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Abstract. We present a novel, automated way to find differential paths
for MD5. As an application we have shown how, at an approximate
expected cost of 250 calls to the MD5 compression function, for any
two chosen message prefixes P and P ′, suffixes S and S′ can be con-
structed such that the concatenated values P‖S and P ′‖S′ collide under
MD5. Although the practical attack potential of this construction of
chosen-prefix collisions is limited, it is of greater concern than random
collisions for MD5. To illustrate the practicality of our method, we con-
structed two MD5 based X.509 certificates with identical signatures but
different public keys and different Distinguished Name fields, whereas
our previous construction of colliding X.509 certificates required identi-
cal name fields. We speculate on other possibilities for abusing chosen-
prefix collisions. More details than can be included here can be found on
www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

1 Introduction

In March 2005 we showed how Xiaoyun Wang’s ability [17] to quickly construct
random collisions for the MD5 hash function could be used to construct two dif-
ferent valid and unsuspicious X.509 certificates with identical digital signatures
(see [10] and [11]). These two colliding certificates differed in their public key
values only. In particular, their Distinguished Name fields containing the iden-
tities of the certificate owners were equal. This was the best we could achieve
because

– Wang’s hash collision construction requires identical Intermediate Hash Val-
ues (IHVs);

– the resulting colliding values look like random strings: in an X.509 certifi-
cate the public key field is the only suitable place where such a value can
unsuspiciously be hidden.

A natural and often posed question (cf. [7], [3], [1]) is if it would be possible to
allow more freedom in the other fields of the certificates, at a cost lower than 264
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calls to the MD5 compression function. Specifically, it has often been suggested
that it would be interesting to be able to select Distinguished Name fields that
are different and, preferably, chosen at will, non-random and human readable
as one would expect from these fields. This can be realized if two arbitrarily
chosen messages, resulting in two different IHVs, can be extended in such a way
that the extended messages collide. Such collisions will be called chosen-prefix
collisions.

We describe how chosen-prefix collisions for MD5 can be constructed, and
show that our method is practical by constructing two MD5 based X.509 certifi-
cates with different Distinguished Name fields and identical digital signatures.
The full details of the chosen-prefix collision construction and the certificates
can be found in [16] and [14], respectively.

Section 2 contains a bird’s eye view of the chosen-prefix collision construction
method and its complexity. Its potential applications are discussed in Section 3
with Section 4 containing implications and details of the application to X.509
certificates. Details of the automated differential path construction for MD5 are
provided in Section 5.

2 Chosen-Prefix Collisions for MD5

The main contribution of this paper is a method to construct MD5 collisions
starting from two arbitrary IHVs. Given this method one can take any two
chosen message prefixes and construct bitstrings that, when appended to the
prefixes, turn them into two messages that collide under MD5. We refer to
such a collision as a chosen-prefix collision. Their possibility was mentioned
already in [3, Section 4.2 case 1] and, in the context of SHA-1, in [1] and on
www.iaik.tugraz.at/research/krypto/collision/.

We start with a pair of arbitrarily chosen messages, not necessarily of the same
length. Padding with random bits may be applied so that the padded messages
have the same bitlength which equals 416 modulo 512 (incomplete last block).
Equal length is unavoidable, because Merkle-Damg̊ard strengthening, involving
the message length, is applied after the last message block has been compressed
by MD5. The incomplete last block condition is a technical requirement. In our
example of colliding certificates the certificate contents were constructed in such
a way that padding was not necessary, to allow for shorter RSA moduli.

Given the padded message pair, we followed a suggestion by Xiaoyun Wang1

to find a pair of 96-bit values that, when used to complete the last blocks by
appending them to the messages and applying the MD5 compression function,
resulted in a specific form of difference vector between the IHVs. Finding these
96-bit values was done using a birthdaying procedure.

The remaining differences between the IHVs were then removed by appending
near-collision blocks. Per pair of blocks this was done by constructing new differ-
ential paths using an automated, improved version of Wang’s original approach.
This innovative differential path construction is described in detail in Section 5
1 Private communication.
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below. Due to the specific form of the near-collisions and the first difference vec-
tor, essentially one triple of bit differences could be removed per near-collision
block, thus shortening the overall length of the colliding values. For our example
8 near-collision blocks were needed to remove all differences. Thus, a total of
96 + 8 × 512 = 4192 bits were appended to each of the chosen message prefixes
to let them collide.

The birthdaying step can be entirely avoided, thereby making it harder to
find the proper differential paths and considerably increasing the number of
near-collision blocks. Or the birthdaying step could be simplified, increasing the
number of near-collision blocks from 8 to about 14. Our approach was inspired
by our desire to minimize the number of near-collision blocks. Using a more
intricate differential path construction it should be possible to remove more than
a single triple of bit differences per block, which would reduce the number of
near-collision blocks. Potential enhancements and variations, and the full details
of the construction as used, will be discussed in [16].

The expected complexity of the birthdaying step is estimated at 249 MD5
compression function calls. Estimating the complexity of the near-collision block
construction is hard, but it turned out to be a small fraction of the birthday-
ing complexity. Based on our observations we find it reasonable to estimate the
overall expected complexity of finding a chosen-prefix collision for MD5 at about
250 MD5 compression function calls. For the example we constructed, however,
we had some additional requirements and also were rather unlucky in the birth-
daying step, leading to about 252 MD5 compression function calls. Note that,
either way, this is substantially faster than the trivial birthday attack which has
complexity 264.

The construction of just a single example required, apart from the develop-
ment of the automated differential path construction method, substantial compu-
tational efforts. Fortunately, the work is almost fully parallelizable and suitable
for grid computing. It was done in the “HashClash” project (see www.win.tue.
nl/hashclash/ ) and lasted about 6 months: using BOINC software (see boinc.
berkeley.edu/ ) up to 1200 machines contributed, involving a cluster of com-
puters at TU/e and a grid of home PCs. We expect that another chosen-prefix
collision can be found much faster, but that it would again require substan-
tial effort, both human and computationally: say 2 months real time assuming
comparable computational resources.

3 Applications of Chosen-Prefix Collisions

We mention some potential applications of chosen-prefix collisions.

– The example presented in the next section, namely colliding X.509 certifi-
cates with different fields before the appended bitstrings that cause the col-
lision. Those bitstrings are ‘perfectly’ hidden inside the RSA moduli, where
‘perfect’ means that inspection of either one of the RSA moduli does not
give away anything about the way it is constructed (namely, crafted such
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that it collides with the other one). In particular it could be of interest to
be able to freely choose the Distinguished Name fields, which contain the
identities of the alleged certificate owners.

