Skip to main content

A Calculus for Dynamic Linking

  • Conference paper
Theoretical Computer Science (ICTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2841))

Included in the following conference series:

Abstract

We define a calculus for modeling dynamic linking independently of the details of a particular programming environment.

The calculus distinguishes at the language level the notions of software configuration and execution, by introducing separate syntactic notions of linkset expression and command, respectively.

A reduction step can be either a simplification of a linkset expression, or the execution of a command w.r.t. a specific underlying software configuration denoted by a linkset expression; because of dynamic linking, these two kinds of reductions are interleaved.

The type system of the calculus, which is proved to be sound, relies on an accurate dependency analysis for ensuring type safety without losing the advantages offered by dynamic linking.

Partially supported by Dynamic Assembly, Reconfiguration Type-checking – EC project IST-2001-33477, APPSEM II – Thematic network IST-2001-38957, and Murst NAPOLI – Network Aware Programming: Oggetti, Linguaggi, Implementazioni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ancona, D., Fagorzi, S., Moggi, E., Zucca, E.: Mixin Modules and Computational Effects. In: International Colloquium on Automata, Languages and Programming 2003 (2003) (to appear)

    Google Scholar 

  2. Ancona, D., Zucca, E.: A calculus of module systems. Journ. of Functional Programming 12(2), 91–132 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Bierman, G., Hicks, M., Sewell, P., Stoyle, G.: Formalizing dynamic software updating (extended abstract). In: USE 2003 - Workshop on Unexpected Software Evolution (2003)

    Google Scholar 

  4. Cardelli, L.: Program fragments, linking, and modularization. In: ACM Symp. on Principles of Programming Languages 1997, pp. 266–277. ACM Press, New York (1997)

    Google Scholar 

  5. Crary, K., Harper, R., Puri, S.: What is a recursive module. In: PLDI 1999 – ACM Conf. on Programming Language Design and Implementation (1999)

    Google Scholar 

  6. Drossopoulou, S.: Towards an abstract model of Java dynamic linking and verfication. In: Harper, R. (ed.) TIC 2000. LNCS, vol. 2071, pp. 53–84. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Drossopoulou, S., Eisenbach, S., Wragg, D.: A fragment calculus - towards a model of separate compilation, linking and binary compatibility. In: Proc. 14th Ann. IEEE Symp. on Logic in Computer Science (July 1999)

    Google Scholar 

  8. Drossopoulou, S., Lagorio, G., Eisenbach, S.: Flexible models for dynamic linking. In: European Symposium on Programming 2003 (2003)

    Google Scholar 

  9. Findler, R.B., Flatt, M.: Modular object-oriented programming with units and mixins. In: Intl. Conf. on Functional Programming 1998 (September 1998)

    Google Scholar 

  10. Gelernter, D., Carriero, N.: Coordination languages and their significance. Comm. ACM 35(1), 96–107 (1992)

    Article  Google Scholar 

  11. Hirschowitz, T., Leroy, X.: Mixin modules in a call-by-value setting. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 6–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Leroy, X.: A modular module system. Journal of Functional Programming 10(3), 269–303 (2000)

    Article  MATH  Google Scholar 

  13. Machkasova, E., Turbak, F.A.: A calculus for link-time compilation. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 260–274. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Wells, J.B., Vestergaard, R.: Confluent equational reasoning for linking with first-class primitive modules. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 412–428. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ancona, D., Fagorzi, S., Zucca, E. (2003). A Calculus for Dynamic Linking. In: Blundo, C., Laneve, C. (eds) Theoretical Computer Science. ICTCS 2003. Lecture Notes in Computer Science, vol 2841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45208-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45208-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20216-5

  • Online ISBN: 978-3-540-45208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics