalization of r 
 rc can be computed incrementally. For the octagon domain
over integers, Chawdhary et al. [4] give quadratic incremental closure algorithms.
Just like theirs, our algorithm for incremental normalization is based on the
Floyd-Warshall algorithm, i.e., Algorithm 1.
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Algorithm 2: Incremental version of the Floyd-Warshall algorithm
to incrementally compute (an overapproximation of) 2-normal forms when
clusters tp, p ⊆ V , with |p| = 2 have potentially received new values.
for z ∈ V do

for x, y ∈ X do
t{x,y} := t{x,y} � (

t{x,z} � t{z,y}
)∣∣

{x,y}

return 〈tp〉p∈[X ]2

In our setting, adding new constraints amounts to improving some clusters
r{a,b} where a and b are from some set V ⊆ X . For simplicity, we require that
only clusters r{a,b} with a �= b are improved. This allows us in the adaption of
Algorithm 1 to avoid the initialization loop. Whenever X contains more than
one variable, this extra requirement is no limitation, though, as a constraint
involving only the variable z may just be added to any 2-variable cluster p
with z ∈ p. (When X contains only one variable, no normalization is required.)
Normalization then is computed by the modified version of Algorithm 1 given
in Algorithm 2.

Theorem 2. Assume a 2-normal collection of values of some 2-decomposable
relational domain S = 〈sp〉p∈[X ]2 , and a collection S1 = 〈s′

p′〉p′⊆V,|p′|=2 with
s′

p′ � sp′ for all p′. Assume that 〈tp〉p∈[X ]2 is the collection of values returned by
Algorithm 2 for the collection S′ = 〈sp〉p∈[X ]2,(p	⊆V ∨|p|	=2) ∪ S1 Let s̄ =

�
S′ the

abstract relation represented by S′. Then for each p ∈ [X ]2,

1. s̄|p � tp;
2. If the 2-decomposable domain R is 2-projective, then s̄|p = tp holds. In that

case, 〈tp〉p∈[X ]2 is the greatest solution of constraint system (8).

Proof. Let p ∈ [X ]2. s̄|p � tp holds since, as observed before, all right-hand sides
of the constraint system (8) are monotonic and the individual update steps of
Algorithm 2 each correspond to updates performed by the evaluations of the
right-hand sides of (8). Thus, the first statement follows.

Now consider the case where the relational domain is additionally 2-
projective. The invariant which the non-incremental Algorithm 1 attains after
the initialization holds by construction here. Let t

(r)
p denote the value of tp

attained after the iteration of the second loop for the r-th variable in the non-
incremental Algorithm 1. We choose the order of the iteration of variables in the
second loop such that the variables in V are considered last. Then, for the first
|X\V | iterations t

(r−1)
p = t

(r)
p , as the original collection 〈sp〉p∈[X ]2 was normal-

ized. Therefore, it suffices to execute the last |V | iterations of the second loop of
Algorithm 1 which is identical to Algorithm 2. Thus, by Theorem 1, the claim
follows. 


We have thus shown that re-establishing normalization (and thus closure)
after adding octagon constraints for m variables is in O(m · n2).
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6 Abstract Transformers for Linear Assignments

Assume we are given a normalized value r over the set X of program variables
from some 2-decomposable relational domain. Assume further that we are given
an assignment a of the form x ← e where e is an expression over some subset
V ⊆ X , and assume that the relational domain satisfies properties (3) and (4).
Let r ∈ R denote the relational value before the assignment and assume r is
already normalized where rp = r|p has already been computed for all p ∈ [X ]2.
Let r′ = �a�� r denote the relational value after the assignment. Then, for every
p ∈ [X ]2 with x �∈ p, r′|p = r|p = rp. In order to compute the normalization of
r′, it therefore suffices to compute the values r′

p = r′|p for x ∈ p, i.e., a linear
number of clusters p. Now consider some variable y ∈ X . Because of property
(4), we have that

r′
p = �a��r

∣
∣
{x,y}

= (�a��r|V ∪{x,y})
∣
∣
∣
{x,y}

= (�a��(
�{rp | p ⊆ V ∪ {x, y}}))∣∣{x,y}

i.e., the abstract value r′
{x,y} requires taking into account only clusters p ∈ [X ]2

with variables from V ∪ {x, y}. We conclude:

Proposition 4. Assume that computations on abstract relations from R over
a bounded set of variables is constant time, and assume that the assignment a
refers only to a bounded number of variables. Assume further that the abstract
relation r ∈ R is normalized. Then a normalization of the relation �a��r can be
computed in linear time. 


