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Abstract. Hierarchical multi-organ statistical atlases are constructed
with the aim of achieving fully automated segmentation of the liver
and related organs from computed tomography images. Constraints on
inter-relations among organs are embedded in hierarchical organization
of probabilistic atlases (PAs) and statistical shape models (SSMs). Hi-
erarchical PAs are constructed based on the hierarchical nature of inter-
organ relationships. Multi-organ SSMs (MO-SSMs) are combined with
previously proposed single-organ multi-level SSMs (ML-SSMs). A hierar-
chical segmentation procedure is then formulated using the constructed
hierarchical atlases. The basic approach consists of hierarchical recursive
processes of initial region extraction using PAs and subsequent refine-
ment using ML/MO-SSMs. The experimental results show that segmen-
tation accuracy of the liver was improved by incorporating constraints
on inter-organ relationships.

1 Introduction

Statistical atlases, which represent anatomical variations among individuals, have
been shown to be useful for segmentation and quantification of medical images [1].
In previous work, statistical atlases have typically been constructed for a single
organ in a uniform manner [1]. However, multiple organs are interrelated in the
human body. Furthermore, the hierarchical nature is involved in the shape of a
single organ, as well as multi-organ inter-relationships. Our previous study devel-
oped hierarchically decomposed statistical shape models (SSMs) [2]. Although the
developed models were shown to be useful for accurate segmentation due to the
hierarchical nature, the results in [2] clarified that explicit incorporation of the
constraints of adjacent organs is essential to further improve accuracy. Statistical
modeling of multi-organ structures will thus provide useful information for robust
segmentation and shape recovery from medical images. Recent work [3] has tried
to incorporate inter-organ relationships into SSMs. The basic limitation, however,
is that quite large variations need to be statistically modeled for inter-organ rela-
tionships compared with a single organ. A quite large number of learning datasets
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are needed to model complex structures. Due to this limitation, previous works
limited applications to 2D or simple 3D shapes [3].

In this paper, we embed the constraints for multi-organ inter-relationships into
hierarchically organized statistical atlases to deal with the large variations in-
volved. Hierarchical organization schemes have been developed for two atlas rep-
resentations: probabilistic atlases (PAs) [4] and SSMs [1]. Spatial normalization
for constructing and utilizing PAs is progressively performed based on the pre-
defined hierarchy of organ structures. SSMs are also hierarchically constructed
within single organ shape, as well as across multiple organs. Sub-shapes within a
single organ shape or sub-shapes across multiple organ shapes are hierarchically
organized. By restricting SSM construction to local sub-shapes in inter-related or-
gans rather than to whole shapes, variations in multi-organ inter-relationships are
effectively modeled using a moderate number of training datasets. Further, multi-
organ SSMs of whole shapes are realized by hierarchical organization of SSMs con-
structed for decomposed sub-shapes. Hierarchy in constructed PAs and SSMs is
directly linked to a hierarchical automated segmentation procedure, where
hierarchically normalized PAs are utilized to provide good initial conditions for
subsequent multi-organ SSM fitting. We experimentally evaluated the effects of
integrating multi-organ inter-relationships on performance improvements in seg-
mentation results of the liver from computed tomography (CT).

2 Methods

2.1 Hierarchical Probabilistic Atlas

Given hierarchical relationships of inter-related organ structures, spatial nor-
malization is performed according to the given hierarchy. Here, we considered
the hierarchy of the abdominal cavity, liver, vena cava and gallbladder (Fig. 1).
Shape and position of the anatomical structures of lower hierarchy levels, e.g.,
the gallbladder and vena cava, are strongly constrained by those of higher hi-
erarchy levels, e.g., the liver. Spatial normalization for an organ of interest is
performed by mapping the dataset for an individual patient into the normalized
space through nonrigid registration [5] using the organ shape of the next highest
hierarchy level to remove unwanted shape and positional variations as well as
represent datasets in the canonical frame (left side of Fig. 2).

