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Abstract. We propose HOBiT, a higher-order bidirectional program-
ming language, in which users can write bidirectional programs in the
familiar style of conventional functional programming, while enjoying the
full expressiveness of lenses. A bidirectional transformation, or a lens, is
a pair of mappings between source and view data objects, one in each
direction. When the view is modified, the source is updated accordingly
with respect to some laws—a pattern that is found in databases, model-
driven development, compiler construction, and so on. The most common
way of programming lenses is with lens combinators, which are lens-to-
lens functions that compose simpler lenses to form more complex ones.
Lens combinators preserve the bidirectionality of lenses and are expres-
sive; but they compel programmers to a specialised point-free style—i.e.,
no naming of intermediate computation results—limiting the scalability
of bidirectional programming. To address this issue, we propose a new
bidirectional programming language HOBiT, in which lenses are repre-
sented as standard functions, and combinators are mapped to language
constructs with binders. This design transforms bidirectional program-
ming, enabling programmers to write bidirectional programs in a flexible
functional style and at the same time access the full expressiveness of
lenses. We formally define the syntax, type system, and the semantics
of the language, and then show that programs in HOBiT satisfy bidirec-
tionality. Additionally, we demonstrate HOBiT’s programmability with
examples.

1 Introduction

Transforming data from one format to another is a common task of program-
ming: compilers transform program texts into syntax trees, manipulate the trees
and then generate low-level code; database queries transform base relations into
views; model transformations generate lower-level implementations from higher-
level models; and so on. Very often, such transformations will benefit from being
bidirectional, allowing changes to the targets to be mapped back to the sources
too. For example, if one can run a compiler front-end (preprocessing, parsing,
desugaring, etc.) backwards, then all sorts of program analysis tools will be
able to focus on a much smaller core language, without sacrificing usability, as
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their outputs in term of the core language will be transformed backwards to the
source language. In the same way, such needs arise in databases (the view-update
problem [1,6,12]) and model-driven engineering (bidirectional model transforma-
tion) [28,33,35].

As a response to this challenge, programming language researchers have
started to design languages that execute deterministically in both directions, and
the lens framework is the most prominent among all. In the lens framework, a
bidirectional transformation (or a lens) � ∈ Lens S V , consists of get � ∈ S → V ,
and put � ∈ S → V → S [3,7,8]. (When clear from the context, or unimpor-
tant, we sometimes omit the lens name and write simply get/put .) Function get
extracts a view from a source, and put takes both an updated view and the orig-
inal source as inputs to produce an updated source. The additional parameter
of put makes it possible to recover some of the source data that is not present
in the view. In other words, get needs not to be injective to have a put . Not all
pairs of get/put are considered correct lenses. The following round-triping laws
of a lens � are generally required to establish bidirectionality:

put � s v = s if get � s = v (Acceptability)
get � s′ = v if put � s v = s′ (Consistency)

for all s, s ′ and v . (In this paper we write e = e ′ with the assumption that
neither e nor e ′ is undefined. Stronger variants of the laws enforcing totality
exist elsewhere, for example in [7].) Here consistency ensures that all updates on
a view are captured by the updated source, and acceptability prohibits changes
to the source if no update has been made on the view. Collectively, the two laws
defines well-behavedness [1,7,12].

The most common way of programming lenses is with lens combinators [3,7,8],
which are basically a selection of lens-to-lens functions that compose simpler lenses
to form more complex ones. This combinator-based approach follows the long his-
tory of lightweight language development in functional programming. The dis-
tinctive advantage of this approach is that by restricting the lens language to a
few selected combinators, well-behavedness can be more easily preserved in pro-
gramming, and therefore given well-behaved lenses as inputs, the combinators are
guaranteed to produce well-behaved lenses. This idea of lens combinators is very
influential academically, and various designs and implementations have been pro-
posed [2,3,7–9,16,17,27,32] over the years.

1.1 The Challenge of Programmability

The complexity of a piece of software can be classified as either intrinsic or
accidental. Intrinsic complexity reflects the inherent difficulty of the problem
at hand, whereas accidental complexity arises from the particular programming
language, design or tools used to implement the solution. This work aims at
reducing the accidental complexity of bidirectional programming by contribut-
ing to the design of bidirectional languages. In particularly, we identify a lan-
guage restriction—i.e., no naming of intermediate computation results—which
complicates lens programming, and propose a new design that removes it.
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As a teaser to demonstrate the problem, let us consider the list append
function. In standard unidirectional programming, it can be defined simply as
append x y = case x of {[ ] → y; a : x′ → a : append x′ y}. Astute readers may
have already noticed that append is defined by structural recursion on x, which
can be made explicit by using foldr as in append x y = foldr (:) y x.

But in a lens language based on combinators, things are more difficult. Specif-
ically, append now requires a more complicated recursion pattern, as below.

appendL ::Lens ([A], [A]) [A]

appendL =

cond idL (λ .True) (λ .λ .[ ]) (consL ◦̂ (idL × appendL)) (not ◦ null) (λ .λ .⊥)

◦̂ rearr ◦̂ (outListL × idL)

where outListL ::Lens [A] (Either ( ) (A, [A]))

rearr ::Lens (Either ( ) (a, b), c) (Either c (a, (b, c)))

(◦̂) ::Lens b c → Lens a b → Lens a c

cond ::Lens a c → . . . → Lens b c → . . . → Lens (Either a b) c

. . .

It is beyond the scope of this paper to explain how exactly the definition of
appendL works, as its obscurity is what this work aims to remove. Instead, we
informally describe its behaviour and the various components of the code. The
above code defines a lens: forwards, it behaves as the standard append , and
backwards, it splits the updated view list, and when the length of the list changes,
this definition implements (with the grayed part) the bias of keeping the length
of the first source list whenever possible (to disambiguate multiple candidate
source changes). Here, cond , (◦̂), etc. are lens combinators and outListL and rearr
are auxiliary lenses, as can be seen from their types. Unlike its unidirectional
counterpart, appendL can no longer be defined as a structural recursion on list;
instead it traverses a pair of lists with rather complex rearrangement rearr .

Intuitively, the additional grayed parts is intrinsic complexity, as they are
needed for directing backwards execution. However, the complicated recursion
scheme, which is a direct result of the underlying limitation of lens languages,
is certainly accidental. Recall that in the definition of append , we were able to
use the variable y , which is bound outside of the recursion pattern, inside the
body of foldr . But the same is not possible with lens combinators which are
strictly ‘pointfree’. Moreover, even if one could name such variables (points),
their usage with lens combinators will be very restricted in order to guarantee
well-behavedness [21,23]. This problem is specific to opaque non-function objects
such as lenses, and goes well beyond the traditional issues associated with the
pointfree programming style.

