
Combining Classical and Probabilistic
Independence Reasoning to Verify

the Security of Oblivious Algorithms

Pengbo Yan1(B) , Toby Murray1 , Olga Ohrimenko1 ,
Van-Thuan Pham1 , and Robert Sison2

1 The University of Melbourne, Melbourne, Australia
pengboy@student.unimelb.edu.au,

{toby.murray,oohrimenko,thuan.pham}@unimelb.edu.au
2 UNSW Sydney, Sydney, Australia

r.sison@unsw.edu.au

Abstract. We consider the problem of how to verify the security of
probabilistic oblivious algorithms formally and systematically. Unfortu-
nately, prior program logics fail to support a number of complexities that
feature in the semantics and invariants needed to verify the security of
many practical probabilistic oblivious algorithms. We propose an app-
roach based on reasoning over perfectly oblivious approximations, using
a program logic that combines both classical Hoare logic reasoning and
probabilistic independence reasoning to support all the needed features.
We formalise and prove our new logic sound in Isabelle/HOL and apply
our approach to formally verify the security of several challenging case
studies beyond the reach of prior methods for proving obliviousness.

1 Introduction

Side-channel attacks allow attackers to infer sensitive information by eavesdrop-
ping on a program’s execution, when the sensitive data are not directly observ-
able (e.g. because they are encrypted). For example, sensitive documents or
secret images can be reconstructed by only observing a program’s memory access
pattern [15,20,24]. Many algorithms are charged with the protection of secrets
in application contexts where such attacks are realistic, for example, cloud com-
puting [28,35], secure processors [8,21] and multiparty computation [19].

The goal of an oblivious algorithm (e.g. path ORAM [32], Melbourne shuffle
[25]) is to hide its secrets from an attacker that can observe memory accesses.
Probabilistic oblivious algorithms aim to do so while achieving better perfor-
mance than deterministic oblivious algorithms. The various programming dis-
ciplines to defend against such attacks for deterministic algorithms [1,22] often
lead to poor performance: e.g. to hide the fact that an array is accessed at a

This work has been supported in part by the joint CATCH MURI-AUSMURI and the
Melbourne Graduate Research Scholarship.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 188–205, 2025.
https://doi.org/10.1007/978-3-031-71162-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_10&domain=pdf
http://orcid.org/0000-0003-0396-8343
http://orcid.org/0000-0002-8271-0289
http://orcid.org/0000-0002-9735-0538
http://orcid.org/0000-0002-9871-3695
http://orcid.org/0000-0003-0313-9764
https://doi.org/10.1007/978-3-031-71162-6_10

Combining Classical and Probabilistic Independence Reasoning 189

certain position, one may have to iterate over the entire array [5]. Probabilis-
tic oblivious algorithms avoid this inefficiency by performing random choices
at runtime to hide their secrets from attackers more efficiently. Unfortunately,
probabilistic methods for achieving obliviousness are error prone and some have
been shown insecure, as a result requiring non-trivial fixes [10,13].

In this paper we develop a program logic to verify the security of probabilistic
oblivious algorithms formally and systematically. We adopt the standard threat
model for such programs, in which the attacker is assumed to be able to infer
the memory access pattern (e.g. either by explicitly observing memory requests
in case of untrusted/compromised operating system or by measuring the time
its own memory accesses take due to shared resources like caches) [4,9,11,32].

Although some previous works [3,7,31,34] exist, many oblivious algorithms
have complex semantics and invariants that are beyond the reach of those prior
methods to reason about. For example, path ORAM [32] maintains an invariant
stating that virtual addresses are independent of each other and of the program’s
memory access patterns; whereas the oblivious sampling algorithm [28] contains
secret- or random-variable-dependent random choices, conditional branches and
loops, whose details we introduce in Sect. 2 and Sect. 5.

Also, to achieve efficiency, some oblivious algorithms [25,30,32] forgo per-
fection and have a very small probability of failure, which means that they do
not perfectly hide their secrets. Fortunately, they are intentionally designed so
that the failure probability is bounded by some negligible factor (e.g. of the
size of the secret data), meaning that they are secure in practice. Following
prior work [25,32], this means that we can prove them secure by reasoning over
perfectly oblivious approximations, the theoretical and perfect version of the
practical algorithms that are free of failure by construction (Appendix A.1 of
the extended version of this paper [33] justifies this claim). Proving negligible
error probability bounds on oblivious algorithms is an important goal, but is out
of scope of this present work.

Reasoning over the perfectly oblivious approximations requires an app-
roach that supports for all of the following:

– Assertions that describe probability distributions and independence;
– Reasoning about dynamic random choices over secrets and random variables

– e.g. a random choice of integers from 1 to random secret variable s;
– Reasoning about branches that depend on secret random variables;
– Reasoning over loops that have a random number of iterations.

Our approach addresses these challenges simultaneously.
Following preliminaries (Sect. 3), in Sect. 4 we build a program logic that

combines classical and probabilistic reasoning to address the aforementioned
challenges, which we prove sound in Isabelle/HOL. Our logic is situated atop
the Probabilistic Separation Logic (PSL) [3]; proving the soundness of our logic
revealed several oversights in PSL [3], which we fixed (see Sect. 4.4).

To our knowledge, the reasoning our logic supports is beyond all prior meth-
ods for verifying obliviousness, including PSL [3], ObliCheck [31], λOADT [34],
and λobliv [7]. The combination of classical and probabilistic reasoning also makes

190 P. Yan et al.

our logic more expressive than previous probabilistic Hoare logics (e.g., [12],
VPHL [26] and pRHL [2]) which, because they lack assertions for describing
distributions and independence, are ill-suited to direct proofs of obliviousness.

Finally, we demonstrate the power of our logic by applying it on pen-and-
paper to verify, for the first time, the obliviousness of several non-trivial case
studies (Sect. 5). Their verification is a significant achievement in that they con-
stitute the fundamental building blocks for secure oblivious systems.

2 Overview

2.1 Challenges for Verification

Many probabilistic oblivious algorithms use probabilistic independence as a core
intermediate condition to prove their obliviousness informally on pen and paper
[25,28,30,32], which is intuitive and simple. However, such algorithms present a
range of challenges for formally verifying their obliviousness systematically.

We have constructed the example algorithm in Fig. 1 to illustrate in a sim-
plified form the kinds of complexities that will feature in the semantics and
invariants needed to prove our case studies (Sect. 5). The teal-coloured parts
show the verification and will be introduced in the next subsection. Our syn-
thetic algorithm takes an input array S with size n containing secret elements:
each either 0 or 1. The list O is empty initially but will be filled with some data
later. We want to prove O will not leak any information about S. The synthetic
algorithm first initialises array A with two random values sampled from the
integers between 0 and 7. Its nested loop illustrates the following challenges:

1. The outer loop iterates n times where the ith iteration will append A[S[i]]
to O (line 4). It simulates a simplified version of path ORAM [32], which
maintains an invariant that virtual addresses are independent of each other
and of the program’s memory access patterns. The secret S can be seen as a
sequence of secret virtual addresses and the output O represents the memory
access pattern. We need to prove an invariant that the elements in O are
independent of each other and independent of each element A[S[i]] appended
to O by the outer loop. Note: the assignment on line 4 breaks the independence
between O and A[S[i]], so lines 4–11 update A[S[i]] with a fresh random value
to re-establish the independence for the next loop iteration. This ensures O
is independent of S and will not leak secret information.

2. After initialising m with 8 on line 5, we have the inner loop containing a
probabilistic and secret-dependent if-conditional. Its secret dependence makes
the control flow different over different values of the secret. The iteration count
for the inner loop is truly random, depending on A[S[i]] (where each iteration
doubles m and increases j by 1 or 2 depending on whether j + S[i]%3 = 0).
These kinds of loops and conditionals are common in real-world oblivious
algorithms (Sect. 5), yet necessarily complicate reasoning.

Combining Classical and Probabilistic Independence Reasoning 191

Fig. 1. Verification of the motivating algorithm.

3. On line 10, the algorithm makes what we call a dynamic random choice,
which is one over a truly random set (here, from 1 to the random variable m),
assigning the chosen value to t. Then, (line 11) A[S[i]] is assigned t % 8. This
requires reasoning that t % 8 satisfies the uniform distribution on {0 · · · 7},
because m is certainly a multiple of 8. Dynamic random choices are also
common in real-world oblivious algorithms, as Sect. 5 demonstrates.

Lines 5 − 11 are derived from the oblivious sampling algorithm [28] (see
Appendix C.2 of the extended version [33]) to demonstrate challenges 2 and
3.

2.2 Mixing Probabilistic and Classical Reasoning

We show how to construct a program logic that combines classical and prob-
abilistic (and independence) reasoning over different parts of the program so
that it can verify our running example, as shown in Fig. 1. Namely, certain parts

192 P. Yan et al.

of the algorithm (lines 1, 2, 4, 10) require careful probabilistic reasoning, while
others do not, but that each style of reasoning can benefit the other.

Our program logic is constructed by situating these ideas in the context of
the Probabilistic Separation Logic (PSL) [3]. PSL is an existing program logic for
reasoning about probabilistic programs. PSL employs the separating conjunction
(here written �) familiar from separation logic [23] to capture when two proba-
bility distributions are independent. In situating our work atop PSL we extend
its assertion forms with the new Ct(·) assertion, to capture classical information.
More importantly, however, we significantly extend the resulting logic with a
range of novel reasoning principles for mixing classical and probabilistic reason-
ing embodied in a suite of new rules (Fig. 3), which we will present more fully in
Sect. 4. These new rules show how classical reasoning (captured by Ct(·) asser-
tions) can be effectively harnessed, and allow reasoning about dynamic random
choices, secret-dependent if-statements, and random loops, making our logic sig-
nificantly more applicable than PSL; while leveraging PSL’s support for intuitive
reasoning about probability distributions makes our logic also more expressive
than prior probabilistic program logics [2,12,26]. We also harness the close inter-
action between classical and probabilistic reasoning to allow new ways to prove
security (e.g., the Unif-Idp rule and the final proposition of Proposition 1, which
will be introduced in Fig. 3 and Sect. 4.1), and new ways to reason about random
sampling (embodied in the RSample rule, Fig. 3). Each represents a non-trivial
insight, and all are necessary for reasoning about real-world oblivious algorithms
(Sect. 5). The increase in expressiveness, beyond prior probabilistic program log-
ics [2,3,12,26], within a principled and clean extension of PSL attests to the
careful design of our logic.

The combination of classical and probabilistic reasoning means that our logic
tracks two kinds of atomic assertions, as follows.
Certain Assertions. Classical reasoning is supported by certain assertions
Ct(er) that state that some property er (which may mention random variables)
is true with absolute certainty, i.e. is true in all memories supported by the
current probabilistic state of the program. With certain assertions and classical
reasoning, our logic can reason about loops with random iteration numbers
and randomly secret-dependent if statements. Doing so requires distin-
guishing classical from distribution (independence) assertions, because the latter
are ill-suited for reasoning about random loops and conditionals.

