Leftover Hash Lemma, Revisited

Boaz Barak!, Yevgeniy Dodis?, Hugo Krawczyk?, Olivier Pereira?,
Krzysztof Pietrzak®, Francois-Xavier Standaert?, and Yu Yu®

! Microsoft Research New England
boaz@microsoft.com
2 New York University
dodis@cs.nyu.edu
3 IBM Research
hugo@ee.technion.ac.il
4 Université Catholique de Louvain
{0livier.Pereira,fstandae}@uclouvain.be
® CWI Amsterdam
pietrzak@cwi.nl
5 East China Normal University
yuyu@yuyu.hk

Abstract. The famous Leftover Hash Lemma (LHL) states that (al-
most) universal hash functions are good randomness extractors. Despite
its numerous applications, LHL-based extractors suffer from the follow-
ing two limitations:

— Large Entropy Loss: to extract v bits from distribution X of min-
entropy m which are e-close to uniform, one must set v < m —
2log (1/¢), meaning that the entropy loss L < m — v > 2log (1/¢).
For many applications, such entropy loss is too large.

— Large Seed Length: the seed length n of (almost) universal hash
function required by the LHL must be at least n > min(u — v,v +
2log (1/e)) — O(1), where u is the length of the source, and must
grow with the number of extracted bits.

Quite surprisingly, we show that both limitations of the LHL — large
entropy loss and large seed — can be overcome (or, at least, mitigated)
in various important scenarios. First, we show that entropy loss could be
reduced to L = log (1/¢) for the setting of deriving secret keys for a wide
range of cryptographic applications. Specifically, the security of these
schemes with an LHL-derived key gracefully degrades from € to at most
£+ +2-L. (Notice that, unlike standard LHL, this bound is meaningful
even when one extracts more bits than the min-entropy we have!) Based
on these results we build a general computational extractor that enjoys
low entropy loss and can be used to instantiate a generic key derivation
function for any cryptographic application.

Second, we study the soundness of the natural expand-then-extract
approach, where one uses a pseudorandom generator (PRG) to expand
a short “input seed” S into a longer “output seed” S’, and then use
the resulting S’ as the seed required by the LHL (or, more generally,
by any randomness extractor). We show that, in general, the expand-
then-extract approach is not sound if the Decisional Diffie-Hellman as-
sumption is true. Despite that, we show that it is sound either: (1) when

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 1]20] 2011.
© International Association for Cryptologic Research 2011

2 B. Barak et al.

extracting a “small” (logarithmic in the security of the PRG) number
of bits; or (2) in minicrypt. Implication (2) suggests that the expand-
then-extract approach is likely secure when used with “practical” PRGs,
despite lacking a reductionist proof of security!

1 Introduction

The famous Leftover Hash Lemma [I8] (LHL; see also [18] for earlier formula-
tions) has found a huge number of applications in many areas of cryptography
and complexity theory. In its simplest form, it states that universal hash func-
tions [7] are good (strong) randomness extractors [31]. Specifically, if X is a
distribution of min-entropy m over some space X, H is a family of universal
functions (see [Definition 2)) from X to {0,1}, and H is a random member of
‘H, then, even conditioned on the “seed” H, the statistical distance between

H(X) and the uniform distribution U, on {0,1}" is bounded by v2-L, where

LY m — v The parameter L is defined as the entropy loss and it measures

the amount of min-entropy “sacrificed” in order to achieve good randomness ex-
traction. Thus, no application can tell apart the “extracted” randomness H(X)

from uniform randomness U,, with advantage greater than ¢ & V 2-L_ even if
the seed H is published (as long as H is independent of X).

The LHL is extremely attractive for many reasons. First, and foremost, it
leads to simple and efficient randomness extractors, and can be used in many
applications requiring good secret randomness. One such major setting is that
of cryptographic key derivation, which is needed in many situations, such as pri-
vacy amplification [4], Diffie-Hellman key exchange [I4)25], biometrics [TT5] and
random number generators from physical sources of randomness [32]. Second,
many simple functions, such as the inner product or, more generally, matrix-
vector multiplication, are universal. Such elegant functions have nice algebraic
properties which can be used for other reasons beyond randomness extraction
(for a few examples, see [26/10/29]). Third, many simple and efficient construc-
tions of (almost) universal hash functions are known [7I37/30/24], making LHL-
based extractors the most efficient extractors to date. Finally, LHL achieves the
optimal value of the entropy loss L = m — v sufficient to achieve the desired
statistical distance e. Specifically, LHL achieves L = 2log(1/¢), which is known
to be the the smallest possible entropy loss for any extractor [34].