In this paper, we design a new bidirectional language HOBiT, which aims
to remove much of the accidental difficulty found in combinator-based lens pro-
gramming, and reduces the gap between bidirectional programming and stan-
dard functional programming. For example, the following definition in HOBiT
implements the same lens as appendL.
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appendB ::B[A] → B[A] → B[A]

appendB x y = case x of [ ] → y with λ .True by (λ .λ .[ ])

a : x′ → a : appendB x′ y with not ◦ null by (λ .λ .⊥)

As expected, the above code shares the grayed part with the definition of appendL
as the two implement the same backwards behaviour. The difference is that
appendB uses structural recursion in the same way as the standard unidirec-
tional append , greatly simplifying programming. This is made possible by the
HOBiT’s type system and semantics, allowing unrestricted use of free variables.
This difference in approach is also reflected in the types: appendB is a proper
function (instead of the abstract lens type of appendL), which readily lends itself
to conventional functional programming. At the same time, appendB is also a
proper lens, which when executed by the HOBiT interpreter behave exactly like
appendL. A major technical challenge in the design of HOBiT is to guarantee
this duality, so that functions like appendB are well-behaved by construction
despite the flexibility in their construction.

1.2 Contributions

As we can already see from the very simple example above, the use of HOBiT
simplifies bidirectional programming by removing much of the accidental com-
plexity. Specifically, HOBiT stands out from existing bidirectional languages in
two ways:

1. It supports the conventional programming style that is used in unidirectional
programming. As a result, a program in HOBiT can be defined in a way
similar to how one would define only its get component. For example, appendB
is defined in the same way as the unidirectional append .

2. It supports incremental improvement. Given the very often close resemblance
of a bidirectional-program definition and that of its get component, it becomes
possible to write an initial version of a bidirectional program almost identical
to its get component and then to adjust the backwards behaviour gradually,
without having to significantly restructure the existing definition.

Thanks to these distinctive advantages, HOBiT for the first time allows us to
construct realistically-sized bidirectional programs with relative ease. Of course,
this does not mean free lunch: the ability to control backwards behaviours will
not magically come without additional code (for example the grayed part above).
What HOBiT achieves is that programming effort may now focus on the pro-
ductive part of specifying backwards behaviours, instead of being consumed by
circumventing language restrictions.

In summary, we make the following contributions in this paper.

– We design a higher-order bidirectional programming language HOBiT,
which supports convenient bidirectional programming with control of back-
wards behaviours (Sect. 3). We also discuss several extensions to the
language (Sect. 5).
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– We present the semantics of HOBiT inspired by the idea of staging [5],
and prove the well-behavedness property using Kripke logical relations [18]
(Sect. 4).

– We demonstrate the programmability of HOBiT with examples such as desug-
aring/resugaring [26] (Sect. 6). Additional examples including a bidirectional
evaluator for λ-calculus [21,23], a parser/printer for S-expressions, and book-
mark extraction for Netscape [7] can be found at https://bitbucket.org/kztk/
hibx together with a prototype implementation of HOBiT.

2 Overview: Bidirectional Programming Without
Combinators

In this section, we informally introduce the essential constructs of HOBiT and
demonstrate their use by a few small examples. Recall that, as seen in the
appendB example, the strength of HOBiT lies in allowing programmers to access
λ-abstractions without restrictions on the use of λ-bound variables.

2.1 The case Construct

The most important language construct in HOBiT is case (pronounced as bidi-
rectional case), which provides pattern matching and easy access to bidirectional
branching, and also importantly, allows unrestricted use of λ-bound variables.

In general, a case expression has the following form.

case e of {p1 → e1 with φ1 by ρ1; . . . ; pn → en with φn by ρn}

(Like Haskell, we shall omit “{”, “}” and “;” if they are clear from the layout.)
In the type system of HOBiT, a case-expression has type BB, if e and ei have
types BA and BB, and φi and ρi have types B → Bool and A → B → A, where
A and B contains neither (→) nor B. The type BA can be understood intuitively
as “updatable A”. Typically, the source and view data are given such B-types,
and a function of type BA → BB is the HOBiT equivalent of Lens A B.

The pattern matching part of case performs two implicit operations: it first
unwraps the B-typed value, exposing its content for normal pattern matching,
and then it wraps the variables bound by the pattern matching, turning them
into ‘updatable’ B-typed values to be used in the bodies. For example, in the
second branch of appendB , a and x′ can be seen as having types A and [A] in the
pattern, but BA and B[A] types in the body; and the bidirectional constructor
(:) ::BA → B[A] → B[A] combines them to produce a B-typed list.

In addition to the standard conditional branches, case-expression has two
unique components φi and ρi called exit conditions and reconciliation functions
respectively, which are used in backwards executions. Exit condition φi is an
over-approximation of the forwards-execution results of the expressions ei. In
other words, if branch i is choosen, then φi ei must evaluate to True. This asser-
tion is checked dynamically in HOBiT, though could be checked statically with

https://bitbucket.org/kztk/hibx
https://bitbucket.org/kztk/hibx
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a sophisticated type system [7]. In the backwards direction the exit condition is
used for deciding branching: the branch with its exit condition satisfied by the
updated view (when more than one match, the original branch used in the for-
wards direction has higher priority) will be picked for execution. The idea is that
due to the update in the view, the branch taken in the backwards direction may
be different from the one taken in the original forwards execution, a feature that
is commonly supported by lens languages [7] which we call branch switching.

Branch switching is crucial to put ’s robustness, i.e., the ability to handle
a wide range of view updates (including those affect the branching decisions)
without failing. We explain its working in details in the following.

Branch Switching. Being able to choose a different branch in the backwards
direction only solves part of the problem. Let us consider the case where a
forward execution chooses the nth branch, and the backwards execution, based
on the updated view, chooses the mth (m �= n) branch. In this case, the original
value of the pattern-matched expression e, which is the reason for the nth branch
being chosen, is not compatible with the put of the mth branch.

As an example, let us consider a simple function that pattern-matches on an
Either structure and returns an list. Note that we have purposely omitted the
reconciliation functions.

f :: B(Either [A] (A, [A])) → B[A]

f x = case x of Left ys → ys with λ .True {- no by here -}
Right (y, ys) → y : ys with not ◦ null

We have said that functions of type BA → BB are also fully functioning lenses of
type Lens A B. In HOBiT, the above code runs as follows, where HOBiT> is the
prompt of HOBiT’s read-eval-print loop, and :get and :put are meta-language
operations to perform get and put respectively.

HOBiT> :get f (Left [1, 2, 3])

[1, 2, 3]

HOBiT> :get f (Right (1, [2, 3]))

[1, 2, 3]

HOBiT> :put f (Left [1, 2, 3]) [4, 5] -- The view [1, 2, 3] is updated to [4, 5].

Left [4, 5] -- Both exit conditions are true with [4, 5],

-- so the original branch (Left) is taken.

HOBiT> :put f (Right (1, [2, 3])) [4, 5]

Right (4, [5]) -- Similar, but the original branch is Right.

HOBiT> :put f (Right (1, [2, 3])) [ ]

⊥ -- Branch switches, but computation fails.

As we have explained above, exit conditions are used to decide which branch
will be used in the backwards direction. For the first and second evaluations
of put , the exit conditions corresponding to the original branches were true for
the updated view. For the last evaluation of put , since the exit condition of
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Fig. 1. Reconciliation function: assuming exit conditions φm and φn where φm bn =
False but φn bn = True, and reconciliation functions ρm and ρn.

the original branch was false but that of the other branch was true, branch
switching is required here. However, a direct put-execution of f with the inputs
(Right (1, [2, 3])) and [ ] crashes (represented by ⊥ above), for a good reason, as
the two inputs are in an inconsistent state with respect to f .