For example, from line 5 to 9, although the random loop and the probabilistic-
and secret-dependent if statement complicate the algorithm, we only need clas-
sical reasoning to conclude that after the loop m is certainly a multiple of 8
(using the RLoop and RCond rules in Fig. 3, which have the classic form).
This information is sufficient to verify the remainder of the algorithm.
Distribution Assertions. On the other hand, reasoning about probability dis-
tributions is supported by distribution assertions, which we adopt and extend
from PSL: for a set expression ed (which is allowed to mention non-random pro-
gram variables), Ued

[er] states that expression er is uniformly distributed over
the set denoted by ed in the sense that when er is evaluated in the current

Combining Classical and Probabilistic Independence Reasoning 193

probabilistic state of the program it yields a uniform distribution over the evalu-
ation of ed. We define these concepts formally later in Sect. 4.1 (see Definition 2).
With this reasoning style, we support dynamic random choice (e.g. line 10,
the value is sampled from a truly probabilistic set), which is not supported by
previous works [2,3,7,12,26,31,34]. Note that we require ed to be deterministic
here because if ed can be probabilistic, then it means a probabilistic expression
satisfies a uniform distribution on a probabilistic set—a clear contradiction.

For example, at line 10, even if we do not specify the detailed distribution of
m, we can conclude t % 8 satisfies the uniform distribution on the set {0 · · · 7},
as m is certainly a multiple of 8, by an argument based on our concept of an
even partition (Definition 4). This reasoning is supported by our novel RSample
rule (Fig. 3). Here, it requires that all the possible sets (in this case, {1 · · · 8} or
{1 · · · 16} or ...) over which t was sampled, can each be evenly mapped to (and
thus partitioned by) the target set (here {0 · · · 7}) by the applied function (here
%8). Thus t % 8 must satisfy the uniform distribution on {0 · · · 7}.

Unifying Classical and Probabilistic Independence Reasoning. Another impor-
tant feature of our logic is that it allows independence to be derived by leveraging
classical reasoning. For example, considering line 10, 11, if a variable (A[S[i]])
always satisfies the same distribution (uniform distribution on {0 · · · 7}) over any
possible values of some other variables (O and A[1 − S[i]]), then the former is
independent of the latter (because O and A[1−S[i]] will not influence the values
of A[S[i]]). The new rule Unif-Idp (Fig. 3) embodies this reasoning (where �
denotes independence and D() stands for an arbitrary distribution).1

Our logic also includes a set of useful propositions (Proposition 1) that aid
deriving independence information from classical reasoning.

Returning to the example, with the conclusion that A[S[i]] is independent
of other variables, we can construct the loop invariant of the outer loop (inv(i))
stating that the output array O always satisfies a uniform distribution following
the ith iteration, which is captured by eight(i). We use the final proposition of
Proposition 1 here. Intuitively, this proposition says given a reversible function
(whose inputs can be decided by looking at its outputs, e.g. array appending),
if its two inputs satisfy uniform distribution and are independent of each other,
then the result of the function should satisfy the uniform distribution on the
product (by the function) of the two inputs’ distribution.

By the invariant, we can conclude finally the output array always satisfies
the uniform distribution on eight(n), regardless of secret S, which means the
output will not leak any secret information.

1 In this case we cannot use PSL’s frame rule because m is not independent of A.

194 P. Yan et al.

3 Preliminaries

3.1 Programming Language and Semantics

In this paper we define a probability distribution over a countable set A is a
function μ : A → [0, 1] where Σa∈Aμ(a) = 1. We write μ(B) for Σb∈Bμ(b) where
B can be any subset of A and D(A) for the set of all distributions over A.

The support of a distribution μ, supp(μ), is the set of all elements whose
probability is greater than zero, {a ∈ A | μ(a) > 0}.

A unit distribution over a single element, unit(a), is (λx. If a = x then 1 else 0).
A uniform distribution over a set, UnifS , is (λx. If x ∈ S then 1/|S| else 0).

Given a distribution μ over A and a function f from elements of A to a
distribution, f : A → D(B), we define bind(μ, f) = λb. Σa∈Aμ(a) · f(a)(b), used
to give semantics to random selections and assignments to random variables.

Given two distributions μA and μB over the sets A and B, we define μA ⊗
μB = λa, b. μA(a) · μB(b). Given a distribution μ over A × B, we define π1(μ) =
λa. Σb∈Bμ(a, b) and π2(μ) = λb. Σa∈Aμ(a, b). We say these two distributions
are independent if and only if μ = π1(μ) ⊗ π2(μ).

Given a distribution μ over some set A, and S ⊆ A where μ(S) > 0, let
E ⊆ A, we define (μ|S) = λE. μ(E∩S)

μ(S) , used to give semantics to conditional
statements, as is the following. Given two distribution μ1, μ2, and a number
p ∈ [0, 1], we define μ1 ⊕p μ2 = λx. p · μ1(x) + (1 − p) · μ2(x). When p is 1 or 0,
we unconditionally define the result to be μ1 or μ2 respectively.

Same as PSL’s memory model, we also distinguish deterministic from random
variables: only the latter can be influenced by random selections (i.e. by proba-
bilistic choices). We define DV as a countable set of deterministic variables and
RV as a countable set of random variables, disjoint from DV.

Let Val be the countable set of values, which we assume contains at least
the values true and false. When applying our logic, we will freely assume it
contains integers, lists, sets, and any other standard data types as required.
Let op be a set of operations on values, including binary functions on values of
type (Val × Val) → Val. In practice, we will assume it includes the standard
arithmetic, list and set operations, and others as required. Finally, let vset() be
a function of type Val → P(Val), taking one value and returning a non-empty,
finite set of values, for giving semantics to dynamic random choice.

Then let DetM = DV → Val be the set of deterministic memories, and
RanM = RV → Val the set of random variable memories. A semantic config-
uration is a pair (σ, μ), where σ ∈ DetM and μ ∈ D(RanM) (a probability
distribution over RanM). Configurations represent program states.

As with program variables, we define sets of deterministic and random expres-
sions, denoted DE and RE respectively. DE cannot mention random variables.

Definition 1 (Expressions). Expressions are either deterministic or random,
defined as follows:

Deterministic expressions : DE � ed ::=Val | DV | op DE DE

Random expressions : RE � er ::=Val | DV | RV | op RE RE

Combining Classical and Probabilistic Independence Reasoning 195

Note that DE is a subset of RE. Given a deterministic memory σ and a
random variable memory m, we write [[er]] (σ,m) as the evaluation of expres-
sion er. Expression evaluation is entirely standard and its definition is omitted
for brevity. The evaluation of deterministic expressions ed depends only on the
deterministic memory σ and so we often abbreviate it [[ed]]σ.

Following the distinction between deterministic and random variables, the
programming language also distinguishes deterministic and random conditionals
and loops. We define two sets of program commands for our language, where C
is the complete set of commands and RC is a subset of C containing so-called
“random” commands that cannot assign to deterministic variables. We write
ifD b then c to abbreviate ifD b then c else skip and likewise for ifR b then c.
As with PSL, our logic is defined for programs that always terminate.

RC � c ::= skip | RV ← RE
| RV ←$ URE | RC;RC
| ifD DE then RC else RC
| ifR RE then RC else RC
| whileD DE do RC
| whileR RE do RC

C � c ::= skip | DV ← DE
| RV ← RE | RV ←$ URE | C;C
| ifD DE then C else C
| ifR RE then RC else RC
| whileD DE do C
| whileR RE do RC

In practical verification, given an algorithm, we try to set all the variables as
deterministic variables at the beginning. Then, all the variables sampled from the
uniform distribution or assigned by an expression containing random variables
must be random variables. All the loop and if-conditions containing random
variables must be random loops/conditionals. All the variables assigned in a
random loop/conditional must be random variables. We repeat the above process
until no variable and loop/conditional will change their type.

The semantics (Fig. 2) of a command c ∈ C is denoted [[c]], which is a config-
uration transformer of type (DetM×D(RanM)) → (DetM×D(RanM)). Our
programming language extends that of PSL by allowing dynamic random choice,
in which a value is chosen from a set denoted by an random expression er ∈ RE
rather than a constant set. We also add random loops, whose condition can
depend on random expressions (rather than only deterministic expressions as in
PSL). These improvements increase the expressivity of the language, necessary
to capture the kinds of practical oblivious algorithms that we target in Sect. 5.
Unlike PSL, which defines its loop semantics somewhat informally, ours enables
direct mechanisation (in Isabelle/HOL).

4 Logic

4.1 Assertions

The assertions of our logic include those of PSL, which we extend with the
certainty assertion Ct(er) while extending the uniform distribution assertion
Ued

[er] by allowing the set to be specified by an expression ed (rather than
a constant as in PSL). The free variables of an expression e are denoted FV(e).

196 P. Yan et al.

Fig. 2. Programming Language Semantics

The domain of distribution μ over memories, written dom(μ), is the set of ran-
dom variables in the memories in the support of μ. AP denotes the set of atomic
assertions.

For a random variable expression er, Ct(er) asserts that er evaluates to true
in every memory consistent with the current configuration, i.e. it holds with abso-
lute certainty. Note that the set of random variable expressions er can accom-
modate all standard assertions from classical Hoare logic.

Definition 2 (Atomic Assertion Semantics).

[[Ct(er)]] = {(σ, μ) | ∀m ∈ supp(μ). [[er]] (σ,m) = true}
[[Ued

[er]]] = {(σ, μ) | FV(er) ∪ FV(ed) ⊆ dom(σ) ∪ dom(μ)
and Unifvset([[ed]]σ) = [[er]] (σ, μ)}

The assertion Ued
[er] asserts that the evaluation of random variable expres-

sion er yields the uniform distribution over the set denoted by the deterministic
expression ed when evaluated in the current deterministic memory, where the
vset() function is used to retrieve that denotation after evaluating ed (Sect. 3.1).
We require the expression ed to be deterministic as otherwise this assertion can
introduce contradictions (e.g. if the set expression instead denoted a truly ran-
dom set including possible sets {1, 2} and {0}, then er will not be uniformly
distributed on any set).

From PSL our logic inherits its other assertions and Kripke resource monoid
semantics. The assertions � (which holds always), ⊥ (which never holds), and
connectives ∧, ∨, → have their standard meaning. The separation logic [23] con-
nectives are ∗, which is separating conjunction and is used to assert probabilistic
independence; and →∗ is separating implication. See extended Appendix A.2 [33].

Note that Ct(P)∧Ct(Q) is equivalent to Ct(P ∧ Q), but Ct(a = 1) ∨Ct(a = 2)
is different to Ct(a = 1 ∨ a = 2): the former asserts that either a is always 1 or a
is always 2 (stronger); the latter asserts that always a is either 1 or 2 (weaker).

Combining Classical and Probabilistic Independence Reasoning 197

We also write D(x) to abbreviate Ct(x = x), which asserts that the variable
x is in the domain of the partial configuration. Any distribution of x satisfies
this assertion.

Finally, we introduce several useful propositions about assertions implication.
They are very useful in the verification and reflect the interplay between classical
and probabilistic independence reasoning, especially the last one.