Despite these extremely attractive properties, LHL-based extractors are not
necessarily applicable or sufficient in various situations. This is primarily due to
the following two limitations of the LHL: large entropy loss and large seed.

LARGE ENTROPY LoSs. In theory, the entropy loss of 2log (1/¢) might appear
quite insignificant, especially in the asymptotic sense. However, in practical situa-
tions it often becomes a deal-breaker, especially when applied to the setting of key
derivation. In this case the main question is to determine the smallest min-entropy
value m sufficient to extract a v-bit key with security €. Minimizing this value m,
which we call startup entropy, is often of critical importance, especially in entropy

Leftover Hash Lemma, Revisited 3

constrained scenarios, such as Diffie-Hellman key exchange (especially on ellip-
tic curves) or biometrics. For example, for the Diffie-Hellman key exchange, the
value m corresponds to the size of the elliptic curve group, which directly affects
efficiency. This is one of the reasons why statistical extractors are often replaced
in practice with heuristic constructions based on cryptographic hash functions.

LARGE SEED. Another significant hurdle in the use of LHL comes from the fact
that universal hash functions require long description, which means that LHL-
based extractors have long seeds. Indeed, Stinson [37] showed that (perfectly)
universal hash functions require the length of the seed to be linear in the length
of the source X. More generally, even “good-enough” almost universal hash
functions for LHL require seeds of length at least min(|X| — v, v+ 2log (1/¢)) —
O(1) [37], and, thus, must grow with the number of extracted bits. This large seed
length makes it inconvenient in many applications of extractors (e.g., [6I35)25]),
including any use of extractors for derandomization, where one must be able to
enumerate over all the seeds efficiently.

Large (and variable-length) seeds are also inconvenient for standardized cryp-
tographic applications where fixed-size keys, independent of the size of inputs,
are favored (as in the case of block ciphers or cryptographic hash functions).
When extractors are used in cryptographic settings, seeds are viewed as keys
and hence fixed-size seeds are very desirable. In applications of extractors, where
the attacker is assumed to be sufficiently limited as to not make the source X
dependent on the seed (e.g., when extracting keys from biometrics, physical mea-
surements or in the Diffie-Hellman key exchange), one might consider fixing a
good public seed, and use it repeatedly with a fast provably secure extractor. As
said, this is not possible with universal hash functions as their seed length must
grow with the length of X

OUur RESULTS. Quite surprisingly, we show that both limitations of the LHL
— large entropy loss and large seed — can be overcome or, at least, mitigated
in various important scenarios. We describe these results below.

1.1 Reducing the Entropy Loss

At first, reducing the entropy loss L might seem impossible since we already men-
tioned that any extractor must have entropy loss L > 2log(1/e) — O(1) [34].
However, the impossibility is for general applications of extractors, where we must
ensure that the extracted string R cannot be distinguished from random by any
statistical test D. In contrast, when extractors are used to derive cryptographic
keys, we only care about limited types of statistical tests D. Concretely, the tests
that correspond to the security game between the attacker A and the challenger C'.
For example, when deriving the key for a signature scheme, the only tests we care
about correspond to the attacker seeing several signatures and then outputting a

! In theory one can build (non-LHL-based) extractors where the length n of the seed H
is roughly logarithmic in the length of the source X (see [I6I36] and many references
therein). However, the resulting constructions are mainly of theoretical value and
lose the extreme simplicity and efficiency of LHIL-based extractors.

4 B. Barak et al.

new signature. Namely, we only care that the probability of a successful forgery
does not suddenly become non-negligible when the secret key is obtained using
an extractor instead of being random. And since the signature scheme is assumed
to be secure with a truly random key, we can restrict our attention to a very re-
stricted class of statistical tests which almost never output 1. Similar restrictions
on the distinguisher naturally arise for other cryptographic primitives, which gives
us hope that the lower bound of [34] might be overcome in such settings.

GENERALIZED LHL AND APPLICATIONS. Indeed, we derive a tighter form of the
LHL, called generalized LHL (see[Theorem 1), which non-trivially depends on the
type of distinguisher D we care about. Our improved bound contains a novel term
informally measuring the standard deviation of the distinguisher’s advantage (the
standard LHL is a particular case where this term is bounded by 1). Applying
this new bound to the analysis of cryptographic functions, we obtain much tighter
bounds for the security of a wide class cryptographic applications. These include
key derivation for all “unpredictability” applications, such as signatures, MACs,
one-way functions, identification schemes, etc. More surprisingly, they also include
key derivation for some prominent “indistinguishability” applications that include
all stateless encryption schemes, both CPA- and CCA-secure and in the public-
and symmetric-key settings, as well as weak pseudorandom functions. Specifically,
in each of these cases, denote by € the security of the cryptographic primitive (i.e.,
the best success probability or advantage of an attacker with certain resources)
when keyed with a perfectly random v-bit key, and by ¢’ the corresponding security
value when the key is derived from an imperfect m-bit entropy source via the LHL.
We show (recall that L = m — v represents the entropy loss):

e <e+Ve2vm =c 4 Ve2-L (1)