– It was suggested to combine different Distinguished Names with equal public
keys, to lure someone to encrypt data for one person, which can then be
decrypted by another. It is unclear to us how realistic this is—or why one
would need identical digital signatures. Nevertheless, if the appendages are
not hidden in the public key field, some other field must be found for them,
located before or after the public key field. Such a field may be specially
defined for this purpose, and there is a good chance that the certificate
processing software will not recognize this field and ignore it. However, as
the appendages have non-negligible length, it will be hard to define a field
that will not look suspicious to someone who looks at the certificate at bit
level.

– A way to realize the above variant is to hide the collision-causing appendages
in the public exponent. Though the public exponent is often taken from a
small set (3, 17, and 65537 are common choices), a large, random looking
one is in principle possible. It may even be larger than the modulus, but that
may raise suspicion. In any case, the two certificates can now have identical
RSA moduli, making it easy for the owner of one private key to compute the
other one.

– Entirely different abuse scenarios are conceivable. In [2] (see also [4]) it was
shown how to construct a pair of Postscript files that collide under MD5, and
that send different messages to output media such as screen or printer. How-
ever, in those constructions both messages had to be hidden in each of the
colliding files, which obviously raises suspicions upon inspection at bit level.
With chosen-prefix collisions, this can be avoided. For example, two differ-
ent messages can be entered into a document format that allows insertion
of color images (such as Microsoft Word), with one message per document.
At the last page of each document a color image will be shown—a short
one pixel wide line will do, for instance hidden inside a layout element, a
company logo, or in the form of a nicely colored barcode claiming to be
some additional security feature, obviously offering far greater security than
those old-fashioned black and white barcodes—carefully constructed such
that the hashes of the documents collide when their color codes are inserted.
In Figure 1 the actual 4192-bit collision-causing appendages computed for
the certificates are built into bitmaps to get two different barcode examples.
Each string of 4192 bits leads to one line of 175 pixels, say A and B, and
the barcodes consist of the lines ABBBBB and BBBBBB respectively. Apart

Fig. 1. A collision built into bitmap images.
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from the 96 most significant bits corresponding to the 4 pixels in the upper
left corner, the barcodes differ in only a few bits, which makes the result-
ing color differences hard to spot for the human eye. As noted above the
‘obviously differing’ 4 initial pixels can be avoided at the cost of more near-
collision blocks (thus longer barcodes), and the barcodes can be shortened
again at the cost of more elaborate differential path constructions.

– In [12] and [8] it was shown how to abuse existing MD5 collisions to mislead
integrity checking software based on MD5. Similar to the colliding Postscript
applications, they also used the differences in the colliding inputs to construct
deviating execution flows of some programs. Here too chosen-prefix collisions
allow a more elegant approach, especially since common operating systems
ignore bitstrings that are appended to executables: the programs will run un-
altered. Thus one can imagine two executables: a ‘good’ one (say Word.exe)
and a bad one (the attacker’s Worse.exe). A chosen-prefix collision for those
executables is computed, and the collision-causing bitstrings are appended
to them. The resulting altered file Word.exe, functionally equivalent to the
original Word.exe, can then be offered to Microsoft’s Authenticode signing
program and receive an ‘official’ MD5 based digital signature. This signature
will be equally valid for the attacker’s Worse.exe, and the attacker might be
able to replace Word.exe by his Worse.exe (renamed to Word.exe) on the
appropriate download site. This construction affects a common functionality
of MD5 hashing and may pose a practical threat, also because there is no a
priori reason why the collision-causing bitstrings could not be hidden inside
the executables.

– More ideas can be found on www.iaik.tugraz.at/research/krypto/
collision/.

Further study is required to assess the impact of chosen-prefix collisions on appli-
cations of hash functions. Commonly used protocols and message formats such
as SSL, S/MIME (CMS) and XML Signatures should be studied, with special
attention to whether random looking data can be hidden in these protocols and
data formats, in such a way that some or all implementations will not detect
them. For instance, it was suggested by Pascal Junod to let a ‘proper’ certificate
collide with one that contains executable code in the Distinguished Name field,
thereby potentially triggering a buffer overflow, but we have not seen an actually
working example of this idea yet. It also requires more study to see if there are
formats that even allow the much easier random collision attacks.

4 Colliding X.509 Certificates for Different Identities

In this section we concentrate on the first application mentioned above, that
of two X.509 certificates with identical digital signatures but different Distin-
guished Name fields, where the collisions are perfectly hidden inside the public
key moduli.
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4.1 Attack Scenarios

Though our current X.509 certificates construction, involving different Distin-
guished Names, should have more attack potential than the one with identical
names fields in [11], we have not been able to find truly convincing attack sce-
narios yet. Ideally, a realistic attack targets the core of PKI: provide a relying
party with trust, beyond reasonable cryptographic doubt, that the person indi-
cated by the Distinguished Name field has exclusive control over the private key
corresponding to the public key in the certificate. The attack should also enable
the attacker to cover his trails.

Getting two certificates for the price of one could be economically advanta-
geous in some situations, e.g. with two different owner names, or for two different
validity periods. Such certificates undermine the proof of knowledge of the secret
key corresponding to a certified public key. These possibilities have been noted
before (cf. [10]) and do, in our opinion, not constitute attacks.

Our construction requires that the two colliding certificates are generated
simultaneously. Although each resulting certificate by itself is completely unsus-
picious, the fraud becomes apparent when the two certificates are put alongside,
as may happen during a fraud analysis. An attacker can generate one of the
certificates for a targeted person, the other one for himself, and attempt to use
his own credentials to convince an external and generally trusted CA to sign the
second one. If successful, the attacker can then distribute the first certificate,
which will be trusted by relying parties, e.g. to encrypt messages for the tar-
geted person. The attacker however is in control of the corresponding private key,
and can thus decrypt confidential information embedded in intercepted messages
meant for the targeted person. Or the attacker can masquerade as the targeted
person while signing messages, which will be trusted by anyone trusting the CA.
In this scenario it does not matter whether the two certificates have different
public keys (as in our example) or identical ones (in which case the colliding
blocks would have to be hidden somewhere else in the certificate).

A problem is, however, that the CA will register the attacker’s identity. As
soon as a dispute arises, the two certificates will be produced and revealed as
colliding, and the attacker will be identified. Another problem is that the at-
tacker must have sufficient control over the CA to predict all fields appearing
before the public key, such as the serial number and the validity periods. It has
frequently been suggested that this is an effective countermeasure against col-
liding certificate constructions in practice, but there is no consensus how hard
it is to make accurate predictions. When this condition of sufficient control over
the CA by the attacker is satisfied, colliding certificates based on chosen-prefix
collisions are a bigger threat than those based on random collisions.