Proposition 1.

|= (φ ∗ ψ) ∧ η → (φ ∧ η) ∗ ψ ,where |= φ → D(FV(η) ∩ RV) (1)
|= (φ ∗ ψ) → (φ ∧ ψ) (2)
|= US [e] ∧ Ct(f is a bijection from S to S′) → US′ [f(e)] (3)
|= (Ct(φ ∧ ψ)) → (Ct(φ) ∧ Ct(ψ)) (4)
|= (Ct(φ) ∧ Ct(ψ)) → (Ct(φ ∧ ψ)) (5)
|= US [e] → Ct(e ∈ S) (6)
|= US [e] ∧ Ct(e = e′) → US [e′] (7)
|= Ct(x = e ∧ x /∈ FV(e′)) ∧ D(e) ∗ D(e′) =⇒ D(x) ∗ D(e′) (8)

|= Ct(∀a, b ∈ S, c, d ∈ S′.f(a, c) = f(b, d) → a = b ∧ c = d) ∧ US [x] ∗ US′ [e′]
→ US×fS′ [f(x, e′)], where S ×f S′ = {f(a, b) | a ∈ S ∧ b ∈ S′}

(9)

The first two are inherited from PSL. The third one generalises a similar
proposition of PSL [3] over possibly different sets S and S′. The fourth and fifth
show the equivalence of ∧ whether inside or outside the certain assertions. The
sixth shows the straightforward consequence that if e is uniformly distributed
over set S, then the value of e must be in S. The seventh shows two expressions
satisfy the same distribution if they are certainly equal. The eighth shows if we
know that e is independent of e′ and we know another variable x = e additionally,
we can conclude that x is also independent of e′ if x is not a free variable in e′.

The last one also generalises a proposition of PSL [3] by leveraging Ct(·)
conditions: it restricts binary function f by requiring it to produce different
outputs when given two different pairs of inputs. In practice, we will use this
lemma letting f be the concatenation function on two arrays where S is a set
of possible arrays with the same length. We conclude the concatenated array
satisfies the uniform distribution on S times S′ if those premises hold.

4.2 Judgements and Rules

The judgements � {φ} c {ψ} of our program logic are simple Hoare logic correct-
ness statements, in which c is a program command and φ and ψ are preconditions
and postconditions respectively.

Definition 3 (Judgement Validity). Given two assertions φ, ψ and a pro-
gram command c, a judgement {φ}c{ψ} is valid if for all configuration (σ, μ)
satisfying (σ, μ) |= φ, we have [[c]] (σ, μ) |= ψ, denoted � {φ} c {ψ}.

198 P. Yan et al.

Fig. 3. Rules capturing the interplay of classical and probabilistic reasoning.

Our logic inherits all of PSL’s original rules [3] (see extended Appendix
A.3 [33] for details); many of them use the Ct(·) assertion to encode equality
tests, which were encoded instead in PSL primitively.

Figure 3 depicts the rules of our logic that embody its new reasoning princi-
ples, and support the requirements listed at Sect. 2.1. The random assignment
rule RAssign has the classical Hoare logic form. It requires the postcondition φ is
atomic to avoid unsound derivations, e.g. {0 = 0 ∗ 0 = 0} x = 0 {x = x ∗ x = x}.

As mentioned in Sect. 2.2, the RSample rule is another embodiment of the
general principle underlying the design of our logic, of classical and probabilistic
reasoning enhancing each other. Specifically, it allows us to deduce when a ran-
domly sampled quantity f(xr) (a function f applied to a random variable xr)
is uniformly distributed over set S′ when the random variable xr was uniformly
sampled over set S. It is especially useful when S is itself random. It relies on
the function f evenly partitioning the input set S into S′, as defined below.

Definition 4 (Even Partition). Given two sets S, S′ and a function f , we
say that f evenly partitions S into S′ if and only if S′ = {f(s)|s ∈ S} and there
exists an integer k such that ∀s′ ∈ S′. |{s ∈ S|f(s) = s′}| = k. In this case we
write EI(f, S, S′).

RSample allows reasoning over random choices beyond original PSL [3], and
in particular dynamic random sampling from truly random sets. For example,
at line 10 of Fig. 1, we have Ct(EI(f, S, S′)) where f = % 8, S = {0 · · · m}, S′ =
{0 · · · 7}. Letting k = m/8 with the above definition, we can prove the pre-
condition implies Ct(EI(f, S, S′)). Note that if m = 9 then Ct(EI(f, S, S′)) will
not hold because we cannot find k. The existence of k makes sure that S can be
evenly partitioned to S′ by f . Also, from our new random sample rule RSample,
one can obtain PSL’s original rule by letting S′ = S and f = (λx. x).

Besides PSL’s random conditional rule, we also include the RCond rule for
random conditions that operate over certainty assertions Ct(·). It is in many

Combining Classical and Probabilistic Independence Reasoning 199

cases more applicable because it does not require the branching condition to be
independent of the precondition and, while it reasons only over certainty asser-
tions, other conditions can be added by applying the Const rule [3]. The new
random loop rule RLoop is straightforward, requiring proof of the invariant φ
over a random conditional.

The final new rule Unif-Idp unifies two methods to prove the independence
of an algorithm’s output b from its input a: it says that if given any arbitrary
distribution of a we can always prove that the result b is uniformly distributed,
then a and b are independent because the distribution of a does not influence
b, where MV(c) is the variables c may write to (same as PSL’s definition). It
is useful for programs that consume their secrets by random choice at runtime
(e.g. Fig. 1 we verified in Sect. 2.2 and the Oblivious Sampling algorithm [28] we
verify in extended Appendix C.2 [33]).

As an example, we used this rule between line 10 and line 11 in Fig. 1 by
letting a = (O, A[1 − S[i]]) and P,Q be the other information in the assertion
before line 10. The first premise of the rule is true because these two lines of
code never modify O and A[1 − S[i]]. The second premise is also trivially true.
The third premise is proved by the RSample and RAssign rules. This yields
the conclusion that O and A[1 − S[i]] are independent of A[S[i]].

Note that the pre-condition Ct(a ∈ A) ∗ Q ∧ Ct(P) appears in both premise
and conclusion of the rule. Considering the Weak rule [3] (aka the classical con-
sequence rule), when the precondition is in the premise, we want it be as strong
as it can so that the premise is easier to be proved. When it is in conclusion, we
want it be as weak as it can so that the conclusion is more useful. These two
requirements guide us to design the rule with two free assertions connected by
∧ and ∗ respectively so that it is very flexible. If we change the pre-condition to
D(a) (deleting A,P,Q), this rule is still sound (which can be proved by letting
A be the universe set and P,Q be true) but much less applicable.