COMPARING WITH STANDARD LHL. Let us first compare this bound with the
regular € + v2—L LHL bound. The latter required L > 2log (1/¢) to achieve the

same type of security O(e) as with the ideal randomness. Using our improved
bound, we show that only half of that amount, L = log(1/¢), already suffices.
In fact, not only do we get improved bounds on the entropy loss L, but we
also get meaningful security bounds for arbitrary values of L, even negative
ones (when the entropy loss becomes “entropy gain”)! E.g., standard LHL does
not give anything for L < 0, while we achieve significant &’ ~ /¢ security for
L = 0 (no entropy loss!), and even start to “gracefully borrow” security from
our application when we extract more bits than the min-entropy of the source,
up to L = —log (1/e) (i.e., v=m+log(1/e)).

COMPUTATIONAL EXTRACTOR WITH IMPROVED L0ss. Although our improved
bound, as stated, is not applicable to all cryptographic applications (the most im-
portant omission being pseudorandom functions and stream ciphers), in
[Section 3.2 we use our results to build general-purpose key derivation function
for any (computationally-secure) cryptographic application, while providing the
full entropy benefits derived from [Equation (1)} The scheme combines any LHL-
based extractor with any (weak) pseudorandom function family.

Leftover Hash Lemma, Revisited 5

1.2 Reducing the Seed Length

EXPAND-THEN-EXTRACT. A natural idea to reduce the seed length is to use a
pseudorandom generator (PRG) to expand a short “input seed” S into a longer
“output seed” S’, and then use the resulting S’ as the seed required by the
LHL, or, more generally, by any randomness extractor. Let us call this natural
approach ezxpand-then-extract. Of course, as long as one hides the short S and
uses the long S’ as the public seed for the extractor, the extracted bits are pseu-
dorandom. But is it possible to ensure the pseudorandomness of the extractor’s
output if the actual short seed S is made public? Had this been the case, we
would obtain efficient LHL-based extractors with a short seed and, moreover, an
extractor whose seed length is independent of the length of the input, as desired
for the practical scenarios discussed earlier.

COUNTER-EXAMPLE. In we show that the expand-then-extract ap-
proach will not work in general. We construct a simple PRG (which is secure un-
der the Decisional Diffie-Hellman (DDH) assumption) and an extractor (which
is a natural, perfectly universal hash function), where the output of the extrac-
tor — on any (e.g., even uniform) distribution — can be efficiently distinguished
from random with probability close to 1, when given the short seed S used to
generate the pseudorandom long seed S’ for the extractor. Despite the above,
we also show two positive results which nicely complement our counter-example.

EXTRACTING FEW BITS. First, in we show that the expand-then-
extract approach always works provided the number of extracted bits v is “small”.
Here “small” means logarithmic in the security level of the PRG, which could
range from O(logk) to 2(k) (where k is the security parameter), depending
on whether PRG is assumed to be polynomially or exponentially hard. Quite
interestingly, in this case we do not even have to settle for pseudorandom bits:
our small number v of extracted bits is actually statistically random, as long as
the PRG is secure against circuits whose size is exponential in v. The intuition
for this result comes from the fact that we can test, in time exponential in v,
whether a given n-bit extractor seed s’ is “good” or “bad” for our source X.
We also know that most random long seeds s’ < U, must be good. Hence,
by the PRG security, the same must be true for “most” pseudorandom seeds
s’ « Prg(Uy), which is precisely what we need to show.

SECURITY IN minicrypt. Second, although our original counterexample is fairly
simple and natural, it involves an assumption (DDH) from the “public-key
world”. In [Section 4.3l we show, somewhat surprisingly, that such “public-key”
type assumption is indeed mecessary for any counter-example. We do this by
showing that the expand-then-extract approach is sound in minicrypt [22] (i.e.
in a hypothetical world where pseudorandom generators exist, but public-key
cryptography does not). In particular, we construct a simple 2-message pro-
tocol (built from a PRG and an extractor) which constitutes a secure key-
agreement protocol for any PRG/extractor combination for which the

6 B. Barak et al.

expand-then-extract approach is insecure. Since our protocol only has 2 mes-
sages, we even get semantically secure public-key encryption (PKE). Hence, since
no such protocol/PKE exist in minicrypt, expand-then-extract must be secure.

PRACTICAL INTERPRETATION. This leads to the following practical interpreta-
tion of our results indicating that using the expand-then-extract approach with
common pseudorandom primitives, such as AES, is secure in spite of a lack of
direct (reductionist) proof of security. Indeed, consider the expand-then-extract
scheme implemented via AES (in some stream cipher mode). Our results show
that, if this extraction scheme fails, then we have found a public-key encryption
scheme that is provable secure based on the security of AES as a block cipher!
Moreover, the resulting PKE has a very restrictive form, where the secret key is
a PRG seed S, and the public-key is the PRG output S’ = Prg(S). (E.g., in the
case of AES, the public key is simply the evaluation of AES on several distinct
points.) As we argue in [Section 4.3 the existence of such a PKE appears to
be extremely unlikely, and would be a major breakthrough given current state-
of-the-art. Thus, our results give strong evidence that the expand-then-extract
approach might be secure “in practice”, — when used with “fast” ciphers (like
AES), — despite being (generally) insecure “in theory”!

We also remark that all our results elegantly handle side information Z the at-
tacker might have about our source X (as advocated by [11], such “average-case”
extractors are very handy in cryptographic applications), and also generalize to
the case of almost universal hash functions.

1.3 Related Work

Hast [17] also observed that for certain cryptographic applications, the relevant
attackers correspond to restricted classes of distinguishers, which allowed him to
obtain improved security bounds when the Goldreich-Levin hardcore bit [I5] is
used as a “computational” randomness extractor. This result is incomparable to
ours. On the one hand, we consider general (multi-bit) LHL-based extractors and
not just the single bit inner-product function (which is the form of the Goldreich-
Levin predicate). On the other hand, Hast was working in the computational
setting, and had to make an explicit reduction from the distinguisher to the
predictor of the source X, which is not required in our setting.

We also mentioned the notion of slice extractors defined by Radhakrishnan
and Ta-Shma [34], which limits the type of statistical tests to “rare distinguish-
ers”. To the best of our understanding, this definition was not motivated by
applications, but rather was a convenient “parametrization” on a road to other
results. Still, this notion roughly correspond to the setting of key derivation for
authentication applications, when the attacker rarely succeeds. Interestingly, [34]
showed a lower bound for the entropy loss of slice extractors (which was lower
than that of general extractors), and matched this lower bound by an existen-
tial construction. As it turns out, our improved LHL immediately gives a con-
structive way to match this lower bound, showing that LHIL-based extractors are

Leftover Hash Lemma, Revisited 7

optimal slice extractors in terms of the entropy loss. This connection is outlined
in more detail in the full version of this paper [I].

In a very different (non-cryptographic) context of building hash tables, Mitzen-
macher and Vahdan [27] also observed that improved bounds on the “entropy
loss” could be obtained when the standard deviation of the “distinguisher” is
much less than 1. In their setting the entropy loss was the minimum entropy
required from the input stream to hash well, and the distinguisher was the char-
acteristic function of a set of occupied buckets.

We note that our “win-win” result for the expand-then-extract approach is
similar in spirit to several other “win-win” results [I3I32/12/33], where a (hypo-
thetical) adversary for one task is turned into a “surprising useful” protocol for
a seemingly unrelated task. Among the above, the result most similar to ours is
[13], where a PRG is used to expand the key for “forward secure storage”, which
is a concept related to “locally computable” extractors.

On the more practical side of our results, particularly in what refers to key
derivation, it is worth mentioning the work of [9/25] that analyze constructions of
key derivation functions (KDFs) based on cryptographic hash functions. These
constructions do not use standard, generic assumptions, such as pseudorandom-
ness, but build on specific modes of operations on their compression function
f, and rely on dedicated, sometimes idealized, assumptions. Under such ideal-
ized assumptions, these schemes support situations where the KDF needs to be
modeled as a random oracle, or where the source only has “unpredictability en-
tropy” [2I]. On the other hand, outside of the random oracle heuristics, much
of the analysis of [925] studied sufficient conditions on compression function f
and/or the source input distribution, under which cryptographic hash functions
are “universal enough” so as to apply the standard LHL. As such, these analy-
ses suffer the same drawbacks as any other LHL-based extractor. In particular,
our results regarding the improved entropy loss for LHL-based extractors should
carry over to improve the results of [925], while our results on the expand-then-
extract approach could be viewed as partial justification of the heuristic where
a fixed-description-length compression function is replaced by random in most
(but not all) of the analyses of [925].