Obviously, the attack becomes effectively impossible if the CA adds a sufficient
amount of fresh randomness to the certificate fields before the public key, such as
in the serial number (as some already do, though probably for different reasons).
This randomness is to be generated after the approval of the certification request.
On the other hand, in general a relying party cannot verify this randomness.
In our opinion, trustworthiness of certificates should not crucially depend on
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such secondary and circumstantial aspects. On the contrary, CAs should use a
trustworthy hash function that meets the design criteria. Unfortunately, this is
no longer the case for MD5, or SHA-1.

We stress that our construction (we prefer this wording to ‘attack’) is not a
preimage attack. As far as we know, existing certificates cannot be forged by
chosen-prefix collisions if they have not been especially crafted for that purpose.
However, a relying party cannot distinguish any given trustworthy certificate
from a certificate that has been crafted by our method to violate PKI principles.
Therefore we repeat, with more urgency, our recommendation that MD5 is no
longer used in new X.509 certificates. Similar work [1] is in development for the
SHA-1 hash function, so we feel that a renewed assessment of the use of SHA-1
in certificate generation is also appropriate.

4.2 Certificate Construction Outline

Table 1 outlines the to-be-signed fields of the colliding certificates that were
constructed.

Table 1. The to-be-signed parts of the colliding certificates

field comments value first certificate value second certificate

X.509 version number identical, standard X.509 version 3
serial number different, chosen by CA 0x010C0001 0x020C0001
signature algorithm identifier identical, standard X.509 md5withRSAEncryption
issuer distinguished name identical, chosen by CA CN = “Hash Collision CA”

L = “Eindhoven”
C = “NL”

not valid before identical, chosen by CA Jan. 1, 2006, 00h00m01s GMT
not valid after identical, chosen by CA Dec. 31, 2007, 23h59m59s GMT
subject distinguished name different, chosen by us CN = “Arjen K. Lenstra” CN = “Marc Stevens”

O = “Collisionairs” O = “Collision Factory”
L = “Eindhoven” L = “Eindhoven”
C = “NL” C = “NL”

public key algorithm identical, standard X.509 rsaEncryption
subject public key info different, constructed by us modulus Sb‖Sc‖E as below modulus S′

b‖S′
c‖E as below

version 3 extensions identical, standard X.509 (irrelevant for the present description)

Here, Sb and S′
b are 96-bit values found using birthdaying, Sc and S′

c each consist
of 8 near-collision blocks found using the automated method to find differential
paths, and E is a 4000-bit value such that the 8192-bit values Sb‖Sc‖E and
S′

b‖S′
c‖E are both RSA moduli. The details of the construction are set forth

below.
Before the collision search (i.e., the searches for Sb, S′

b and for Sc, S′
c) is

started the contents needs to be known of all to-be-signed fields of the certifi-
cate that appear before the modulus. Therefore, to be able to construct the
certificates, sufficient control over the CA is necessary. This was achieved by im-
plementing and operating this CA ourselves. In fact, we used the CA that had
already been set up for [10]. It is used solely for the purposes of signing colliding
certificates.
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4.3 Certificate Construction Details

We provide a detailed description of our construction.

1. We construct two templates for the certificates in which all fields are filled in,
with the exception of the RSA public key moduli and the signature, meeting
the following three requirements:
– The data structures must be compliant with the X.509 standard and the

ASN.1 DER encoding rules (see [5], but see also the final section of [14]);
– The byte lengths of the moduli and the public exponent (in fact, also

the byte lengths of the entire to-be-signed parts of the certificates) must
be fixed in advance, because these numbers have to be specified as parts
of the ASN.1 structure, coming before the modulus;

– The position where the RSA moduli start must be controlled. We chose
to have this at an exact multiple of 64 bytes (512 bits) minus 96 bits,
after the beginning of the to-be-signed fields. This gives convenient space
for the results of the birthdaying step (described below).

The third condition can be dealt with by adding dummy information to the
subject Distinguished Name. This we did in the Organization-field (i.e., the
value O in the outline above).

2. We apply MD5 to each of the first parts of the two to-be-signed fields,
truncated at the last full block (thus excluding the incomplete blocks whose
last 96 bits will consist of the most significant bits of the RSA moduli under
construction), suppressing the padding normally used in MD5. As output we
get a pair of IHVs that we use as input for the next step. These IHVs will
be completely different and have no special properties built in.

3. Using the IHVs and their corresponding incomplete blocks (the ones that still
fail their last 96 bits) as input, we complete these blocks by appending 96-bit
values Sb and S′

b. These values are computed by birthdaying, to satisfy 96 bit
conditions on the output IHV difference. For this purpose each output IHV
is interpreted as 4 little endian 32-bit integers, and the difference between
the output IHVs is defined as the 4-tuple of differences modulo 232 between
the four corresponding 32-bit integers. If we represent this IHV difference
as δa‖δb‖δc‖δd for 32-bit δa, δb, δc, δd, then the conditions are δa = 0 and
δb = δc = δd, as suggested to us by Xiaoyun Wang. The reason for this
choice is that it facilitates the search for near-collision blocks, as explained in
Section 5.3. The resulting δb can be expressed as only 8 signed bit differences
(these are not bitwise XOR but additive differences).

4. Using the techniques developed in [16] and described in Section 5, we com-
pute two different bitstrings Sc and S′

c, of 4096 bits (8 near-collision blocks)
each. Each near-collision block is used to eliminate one (triple) of the bit
differences in the IHVs from the previous step, so that at the end of the 8
near-collision blocks the IHVs are equal, and a complete MD5 collision has
been constructed. We now have S = Sb‖Sc and S′ = S′

b‖S′
c that form the

leading 4192 bits of the RSA moduli, such that the two to-be-signed fields
up to and including S and S′, respectively, collide under MD5. Therefore,
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in order not to destroy the collision, everything that is to be appended from
now on must be identical for the two certificates.

5. Next we used the method from [10] to craft two secure 8192-bit RSA moduli
from the two bitstrings S and S′ of 4192 bits each, by appending to each the
same 4000-bit E. As explained in [11] this means that we could in principle
construct moduli that are products of primes of sizes roughly 2000 and 6192
bits. In order to speed up the RSA modulus construction process, we aimed
somewhat lower here and settled for products of 1976 and 6216-bit primes.
This took about an hour on a regular laptop. The strongly unbalanced RSA
moduli may be unusual, but for our parameter choices (smallest prime factor
around 1976 bits for a modulus of 8192 bits) we see no reason to believe that
these moduli are less secure than more balanced, regular RSA moduli of the
same size, given the present state of factoring technology.