4.3 Soundness

Theorem 1. All the rules in Fig. 3, plus the other original PSL rules [3], are
sound, i.e. are valid according to Definition 3.

We formalised our logic and proved it sound in Isabelle/HOL (see the accom-
panying artifact). It constitute 7K lines of Isabelle and required approx. 8 person-
months to complete. Some of our Isabelle proofs follow PSL’s pen-and-paper
proofs but we also found several problems in PSL’s definitions and proofs. We
briefly discuss those now, to highlight the value and importance of machine-
checked proofs for establishing the soundness of program logics.

4.4 Oversights in Original PSL

Our machine-checked proofs identified various oversights in the pen-and-paper
formalisation of original PSL [3]. We fixed them either by modifying specific defi-
nitions or by finding an alternative—often much more complicated, but sound—
proof strategy.

200 P. Yan et al.

PSL [3] defines the notion of when a formula φ is supported (SP), requir-
ing that for any deterministic memory σ, there exists a distribution over random
variable memories μ such that if (σ, μ′) |= φ, then μ � μ′ (meaning that μ is a
marginal distribution of μ′ where dom(μ) ⊆ dom(μ′)) [3, Definition 6].

This definition aims to restrict the assertions used in PSL’s original rule
for random conditionals [3, rule RCond of Fig. 3], but it is not strong enough.
All the assertions satisfy it because μ can always be instantiated with the unit
distribution over the empty memory unit(∅ → Val), � all others. This means
the second example in their paper [3, Example 2] is a counterexample to their
rule for random conditionals because there is not any non-supported assertion.

We fixed this by altering their definition of SP. Note that simply excluding
the empty memory case is not enough to fix this problem. Instead, we have
Definition 5 and our Isabelle proofs ensure its soundness. It does not have a big
impact on adjusting the proofs strategy of relevant rules.

Definition 5 (Supported). An assertion φ is Supported (SP) if for any deter-
ministic memory σ, there exists a randomised memory μ such that if (σ, μ′) |= φ,
then μ � μ′ and (σ, μ) |= φ.

Additionally, key lemmas that underpin PSL’s soundness argument turned
out to be true, but not for the reasons stated in their proofs [3, Lemmas 1 and
2, Appendix B]. PSL’s Lemma 1 proof has mistakes in the implication case. The
second sentence of the implication case said, “there exists a distribution μ” such
that . . .”. However μ” may not exist because μ and μ′ may disagree on some
variables in FV(φ1, φ2). PSL’s Lemma 2 proof also has mistakes. They said “we
have (σ1, μ1) |= η” on the third line of proof but this is not true because σ1 may
not equal σ (the domain of σ1 could be smaller than σ). The actual proof of
these needs a different strategy which we found and formalized in Isabelle.

Without mechanising the soundness of our program logic, it is unlikely we
would have uncovered these issues. This shows the vital importance of mecha-
nised soundness proofs.

5 Case Studies

We applied our program logic to verify the obliviousness of four non-trivial
oblivious algorithms: the Melbourne Shuffle [25], Oblivious Sampling [28], Path
ORAM [32] and Path Oblivious Heap [30]. The details are in Appendix C of the
extended version of this paper [33].

While these proofs are manual, each took less than a person-day to complete,
except for Path Oblivious Heap, which took approx. 2 days of proof effort.

To our knowledge, the Melbourne Shuffle, Oblivious Sampling, and Path
Oblivious Heap have never been formally verified as each requires the combina-
tion of features that our approach uniquely supports. Path ORAM has received
some formal verification [16,27] (see later in Sect. 6) and also comes with an
informal but rigorous proof of security [32]. We verified it to show that our logic
can indeed encode existing rigorous security arguments.

Combining Classical and Probabilistic Independence Reasoning 201

In practice we need to distinguish the public memory locations and private
locations, where we assume any access to public memory locations is visible to
attackers. We add ghost code to record all public accesses in an array “Trace”
and finally we aim to prove that array is independent of secrets.

The Melbourne Shuffle [25] (see extended Appendix C.1 [33]) is an effective
oblivious shuffling algorithm used in cloud storage and also a basic building block
for other higher-level algorithms (e.g. oblivious sampling [28]). Its operation is
non-trivial, including rearranging array elements with dummy values and other
complexities. Its verification employs much classical reasoning because, while it
is probabilistic, its memory access pattern is deterministic (absent failure).

Oblivious sampling [28] (see extended Appendix C.2 [33]) is another impor-
tant building block having applications in differential privacy, oblivious data
analysis and machine learning. The algorithm obliviously samples from a data
set, by producing a uniformly-distributed memory access pattern, and includes
random and secret-dependent looping and if-statements, plus dynamic random
choices (shuffling on a truly probabilistic array). Thus our logic’s interplay
between classical and probabilistic reasoning is essential to verifying its secu-
rity.

Path ORAM [32] (see extended Appendix C.3 [33]) is a seminal oblivious
RAM algorithm with practical efficiency, providing general-purpose oblivious
storage. Path oblivious heap (extended Appendix C.4 [33]) is inspired by Path
ORAM and the two share the same idea: using a binary tree with a random and
virtual location table to store secret data, where the mappings between each
physical and virtual location are always independent of each other and of the
memory access pattern. Thus probabilistic independence is crucial to express and
prove these algorithms’ key invariants.

6 Related Work

Our program logic naturally extends PSL [3] non-trivially, including support
for classical reasoning, dynamic random choice, improved support for random
conditionals, random loops, and random assignments. Our mechanisation of PSL
identified and fixed a number of oversights (see Sect. 4.4).