2 Standard Leftover Hash Lemma

NoTATION. For a set S, we let Ug denote the uniform distribution over S. For
an integer v € N, we let U, denote the uniform distribution over {0, 1}?, the
bit-strings of length v. For a distribution or random variable X we write x «— X
to denote the operation of sampling a random z according to X . For a set S, we
write s < S as shorthand for s « Usg.

MIN-ENTROPY AND EXTRACTORS. The min-entropy of a random variable X
is defined as Hoo(X) € — log(max, Pr[X = z]). In cryptographic applications,
one often uses the average min-entropy of a random variable X conditioned on
another random variable Z. This is defined as

8 B. Barak et al.

H..(X|2) % —10gE.._z |maxPr[X = z|Z = z]] =—logE,. z [Q*H“(}qz:z)]

where E,. 7 denotes the expected value over z «+ Z, and measures the worst-
case predictability of X by an adversary that may observe a correlated variable
Z.

We denote with Ap(X,Y) the advantage of a circuit D in distinguishing the
random variables X,Y: Ap(X,Y) = | Pr[D(X) = 1] — Pr[D(Y) = 1] |. The
statistical distance between two random variables XY is defined by

o 1
SD(X,Y)= 0 > [Pr[X =a] - Pr[Y =af| = max Ap(X,Y)

where the maximum is taken over all (potentially computationally unbounded)
D. Given side information Z, we write Ap(X,Y|Z) and SD(X,Y]Z) as short-
hands for Ap((X, Z),(Y,Z)) and SD((X, Z), (Y, Z)), respectively.

An extractor [31] can be used to extract uniform randomness out of a weakly-
random value which is only assumed to have sufficient min-entropy. Our defini-
tion follows that of [11], which is defined in terms of conditional min-entropy.

Definition 1 (Extractors). An efficient function Ext : X x {0,1}" — {0,1}"
is an (average-case, strong) (m,e)-extractor (for space X), if for all X, Z such

that X is distributed over X and Hoo(X|Z) > m, we get
SD(Ext(X;S), Uy | (5,2)) <e

where S = U, denotes the coins of Ext (called the seed). The value L = m — v
1s called the entropy loss of Ext, and the value n is called the seed length of Ext.

UNIVERSAL HASHING AND LEFTOVER HASH LEMMA. We now recall the defi-
nition of universal-hashing [7I37] and the leftover-hash lemma [I8], which states
that universal hash functions are also good extractors.

Definition 2 (p-Universal Hashing). A family H of (deterministic) func-
tions h : X — {0,1}" is a called p-universal hash family (on space X), if for
any 1 # x2 € X we have Prpn[h(z1) = h(z2)] < p. When p =1/2", we say
that 'H is universal.

We can finally state the Leftover Hash Lemma (LHL). (Multiple versions of this

lemma have appeared; we use the formulation of [38, Theorem 8.1], augmented

by [II, Lemma 2.4] for the conditional entropy case; see [I§] and references

therein for earlier formulations.)

Lemma 1 (Leftover-Hash Lemma). Assume that the family H of functions
e

h :X—{0,1}"isa 1;;7 -ungversal hash family. Then the extractor Ext(z; h) =

. . . 1 v
h(z), where h is uniform over H, is an (m, €)-extractor, where e = 2~\/’y +om =

14-3¢2

5o -unwersal

é - \/fy + 21L (recall, L = m—wv is the entropy loss). In particular,
hash functions yield (v + 2log(1/¢), €)-extractors.

? Notice, Ap(X,Y|Z) < E.ez[Ap(X|z=:,Y]|z=:)], but SD(X,Y|Z) =
maxp E. z[Ap(X|z=2,Y|z=:)].

Leftover Hash Lemma, Revisited 9

3 Reducing the Entropy Loss

As we mentioned, the entropy loss of 2log (1/¢) is optimal when one is concerned
with general distinguishers D [34]. As we show, in various cryptographic scenar-
ios we only care about a somewhat restrictive class of distinguishers, which will
allow us to reduce the entropy loss for such applications.
Below, we state a generalization of the LHL (Theorem 1), which will include
a novel term measuring the standard deviation of the distinguisher’s advantage,
and then derive some useful special cases ((Lheorem 2)). In [Section 3.1 we then
apply our tighter bound to derive improved entropy loss bounds for various
cryptographic applications, including bounds for all authentication applications
and some privacy applications,including chosen plaintext secure
encryption (Theorem 4) and weak PRFs. In we further extend our
results to get a generic key derivation function with improved entropy loss for
any computationally secure application, including stream ciphers and PRFs.