7 Linear Programming with Octagon Constraints

Let us turn to the implementation of best abstract transformers for assignments
for the octagon domain (over rationals as well as over integers). For the octagon
domain, an abstract transformer for assignments can be constructed by adding
octagon constraints. This works well for right-hand sides of the form y + c or
−y + c for variables y and constants c. For more general right-hand sides such
as, e.g., 3 · y − 2 · z, the best transformer can instead be expressed by means of
optimization problems [25].

Assume that the octagon is provided by bounds b�, � ∈ LV for some subset
V ⊆ X of variables. Depending on the sign of a variable occurring in a linear
combination �, we say it occurs positively or negatively. Consider the optimiza-
tion problem of maximizing a linear objective function taking variables from V
subject to the given set of octagon constraints

maximize
∑

z∈V az · z

subject to � ≤ b� (� ∈ LV )
(13)
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When interpreted over the rationals, optimal solutions can be computed in time
polynomial in the size of the linear program (i.e., the number of bits to spell it
out) [15] or exponential time in the number of variables if simplex type algo-
rithms are used [17]. To this general approach, we here add one more observation,
namely, that over the rationals, the set of octagon constraints to be satisfied in
optimization problems can be restricted to constraints where each occurring vari-
able z ∈ V occurs with the same sign as the coefficient az of z in the objective
function: this considerably reduces the number of constraints to be considered.

Proposition 5. Assume that we are given the rational octagon linear program
(13) where az > 0 for all z ∈ V . If the octagon corresponding to the constraints
is closed, then the same result is obtained when the constraints are restricted to
octagon linear combinations z and z + y for z, y ∈ V and z �= y.

Proof. The proof of the proposition is obtained by means of the dual linear
program:

minimize
∑

�∈LV
y� · b�

subject to (
∑

z in � y�) − (
∑

−z in � y�) = az (z ∈ V )
y� ≥ 0 (� ∈ LV )

(14)

If the original program is unbounded, then so is the program with the restricted
set of constraints. Therefore, assume that the original linear program is bounded.
Then the dual optimization problem has a feasible solution y�, � ∈ LV , where
the minimal gain b is attained, i.e.,

∑

�∈LV
y� · b� = b. It remains to prove that

b can be attained by a feasible solution y�, � ∈ L, where y� = 0 for all octagon
combinations � which contain negations. We proceed by induction on the number
of octagon combinations � with negative occurrences of variables from V . Assume
that there are octagon combinations � with negated occurrences of z and y� > 0.
Consider the linear constraint in (13) for z

(
∑r

j=1 y�

)

−
(
∑r′

j′=1 y�′
j′

)

= az

where �j enumerates all octagon combinations with positive and �′
j′ enumerates

all octagon combinations with negative occurrences of z. Since r′ > 0 and az > 0,
also r > 0. If y�r ≥ y�′

r′ , we proceed to eliminate the octagon combination �′
r′

with a negative occurrence of z and proceed to eliminate also all other negative
occurrences of z by constructing a solution y′

� with the same gain b where y′
�′
r′
=

0. If �r + �′
r′ = 0, then either no further variable is contained in �r, �

′
r′ or the

same variable z′ occurs with opposite signs. Then we set y′
�r

= y′
�′
r′

= 0 and
y′

p = yp otherwise.
Now assume that �r + �′

r′ is a linear combination different from 0. Then it
either is equivalent to an octagon combination not involving variable z, or 2z′

or 2 · (−z′) for some variable z′ different from z. In order to deal with all these
cases consistently, we introduce a correction factor c as 1 if the sum is an octagon
linear combination, and 2 otherwise. Let q denote the octagon combination with
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c·q = �r+�′
r′ . Since the octagon r is closed, c·bq ≤ b�r+b�′

r′ holds. Let y′
�, � ∈ LV ,

be defined by

y′
� =

⎧

⎪⎪⎨

⎪⎪⎩

y�r − y�′
r′ if � = �r

0 if � = �′
r′

y� + c · y�′
r′ if c · � = q

y� otherwise

We claim that y′
�, � ∈ L, is again a feasible solution, i.e., satisfies all constraints,