Its unique synergy of classical and probabilistic independence reasoning
means our program logic is more expressive not only than PSL but also prior
probabilistic Hoare logics, such as [12], VPHL [26] and Easycrypt’s pRHL [2].

Probabilistic coupling (supported by pRHL and Easycrypt [2]) is another
popular way for proving the security of probabilistic algorithms. It does so by
proving the output distribution is equal between any pair of different secret
inputs, witnessed by a bijection probabilistic coupling for each probabilistic
choice. However, for dynamic random choice, the bijection probabilistic coupling
may not exist or may even be undefined (e.g. Fig. 1 and [28]). Sometimes, find-
ing the correct coupling can be far more challenging than proving the conclusion
directly via probabilistic independence. Indeed, the original informal security
proofs of our case studies [25,28,30,32] all use probabilistic independence to
argue their obliviousness, instead of coupling.

202 P. Yan et al.

Other program logics or type systems for verifying obliviousness also exist.
For example, ObliCheck [31] and λOADT [34] can check or prove obliviousness but
only for deterministic algorithms. λobliv [7] is a type system for a functional lan-
guage for proving obliviousness of probabilistic algorithms but it forbids branch-
ing on secrets, which is prevalent in many oblivious algorithms including those
in Sect. 5. It also forbids outputting a probabilistic value (and all other values
influenced by it) more than once. Our approach suffers no such restriction.

Path ORAM has received some verification attention [16,27]. [27] reason
about this algorithm but in a non-probabilistic model, instead representing it as
a nondeterministic transition system, and apply model counting to prove a secu-
rity property about it. Their property says that for any observable output, there
is a sufficient number of inputs to hide which particular input would have pro-
duced that output. This specification seems about the best that can be achieved
for a nondeterministic model of the algorithm, but would also hold for an imple-
mentation that used biased choices (which would necessarily reveal too much
of the input). Ours instead says that for each input the output is identically
distributed, and would not be satisfied for such a hypothetical implementation.
Nonetheless, it would be interesting to compare the strengths and weaknesses
of their complementary approach to ours. Hannah Leung et al. [16] recently pro-
posed to verify this algorithm in Coq, but as far as we are aware ours is the first
verification of Path ORAM via a probabilistic program logic.

Other recent work extends PSL in different ways. Ugo Dal Lago et al. [14]
extended PSL to computational security, but it cannot deal with loops (neither
deterministic nor probabilistic) so their target algorithms are very different to
ours. Lilac [17] also uses separating conjunction to model probabilistic inde-
pendence. Crucially, it supports reasoning about conditional probability and
conditional independence; John M. Li et al. [18] validated the design decisions
of Lilac. However, Lilac’s programming language is functional whereas ours is
imperative. Lilac does not support random loops or dynamic random choice,
which are essential for our aim.

IVL [29] reasons about probabilistic programs with nondeterminism. In doing
so it supports classical reasoning (e.g. for the nondeterministic parts) and proba-
bilistic reasoning for the probabilistic parts. Our logic reasons only about proba-
bilistic programs (with no nondeterminism) but allows using classical reasoning
to reason about parts of the probabilistic program, and for the classical and
probabilistic reasoning styles to interact and enhance each other.

Some oblivious algorithms and their security definition (e.g. Differentially
Oblivious Algorithms [6]) are not based on independence and they are beyond
the reach of our approach.

7 Conclusion and Future Work

We presented the first program logic that, to our knowledge, is able to verify
the obliviousness of real-world foundational probabilistic oblivious algorithms
whose implementations combine challenging features like dynamic random choice

Combining Classical and Probabilistic Independence Reasoning 203

and secret- and random-variable-dependent control flow. Our logic harnesses the
interplay between classical and probabilistic reasoning, is situated atop PSL [3],
and proved sound in Isabelle/HOL. We applied it to several challenging case
studies, beyond the reach of prior approaches.

Artifact Availability Statement

We published our Isabelle/HOL formalisation on
https://doi.org/10.5281/zenodo.12518321.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: USENIX Security Symposium, vol. 16, pp. 53–
70 (2016)

2. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

3. Barthe, G., Hsu, J., Liao, K.: A probabilistic separation logic. Proc. ACM Program.
Lang. 4(POPL), 1–30 (2019). https://doi.org/10.1145/3371123

4. Bittau, A., et al.: Prochlo: strong privacy for analytics in the crowd. In: Proceedings
of the 26th Symposium on Operating Systems Principles (SOSP 2017), pp. 441–
459. Association for Computing Machinery, New York (2017). https://doi.org/10.
1145/3132747.3132769

5. Cauligi, S., et al.: Fact: a DSL for timing-sensitive computation. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 174–189 (2019)

6. Chan, T.H.H., Chung, K.M., Maggs, B., Shi, E.: Foundations of differentially obliv-
ious algorithms. J. ACM 69(4), 1–49 (2022). https://doi.org/10.1145/3555984

7. Darais, D., Sweet, I., Liu, C., Hicks, M.: A language for probabilistically oblivious
computation. Proc. ACM Program. Lang. 4(POPL), 1–31 (2019). https://doi.org/
10.1145/3371118

8. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Stefanov, E., Devadas, S.: RAW
path ORAM: a low-latency, low-area hardware ORAM controller with integrity
verification. IACR Cryptol. ePrint Arch. 431 (2014). http://eprint.iacr.org/2014/
431

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996). https://doi.org/10.1145/233551.233553

10. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8 46

11. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automat-
ing attacks on inclusive last-level caches. In: 24th USENIX Security Sym-
posium (USENIX Security 15), pp. 897–912. USENIX Association, Washing-
ton, D.C. (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/gruss

https://doi.org/10.5281/zenodo.12518321
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3555984
https://doi.org/10.1145/3371118
https://doi.org/10.1145/3371118
http://eprint.iacr.org/2014/431
http://eprint.iacr.org/2014/431
https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss

204 P. Yan et al.

12. Hartog, J.I.: Verifying probabilistic programs using a hoare like logic. In: Thia-
garajan, P.S., Yap, R. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 113–125. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46674-6 11

13. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
ram and a new balancing scheme. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 143–156. Soci-
ety for Industrial and Applied Mathematics (2012)

14. Lago, U.D., Davoli, D., Kapron, B.M.: On separation logic, computational inde-
pendence, and pseudorandomness (extended version) (2024). https://arxiv.org/
abs/2405.11987

15. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. In: 26th
USENIX Security Symposium (USENIX Security 17), pp. 557–574. USENIX Asso-
ciation, Vancouver (2017). https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-sangho

16. Leung, H., Ringer, T., Fletcher, C.W.: Towards formally verified path Oram in
COQ (2023). https://dependenttyp.es/pdf/oramproposal.pdf

17. Li, J.M., Ahmed, A., Holtzen, S.: Lilac: a modal separation logic for conditional
probability. Proc. ACM Program. Lang. 7(PLDI), 148–171 (2023). https://doi.
org/10.1145/3591226

18. Li, J.M., Aytac, J., Johnson-Freyd, P., Ahmed, A., Holtzen, S.: A nominal approach
to probabilistic separation logic. In: Proceedings of the 39th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2024). Association for Computing
Machinery, New York (2024). https://doi.org/10.1145/3661814.3662135

19. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: a programming frame-
work for secure computation. In: 2015 IEEE Symposium on Security and Privacy,
pp. 359–376 (2015). https://doi.org/10.1109/SP.2015.29

20. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, pp. 605–
622 (2015). https://doi.org/10.1109/SP.2015.43

21. Maas, M., et al.: Phantom: practical oblivious computation in a secure processor.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS 2013), pp. 311–324. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2508859.2516692

22. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

23. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

24. Ohrimenko, O., Costa, M., Fournet, C., Gkantsidis, C., Kohlweiss, M., Sharma, D.:
Observing and preventing leakage in mapreduce. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS 2015), pp.
1570–1581. Association for Computing Machinery, New York (2015). https://doi.
org/10.1145/2810103.2813695

25. Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: The Melbourne shuffle:
improving oblivious storage in the cloud. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 556–567. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 47

https://doi.org/10.1007/3-540-46674-6_11
https://arxiv.org/abs/2405.11987
https://arxiv.org/abs/2405.11987
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://dependenttyp.es/pdf/oramproposal.pdf
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3661814.3662135
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/2508859.2516692
https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/2810103.2813695
https://doi.org/10.1145/2810103.2813695
https://doi.org/10.1007/978-3-662-43951-7_47

Combining Classical and Probabilistic Independence Reasoning 205

26. Rand, R., Zdancewic, S.: VPHL: a verified partial-correctness logic for probabilistic
programs. Electron. Notes Theor. Comput. Sci. 319, 351–367 (2015). https://doi.
org/10.1016/j.entcs.2015.12.021

27. Sahai, S., Subramanyan, P., Sinha, R.: Verification of quantitative hyperproperties
using trace enumeration relations. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 201–224. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 11

28. Sasy, S., Ohrimenko, O.: Oblivious sampling algorithms for private data analy-
sis. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Curran Associates Inc., Red Hook (2019)

29. Schröer, P., Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C.: A deductive
verification infrastructure for probabilistic programs. Proc. ACM Program. Lang.
7(OOPSLA2), 2052–2082 (2023). https://doi.org/10.1145/3622870

30. Shi, E.: Path oblivious heap: optimal and practical oblivious priority queue. Cryp-
tology ePrint Archive, Paper 2019/274 (2019). https://eprint.iacr.org/2019/274

31. Son, J., Prechter, G., Poddar, R., Popa, R.A., Sen, K.: ObliCheck: efficient verifi-
cation of oblivious algorithms with unobservable state. In: 30th USENIX Security
Symposium (USENIX Security 21), pp. 2219–2236. USENIX Association (2021).
https://www.usenix.org/conference/usenixsecurity21/presentation/son

32. Stefanov, E., et al.: Path Oram: an extremely simple oblivious ram protocol. J.
ACM 65(4), 1–26 (2018). https://doi.org/10.1145/3177872

33. Yan, P., Murray, T., Ohrimenko, O., Pham, V.T., Sison, R.: Combining classical
and probabilistic independence reasoning to verify the security of oblivious algo-
rithms (extended version). arXiv preprint arXiv:2407.00514 (2024)

34. Ye, Q., Delaware, B.: Oblivious algebraic data types. Proc. ACM Program. Lang.
6(POPL), 1–29 (2022). https://doi.org/10.1145/3498713

35. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pp. 283–298. USENIX Association, Boston (2017). https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/zheng

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1145/3622870
https://eprint.iacr.org/2019/274
https://www.usenix.org/conference/usenixsecurity21/presentation/son
https://doi.org/10.1145/3177872
http://arxiv.org/abs/2407.00514
https://doi.org/10.1145/3498713
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
http://creativecommons.org/licenses/by/4.0/

	Combining Classical and Probabilistic Independence Reasoning to Verify the Security of Oblivious Algorithms
	1 Introduction
	2 Overview
	2.1 Challenges for Verification
	2.2 Mixing Probabilistic and Classical Reasoning

	3 Preliminaries
	3.1 Programming Language and Semantics

	4 Logic
	4.1 Assertions
	4.2 Judgements and Rules
	4.3 Soundness
	4.4 Oversights in Original PSL

	5 Case Studies
	6 Related Work
	7 Conclusion and Future Work
	References