COLLISION PROBABILITY AND c-VARIANCE. Given a distribution Y, its colli-
sion probability is Col(Y) = >, Prly = y]? < 27H=(Y) Given a joint distri-
bution (Y, Z), we let Col(Y|Z) = E.[Col(Y|Z = z)] < 27 H=(V12) We also use
the notation (Uy, Z) to denote the probability distribution which first samples
(y, z) < (Y, Z), but then replaces y by an independent, uniform sample from Uy.
Finally, given a random variable W and a constant ¢, we define its c-variance
as Var [W] € E[(W — ¢)?] and its c-standard deviation as o.[W] = /Var.[W].
When ¢ = E[W], we recover the standard notion of variance and standard devi-
ation, Var[W] and o[W], and notice that these are the smallest possible values
for Var.[W] and o [W]. Still, we will later find it easier to use (slightly weaker)
bounds obtained with specific values of ¢ € {0, ;}

We start with an useful lemma of independent interest which generalizes
Lemma 4.5.1 of [27].

Lemma 2. Assume (Y, Z) is a pair of correlated random variables distribution
on a set Y x Z. Then for any (deterministic) real-valued function f : Y x Z — R
and any constant ¢, we have

| E[f(Y,2)] - E[f(Uy, 2)] | < oc[f(Uy, 2)]- VIVICOl(Y|Z) =1 (2)

The proof of this lemma can be found in the full version of this paper [I]. The
useful feature of the bound given in comes from the fact that the
value o.[f(Uy, Z)] does not depend on the actual distribution ¥ used to replace
the uniform distribution, while the value 1/|Y|Col(Y|Z) — 1 does not depend on
the function f whose average we are trying to preserve (by using Y in place of
Uy). In particular, we get the following corollary which will allow us to eventually
get all our improved bounds.

Theorem 1 (Generalized LHL). Let (X, Z) be some joint distribution over
XxZ H={_h:X — {0,1}"} be a family of 1;;7 -undversal hash functions,
H be a random member of H, and let L < ﬁm(X\Z) — v be the entropy loss.

10 B. Barak et al.

Then, for any constant ¢ € [0,1] and any (possibly probabilistic) distinguisher
D(r,h,z), we have

AD(H(X)aUv | (Ha Z)) <o, |:1:;I‘[D(UU,H, Z) = 1]] . \/'7/+ 21L (3)

The proof of the theorem can be found in the full version of this paper [I].
bounds the advantage of D in distinguishing real and extracted
randomness using two terms. The second term (under the square root) depends
on the universality of H and the entropy loss L (but not on D). The novel term
is the c-standard deviation o.[Prp[D(U,, H, Z) = 1]] of D, which we will simply
call e-standard deviation of D and denote V(D, ¢). Intuitively, it measures how
“concentrated” the expected output of D is to some value ¢ in the “ideal setting”
(when fed U, rather than H(X)). We notice that for any D and any ¢ € [0, 1], the
c-standard deviation V(D,c¢) < 1. Plugging this trivial bound in
removes the dependence on D, and (essentially)] gives us the statement of the
standard LHL from[Cemma. 1l As mentioned, though, this forces the entropy loss
to be at least 2log(1/¢) to achieve security . Below, we show several special
cases when we can upper bound V (D, ¢) by roughly /e, which means that the
entropy loss L only needs to be roughly log (1/¢) (say, with perfectly universal
'H) to achieve security €.

Theorem 2. Let (X, Z) be some joint distribution over X x Z, H={h: X —
{0,1}"} be a family of -] 1Y universal hash functions, H be a random member

of H, L ¥ HOO(X|Z) — v be the entropy loss, and D(r,h,z) be some (possibly
probabilistic) distinguisher. Then, for each of the values € defined in scenarios
(a)-(c) below it holds:

AD(H(X)aUv(Haz))g\/€(7+21[,> (4)

(a) Assume for some c,8,7 € [0,1], ¢ = 72 +§ and the following condition is

satisfied
=1| —¢| > <
B IBDG b) =1 e 2 7] <5 5)

(b) Assume Pr[D(U,,H,Z) = 1] < ¢ (where probability is taken over U,,H,Z
and the coins of D).

(c) For fized v, h, and z, define the distinguisher D'(r,h,z) as follows. First,
make two independent samples d d «— D(r,h,z). Then, if d= 1 return d
else return (1 — d). Assume further that Pr[D’(UU7 H,Z)=1] <} + 2.

The proof of this Theorem is given in the full version [I]. In the followmg section,
we demonstrate the use of [Theorem 2] by concentrating on the important case
of key derivation using LHL, where the value £ will essentially correspond to the
“cryptographic security” of the application at hand.