Before the PA is constructed, we assume that the regions of each anatomical
structure have already been segmented from the CT datasets. In the case of
normalization for the gallbladder and vena cava, a dense three-dimensional (3D)
deformation field is obtained by nonrigid registration of individual liver shapes to
the average liver shape. Gallbladder and vena cava regions are normalized based
on the average liver shape by warping individual CT datasets using the obtained
deformation fields. The PA is constructed by averaging the warped segmented
binary images of each structure. The right side of Fig. 2 shows constructed
PAs of the gallbladder and vena cava normalized using the liver in comparison
with those using the abdominal cavity and those without normalization. The
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high-probability area (colored red) was increased in the liver-normalized PA,
showing high predictive performance.

We refer to the hierarchy described in this subsection as “inter-organ hierar-
chy”, to differentiate from “intra-organ hierarchy” described in the next section.

2.2 Hierarchical Organization of Multi-Organ Statistical Shape
Models

We considered two inter-related organ shapes. Let S (e.g., the liver) and T
(e.g., the vena cava or gallbladder) be the sets of vertices comprised in the
surface models of the two shapes. All training datasets of S and T are nonrigidly
registered to the surface model of the standard shape of S and T , respectively [5],
so that they have the same topology of the vertices as the standard shape. That
is, correspondences of all vertices are known among the datasets. Let S′ and T ′

be the sets of vertices of the sub-shapes (hereafter called “patches”) of S and
T , respectively. Let U be the union of S′ and T ′. We defined multi-organ SSM
(MO-SSM) as the SSM of U .

A multi-level SSM (ML-SSM) [2] of S is defined as the set of SSMs of hi-
erarchically decomposed patches Si and Sij , which denote all patches and the
j-th patch of “intra-organ hierarchy” level i, respectively, where i = 0, 1, · · ·m.
As correspondences of all vertices among datasets are known, these decompo-
sitions can be determined for all datasets automatically if the decomposition
is defined only for the standard shape dataset. Ti and Tij(i = 0, 1, · · · , n) are
defined similarly. Principal component analysis is performed for each patch.

In constructing MO-SSM, we assume that the set of the patches of U (= S′ ∪
T ′) satisfy the conditions, S′ ⊆ Sn and T ′ ⊆ Tm, that is, U ⊆ (Sn ∪ Tm). Figure
3 shows an example of MO-SSM, where S and T are the liver and gallbladder
(or vena cava), respectively, m = 2, and n = 0. The patches on S (the liver),
which are closely inter-related to T are selected as S′, while the whole shape
of the gallbladder (or vena cava), that is T0, is selected as T ′. In this case, two
patches on S at intra-organ hierarchy level 2 are selected for S′, at least one
vertex of which is located within the pre-determined distance to the surface of
T through all datasets.

To connect two ML-SSMs for different organs with MO-SSM, the adhesiveness
constraints [2] are combined. Adhesiveness constraint was originally introduced
to remove inconsistencies in adjacent patches at the same hierarchy level in
ML-SSM. The decomposition of patches is performed so that adjacent patches
overlap each other along the boundaries. The adhesive constraint ensures that
two adjacent patches adhere to each other in the overlapped area to recover
the consistent whole single shape. MO-SSM of U overlaps with S and T only
on patches S′ and T ′, respectively. The adhesive constraint is applied to the
overlap areas S′ and T ′ so that the sum of the distances between vertices of
MO-SSM for U and the corresponding vertices for S′ or T ′ in ML-SSM of S or
T , respectively, is sufficiently small. As the MO-SSM is limited to local region S′

rather than the whole shape of S (the liver in this case), the involved variations
can be efficiently encoded even without a large number of training datasets.
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2.3 Hierarchical Approach to Multi-Organ Segmentation from CT

Based on the constructed hierarchical PAs and ML/MO-SSMs, a hierarchical au-
tomated segmentation procedure is derived by assuming that anatomical struc-
ture at inter-organ hierarchy level 0 has already been extracted. In this paper, we
assumed that the anatomical structure at level 0 is the approximated abdominal
cavity region (as shown in Fig. 1 and Fig. 2), which is extracted based on the
lung and bone regions. We confirmed that the approximated abdominal cavity
region can be reliably extracted using more than 100 CT datasets.