This is where reconciliation functions come into the picture. For the Left
branch above, a sensible reconciliation function will be (λ .λ .Left [ ]), which
when applied turns the conflicting source (Right (1, [2, 3])) into Left [ ], and
consequently the put-execution may succeed with the new inputs and returns
Left [ ]. It is not difficult to verify that the “reconciled” put-execution still sat-
isfies well-behavedness. Note that despite the similarity in types, reconciliation
functions are not put ; they merely provide a default source value to allow stuck
put-executions to proceed. We visualise the effect of reconciliation functions in
Fig. 1. The left-hand side is bidirectional execution without successful branch-
switching, and since φm bn is false (indicating that bn is not in the range of the
mth branch) the execution of put must (rightfully) fail in order to guarantee
well-behavedness. On the right-hand side, reconciliation function ρn produces
a suitable source from am and bn (where φn (get (ρn am bn)) is True), and
put executes with bn and the new source ρn am bn . It is worth mentioning that
branch switching with reconciliation functions does not compromise correctness:
though the quality of the user-defined reconciliation functions affects robustness
as they may or may not be able to resolve conflicts, successful put-executions
always guarantee well-behavedness, regardless the involvement of reconciliation
functions.
Revisiting appendB . Recall appendB from Sect. 1.1 (reproduced below).

appendB :: B[A] → B[A] → B[A]

appendB x y = case x of [ ] → y with λ .True by (λ .λ .[ ])

a : x′ → a : appendB x′ y with not ◦ null by (λ .λ .⊥)

The exit condition for the nil case always returns true as there is no restriction
on the value of y , and for the cons case it requires the returned list to be non-
empty. In the backwards direction, when the updated view is non-empty, both
exit conditions will be true, and then the original branch will be taken. This
means that since appendB is defined as a recursion on x, the backwards execution
will try to unroll the original recursion step by step (i.e., the cons branch will be
taken for a number of times that is the same as the length of x ) as long as the
view remains non-empty. If an updated view list is shorter than x , then not ◦null
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will become false before the unrolling finishes, and the nil branch will be taken
(branch-switching) and the reconciliation function will be called.

The definition of appendB is curried; straightforward uncurrying turns it into
the standard form BA → BB that can be interpreted by HOBiT as a lens. The
following HOBiT program is the bidirectional variant of uncurry .

uncurryB :: (BA → BB → BC) → B(A, B) → BC

uncurryB f z = let (x, y) = z in f x y

Here, let p = e in e′ is syntactic sugar for case e of {p → e′ with (λ .True) by
(λs.λ .s)}, in which the reconciliation function is never called as there is only
one branch. Let appendB ′ = uncurryB appendB , then we can run appendB ′ as:

HOBiT> :get appendB ′ ([1, 2], [3, 4, 5])
[1, 2, 3, 4, 5]

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6, 7, 8, 9, 10]
([6, 7], [8, 9, 10]) -- No structural change, no branch switching.

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6, 7]
([6, 7], []) -- No branch switching, still.

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6]
([6], []) -- Branch-switching happens and the recursion terminates early.

Difference from Lens Combinators. As mentioned above, the idea of branch
switching can be traced back to lens languages. In particular, the design of case
is inspired by the combinator cond [7]. Despite the similarities, it is important to
recognise that case is not only a more convenient syntax for cond , but also cru-
cially supports the unrestricted use of λ-bound variables. This more fundamental
difference is the reason why we could define appendB in the conventional functional
style as the variables x and y are used freely in the body of case. In other words,
the novelty of HOBiT is its ability to combine the traditional (higher-order) func-
tional programming and the bidirectional constructs as found in lens combinators,
effectively establishing a new way of bidirectional programming.

2.2 A More Elaborate Example: linesB

In addition to supporting convenient programming and robustness in put exe-
cution, the case constructs can also be used to express intricate details of
backwards behaviours. Let us consider the lines function in Haskell as an
example, which splits a string into a list of strings by newlines, for example,
lines "AA\nBB\n" = ["AA", "BB"], except that the last newline character in its
input is optional. For example, lines returns ["AA", "BB"] for both "AA\nBB\n"
and "AA\nBB". Suppose that we want the backwards transformation of lines to
exhibit a behaviour that depends on the original source:
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Fig. 2. linesB and breakNLB

HOBiT> :put linesB "AA\nBB" ["a", "b"]

"a\nb"

HOBiT> :put linesB "AA\nBB" ["a", "b", "c"]

"a\nb\nc"

HOBiT> :put linesB "AA\nBB" ["a"]

"a"

HOBiT> :put linesB "AA\nBB\n" ["a", "b", "c"]

"a\nb\nc\n"

HOBiT> :put linesB "AA\nBB\n" ["a"]

"a\n"

This behaviour is achieved by the definition in Fig. 2, which makes good use of
reconciliation functions. Note that we do not consider the contrived corner case
where the string ends with duplicated newlines such as in "A\n\n". The function
breakNLB splits a string at the first newline; since breakNLB is injective, its exit
conditions and reconciliation functions are of little interest. The interesting part
is in the definition of linesB , particularly its use of reconciliation functions to
track the existence of a last newline character. We firstly explain the branching
structure of the program. On the top level, when the first line is removed from the
input, the remaining string b may contain more lines, or be the end (represented
by either the empty list or the singleton list [’\n’]). If the first branch is taken,
the returned result will be a list of more than one element. In the second branch
when it is the end of the text, b could contain a newline or simply be empty. We do
not explicitly give patterns for the two cases as they have the same body f : [ ], but
the reconciliation function distinguishes the two in order to preserve the original
source structure in the backwards execution. Note that we intentionally use
the same variable name b in the case analysis and the reconciliation function, to
signify that the two represent the same source data. The use of argument b in the
reconciliation functions serves the purpose of remembering the (non)existence of
the last newline in the original source, which is then preserved in the new source.
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Fig. 3. Syntax of HOBiT Core

It is worth noting that just like the other examples we have seen, this defini-
tion in HOBiT shares a similar structure with a definition of lines in Haskell.1

The notable difference is that a Haskell definition is likely to have a different
grouping of the three cases of lines into two branches, as there is no need to
keep track of the last newline for backwards execution. Recall that reconcilia-
tion functions are called after branches are chosen by exit conditions; in the case
of linesB , the reconciliation function is used to decide the reconciled value of b′

to be "\n" or "". This, however, means that we cannot separate the pattern b′

into two "\n" and "" with copying its branch body and exit condition, because
then we lose a chance to choose a reconciled value of b based on its original value.

3 Syntax and Type System of HOBiT Core

In this section, we describe the syntax and the type system of the core of HOBiT.

3.1 Syntax

The syntax of HOBiT Core is given in Fig. 3. For simplicity, we only consider
booleans and lists. The syntax is almost the same as the standard λ-calculus with
the fixed-point combinator (fix), lists and booleans. For data constructors and
case expressions, there are in addition bidirectional versions that are underlined.
We allow the body of fix to be non-λs to make our semantics simple (Sect. 4),
though such a definition like fix(λx.True : x) can diverge.

Although in examples we used case/case-expressions with an arbitrary num-
ber of branches having overlapping patterns under the first-match principle, we
assume for simplicity that in HOBiT Core case/case-expressions must have
exactly two branches whose patterns do not overlap; extensions to support these
features are straightforward. As in Haskell, we sometimes omit the braces and
semicolons if they are clear from the layout.