6. We insert the subject public key info into the template for the first certifi-
cate, thereby completing the to-be-signed part of the first certificate. We
compute the MD5 hash of the entire to-be-signed part, and from it we com-
pute the signature, which is added to the certificate. The first certificate is
now complete. To obtain the second valid certificate, we put the proper sub-
ject public key info and the same signature at their locations in the template
for the second certificate.

Finding the chosen-prefix MD5 collisions (i.e., Steps 3 and 4) is by far the com-
putationally hardest part of the above construction, a remark that is similar to
one made in [10]. However, in the meantime the methods for constructing MD5
collisions with identical initial IHVs have been improved considerably: such colli-
sions can now be found within seconds, see [15] and [9]. So in the scenario of [10]
the bottleneck may now have shifted from the collision search to the moduli
construction.

An example pair of colliding certificates is available in full detail in [14] and
on www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

5 Chosen-Prefix Collision Construction

5.1 Preliminaries

MD5 operates on 32-bit words, and uses little endian byte ordering.
A binary signed digit representation (BSDR) for a 32-bit word X is defined

as (ki)31i=0, where

X =
31∑

i=0

2iki, ki ∈ {−1, 0, +1}.

Many different BSDRs may exist for any given X . The weight of a BSDR is the
number of non-zero ki’s. A particularly useful BSDR is the Non-Adjacent Form
(NAF), where no two non-zero ki’s are adjacent. The NAF is not unique since
we work modulo 232 (making k31 = +1 equivalent to k31 = −1), but uniqueness

www.win.tue.nl/hashclash/ChosenPrefixCollisions/
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of the NAF can be enforced by choosing k31 ∈ {0, +1}. Among the BSDRs of
an integer, the NAF has minimal weight. We use the following notation:

– Integers are denoted in hexadecimal as 12EF16 and in binary as 000100101110
11112;

– X ∧ Y is the bitwise AND of X and Y ;
– X ∨ Y is the bitwise OR of X and Y ;
– X ⊕ Y is the bitwise XOR of X and Y ;
– X̄ is the bitwise complement of X ;

for 32-bit integers X and Y :

– X [i] is the i-th bit of the regular binary representation of X ;
– X + Y resp. X − Y is the addition resp. subtraction modulo 232;
– RL(X, n) (resp. RR(X, n)) is the cyclic left (resp. right) rotation of X by n

bit positions:

RL(10100100 . . . 000000012, 5) = 10000000 . . . 001101002;

and for a 32-digit BSDR X :

– X�i� is the i-th signed bit of X ;
– RL(X, n) (resp. RR(X, n)) is the cyclic left (resp. right) rotation of X by n

positions.

For chosen message prefixes P and P ′ we seek suffixes S and S′ such that P‖S
and P ′‖S′ collide under MD5. In this section a variable occurring during the
construction of S and intermediate P -related MD5 calculations, may have a
corresponding variable during the construction of S′ and intermediate P ′-related
MD5 calculations. If the former variable is X , then the latter is denoted X ′.
Furthermore, δX = X ′ − X for such a ‘matched’ 32-bit integer variable X , and
ΔX = (X ′[i] − X [i])31i=0, which is a BSDR of δX . For a ‘matched’ variable Z
that consist of tuples of 32-bit integers, say Z = (z1, z2, . . .), we define δZ as
(δz1, δz2, . . .).

5.2 Description of MD5

5.2.1 MD5 Message Processing
MD5 can be split up into these parts:

1. Padding. Pad the message with: first the ‘1’-bit, next as many ‘0’ bits until
the resulting length equals 448 mod 512, and finally the bitlength of the
original message as a 64-bit little-endian integer. The total bitlength of the
padded message is 512N for a positive integer N .

2. Partitioning. Partition the padded message into N consecutive 512-bit blocks
M1, M2, . . . , MN .
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3. Processing. MD5 goes through N + 1 states IHVi, for 0 ≤ i ≤ N , called
the intermediate hash values. Each intermediate hash value IHVi consists of
four 32-bit words ai, bi, ci, di. For i = 0 these are initialized to fixed public
values:

(a0, b0, c0, d0) = (6745230116, EFCDAB8916, 98BADCFE16, 1032547616),

and for i = 1, 2, . . .N intermediate hash value IHVi is computed using the
MD5 compression function described in detail below:

IHVi = MD5Compress(IHVi−1, Mi).

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the four
words aN , bN , cN , dN , converted back from their little-endian representation.

5.2.2 MD5 Compression Function
The input for the compression function MD5Compress(IHV, B) is an interme-
diate hash value IHV = (a, b, c, d) and a 512-bit message block B. There are 64
steps (numbered 0 up to 63), split into four consecutive rounds of 16 steps each.
Each step uses a modular addition, a left rotation, and a non-linear function.
Depending on the step t, Addition Constants ACt and Rotation Constants RCt

are defined as follows:

ACt =
⌊
232 |sin(t + 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X, Y, Z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (X, Y, Z) = (X ∧ Y ) ⊕ (X̄ ∧ Z) for 0 ≤ t < 16,

G(X, Y, Z) = (Z ∧ X) ⊕ (Z̄ ∧ Y ) for 16 ≤ t < 32,

H(X, Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X, Y, Z) = Y ⊕ (X ∨ Z̄) for 48 ≤ t < 64.

The message block B is partitioned into sixteen consecutive 32-bit words m0, m1,
. . . , m15 (with little endian byte ordering), and expanded to 64 words Wt, for
0 ≤ t < 64, of 32 bits each:

Wt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.
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We follow the description of the MD5 compression function from [6] because
its ‘unrolling’ of the cyclic state facilitates the analysis. For t = 0, 1, . . . , 63,
the compression function algorithm maintains a working register with 4 state
words Qt, Qt−1, Qt−2 and Qt−3. These are initialized as (Q0, Q−1, Q−2, Q−3) =
(b, c, d, a) and, for t = 0, 1, . . . , 63 in succession, updated as follows:

Ft = ft(Qt, Qt−1, Qt−2),
Tt = Ft + Qt−3 + ACt + Wt,

Rt = RL(Tt, RCt),
Qt+1 = Qt + Rt.

After all steps are computed, the resulting state words are added to the inter-
mediate hash value and returned as output:

MD5Compress(IHV, B) = (a + Q61, b + Q64, c + Q63, d + Q62).