where the same gain b is attained. Concerning the gain, we have

y�r · b�r + y�′
r′ · b�′

r′ + yq · bq = (y�r − y�′
r′ ) · b�r + y�′

r′ · (b�r + b�′
r′ ) + yq · bq

≥ y′
�r

· b�r + y′
q · bq

As the gain b was already minimal, we conclude that the gain for the y′
� has not

changed. It remains to show that the y′
� form a feasible solution of the constraints

in (13). By construction, the equation for z is satisfied (we reduce y�r with a
positive occurrence of z by the same amount as y�′

r′ with a negative occurrence).
If q contains a variable z′ which is then different from z, then this variable must
occur in �r, �

′
r′ or both and if so, with the same sign. If it is contained only in �′

r′ ,
then y�′

r′ in the left-hand side of the constraint for z′ is replaced with 0, while
at the same time yq is increased with y�r . If it is contained only in �r, then y�r

in the left-hand side of the constraint for z′ is decreased with y�′
r′ , while at the

same time yq is increased with y�r . If it is contained both in �r and �′
r′ , then y�r

in the left-hand side of the constraint for z′ is decreased with y�′
r′ , y�′

r′ is set to
0, yq is increased with 2 · y�′

r′ .
Thus, in all cases, the equation is satisfied for the y′

p.
We conclude that the combination �r can equivalently be removed by means

of the octagon combination q not involving the variable z.
Therefore, now assume that y�′

r′ > y�r where, w.l.o.g., the maximal value of
the non-zero y�j equals y�r . If �r + �′

r′ = 0, then b�r + b�′
r′ = 0 (otherwise the

gain were not minimal). Therefore, we set y′
�r

= 0, y′
�′
r′

= y�′
r′ − y�r , and y′

� = �p

otherwise to obtain a feasible solution where the minimal gain is attained. At
the same time, the number of octagon combinations � with y′

� > 0 where z
occurs positively has decreased. Therefore, assume that �r + �′

r′ is different from
0. Then there is a coefficient c ∈ {1, 2} and an octagon constraint q such that
c · q = �r + �′

r′ and c · bq ≤ b�r + b�′
r′ . Then we set

y′
� =

⎧

⎪⎪⎨

⎪⎪⎩

0 if � = �r

y�′
r′ − y�r if � = �′

r′

yq + c · y�r if � = q
y� otherwise

Again, we obtain a feasible solution where the gain has not increased, but the
number of octagon combinations � with y′

� > 0 where z occurs positively has
decreased. Altogether, we conclude that, without increasing the gain, the feasible
solution y� can be adjusted such that y� = 0 for � whenever � contains negative
occurrences of variables in V .
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As a result, we obtain as the dual of the simplified LP problem

minimize
∑

z1∈V yz1 · bz1 +
∑

z2∈V \{z1} yz1+z2 · bz1+z2

subject to yz1 +
∑

z2∈V \{z1} yz1+z2 = az1 (z1 ∈ V )
yz1 ≥ 0 (z1 ∈ V )
yz1+z2 ≥ 0 (z1, z2 ∈ V, z1 �= z2)

(15)

Example 7. Assume that the set of program variables consists of x, z1, z2, z3,
that our goal is to maximize the linear objective function 2z1 +3z2 + z3 subject
to the octagon constraints

z1 + z2 ≤ 10 z1 + z3 ≤ 1 z2 + z3 ≤ 1

The dual linear program then is given by

minimize y1 · 10 + y2 + y3

subject to y1 + y2 = 2 y1 + y3 = 3 y2 + y3 = 1
y1, y2, y3 ≥ 0

In this case, there is just one possible solution for the yi, namely,

y1 = 2.5 y2 = 0.5 y3 = 0.5

—implying that the optimal value is given by 25 + 0.5 + 0.5 = 26. 

For an optimization problem with integer octagon constraints, we may, in

principle, proceed as for rationals. Solving integer linear programs with octagon
constraints precisely, however, is NP-hard. This can be seen, e.g., by reduction
from the NP-complete maximum clique problem, i.e., the problem of deciding
whether the maximal size of a clique in an undirected graph exceeds some bound.
Let G = (V,E) denote a finite undirected graph, and choose V as the set of
variables. Then we construct the integer optimization problem

maximize
∑

x∈V x

subject to x + y ≤ 1 ({x, y} �∈ E)
−x ≤ 0 (x ∈ V )

x ≤ 1 (x ∈ V )

The constraints are all integer octagon constraints, while the solution to the
optimization problem equals the maximal size of a clique. Since the construction
of the integer optimization problem from the instance of the clique problem can
be done in polynomial time, it follows that to decide whether the optimal value
for an integer linear program with octagon constraints exceeds some value, is
NP-hard.
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8 Abstract Assignments for Octagons

Assume that we are given an affine assignment of the form

x ← b +
∑

z∈V az · z

and that the octagon before the assignment is a closed octagon r with coefficients
b�, � ∈ LX . W.l.o.g., assume that x does not occur in the right-hand side, i.e.,
x �∈ V . Over the rationals, the best upper bound b′

� for the octagon combination �
with x occurring in � is obtained by a linear program of the form (13). Depending
on �, the objective functions are

� objective function
x

∑

z∈V az · z
−x

∑

z∈V −az · z
x + y y +

∑

z∈V az · z
x − y −y +

∑

z∈V az · z
−x + y y +

∑

z∈V −az · z
−x − y −y +

∑

z∈V −az · z

The best abstract transformer �a�� then is given by

�a��(r) = r|X\{x} ∧ rx (16)

where rx denotes the conjunction

(x ≤ b + b′
x) ∧ ∧

z 	=x(x + z ≤ b + b′
x+z) ∧ (x − z ≤ b + b′

x−z) ∧
(−x + z ≤ b′

−x+z − b) ∧ (−x − z ≤ b′
−x−z − b)

Over the integers, we can proceed analogously to the rational case by solving
the corresponding integer optimization problems. Since these, in general, are
NP-hard, we prefer for integer octagons, to rely on rational relaxations of the
corresponding ILP problems. This means that for each octagon combination �,
we determine the best rational upper bound b� after the assignment (as deter-
mined by the corresponding LP problem) which is tightened to �b�� to obtain a
sound upper bound for � over the integers. We remark that for integer octagons,
an alternative formulation of abstract transformers for affine assignments has
been provided in [21]. The transformer there is based on the optimal abstract
transformer for rational polyhedra in [9] whose bounds are tightened and subse-
quently over-approximated by octagon constraints. The latter step also requires
solving appropriate (relaxed) LP problems, which are essentially the same as we
solve – only that we benefit from a reduced number of octagon constraints to be
taken into account by each LP problem. We obtain:

Theorem 3. For the octagon domain over the rationals, the best transformer
(16) for a linear assignment can be computed in polynomial time. For n program
variables and a constant number of variables occurring in the assignment, the
best transformer can be computed in time O(n).
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Proof. Assume that the octagon before the assignment is closed. Due to Propo-
sition 5, the octagon transformer for linear assignments satisfies properties (4)
and (3). Therefore by Proposition 4, only a linear number of optimization prob-
lems must be solved. Over the rationals, the optimal upper bound to an octagon
combination can be determined by solving an LP problem – which is known
to be possible in polynomial time. Note that due to Proposition 5, the set of
octagon constraints to be taken into account can be reduced to constraints with
octagon combinations where the signs of variables match the corresponding signs
occurring in the objective function.

If the right-hand side contains only a bounded number of variables, each of
the LP problems will refer to a bounded number of variables only, and thus can
be solved in constant time (e.g., by using the Simplex algorithm). Since only
O(n) many of these problems must be solved, the overall runtime is linear. 


Over the integers, on the other hand, the solution of the relaxed integer LP
problem for a sound bound to an octagon combination can be obtained as the
solution to the corresponding relaxed rational LP problem, and the argument
proceeds as in the rational case. As a corollary, we therefore obtain:

Corollary 1. For the octagon domain over the integers, the integer relaxation of
(16) for a linear assignment can be computed in polynomial time. For n program
variables and a constant number of variables occurring in the assignment, the
relaxed best transformer can be computed in time O(n). 