1 Haskell’s lines’s behaviour is a bit more complicated as it returns [ ] if and only if the
input is "". This behaviour can be achieved by calling linesB only when the input
list is nonempty.
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Fig. 4. Typing rules: Δ � p : σ is similar to Γ � p : A but asserts that the resulting
environment is actually a bidirectional environment.

3.2 Type System

The types in HOBiT Core are defined as follows.

A,B ::= Bσ | A → B | [A] | Bool

We use the metavariable σ, τ, . . . for types that do not contain → nor B, We call
σ-types pure datatypes, which are used for sources and views of lenses. Intuitively,
Bσ represents “updatable σ”—data subject to update in bidirectional transfor-
mation. We keep the type system of HOBiT Core simple, though it is possible
to include polymorphic types or intersection types to unify unidirectional and
bidirectional constructors.

The typing judgment Γ ;Δ � e : A, which reads that under environments
Γ and Δ, expression e has type A, is defined by the typing rules in Fig. 4. We
use two environments: Δ (the bidirectional type environment) is for variables
introduced by pattern-matching through case, and Γ for everything else. It is
interesting to observe that Δ only holds pure datatypes, as the pattern variables
of case have pure datatypes, while Γ holds any types. We assume that the
variables in Γ and those in Δ are disjoint, and appropriate α-renaming has been
done to ensure this. This separation of Δ from Γ does not affect typeability,
but is key to our semantics and correctness proof (Sect. 4). Most of the rules
are standard except case; recall that we only use unidirectional constructors in
patterns which have pure types, while the variables bound in the patterns are
used as B-typed values in branch bodies.
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4 Semantics of HOBiT Core

Recall that the unique strength of HOBiT is its ability to mix higher-order uni-
directional programming with bidirectional programming. A consequence of this
mixture is that we can no longer specify its semantics in the same way as other
first-order bidirectional languages such as [13], where two semantics—one for get
and the other for put—suffice. This is because the category of lenses is believed
to have no exponential objects [27] (and thus does not permit λs).

4.1 Basic Idea: Staging

Our solution to this problem is staging [5], which separates evaluation into
two stages: the unidirectional parts is evaluated first to make way for a bidi-
rectional semantics, which only has to deal with the residual first-order pro-
grams. As a simple example, consider the expression (λz.z) (x : ((λw.w) y) : [ ]).
The first-stage evaluation, e ⇓U E, eliminates λs from the expression as in
(λz.z) (x : ((λw.w) y) : [ ]) ⇓U x : y : [ ]. Then, our bidirectional semantics will
be able to treat the residual expression as a lens between value environments
and values, following [13,20]. Specifically, we have the get evaluation relation
μ �G E ⇒ v, which computes the value v of E under environment μ as usual,
and the put evaluation relation μ �P v ⇐ E � μ′, which computes an updated
environment μ′ for E from the updated view v and the original environment μ.
In pseudo syntax, it can be understood as put E μ v = μ′, where μ represents
the original source and μ′ the new source.

It is worth mentioning that a complete separation of the stages is not possible
due to the combination of fix and case, as an attempt to fully evaluate them in
the first stage will result in divergence. Thus, we delay the unidirectional eval-
uation inside case to allow fix, and consequently the three evaluation relations
(uni-directional, get , and put) are mutually dependent.

4.2 Three Evaluation Relations: Unidirectional, get and put

First, we formally define the set of residual expressions:

E ::= True | False | [ ] | E1 : E2 | λx.e
| x | True | False | [ ] | E1 : E2 | case E0 of {pi → ei with Ei by E′

i}i=1,2

They are treated as values in the unidirectional evaluation, and as expressions in
the get and put evaluations. Notice that e or ei appear under λ or case, meaning
that their evaluations are delayed.

The set of (first-order) values is defined as below.

v ::= True | False | [ ] | v1 : v2

Accordingly, we define a (first-order) value environment μ as a finite mapping
from variables to first-order values.
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Fig. 5. Evaluation rules for unidirectional parts (excerpt)

Unidirectional Evaluation Relation. The rules for the unidirectional eval-
uation relation is rather standard, as excerpted in Fig. 5. The bidirectional con-
structs (i.e., bidirectional constructors and case) are frozen, i.e., behave just like
ordinary constructors in this evaluation. Notice that we can evaluate an expres-
sion containing free variables; then the resulting residual expression may contain
the free variables.
Bidirectional (get andput) Evaluation Relations. The get and put evalu-
ation relations, μ �G E ⇒ v and μ �P v ⇐ E � μ′, are defined so that they
together form a lens.

Weakening of Environment. Before we lay out the semantics, it is worth explain-
ing a subtlety in environment handling. In conventional evaluation semantics, a
larger than necessary environment does no harm, as long as there is no name
clashes. For example, whether the expression x is evaluated under the environ-
ment {x = 1} or {x = 1, y = 2} does not matter. However, the same is not true
for bidirectional evaluation. Let us consider a residual expression E = x : y : [ ],
and a value environment μ = {x = 1, y = 2} as the original source. We expect
to have μ �G E ⇒ 1 : 2 : [ ], which may be derived as:

μ �G x ⇒ 1

...
μ �G y : [ ] ⇒ 2 : [ ]

μ �G x : y : [ ] ⇒ 1 : 2 : [ ]

In the put direction, for an updated view say 3 : 4 : [ ], we expect to have
μ �P 3 : 4 : [ ] ⇐ E � {x = 3, y = 4} with the corresponding derivation:

μ �P 3 ⇐ x � ?1

...
μ �P 4 : [ ] ⇐ y : [ ] � ?2

μ �P 3 : 4 : [ ] ⇐ x : y : [ ] � {x = 3, y = 4}

What shall the environments ?1 and ?2 be? One way is to have μ �P 3 ⇐
x � {x = 3, y = 2}, and μ �P 4 : [ ] ⇐ y : [ ] � {x = 1, y = 4}, where the vari-
ables do not appear free in the residual expression takes their values from the
original source environment μ. However, the evaluation will get stuck here, as
there is no reasonable way to produce the expected result {x = 3, y = 4} from
?1 = {x = 3, y = 2} and ?2 = {x = 1, y = 4}. In other words, the redundancy in
environment is harmful as it may cause conflicts downstream.
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Our solution to this problem, which follows from [21–23,29], is to allow put
to return value environments containing only bindings that are relevant for the
residual expressions under evaluation. For example, we have μ �P 3 ⇐ x �
{x = 3}, and μ �P 4 : [ ] ⇐ y : [ ] � {y = 4}. Then, we can merge the two value
environments ?1 = {x = 3} and ?2 = {y = 4} to obtain the expected result
{x = 3, y = 4}. As a remark, this seemingly simple solution actually has a non-
trivial effect on the reasoning of well-behavedness. We defer a detailed discussion
on this to Sect. 4.3.

Now we are ready to define get and put evaluation rules for each bidirectional
constructs. For variables, we just lookup or update environments. Recall that μ
is a mapping (i.e., function) from variables to (first-order) values, while we use
a record-like notation such as {x = v}.

μ �G x ⇒ μ(x) μ �P v ⇐ x � {x = v}

For constants c where c = False,True, [ ], the evaluation rules are straightforward.