The basic approach is as follows:

Step 0: Inter-organ hierarchy level k ← 0.
Step 1: Region extraction of anatomical structures at inter-organ hierarchy

level k + 1 and refinement of those extracted at level k, in which datasets
are spatially normalized using anatomical structures obtained at level k or
higher (a smaller number means higher level).
Step 1-1: Initial region extraction using PAs [2][6].
Step 1-2: Refinement of extracted regions of structures at level k +1 using

ML-SSMs [2], wherein intra-organ hierarchy is embedded (only when
k = 0 in the experiments).

Step 1-3: Refinement of extracted regions of structures at levels k and k+1
using MO-SSMs (only when k = 1 in the experiments).

Step 2: k ← k + 1. Go to Step 1.

In Step 1-1, likelihood based on position and intensity is estimated at each
voxel position from PA and CT data, then voxel-based segmentation is per-
formed [6]. In Step 1-2, ML-SSM is successively fitted to refine the segmentation.
The details of these methods are described in [2][6]. In this paper, we have added
new Step 1-3 for refinement of segmentation results of anatomical structures at
levels k + 1 and k using the inter-organ constraints.

Let s′ and t′ be the shape parameter (coefficient) vector of S′ and T ′ in single
organ ML-SSMs of S and T , respectively, and u′ be that of the MO-SSM of U
(S′ and T ′). Let PS and PT be the sets of detected edge points for S and T
from CT data, respectively. The detection method for edge points is described
in [1]. Given PS and PT , we estimate the shape parameter vector s′, t′, and u′

by minimizing

C1 (s′, t′,u′; PS , PT ) = CD (s′; PS) + CD (t′; PT ) + λ1CN (s′, t′,u′) , (1)

Fig. 1. Hierarchy in inter-organ relationships of the abdominal cavity, liver, vena cava
and gallbladder
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Fig. 2. Hierarchical spatial normalization (left) and resulting probabilistic atlases
(right). Upper row: Original datasets. Middle row: Normalized datasets by the ab-
dominal cavity. Lower row: Normalized datasets by the liver. In the liver-normalized
space, probabilistic atlases have high probability area (colored red) compared with
other probabilistic atlases having relatively wide low probability areas (colored blue).

where CD (s′; P ) is the sum of distances between model surface S′ and edge
points P , and CN (s′, t′,u′) is the inter-organ constraint. λ1 is a weight param-
eter balancing these constraints. The edge detection process and minimization
process of Eq. (1) are repeatedly performed. After this, final refinement is per-
formed. Let s′′ be a shape parameter vector of s but not included in s′ and R be
the estimated shape by minimization Eq. (1). As a final process of segmentation,
by fixating s′ obtained by minimizing Eq. (1), we estimate the remaining shape
parameters s′′ by minimizing

C2 (s′′; R) = CD (s′′; R) + λ2CA (s′′) , (2)

Fig. 3. Hierarchical multi-organ statistical shape models (MO-SSMs). In this case, an
MO-SSM (middle) is constructed for the union of small local patches of the liver and
the whole shape of the vena cava or gallbladder.
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where CD (s′′; R) is the sum of distances between the current model surface and
R, and CA (s′′) is the adhesiveness constraint for overlap regions to eliminate
inconsistency among adjacent patches [2]. λ2 is a weight parameter balancing
the two constraints.

3 Results

Twenty-eight abdominal CT datasets (slice thickness, 2.5 mm; pitch, 1.25 mm;
Field of view (FOV) 350 × 350 mm2, 512 × 512 matrix, 159 slices) were used.
Contrast agent was used for CT. We randomly selected 8 datasets for evaluation,
and others for training. The hierarchical PA and ML-SSMs for the liver, vena
cava and gallbladder, and MO-SSMs of liver-vena cava and liver-gallbladder were
constructed from the 20 training datasets. In ML-SSMs for the vena cava and
gallbladder, the number of intra-organ hierarchy levels was 1, thus representing
just conventional SSMs. ML-SSM for the liver used in the experiments was the
same as described in [2]. We used λ1 = 2.0 and λ2 = 0.4 for the MO-SSMs
of liver-vena cava and liver-gallbladder, respectively, which were experimentally
determined. Segmentation of the liver was performed first, then the vena cava
and gallbladder were segmented. Finally, segmentation results for these three
organs were refined using MO-SSMs. Given the CT datasets input for evaluation,
all procedures were performed in a fully automated manner according to the basic
approach described in the previous subsection.