9 Related Work

Since being introduced by Miné [20,21], the weakly relational numerical domain
of Octagons has found widespread application in the analysis and verification
of programs and is part, e.g., of the highly successful static analyzer Astrée
[3,7]. While normalization has been known to be cubic time for rational octagons
right from the beginning [20], it was open whether this also holds true for inte-
ger octagons. This question has been settled affirmatively by Bagnara et al. [1].
Sankaranarayanan et al. [25] proposed using techniques from linear program-
ming to compute best transformers for linear assignments. Chawdhary et al. [4]
investigated the problem of improved quadratic algorithms for incremental clo-
sure, i.e., adding one further octagon constraint. Implementations of Octagons
are provided, e.g., by the Apron library [14] and Elina [10]. Various Octagon
algorithms are practically evaluated by Gange et al. [12].

Extensions of octagons have been considered by Péron and Halbwachs [24]
and Chen et al. [5]. For these extensions, however, known normalization algo-
rithms turn out to be rather expensive so that more practical approximate nor-
malizations have been proposed. Figure 1 gives an overview over some weakly
relational domains, whether they are 2-decomposable and whether they are also
2-projective as well as the best time complexities for (approximate) normaliza-
tion in the number of variables.
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Domain 2-decomposable 2-projective Normalization

Integer Octagons [20] O(n3)
Rational Octagons [20] O(n3)
TVPI [27]a O(n3 log2 n)

Pentagons [18] O(n3)
Weighted Hexagons [11] O(n3)
Logahedra [13] O(n3)

dDBM [24]b (Appendix A) O(n3) rat.; O(n5) ints
AVO [5] (Appendix A) O(2n · n3) rat.; ? ints

Pairs (Example 5) ?

Fig. 1. Various weakly relational domains, whether they are 2-projective and 2-
decomposable, and the complexity of their normalization operation. a(For TVPI: As
operations on values for 3 variables are in O(log2 n).) b(For int dDBM: Approximate
normalization up-to emptiness. Checking emptiness is exponential.)

10 Conclusion and Future Work

We have provided an algorithm for normalizing octagon abstract relations over
rationals as well as over integers. For that, we introduced the notion of 2-
decomposability for relational domains and provided a cubic-time algorithm
based on Floyd-Warshall which overapproximates normalization. For the sub-
class of 2-projective domains comprising, e.g., integer or rational Octagons, it
computes the exact 2-normal form. The major benefit of the resulting algorithm
is its simplicity. For the instance of the Octagon domain, e.g., the closure is
obtained without duplication of variables. The general setup also provides us
with a quadratic algorithm for incremental normalization. For octagons, we also
reconsidered the construction of best abstract transformers for affine assign-
ments by means of linear programming. Over the rationals, we observe that only
those octagon constraints need to be taken into account where the sign of each
occurring variable z agrees with the sign of the occurrence of z in the respec-
tive objective functions. This, again, may result in a significant speedup when it
comes to practical implementations.

In future work, we would like to provide a new implementation of Octagon
domains based on our algorithms and evaluate its practical performance on real-
istic examples. Combining our algorithms with orthogonal techniques such as
online decomposition [28] in particular seems like a promising line of inquiry.
We also would like to explore in greater detail the potential of further, perhaps
non-numerical 2-decomposable domains.

Acknowledgements. This work was supported in part by Deutsche Forschungsge-
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A 2-Projectivity for Extensions of Octagons

Here, we investigate extensions to the Octagon domain and the domain of differ-
ence bounds, respectively, that have been proposed in the literature, and inves-
tigate whether they are 2-decomposable and 2-projective.

Example 8. Consider the domain of difference-bound matrices enhanced with
disequalities [24] where X = {a, b, c}. This domain is 2-decomposable. Now, for
2-projectivity, let, e.g.,

r{a,b} = (a − b ≤ −1 ∧ b �= 98 ∧ b �= 97)
r{a,c} = (c ≤ 99)
r{b,c} = (b − c ≤ −1)

and all other rp = �. We remark that, by abuse of notation, we write b �= 98
instead of introducing a dedicated variable c98 and constraints b �= c98 ∧ c98 ≤
98∧0−c98 ≤ −98, and analogously for b �= 97. Now, consider (9) with Y = {a, c},
z = b, r′ = {c ≤ 99} Then,