3 The exact bound claimed in [Cemma 1] follows when V(D,c) < é, which is true for

c=1/2.
* Note that the condition below implies | Pr[D(Uy,, H,Z) = 1] — ¢| < 7 + 4.

Leftover Hash Lemma, Revisited 11

3.1 Improved LHL for Key Derivation

Consider any cryptographic primitive P (e.g., signature, encryption, etc.), which
uses randomness R € {0,1}" to derive its secret (and, public, if needed) key(s).
Without loss of generality, we can assume that R itself is the secret key. In the
“ideal” setting, R = U, is perfectly uniform and independent from whatever
side information Z available to the attacker. In the ”real setting”, the key owner
has a randomness source, represented by a random variable X and possibly
correlated with the attacker’s side information Z. It then samples a universal
hash function H using (fresh) public randomness and uses the extracted value
R = H(X) as its key. We would like to argue that if P is “c-secure” in the ideal
setting (against attackers with resourcesd less than T'), then P is also “c’-secure”
in the real setting (against attackers with resources less than T’ =~ T'), where
¢’ is not much larger than e. Of course, to have a hope of achieving this, H
must be “universal-enough” and L = H(X|Z) — v must “high-enough”. To
parameterize this, we will sometimes explicitly write (L, y)-real model to denote
the real model above, where H is (1 +~)2 V-universal and Hoo(X|Z) > v + L.
We formalize this general setting as follows.

ABSTRACT SECURITY GAMES. We assume that the security of P is defined via
an interactive game

between a probabilistic attacker A(h,z) and a probabilistic challenger C(r).
Here one should think of h and z as particular values of the hash function and the
side information, respectively, and r as a particular value used by the challenger
in the key generation algorithm of P. We note that C' only uses the secret key r
and does not depend on h and z. In the ideal setting, where r « U, the attacker
A does not use the values h and z (and anyway the optimal values of h and z can
be hardwired into A in the non-uniform model), yet, for notation convenience,
we will still pass h and z to A even in the ideal setting.

At the end of the game, C(r) outputs a bit b, where b = 1 indicates that
the attacker “won the game”. Since C is fixed by the definition of P (e.g., C
runs the unforgeability game for signature or the semantic security game for
encryption, etc.), we denote by Da(r, h,z) the (abstract) distinguisher which
simulates the entire game between A(h, z) and C(r) and outputs the bit b, and
by Wina(r,h,z) = Pr[Da(r,h,z) = 1] the probability that A(h,z) wins the
game against C(r). With this notation, the probability of winning the game in
the “real setting” is given by the random variable Win4(H (X), H, Z), and the
same probability in the ideal setting becomes Win 4 (U,, H, Z). Moreover, the
difference between these probabilities is simply the distinguishing advantage of
D 4 of telling apart real and extracted randomness when given H, Z:

Wina(H(X),H,Z) — Wina(U,, H, Z)| = Ap,(H(X),U, | (H,Z)) (6)

As we justify next, to argue the security of P in the real setting assuming
its security in the ideal setting, it is sufficient for us to argue that the above

® We use the word “resource” to include all the efficiency measures we might care
about, such as running time, circuit size, number of oracle queries, etc.

12 B. Barak et al.

distinguishing advantage is “small” for all legal attackers A. And since the se-
curity of P will usually restrict the power of attackers A (hence, also the power
of abstract distinguishers D,), we may use the results of [Theorem 2] to argue

better bounds on the entropy loss L = Ho (X |Z) — v.

Definition 3. Let ¢ = 0 for unpredictability applications P (signature, MAC,
one-way function, etc.) and ¢ = % for indistinguishability applications P (en-
cryption, pseudorandom function/permutation, etc.). Fix also the (1 + ~v)27"-
universal hash family H and the joint distribution (X, Z) satisfying ItIOO(X |Z) >
v+ L, so that the real and the ideal model are well-defined.

We say that P is (T,e)-secure in the ideal model if for all attackers A with
resources less than T, we have Wina(U,, H,Z) < c+e¢.

Similarly, P is (T',e’)-secure in the real model if for all attackers A have

resources less than T', we have Wina(H(X),H,Z) <c+¢€'.

Triangle inequality coupled with [Equation (6)[immediately yields the following
Corollary.

Lemma 3. Fiz L and v defining the real and the ideal models. Assume P is
(T, €)-secure in the ideal model, and for all attackers A with resources less than
T (where T' < T') we have Ap, (H(X),U, | (H,Z)) < 4. Then P is (T',e+9)-
secure in the (L,~y)-real model.