5.3 Outline of the Collision Construction

A chosen-prefix collision is a pair of messages M and M ′ that consist of arbi-
trarily chosen prefixes P and P ′ (not necessarily of the same length), together
with constructed suffixes S and S′, such that M = P‖S, M ′ = P ′‖S′, and
MD5(M) = MD5(M ′). The suffixes consist of three parts: random padding
bitstrings Sr, S

′
r, followed by ‘birthday’ bitstrings Sb, S

′
b, followed by ‘near colli-

sion’ blocks Sc, S
′
c. The random padding bitstrings are chosen to guarantee that

the bitlengths of P‖Sr‖Sb and P ′‖S′
r‖S′

b are both equal to 512n for a positive
integer n. (In our example of the colliding certificates we engineered the prefixes
such that Sr and S′

r were both empty.) The MD5 compression function applied
to P‖Sr‖Sb resp. P ′‖S′

r‖S′
b will result in IHVn resp. IHV ′

n, in the notation from
Section 5.2.1. The birthday bitstrings Sb, S

′
b are taken in such a way that the

resulting δIHVn has certain desirable properties, to be described below.
The idea is to eliminate the difference δIHVn using a series of pairs of near-

collision blocks that together constitute Sc, S
′
c. For each near-collision we need

to construct a differential path such that the NAF weight of the new δIHVn+j

is lower than the NAF weight of δIHVn+j−1, until after r pairs of near-collision
blocks we have reached δIHVn+r = 0.

For the j-th pair of near-collision blocks, i.e., Mn+j and M ′
n+j , we fix all but

one of the 32-bit words δmi of δMn+j as 0, and allow only δm11 to be ±2d

with varying d, 0 ≤ d < 32. This was suggested by Xiaoyun Wang because with
this type of message difference the number of bitconditions over the final two
and a half rounds can be kept low. This is illustrated in Table 2, where the
corresponding partial differential path is shown for the final 31 steps. For these
types of message differences we try to find in an automated way a differential
path with the right properties, and then try to find a pair of near-collision blocks
Mn+j, M ′

n+j that satisfies the differential path.
The differential paths under consideration can only add (or substract) a tuple

(0, 2i, 2i, 2i) to δIHVn+j and therefore cannot eliminate arbitrary δIHVn. To
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Table 2. Partial differential path with δm11 = ±2d

t δQt δFt δWt δTt δRt RCt

30 ∓2d

31 0
32 0
33 0 0 ±2d 0 0 16

34 − 60 0 0 0 0 0 ·
61 0 0 ±2d ±2d ±2d+10 mod 32 10
62 ±2d+10 mod 32 0 0 0 0 15
63 ±2d+10 mod 32 0 0 0 0 21
64 ±2d+10 mod 32

solve this we first use a birthday attack to find ‘birthday’ bitstrings Sb and
S′

b such that δIHVn = (0, δb, δb, δb) for some δb. The birthday attack actually
searches for a collision (a, b − c, b − d) = (a′, b′ − c′, b′ − d′) between IHVn =
(a, b, c, d) and IHV ′

n = (a′, b′, c′, d′), implying indeed δa = 0 and δb = δc = δd.
The search space consists of 96 bits and therefore the birthday step can be
expected to require on the order of 2

√
296 = 249 calls to the MD5 compression

function.
One may extend the birthdaying by searching for a δb of low NAF weight, as

this weight is the number of near-collision block pairs to be found. On average
one may expect to find a δb of NAF weight 11. In the case of our colliding
certificates example we found a δb of NAF weight only 8, after having extended
the search somewhat longer than absolutely necessary.

Let (ki) be the NAF of δb. Then we can reduce δIHVn = (0, δb, δb, δb) to
(0, 0, 0, 0) by using, for each non-zero ki, a differential path based on the partial
differential path in Table 2 with δm11 = −ki2i−10 mod 32. In other words, the
signed bit difference at position i in δb can be eliminated by choosing a message
difference only in δm11, with just one opposite-signed bit set at position i −
10 mod 32. Let ij for j = 1, 2, . . . , r be the indices of the non-zero ki. Starting
with n-block M = P‖Sr‖Sb and M ′ = P ′‖S′

r‖S′
b and the corresponding resulting

IHVn and IHV ′
n we do the following for j = 1, 2, . . . , r in succession:

1. Let δm11 = −kij 2ij−10 mod 32 and δm� = 0 for � 	= 11 (note the slight
abuse of notation, since we define just the message block differences, without
specifying the message blocks themselves).

2. Starting from IHVn+j−1 and IHV ′
n+j−1, find a differential path.

3. Find message blocks Sc,j and S′
c,j = Sc,j+δMn+j, that satisfy the differential

path. This can be done by using collision finding techniques such as Klima’s
tunnels, cf. [9] and [15].

4. Let IHVn+j = MD5Compress(IHVn+j−1, Sc,j), IHV ′
n+j = MD5Compress

(IHV ′
n+j−1, S

′
c,j), and append Sc,j to M and S′

c,j to M ′.

It remains to explain step 2 in this algorithm.
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Fig. 2. δIHV s for the colliding certificates

Figure 2 visualizes the entire process. The horizontal lines represent the NAFs of
δIHVi for i = 0, 1, . . . , 21. The section P‖Sr‖Sb consists of 4 blocks (i.e., n = 4),
so at i = 4 only r = 8 triples of bit differences are left. They are annihilated one
by one by the 8 near-collision block pairs (i.e., Sc,j and S′

c,j for j = 1, 2, . . . , 8),
so that at i = 12 a full collision is reached. The blocks after that (which include
E from Section 4.3) are identical for the two messages, so that the collision is
retained.

5.4 Differential Paths and Bitconditions

Assume MD5Compress is applied to pairs of inputs for both intermediate hash
value and message block, i.e., to (IHV, B) and (IHV ′, B′). A differential path for
MD5Compress is a precise description of the propagation of differences through
the 64 steps caused by δIHV and δB:

δFt = ft(Q′
t, Q

′
t−1, Q

′
t−2) − ft(Qt, Qt−1, Qt−2);

δTt = δFt + δQt−3 + δWt;
δRt = RL(T ′

t , RCt) − RL(Tt, RCt);
δQt+1 = δQt + δRt.

Note that δFt is not uniquely determined by δQt, δQt−1 and δQt−2, so it is
necessary to describe the value of δFt and how it can result from the Qi, Q

′
i in

such a way that it does not conflict with other steps. Similarly δRt is not uniquely
determined by δTt and RCt, so also the value of δRt has to be described.

5.4.1 Bitconditions
We use bitconditions on (Qt, Q

′
t) to describe differential paths, where a sin-

gle bitcondition specifies directly or indirectly the values of the bits Qt[i] and
Q′

t[i]. Thus a differential path consists of a matrix of bitconditions with 68
rows (for the possible indices t = −3, −2, . . . , 64 in Qt, Q

′
t) and 32 columns

(one for each bit). A direct bitcondition on (Qt[i], Q′
t[i]) does not involve other

bits Qj [k] or Q′
j[k], while an indirect bitcondition does, and specifically one of

Qt−2[i], Qt−1[i], Qt+1[i] or Qt+2[i]. Using only bitconditions on (Qt, Q
′
t) we can

specify all the values of δQt, δFt and thus δTt and δRt = δQt+1−δQt by the rela-
tions above. A bitcondition on (Qt[i], Q′

t[i]) is denoted by qt[i], and symbols like
0, 1, +, -, ^, . . . are used for qt[i], as defined below. The 32 bitconditions (qt[i])31i=0
are denoted by qt. We discern between differential bitconditions and boolean
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Table 3. Differential bitconditions

qt[i] condition on (Qt[i], Q′
t[i]) ki

. Qt[i] = Q′
t[i] 0

+ Qt[i] = 0, Q′
t[i] = 1 +1

- Qt[i] = 1, Q′
t[i] = 0 −1

Note: δQt =
�31

i=0 2iki and ΔQt = (ki).

Table 4. Boolean function bitconditions

qt[i] condition on (Qt[i], Q′
t[i]) direct/indirect direction

0 Qt[i] = Q′
t[i] = 0 direct

1 Qt[i] = Q′
t[i] = 1 direct

^ Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

v Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

! Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

y Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

m Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

w Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

# Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

h Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

? Qt[i] = Q′
t[i] ∧ (Qt[i] = 1 ∨ Qt−2[i] = 0) indirect backward

q Qt[i] = Q′
t[i] ∧ (Qt+2[i] = 1 ∨ Qt[i] = 0) indirect forward

function bitconditions. The former, shown in Table 3, are direct, and specify
the value ki = Q′

t[i] − Qt[i] which together specify δQt =
∑

2iki by how each
bit changes. Note that (ki) is also a BSDR. The boolean function bitconditions,
shown in Table 4, are used to resolve any ambiguity in

ΔFt�i� = ft(Q′
t[i], Q

′
t−1[i], Q

′
t−2[i]) − ft(Qt[i], Qt−1[i], Qt−2[i]) ∈ {−1, 0, +1}

caused by different possible values for Qj[i], Q′
j [i] for given bitconditions. As an

example, for t = 0 and (qt[i], qt−1[i], qt−2[i]) = (., +, -) there is an ambiguity:

if Qt[i] = Q′
t[i] = 0 then ΔFt�i� = ft(0, 1, 0) − ft(0, 0, 1) = −1,

but if Qt[i] = Q′
t[i] = 1 then ΔFt�i� = ft(1, 1, 0) − ft(1, 0, 1) = +1.

To resolve this ambiguity the bitcondition (.,+,-) can be replaced by (0,+,-) or
(1,+,-).

All boolean function bitconditions include the constant bitcondition Qt[i] =
Q′

t[i], so they do not affect δQt. Furthermore, indirect boolean function bitcon-
ditions never involve a bit with condition + or -, since then it could be replaced
by one of the direct bitconditions ., 0 or 1. We distinguish in the direction of
indirect bitconditions, since that makes it easier to resolve an ambiguity later
on. It is quite easy to change all backward bitconditions into forward ones in a
valid (partial) differential pathm, and vice versa.
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When all δQt and δFt are determined by bitconditions then also δTt and
δRt can be determined, which together describe the bitwise rotation of δTt in
each step. Note that this does not describe if it is a valid rotation or with
what probability the rotation from δTt to δRt occurs. The differential paths
we constructed for our example can be found at www.win.tue.nl/hashclash/
ChosenPrefixCollisions/.

5.4.2 Differential Path Construction Overview
The basic idea in constructing a differential path is to construct a partial lower
differential path over steps t = 0, 1, . . . , 11 and a partial upper differential path
over steps t = 16, 17, . . . , 63, so that the Qi involved in the partial paths meet
but do not overlap. Then try to connect those partial paths over the remaining
4 steps into one full differential path. Constructing the partial lower path can
be done by starting with bitconditions q−3, q−2, q−1, q0 that are equivalent to
the values of IHV, IHV ′ and then extend this step by step. Similarly the partial
upper path can be constructed by extending the partial path in Table 2 step by
step. To summarize, step 2 in the algorithm of section 5.3 consist of the following
substeps:

2.1 Using IHV and IHV ′ determine bitconditions (qi)0i=−3.
2.2 Generate a partial lower differential path by extending (qi)0i=−3 forward up

to step t = 11.
2.3 Generate a partial upper differential path by extending the path in Table 2

down to t = 16.
2.4 Try to connect these lower and upper differential paths over t = 12, 13, 14, 15.

If this fails generate other partial lower and upper differential paths and try
again.

5.5 Extending Differential Paths

When constructing a differential path one must fix the message block differences
δm0, . . . , δm15. Suppose we have a partial differential path consisting of at least
bitconditions qt−1 and qt−2 and that the values δQt and δQt−3 are known. We
want to extend this partial differential path forward with step t resulting in
the value δQt+1 and (additional) bitconditions qt, qt−1, qt−2. We assume that all
indirect bitconditions are forward and do not involve bits of Qt. If we also have
qt instead of only the value δQt (e.g. q0 resulting from given values IHV, IHV ′),
then we can skip the carry propagation and continue at Section 5.5.2.

5.5.1 Carry Propagation
First we want to use the value δQt to select bitconditions qt. This can be done
by choosing any BSDR of δQt, which directly translates into a possible choice
for qt as given in Table 3. Since we want to construct differential paths with as
few bitconditions as possible, but also want to be able to randomize the process,
we may choose any low weight BSDR (such as the NAF).
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5.5.2 Boolean Function
For some i, let (a, b, c) = (qt[i], qt−1[i], qt−2[i]) be any triple of bitconditions such
that all indirect bitconditions involve only Qt[i], Qt−1[i] or Qt−2[i]. The triple
(a, b, c) is associated with the set Uabc of tuples of values (x, x′, y, y′, z, z′) =
(Qt[i], Q′

t[i], Qt−1[i], Q′
t−1[i], Qt−2[i], Q′

t−2[i]):

Uabc =
{
(x, x′, y, y′, z, z′) ∈ {0, 1}6 satisfies bitconditions (a, b, c)

}
.