μ �G c ⇒ c μ �P c ⇐ c � ∅

The above-mentioned behaviour of the bidirectional cons expression E1 : E2 is
formally given as:

μ �G E1 ⇒ v1 μ �G E2 ⇒ v2
μ �G E1 : E2 ⇒ v1 : v2

μ �P v1 ⇐ E1 � μ′
1 μ �P v2 ⇐ E2 � μ′

2

μ �P v1 : v2 ⇐ E1 : E2 � μ′
1 � μ′

2

(Note that the variable rules guarantee that only free variables in the residual
expressions end up in the resulting environments.) Here, � is the merging oper-
ator defined as: μ � μ′ = μ ∪ μ′ if there is no x such that μ(x) �= μ′(x). For
example, {x = 3} � {y = 4} = {x = 3, y = 4}, and {x = 3, y = 4} � {y = 4} =
{x = 3, y = 4}, but {x = 3, y = 2} � {y = 4} is undefined.

The most interesting rules are for case. In the get direction, it is not different
from the ordinary case except that exit conditions are asserted, as shown in
Fig. 6. We use the following predicate for pattern matching.

match(pk, v0, μk) = (pkμk = v0) ∧ (dom(μk) = fv(pk))

Here, we abuse the notation to write pkμk for the value obtained from pk by
replacing the free variables x in pk with μk(x). One might notice that we have
the disjoint union μ�μi in Fig. 6 where μi holds the values of the variables in pi,
as we assume α-renaming of bound variables that is consistent in get and put .
Recall that p1 and p2 are assumed not to overlap, and hence the evaluation is
deterministic. Note that the reconciliation functions E′′

i are untouched by the
rule.

The put evaluation rule of case shown in Fig. 6 is more involved. In addition
to checking which branch should be chosen by using exit conditions, we need
two rules to handle the cases with and without branch switching. Basically,
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Fig. 6. get- and put-Evaluation of case: we write μ�X,Y μ′ to ensure that dom(μ) ⊆ X
and dom(μ′) ⊆ Y .

the branch to be taken in the backwards direction is decided first, by the get-
evaluation of the case condition E0 and the checking of the exit condition E′

i

against the updated view v. After that, the body of the chosen branch ei is firstly
uni-directionally evaluated, and then its residual expression Ei is put-evaluated.
The last step is put-evaluation of the case-condition E0. When branch switching
happens, there is the additional step of applying the reconciliation function E′′

j .
Note the use of operator � in computing the updated case condition v′

0.

(μ′ � μ)(x) =

{
μ′(x) if x ∈ dom(μ′)
μ(x) otherwise

Recall that in the beginning of this subsection, we discussed our approach of
avoiding conflicts by producing environments with only relevant variables. This
means the μ′

i above contains only variables that appear free in Ei, which may or
may not be all the variables in pi. Since this is the point where these variables
are introduced, we need to supplement μ′

i with μi from the original pattern
matching so that pi can be properly instantiated.

Construction of Lens. Let us write L0[[E]] for a lens between value environ-
ments and values, defined as:

get L0�E� μ = v if μ �G E ⇒ v
put L0�E� μ v = μ′ if μ �P v ⇐ E � μ′

Then, we can define the lens L�e� induced from e (a closed function expression),
where e x ⇓U E for some fresh variable x.

get L�e� s = get L0�E� {x = s}
put L�e� s v = (μ′ � {x = s})(x) where μ′ = put L0�E� {x = s} v

Actually, :get and :put in Sect. 2 are realised by get L�e� and put L�e�.
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4.3 Correctness

We establish the correctness of HOBiT Core: L�e� ∈ Lens �σ� �τ� is well-behaved
for closed e of type Bσ → Bτ . Recall that Lens S V is a set of lenses �, where
get � ∈ S → V and put � ∈ S → V → S. We only provide proof sketches in this
subsection due to space limitation.

�-well-behavedness. Recall that in the previous subsection, we allow environ-
ments to be weakened during put-evaluation. Since not all variables in a source
may appear in the view, during some intermediate evaluation steps (for example
within case-branches) the weakened environment may not be sufficient to fully
construct a new source. Recall that, in μ �P v ⇐ e � μ′, dom(μ′) can be smaller
than dom(μ), a gap that is fixed at a later stage of evaluation by merging (�)
and defaulting (�) with other environments. This technique reduces conflicts, but
at the same time complicates the compositional reasoning of correctness. Specif-
ically, due to the potentially missing information in the intermediate environ-
ments, well-behavedness may be temporally broken during evaluation. Instead,
we use a variant of well-behavedness that is weakening aware, which will then
be used to establish the standard well-behavedness for the final result.

Definition 1 (�-well-behavedness). Let (S,�) and (V,�) be partially-
ordered sets. A lens � ∈ Lens S V is called �-well-behaved if it satisfies

get � s = v =⇒ v is maximal ∧ (∀v′. v′ � v =⇒ put � s v′ � s)
(�-Acceptability)

put � s v = s′ =⇒ (∀s′′. s′ � s′′ =⇒ v � get � s′′) (�-Consistency)

for any s, s′ ∈ S and v ∈ V , where s is maximal. ��
We write Lens�wb S V for the set of lenses in Lens S V that are �-well-
behaved. In this section, we only consider the case where S and V are value
environments and first-order values, where value environments are ordered by
weakening (μ � μ′ if μ(x) = μ′(x) for all x ∈ dom(μ)), and (�) = (=) for
first-order values. In Sect. 5.2 we consider a slightly more general situation.

The �-well-behavedness is a generalisation of the ordinary well-behavedness,
as it coincides with the ordinary well-behavedness when (�) = (=).

Theorem 1. For S and V with (�) = (=), a lens � ∈ Lens S V is �-well-
behaved iff it is well-behaved. ��
Kripke Logical Relation. The key step to prove the correctness of HOBiT
Core is to prove that L0[[E]] is always �-well-behaved if E is an evaluation result
of a well-typed expression e. The basic idea is to prove this by logical relation
that expression e of type Bσ under the context Δ is evaluated to E, assuming
termination, such that L0[[E]] is a �-well-behaved lens between [[Δ]] and [[σ]].

Usually a logical relation is defined only by induction on the type. In our
case, as we need to consider Δ in the interpretation of Bσ, the relation should
be indexed by Δ too. However, naive indexing does not work due to substitutions.
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For example, we could define a (unary) relation EΔ(Bσ) as a set of expressions
that evaluate to “good” (i.e., �-well-behaved) lenses between (the semantics of)
Δ and σ, and EΔ(Bσ → Bτ) as a set of expressions that evaluate to “good”
functions that map good lenses between Δ and σ to those between Δ and τ .
This naive relation, however, does not respect substitution, which can substitute
a value obtained from an expression typed under Δ to a variable typed under
Δ′ such that Δ ⊆ Δ′, where Δ and Δ′ need not be the same. With the naive
definition, good functions at Δ need not be good functions at Δ′, as a good lens
between Δ′ and σ is not always a good lens between Δ and σ.

To remedy the situation, inspired by the denotation semantics in [24], we use
Kripke logical relations [18] where worlds are Δs.

Definition 2. We define the set EΔ�A� of expressions, the set RΔ�A� of residual
expressions, the set �σ� of values and the set �Δ� of value environments as below.