Figures 4 (a) and (b) show the results of segmentation accuracy of the liver
around the vena cava and gallbladder, respectively. Absolute surface distance
(ASD) [7] was used as a measure of segmentation accuracy. Manually traced
regions were used for reference. By combining MO-SSMs of liver-vena cava and
liver-gallbladder, accuracy was improved in all cases compared with using the
ML-SSM of the liver alone (on average from 2.69 mm to 2.04 mm around the
vena cava and from 2.51 mm to 1.87 mm around the gallbladder). Figure 5 shows
segmentation results for two illustrative cases. In Fig. 5 (a), MO-SSM of the liver

(a) (b)

Fig. 4. Evaluation results of segmentation accuracy of the liver around (a) the vena
cava and (b) gallbladder
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(a) (b)

Fig. 5. Results of illustrative cases. (a) Case 2. MO-SSM of the vena cava was effective
in this case (shown by arrow). (b) Case 8. MO-SSM of the gallbladder was effective
in this case (shown by arrow). Estimated liver shapes are shown as color codes repre-
senting signed surface distance errors (red, convex error; white, no error; blue, concave
error). Typical CT cross-sections are also shown (red contour, estimated by previous
method; green, proposed method; yellow, ground truth). Note that unshown parts of
the red contours overlap with the green contours.

and vena cava was effective and the segmentation result was improved around
the vena cava. In Fig. 5 (b), similar improvements were observed around the
gallbladder. The proposed method improves the segmentation accuracy only for
local regions around the vena cava and gallbladder. By averaging over the whole
liver, the improvements become superficially small and ASD was improved from
1.59 to 1.46 mm and volumetric overlap (VO) [7] from 87.9 to 88.8 %.

4 Discussion and Conclusions

We have described construction of hierarchical multi-organ statistical atlases and
application of this method to segmentation of the liver and other peripheral or-
gans (vena cava and gallbladder) from CT. Using multi-organ statistical atlases,
segmentation accuracy of the liver was improved. In particular, segmentation
accuracy around the caudate lobe located near the vena cava was significantly
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improved. The caudate lobe is a small but clinically important liver lobe, and
semi-automated segmentation is considered difficult [8]. Improved segmentation
accuracy around the caudate lobe is thus worthy of note.

The methods described in this paper were performed in a fully automated
manner. Hierarchically organized PAs were particularly useful for automation.
The initial regions of the vena cava and gallbladder were effectively extracted
using PAs normalized by the average liver. Without hierarchical normalization,
automation would often fail. Hierarchical organization of PAs and MO/ML-SSMs
is directly linked to the hierarchical segmentation procedure.

In this work, we constructed multi-organ statistical atlases for the vena cava
and gallbladder for modeling inter-relationships with the liver. However, other
organs, such as the stomach, heart, and kidney, are inter-related with the liver
in addition to the vena cava and gallbladder. As shown in Fig. 5 (a), large
segmentation error was observed in the left lobe in two out of eight cases. This
error was caused by ambiguity in boundaries of the liver and stomach. Similar
error was observed at boundaries of the liver and heart in one case. Since we
used contrast CT images, the boundaries of the liver and kidney were clear, and
segmentation error was not observed at the boundaries. We considered that the
vena cava and gallbladder are strongly constrained by the liver rather than the
stomach and heart, and were incorporated into MO-SSMs first. More organs can
be incorporated using the proposed method to improve segmentation accuracy
of the liver. As future work, we plan to incorporate other organs, such as the
stomach and heart.
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