If Uabc = ∅ then (a, b, c) is said to be contradicting and cannot be part of any
valid differential path. We define Ft as the set of all triples (a, b, c) such that all
indirect bitconditions involve only Qt[i], Qt−1[i] or Qt−2[i] and Uabc 	= ∅.

We define Vabc as the set of all possible boolean function differences ft(x′, y′, z′)
− ft(x, y, z) for given bitconditions (a, b, c) ∈ Ft:

Vabc = {ft(x′, y′, z′) − ft(x, y, z) | (x, x′, y, y′, z, z′) ∈ Uabc} ⊂ {−1, 0, +1}.

If |Vabc| = 1 then (a, b, c) leaves no ambiguity and the triple (a, b, c) is said
to be a solution. Let St be the set of all solutions. If |Vabc| > 1 then for each
g ∈ Vabc we define Wabc,g as the set of solutions (d, e, f) ∈ St that are compatible
with (a, b, c) and that have g as boolean function difference:

Wabc,g = {(d, e, f) ∈ St | Udef ⊂ Uabc ∧ Vdef = {g}} .

Note that for all g ∈ Vabc there is always a triple (d, e, f) ∈ Wabc,g that consists
only of direct bitconditions 01+-, hence Wabc,g 	= ∅. The direct and forward
(resp. backward) boolean function bitconditions were chosen such that for all t,
i and (a, b, c) ∈ Ft and for all g ∈ Vabc there exists a triple (d, e, f) ∈ Wabc,g

consisting of direct and forward (resp. backward) bitconditions such that

Udef is equal to {(x, x′, y, y′, z, z′) ∈ Uabc | ft(x′, y′, z′) − ft(x, y, z) = g} .

In other words, these boolean function bitconditions allows one to resolve an
ambiguity in an optimal way. If the triple (d, e, f) is not unique, then we pre-
fer direct over indirect bitconditions and short indirect bitconditions (vy^!)
over long indirect bitconditions (whqm#?) for simplicity reasons. For given t,
bitconditions (a, b, c), and g ∈ Vabc we define FC(t, abc, g) = (d, e, f) and
BC(t, abc, g) = (d, e, f) as the preferred triple (d, e, f) consisting of direct and
forward, respectively backward bitconditions. These should be precomputed for
all cases.

For all i = 0, 1, . . . , 31 we have by assumption valid bitconditions (a, b, c) =
(qt[i], qt−1[i], qt−2[i]) where only c can be an indirect bitcondition. If so, it
must involve Qt−1[i]. Therefore (a, b, c) ∈ Ft. If |Vabc| = 1 there is no ambi-
guity and we let {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose any
gi ∈ Vabc and we resolve the ambiguity left by bitconditions (a, b, c) by replacing
them by (d, e, f) = FC(t, abc, gi), which results in boolean function difference
gi. Given all gi, the values δFt =

∑31
i=0 2igi and δTt = δFt + δQt−3 + δWt can be

determined.
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5.5.3 Bitwise Rotation
The integer δTt does not uniquely determine the value of δRt = RL(T ′

t , n) −
RL(Tt, n), where n = RCt. Nevertheless, we simply use δRt = RL(NAF (δTt), n)
and determine δQt+1 = δQt +δRt to extend our partial differential path forward
with step t.

Another approach to determine δRt uses the fact that any BSDR (ki) of δTt

determines δRt:

δRt =
31∑

i=0

2i+n mod 32(T ′
t [i] − Tt[i]) =

31∑

i=0

2i+n mod 32ki

= 2n
31−n∑

i=0

2iki + 2n−32
31∑

i=32−n

2iki.

Different BSDRs (ki) and (�i) of δTt result in the same δRt as long as

31−n∑

i=0

2iki =
31−n∑

i=0

2i�i and
31∑

i=32−n

2iki =
31∑

i=32−n

2i�i.

In general, let (α, β) ∈ Z
2 be a partition of the integer δTt with α + β = δTt

mod 232, |α| < 232−n, |β| < 232 and 232−n|β. For a BSDR (ki) of δTt we say that
(α, β) ≡ (ki) if α =

∑31−n
i=0 2iki and β =

∑31
i=32−n 2iki. The rotation of (α, β) is

defined as RL((α, β), n) = 2nα + 2n−32β mod 232.
Let x = (δTt mod 232−n) and y = (δTt − x mod 232), then 0 ≤ x < 232−n

and 0 ≤ y < 232. This gives rise to at most 4 partitions of δTt:

1. (α, β) = (x, y);
2. (α, β) = (x, y − 232), if y 	= 0;
3. (α, β) = (x − 232−n, y + 232−n mod 232), if x 	= 0;
4. (α, β) = (x−232−n, (y+232−n mod 232)−232), if x 	= 0 and y+232−n 	= 0

mod 232.

The probability of each partition (α, β) equals

p(α,β) =
∑

(ki)≡(α,β)

2−weight of (ki).

One then chooses any partition (α, β) for which p(α,β) ≥ 1
4 and determines δRt as

RL((α, β), n). In practice NAF (δT ) most often leads to the highest probability,
which validates the simpler approach we used.

5.5.4 Extending Backward
Similar to extending forward, suppose we have a partial differential path con-
sisting of at least bitconditions qt and qt−1 and that the differences δQt+1 and
δQt−2 are known. We want to extend this partial differential path backward with
step t resulting in δQt−3 and (additional) bitconditions qt, qt−1, qt−2. We assume
that all indirect bitconditions are backward and do not involve bits of Qt−2.
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We choose a BSDR of δQt−2 with weight at most 1 or 2 above the lowest
weight, such as the NAF. We translate the chosen BSDR into bitconditions
qt−2.

For all i = 0, 1, . . . , 31 we have by assumption valid bitconditions (a, b, c) =
(qt[i], qt−1[i], qt−2[i]) where only b can be an indirect bitcondition. If so, it must
involve Qt−2[i]. Therefore (a, b, c) ∈ Ft. If |Vabc| = 1 there is no ambiguity and
we let {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose any gi ∈ Vabc

and we resolve the ambiguity left by bitconditions (a, b, c) by replacing them by
(d, e, f) = BC(t, abc, gi), which results in boolean function difference gi. Given
all gi, the value δFt =

∑31
i=0 2igi can be determined.