(r{b} ∧ r{b,a} ∧ r{b,c} ∧ r′)
∣
∣
Y

= (r{b} ∧ r{b,a} ∧ r{b,c} ∧ r′)
∣
∣
{a,c}

= (c ≤ 99 ∧ a − c ≤ −2 ∧ c ≤ 95)
�= (c ≤ 99 ∧ a − c ≤ −2 ∧ c ≤ 97)
= (c ≤ 99) ∧ � ∧ � ∧ � ∧ (a − c ≤ −2) ∧ � ∧ �
= (c ≤ 99) ∧ (r{b} ∧ r{b})

∣
∣
∅ ∧ (r{a,b} ∧ r{a,b})

∣
∣
{a} ∧ (r{b,c} ∧ r{b,c})

∣
∣
{c}

∧(r{a,b} ∧ r{b,c})
∣
∣
{a,c} ∧ (r{b} ∧ r{b,a})

∣
∣
{a} ∧ (r{b} ∧ r{b,c})

∣
∣
{c}

= r′ ∧ ∧k
i,j=1 (r{b,yi} ∧ r{b,yj})

∣
∣
Y ∩{yi,yj}

and the domain thus is not 2-projective. 

Example 9. Consider the domain of octagons enhanced with additional con-
straints for the absolute values of variables [5], i.e., with additional constraints
of the form ±|x| ± |y| ≤ c and ±|x| ± y ≤ c. This domain is 2-decomposable.
Now, for 2-projectivity, let, e.g.,

r{a,d} = a − |d| ≤ 2
r{b,c} = b + c ≤ 5
r{b,d} = b − d ≤ 5
r{c,d} = −c + d ≤ 2 ∧ −|d| ≤ 0
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with all other rp = � for p ∈ [X ]2. Now, consider (9) with Y = {a, b, c}, z = d,
r′ = (b + c ≤ 5).

(r{d} ∧ r{d,a} ∧ r{d,b} ∧ r{d,c} ∧ r′)
∣
∣
Y

= (r{d} ∧ r{d,a} ∧ r{d,b} ∧ r{d,c} ∧ r′)
∣
∣
{a,b,c}

= b + c ≤ 5 ∧ b − c ≤ 7 ∧ b ≤ 6 ∧ a + b ≤ 9
�= b + c ≤ 5 ∧ b − c ≤ 7 ∧ b ≤ 6
= b + c ≤ 5 ∧ � ∧ � ∧ {b − c ≤ 7}
= b + c ≤ 5 ∧ (a − |d| ≤ 2 ∧ b − d ≤ 5)|{a,b}

∧(a − |d| ≤ 2 ∧ (−c + d ≤ 2 ∧ −|d| ≤ 0))|{a,c}∧
(b − d ≤ 5 ∧ (−c + d ≤ 2 ∧ −|d| ≤ 0))|{b,c}

= b + c ≤ 5 ∧ (r{d,a} ∧ r{d,b})
∣
∣
{a,b} ∧ (r{d,a} ∧ r{d,c})

∣
∣
{a,c} ∧ (r{d,b} ∧ r{d,c})

∣
∣
{b,c}

= {b + c ≤ 5}∧
(r{d,a})

∣
∣
{a} ∧ (r{d,a} ∧ r{d,b})

∣
∣
{a,b} ∧ (r{d,a} ∧ r{d,c})

∣
∣
{a,c}∧

(r{d,b})
∣
∣
{b} ∧ (r{d,b} ∧ r{d,c})

∣
∣
{b,c}∧

(r{d,c})
∣
∣
{c}

= {b + c ≤ 5}∧
(r{d,a} ∧ r{d,a})

∣
∣
{a} ∧ (r{d,a} ∧ r{d,b})

∣
∣
{a,b} ∧ (r{d,a} ∧ r{d,c})

∣
∣
{a,c}

∧(r{d,a} ∧ r{d,d})
∣
∣
{a}∧

(r{d,b} ∧ r{d,b})
∣
∣
{b} ∧ (r{d,b} ∧ r{d,c})

∣
∣
{b,c} ∧ (r{d,b} ∧ r{d,d})

∣
∣
{b}∧

(r{d,c} ∧ r{d,c})
∣
∣
{c} ∧ (r{d,c} ∧ r{d,d})

∣
∣
{c}∧

(r{d,d} ∧ r{d,d})
∣
∣
{∅}

= r′ ∧ ∧k
i,j=1 (r{d,yi} ∧ r{d,yj})

∣
∣
Y ∩{yi,yj}

and the domain thus is not 2-projective. 
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