EΔ�A� = {e | ∀E. e ⇓U E implies E ∈ RΔ�A�}
RΔ�Bool� = {True,False}

RΔ�[A]� = List RΔ�A�

RΔ�Bσ� = {E | ∀Δ′. Δ ⊆ Δ′ implies L0�E� ∈ Lens�wb �Δ′� �σ�}
RΔ�A → B� = {F | ∀Δ′. Δ ⊆ Δ′ implies (∀E ∈ RΔ′�A�. F E ∈ EΔ′�B�)}

�Bool� = {True,False}
�[σ]� = List �σ�

�Δ� = {μ | dom(μ) ⊆ dom(Δ) and ∀x ∈ dom(μ).μ(x) ∈ �Δ(x)�}
Here, for a set S, List S is inductively defined as: [ ] ∈ List S, and s : t ∈ List S
for all s ∈ S and t ∈ List S. ��
The notable difference from ordinary logical relations is the definition of
RΔ�A → B� where we consider an arbitrary Δ′ such that Δ ⊆ Δ′. This is the
key to state RΔ�A� ⊆ RΔ′�A� if Δ ⊆ Δ′. Notice that �σ� = RΔ�σ� for any Δ.

We have the following lemmas.

Lemma 1. If Δ ⊆ Δ′, v ∈ RΔ�A� implies v ∈ RΔ′�A�. ��

Lemma 2. x ∈ RΔ�Bσ� for any Δ such that Δ(x) = σ. ��

Lemma 3. For any σ and Δ, True,False ∈ RΔ�BBool� and [ ] ∈ RΔ�B[σ]�. ��

Lemma 4. If E1 ∈ RΔ�Bσ� and E2 ∈ RΔ�B[σ]�, then E1 : E2 ∈ RΔ�B[σ]�. ��

Lemma 5. Let σ and τ be pure types and Δ a pure type environment. Suppose
that ei ∈ EΔ�Δi

�τ� for Δi � pi : σ (i = 1, 2), and that E0 ∈ RΔ�Bσ�, E′
1, E

′
2 ∈

RΔ�τ → Bool� and E′′
1 , E′′

2 ∈ RΔ�σ → τ → σ�. Then, case E0 of {pi →
ei with E′

i by E′′
i }i=1,2 ∈ RΔ�Bτ�.
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Proof (Sketch). The proof itself is straightforward by case analysis. The key prop-
erty is that get and put use the same branches in both proofs of �-Acceptability
and �-Consistency. Slight care is required for unidirectional evaluations of e1
and e2, and applications of E′

1, E
′
2, E

′′
1 and E′′

2 . However, the semantics is care-
fully designed so that in the proof of �-Acceptability, unidirectional evalua-
tions that happen in put have already happened in the evaluation of get , and a
similar discussion applies to �-Consistency. ��
As a remark, recall that we assumed α-renaming of pi so that the disjoint unions
(�) in Fig. 6 succeed. This renaming depends on the μs received in get and put
evaluations, and can be realised by using de Bruijn levels.

Lemma 6 (Fundamental Lemma). For Γ ;Δ � e : A, for any Δ′ with Δ ⊆ Δ′

and Ex ∈ RΔ′�Γ (x)�, we have e[Ex/x]x ∈ EΔ′�A�.

Proof (Sketch). We prove the lemma by induction on typing derivation. For
bidirectional constructs, we just apply the above lemmas appropriately. The
other parts are rather routine. ��
Now we are ready to state the correctness of our construction of lenses.

Corollary 1. If ε; ε � e : Bσ → Bτ , then e x ∈ E{x:σ}�Bτ�. ��

Lemma 7. If e ∈ E{x:σ}�Bτ�, L�e� (if defined) is in Lens�wb �σ� �τ� (and thus
well-behaved by Theorem 1). ��

Theorem 2. If ε; ε � e : Bσ → Bτ , then L�e� ∈ Lens �σ� �τ� (if defined) is well-
behaved. ��

5 Extensions

Before presenting a larger example, we discuss a few extensions of HOBiT Core
which facilitate programming.

5.1 In-Language Lens Definition

In HOBiT programming, it is still sometimes useful to allow manually defined
primitive lenses (i.e., lenses constructed from independently specified get/put
functions), for backwards compatibility and also for programs with relatively
simple computation logic but complicated backwards behaviours. This feature
is supported by the construct appLens e1 e2 e3 in HOBiT. For example, we
can write incB x = appLens (λs.s + 1) (λ .λv.v − 1) x to define a bidirectional
increment function incB ::BInt → BInt . Note that for simplicity we require the
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additional expression x (represented by e3 in the general case) to convert between
normal functions and lenses. The typing rule for appLens e1 e2 e3 is as below.

Γ ;Δ � e1 : σ → τ Γ ;Δ � e2 : σ → τ → σ Γ ;Δ � e3 : Bσ

Γ ;Δ � appLens e1 e2 e3 : Bτ

Accordingly, we add the following unidirectional evaluation rule.

ei ⇓U Ei (i = 1, 2, 3)
appLens e1 e2 e3 ⇓U appLens E1 E2 E3

Also, we add the following get/put evaluation rules for appLens.

μ �G E3 ⇒ v E1 v ⇓U u

μ �G appLens E1 E2 E3 ⇒ u

μ �G E3 ⇒ v E2 v u′ ⇓U v′ μ �P v′ ⇐ E3 � μ′

μ �P u′ ⇐ appLens E1 E2 E3 � μ′

Notice that appLens e1 e2 e3 is “good” if e3 is so, i.e., appLens e1 e2 e3 ∈
EΔ�Bτ� if e3 ∈ EΔ�Bσ�, provided that the get/put pair (e1, e2) is well-behaved.

5.2 Lens Combinators as Language Constructs

In this paper, we have focused on the case construct, which is inspired by the
cond combinator [7]. Although cond is certainly an important lens combina-
tor, it is not the only one worth considering. Actually, we can obtain language
constructs from a number of lens combinators including those that take care
of alignment [2]. For the sake of demonstration, we outline the derivation of a
simpler example comb ∈ Lens �σ� �τ� → Lens �σ′� �τ ′�. As the construction
depends solely on types, we purposely leave the combinator abstract.

A naive way of lifting combinators can already be found in [21,23]. For exam-
ple, for comb, we might prepare the construct combbad with the following typing
rule (where ε is the empty environment):

ε; ε � e : Bσ → Bτ Γ ;Δ � e′ : Bτ ′

Γ ;Δ � combbad e e′ : Bτ ′

Notice that in this version e is required to be closed so that we can turn the
function directly into a lens by L�−�, and the evaluation of combbad can then be
based on standard lens composition: L0�combbad E E′� = comb L�E� ◦̂ L0�E

′�
(we omit the straightforward concrete evaluation rules), where E and E′ is the
unidirectional evaluation results of e and e′ (notice that a residual expression is
also an expression), and ◦̂ is the lens composition combinator [7] defined by:

(◦̂) ∈ Lens B C → Lens A B → Lens A C
get (�2 ◦̂ �1) a = get �2 (get �1 a)
put (�2 ◦̂ �1) a c′ = put �1 a (put �2 (get �1 a) c′)

The combinator preserves �-well-behavedness, and thus combbad guarantees
correctness. However, as discussed extensively in the case of case, this “closed-
ness” requirements prevents flexible use of variables and creates a major obstacle
in programming.
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So instead of the plain comb, we shall assume a parameterised version
pcomb ∈ Lens (T × �σ�) �τ� → Lens (T × �σ′�) �τ ′� that allows each source
to have an extra component T , which is expected to be kept track of by the
combinator without modification. Here T is assumed to have a partial merging
operator (�) ∈ T → T → T and a minimum element, and pcomb may use these
facts in its definition. By using pcomb, we can give a corresponding language
construct comb with a binder, typed as follows.

Γ ;Δ,x : σ � e : Bτ Γ ;Δ � e′ : Bσ′

Γ ;Δ � comb (x.e) e′ : Bτ ′

We give its unidirectional evaluation rule as

e ⇓U E e′ ⇓U E′

comb (x.e) e′ ⇓U comb E E′

We omit the get/put evaluation rules, which are straightforwardly obtained from
the following equation.

L0�comb E E′� = pcomb (unEnvx L0�E�) ◦̂ 〈idL,L0�E
′�〉

where unEnvx ∈ Lens (�Δ � {x : σ}�) �τ� → Lens (�Δ� × �σ�) �τ� and 〈−,−〉 ∈
Lens �Δ� A → Lens �Δ� B → Lens �Δ� (A × B) are lens combinators defined
for any Δ as:

get (unEnvx �) (μ, v) = get � (μ � {x = v})
put (unEnvx �) (μ, v) u = (μ′, v′)

where μ′ � {x = v′} = (put � (μ � {x = v}) v) � {x = v}
get 〈�1, �2〉 μ = (get �1 μ, get �2 μ)
put 〈�1, �2〉 μ (a, b) = put �1 μ a � put �2 μ b

Both combinators preserve �-well-behavedness, where we assume the
component-wise ordering on pairs. No “closedness” requirement is imposed on
e in this version. From the construct, we can construct a higher-order function
λf.λz.comb (x.f x) z : (Bσ → Bτ) → Bσ′ → Bτ ′. That is, in HOBiT, lens
combinators are just higher-order functions, as long as they permit the above-
mentioned parameterisation. This observation means that we are able to system-
atically derive language constructs from lens combinators; as a matter of fact,
the semantics of case is derived from a variant of the cond combinator [7].

Even better, the parametrised pcomb can be systematically constructed from
the definition of comb. For comb, it is typical that get (comb �) only uses get �,
and put (comb �) uses put �; that is, comb essentially consists of two functions
of types (�σ� → �τ�) → (�σ′� → �τ ′�) and (�σ� → �τ� → �σ�) → (�σ′� → �τ ′� →
�σ′�). Then, we can obtain pcomb of the above type merely by “monad”ifying the
two functions: using the reader monad T → − for the former and the composition
of the reader and writer monads T → (−, T ) backwards for the latter suffice to
construct pcomb.
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A remaining issue is to ensure that pcomb preserves �-well-behavedness,
which ensures comb (x.e) e′ ∈ EΔ�Bτ ′� under the assumptions e ∈
EΔ�{x:σ}�Bτ� and e′ ∈ EΔ�Bσ′�. Currently, such a proof has to be done manu-
ally, even though comb preserves well-behavedness and pcomb is systematically
constructed. Whether we can lift the correctness proof for comb to pcomb in a
systematic way will be an interesting future exploration.

5.3 Guards

Guards used for branching are merely syntactic sugar in ordinary unidirectional
languages such as Haskell. But interestingly, they actually increase the expressive
power of HOBiT, by enabling inspection of updatable values without making the
inspection functions bidirectional.

For example, Glück and Kawabe’s reversible equivalence check [10] can be
implemented in HOBiT as follows.

eqCheck :: Bσ → Bσ → B(Either (σ, σ) σ)
eqCheck x y = case (x, y ) of

(x′, y′) | x′ == y′ → Right x′ with isRight by (λ .λ(Right x).(x, x))
(x′, y′) | otherwise → Left (x′, y′ ) with isLeft by (λ .λ(Left (x, y)).(x, y))

Here, (−,−) is the bidirectional version of the pair constructor. The exit con-
dition isRight checks whether a value is headed by the constructor Right, and
isLeft by Left. Notice that the backwards transformation of eqCheck fails when
the updated view is Left (v, v) for some v.

5.4 Syntax Sugar for Reconciliation Functions

In the general form, reconciliation functions take in two arguments for the com-
putation of the new source. But as we have seen, very often the arguments are
not used in the definition and therefore redundant. This observation motivates
the following syntax sugar.

p → e with e′ default {x1 = e′′
1 ; . . . ;xn = e′′

n}

Here, x1, . . . , xn are the free variables in p. This syntax sugar is translated as:

p → e with e′ by λ .λ .p[e′′
1/x1, . . . , e

′′
n/xn]

Furthermore, it is also possible to automatically derive some default values
from their types. This idea can be effectively implemented if we extend HOBiT
with type classes.
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5.5 Inference of Exit Conditions

It is possible to infer exit conditions from their surrounding contexts; an idea
that has been studied in the literature of invertible programming [11,20], and
may benefit from range analysis.

Our prototype implementation adopts a very simple inference that constructs
an exit condition λx.case x of {pe → True; → False} for each branch, where pe

is the skeleton of the branch body e, constructed by replacing bidirectional con-
structors with the unidirectional counterparts, and non-constructor expressions
with . For example, from a : appendB x′ y, we obtain the pattern : . This
embarrassingly simple inference has proven to be handy for developing larger
HOBiT programs as we will see in Sect. 6.

6 An Involved Example: Desugaring

In this section, we demonstrate the programmability of HOBiT using the exam-
ple of bidirectional desugaring [26]. Desugaring is a standard process for most
programming languages, and making it bidirectional allows information in desug-
ared form to be propagated back to the surface programs. It is argued convinc-
ingly in [26] that such bidirectional propagation (coined resugaring) is effective
in mapping reduction sequences of desugared programs into those of the surface
programs.

Let us consider a small programming language that consists of let, if ,
Boolean constants, and predefined operators.

data E = ELet E E | EVar Int | EIf E E E | ETrue | EFalse | EOp Name [E]
type Name = String

Variables are represented as de Bruijn indices.
Some operators in this language are syntactic sugar. For example, we may

want to desugar

EOp "not" [e] as EIf e EFalse ETrue.

Also, e1 || e2 can be transformed to let x = e1 in if x then x else e2, which in
our mini-language is the following.