To rotate δRt = δQt+1 − δQt over n = 32 − RCt bits, we simply use δTt =
RL(NAF (δRt), n). Or we may choose a partition (α, β) of δRt with p(α,β) ≥ 1

4
and determine δTt = RL((α, β), n). As in the ‘forward’ case, NAF (δRt) often
leads to the highest probability. Finally, we determine δQt−3 = δTt − δFt − δWt

to extend our partial differential path backward with step t.

5.6 Constructing Full Differential Paths

Construction of a full differential path can be done as follows. Choose δQ−3 and
bitconditions q−2, q−1, q0 and extend forward up to step 11. Also choose δQ64
and bitconditions q63, q62, q61 and extend backward down to step 16. This leads
to bitconditions q−2, q−1, . . . , q11, q14, q15, . . . , q63 and differences δQ−3, δQ12,
δQ13, δQ64. It remains to finish steps t = 12, 13, 14, 15. As with extending back-
ward we can, for t = 12, 13, 14, 15, determine δRt, choose the resulting δTt after
right rotation of δRt over RCt bits, and determine δFt = δTt − δWt − δQt−3.

We aim to find new bitconditions q10, q11, . . . , q15 that are compatible with
the original bitconditions and that result in the required δQ12, δQ13, δF12, δF13,
δF14, δF15, thereby completing the differential path. First we can test whether
it is even possible to find such bitconditions.

For i = 0, 1, . . . , 32, let Ui be a set of tuples (q1, q2, f1, f2, f3, f4) of 32-bit
integers with qj ≡ fk ≡ 0 mod 2i for j = 1, 2 and k = 1, 2, 3, 4. We want
to construct each Ui so that for each tuple (q1, q2, f1, f2, f3, f4) ∈ Ui there exist
bitconditions q10[�], q11[�], . . . , q15[�], determining the ΔQ11+j��� and ΔF11+k���
below, over the bits � = 0, . . . , i − 1, such that

δQ11+j = qj +
i−1∑

�=0

2�ΔQ11+j���, j = 1, 2,

δF11+k = fk +
i−1∑

�=0

2�ΔF11+k���, k = 1, 2, 3, 4.

This implies U0 = {(δQ12, δQ13, δF12, δF13, δF14, δF15)}. The other Ui are con-
structed inductively by Algorithm 1. Furthermore, |Ui| ≤ 26, since for each qj , fk

there are at most 2 possible values that can satisfy the above relations.
If we find U32 	= ∅ then there exists a path u0, u1, . . . , u32 with ui ∈ Ui where

each ui+1 is generated by ui in Algorithm 1. Now the desired new bitconditions
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Algorithm 1. Construction of Ui+1 from Ui.
Suppose Ui is constructed as desired in Section 5.6.
Let Ui+1 = ∅ and (a, b, e, f) = (q15[i], q14[i], q11[i], q10[i]).
For each tuple (q1, q2, f1, f2, f3, f4) ∈ Ui do the following:

1. For each bitcondition d = q12[i] ∈
�

{.} if q1[i] = 0
{-, +} if q1[i] = 1 do

2. Let q′
1 = 0, −1, +1 for resp. d =.,-,+

3. For each different f ′
1 ∈ {−f1[i], +f1[i]} ∩ Vdef do

4. Let (d′, e′, f ′) = FC(12, def, f ′
1)

5. For each bitcondition c = q13[i] ∈
�

{.} if q2[i] = 0
{-, +} if q2[i] = 1 do

6. Let q′
2 = 0, −1, +1 for resp. c =.,-,+

7. For each different f ′
2 ∈ {−f2[i], +f2[i]} ∩ Vcd′e′ do

8. Let (c′, d′′, e′′) = FC(13, cd′e′, f ′
2)

9. For each different f ′
3 ∈ {−f3[i], +f3[i]} ∩ Vbc′d′′ do

10. Let (b′, c′′, d′′′) = FC(14, bc′d′′, f ′
3)

11. For each different f ′
4 ∈ {−f4[i], +f4[i]} ∩ Vab′c′′ do

12. Let (a′, b′′, c′′′) = FC(15, ab′c′′, f ′
4)

13. Insert (q1 −2iq′
1, q2 −2iq′

2, f1 −2if ′
1, f2 −2if ′

2, f3 −2if ′
3, f4 −2if ′

4)
into Ui+1.

Keep only one of each tuple in Ui+1 that occurs multiple times. By construction we
find Ui+1 as desired.

(q15[i], q14[i], . . . , q10[i]) are (a′, b′′, c′′′, d′′′, e′′, f ′), which can be found at step 13
of Algorithm 1, where one starts with ui and ends with ui+1.

5.7 Implementation Details

Implementation of these techniques was done in C++ using the general purpose
library Boost and the BOINC framework. BOINC is an open source distributed
computing framework that allows volunteers on the Internet to join a project
and donate cpu-time. Each project running a BOINC server automatically han-
dles compute-client inputs and outputs specific to any number of applications,
including output validation and re-assignment of jobs, if required. Volunteers,
which can form teams, can monitor their own and others’ progress, thus pro-
viding an inspiring competitive environment. Our BOINC project had a peak
performance of approximately 400 GigaFLOPS.

To construct our chosen-prefix collision we used six applications:

1. One that generates birthday trails ending in a distinguished point [13];
2. One that collects birthday trails and computes collisions when found;
3. One that loads a set of partial lower differential paths and extends those

forward with step t and saves only the paths with the fewest bitconditions;
4. One that loads a set of partial upper differential paths and extends those

backward with step t and saves only the paths with the fewest bitconditions;
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5. One that loads sets of lower and upper differential paths and tries to connect
each combination;

6. One that searches for near-collision blocks that satisfy a given full differential
path.

While extending a partial differential path we exhaustively try all BSDRs of δQt

with weight at most 2 above the lowest weight, and all possible δFt and all high-
probability rotations. We keep only the N paths with the fewest bitconditions,
for some preset value of N . Also we keep only those paths that have a preset
minimum total tunnel strength over the Q4, Q5, Q9, Q10-tunnels [9]. With the
exception of the 2nd, all applications can be fully parallelized. For the 1st and 5th
application, which were by far the most cpu-time consuming, we used BOINC;
the others were run on a cluster.

6 Concluding Remark

We have presented an automated way to find differential paths for MD5, have
shown how to use them to construct chosen-prefix collisions, and have con-
structed two X.509 certificates with different name fields but idential signatures.
Our construction required substantial cpu-time, but chosen-prefix collisions can
be constructed much faster by using a milder birthday condition (namely, just
δa = 0 and δc = δd) and allowing more near-collision blocks (about 14). See [16]
for details.
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