EOp "or" [e1, e2] as ELet e1 (EIf (EVar 0) (EVar 0) (shift 0 e2)

Here, shift n is the standard shifting operator for de Brujin indexed-term that
increments the variables that have indices greater than n (these variables are
“free” in the given expression). We will program a bidirectional version of the
above desugaring process in Figs. 7 and 8, with the particular goal of keeping
the result of a backward execution as close as possible to the original sugared
form (so that it is not merely a “decompilation” in the sense that the original
source has to be consulted).
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Fig. 7. composB : a useful building block

Fig. 8. desugarB : bidirectional desugring

We start with an auxiliary function compos [4] in Fig. 7, which is a use-
ful building block for defining shifting and desugaring. We have omitted the
straightforward exit conditions; they will be inferred as explained in Sect. 5.5.
The function mapB is the bidirectional map. The reconciliation function recE
tries to preserves as much source structure as possible by reusing the origi-
nal source e. Here, arities :: [(Name, Int)] maps operator names to their ari-
ties (i.e. arities = [("or", 2), ("not", 1)]). The function shift is the standard
uni-directional shifting function. We omit its definition as it is similar to the
bidirectional version in Fig. 8. Note that default is syntactic sugar for reconcili-
ation function introduced in Sect. 5.4. Here, incB is the bidirectional increment
function defined in Sect. 5.1. Thanks to composB , we only need to define the
interesting parts in the definitions of shiftB and desugarB . The reconciliation
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functions recE and toOp try to keep as much source information as possible,
which enables the behaviour that the backwards execution produces “not” and
“or” in the sugared form only if the original expression has the sugar.

Consider a sugared expression EOp "or" [EOp "not" [ETrue],EOp "not"
[EFalse]] as a source source.

HOBiT> :get desugarB source

ELet (EIf ETrue EFalse ETrue) (EIf (EVar 0) (EVar 0) (EIf EFalse EFalse ETrue)

{- let x = (if True then False else True)

in if x then x else (if False then False else True) -}

The following updated views may be obtained by reductions from the view.

{- view1 ≡ let x = False in if x then x else (if False then False else True) -}
view1 = ELet EFalse (EIf (EVar 0) (EVar 0) (EIf EFalse EFalse ETrue)

{- view2 ≡ if False then False else (if False then False else True) -}
view2 = EIf EFalse EFalse (EIf EFalse EFalse ETrue)

{- view3 ≡ if False then False else True -}
view3 = EIf EFalse EFalse ETrue

The following are the corresponding backward transformation results.

HOBiT> :put desugarB source view1

EOp "or" [EFalse,EOp "not" [EFalse]]

HOBiT> :put desugarB source view2

EIf EFalse EFalse (EOp "not" [EFalse]

HOBiT> :put desugarB source view3

EOp "not" [False]

As the AST structure of the view is changed, all of the three cases require branch-
switching in the backwards executions; our program handles it with ease. For
view2, the top-level expression EIf EFalse EFalse ... does not have a corresponding
sugared form. Our program keeps the top level unchanged, and proceeds to the
subexpression with correct resugaring, a behaviour enabled by the appropriate
use of reconciliation function (the first line of recE for this particular case) in
composB .

If we were to present the above results as the evaluation steps in the surface
language, one may argue that the second result above does not correspond to
a valid evaluation step in the surface language. In [26], AST nodes introduced
in desugaring are marked with the information of the original sugared syntax,
and resugaring results containing the marked nodes will be skipped, as they do
not correspond to any reduction step in the surface language. The marking also
makes the backwards behaviour more predictable and stable for drastic changes
on the view, as the desugaring becomes injective with this change. This technique
is orthogonal to our exploration here, and may be combined with our approach.
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7 Related Work

Controlling Backwards Behaviour. In addition to put ∈ S → V → S, many lens
languages [3] supply a create ∈ V → S (which is in essence a right-inverse of
get) to be used when the original source data is unavailable. This happens when
new data is inserted in the view, which does not have any corresponding source
for put to execute, or when branch-switching happens but with no reconciliation
function available. Being a right-inverse, create does not fail (assuming it ter-
minates), but since it is not guided by the original source, the results are more
arbitrary. We do not include create in HOBiT, as it complicates the system
without offering obvious benefits. Our branch-switching facilities are perfectly
capable of handling missing source data via reconciliation functions.

Using exit conditions in branching constructs for backwards evaluation can
be found in a number of related fields: bidirectional transformation [7], reversible
computation [34] and program inversion [11,20]. Our design of case is inspired by
the cond combinator in the lens framework [7] and the if-statement in Janus [34].
A similar combinator is Case in BiGUL [16], where a branch has a function
performing a similar role as an exit condition, but taking the original source in
addition. This difference makes Case more expressive than cond; for example,
Case can implement matching lenses [2]. Our design of case follows cond for its
relative simplicity, but the same underlying technique can be applied to Case
as mentioned in Sect. 5.2. In the context of bidirectionalization [19,29,30] there
is the idea of “Plug-ins” [31] that are similar to reconciliation functions in the
sense that source values can be adapted to direct backwards execution.

Applicative Lenses. The applicative lens framework [21,23] provides a way to use
λ-abstraction and function application as in normal functional programming to
compose lenses. Note that this use of “applicative” refers to the classical applica-
tive (functional) programming style, and is not directly related to Applicative
functor in Haskell. In this sense, it shares a similar goal to us. But crucially, applica-
tive lens lacks HOBiT’s ability to allow λ-bound variables to be used freely, and as
a result suffers from the same limitation of lens languages. There are also a couple
of technical differences between applicative lens and our work: applicative lens is
based on Yoneda embedding while ours is based on separating Γ and Δ and hav-
ing three semantics (Sect. 4); and applicative lens is implemented as an embedded
DSL, while HOBiT is given as a standalone language. Embedded implementation
of HOBiT is possible, but a type-correct embedding would expose the handling of
environment Δ to programmers, which is undesirable.

Lenses and Their Extensions. As mentioned in Sect. 1, the most common way
to construct lenses is by using combinators [3,7,8], in which lenses are treated
as opaque objects and composed by using lens combinators. Our goal in this
paper is to enhance the programmability of lens programming, while keeping its
expressive power as possible. In HOBiT, primitive lenses can be represented as
functions on B-typed values (Sect. 5.1), and lens combinators satisfying certain
conditions can be represented as language construct with binders (Sect. 5.2),
which is at least enough to express the original lenses in [7].
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Among extensions of the lens language [2,3,7–9,16,17,27,32], there exists a
few that extend the classical lens model [7], namely quotient lenses [8], symmetric
lenses [14], and edit-based lenses [15]. A natural question to ask is whether our
development, which is based on the classical lenses, can be extended to them.
The answer depends on treatment of value environments μ in get and put . In
our semantics, we assume a non-linear system as we can use the same variable
in μ any number of times. This requires us to extend the classical lens to allow
merging (�) and defaulting (�) operations in put with �-well-behavedness, but
makes the syntax and type system of HOBiT simple, and HOBiT free from
the design issues of linear programming languages [25]. Such extension of lenses
would be applicable to some kinds of lens models, including quotient lenses and
symmetric lenses, but its applicability is not clear in general. Also, we want to
mention that allowing duplications in bidirectional transformation is still open,
as it essentially entails multiple views and the synchronization among them.

8 Conclusion

We have designed HOBiT, a higher-order bidirectional programming language in
which lenses are represented as functions and lens combinators are represented
as language constructs with binders. The main advantage of HOBiT is that users
can program in a style similar to conventional functional programming, while still
enjoying the benefits of lenses (i.e., the expressive power and well-behavedness
guarantee). This has allowed us to program realistic examples with relative ease.

HOBiT for the first time introduces a truly “functional” way of construct-
ing bidirectional programs, which opens up a new area of future explorations.
Particularly, we have just started to look at programming techniques in HOBiT.
Moreover, given the resemblance of HOBiT code to that in conventional lan-
guages, the application of existing programming tools becomes plausible.
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