We are now ready to apply I[Lemma 3| and [[heorem 2| to various cryptographic
primitives P. Below, we let ¢ € {0, é} be the constant governing the security
of P (0 for unpredictability and 1/2 for indistinguishability applications). Due
to space constraint, we leave the application of part (a) of [Theorem 2l to so
called “strongly secure” primitives, where (for some 7 and §) any attacker has
advantage more than 7 on at most ¢ the fraction of keys r, to the full version [I]
of the paper, and move directly to other applications which use parts (b) and
(c) of [Theorem 21 We also give several concrete examples in the full version [I].

Improved Bound for Unpredictability Applications. Recall, authentica-
tion applications correspond to ¢ = 0, and include signature schemes, MACs,
one-way functions/permutations, etc. In this case (T),¢)-security in the ideal
model implies that for any T-bounded attacker A, E[Wins(U,, H,Z)] < e.
Recalling the definition of the abstract distinguisher D 4, this is the same as
Pr[Da(U,,H,Z) = 1] < &, which is precisely the pre-condition for part (b) of
Thus, combining [Equation (4)] with [Lemma 3 we immediate get:

Theorem 3. Fiz L and vy defining the real and the ideal models. Assume au-
thentication primitive P (corresponding to ¢ = 0) is (T,¢)-secure in the ideal
model. Then P is (T,¢’)-secure in the (L,~)-real model, where

5’§5+\/5<7+21L> (7)

Leftover Hash Lemma, Revisited 13

In particular, if v =0 and L =log(1/¢), then &' < 2e. Moreover, when v = 0,
the security bound is meaningful even for negative entropy “loss” 0 > L >
—log(1/e), when one extracts more bits than the min-entropy Hoo(X|Z) and
“borrows the security deficit” from the ideal security of P.

Intuitively, [Theorem 3l uses the fact that for authentication applications one only
cares about distinguishers which almost never output 1, since the attacker almost
never forges successfully.

Improved Bound for Some Indistinguishability Applications. We now
move to the more difficult case of indistinguishability applications, where ¢ =
1/2. In general, we do not expect to outperform the standard LHL, as illustrated
by the one-time pad example. Quite surprisingly, we show that the for a class
of applications, including chosen plaintext attack (CPA) secure encryption, one
can still get improved bounds as compared to the standard LHL. Specifically,
as long as the primitive P allows the attacker A to “test” its success before
playing the actual “challenge” from C, we still get significant savings. We start
by defining the general type of security games where our technique applies.

BIT-GUESSING GAMES. As usual the game is played by the attacker A =
A(h,z) and the challenger C(r). The game can have an arbitrary structure,
except the winning condition is determined as follows. At some point A asks C'
for a “challenge”. C' flips a random bit b € {0, 1}, and sends A a value e = e(b,).
The game continues in an arbitrary way and ends with A making a guess b’. A
wins if b =¥'.

So far, this still includes all standard indistinguishability games, including
the one-time pad. The extra assumption we make is the following. For any valid
attacker A having resources less than T’ there exists another valid attacker A’
(having somewhat larger resources T' > T") such that:

(1) The execution between A" and C(r) defines four bits b, V', b, b, such that the
joint distribution of (b, d’, b, l~)’) is the same as two independent tuples (b,d’)
obtained when A runs with C(r).

(2) The bits b and b are precisely the secret bit of C' and the guess of A’, so
that A’ wins iff b =b'.

(3) A’ learns if b = b before outputting b'.

We will call such indistinguishability games (77, T)-simulatable. In the full ver-
sion [I], we show a general result stating improved bounds on entropy loss for
any (1", T)-simulatable application, and also show that CPA-secure (public- or
symmetric-key) encryption schemes are simulatable, where, as expected, the “re-
sources” T are roughly doubled compared to 7”. (Intuitively, the attacker can
run the challenger in “his head” and see if it won.) In particular, we get the
following theorem as a corollary of this general result:

Theorem 4. Fiz L and v defining the real and the ideal models, and set &' =
e+ e(y+2-L)

14 B. Barak et al.

Assume P is public-key encryption scheme which is e-secure, in the ideal
model, against attackers with running time 2t + tep., where ten. is the runtime
of the encryption process. Then P is €’'-secure, in the (L,~y)-real model, against
attackers with running time t.

Similarly, assume P is a symmetric-key encryption scheme which is e-secure,
in the ideal model, against attackers with running time 2t + O(1) and making
2q+ 1 encryption queries. Then P is &’-secure, in the (L,v)-real model, against
attackers with running time t and making q encryption queries.

LIMITATIONS AND EXTENSIONS. Unfortunately, several other indistinguishabil-
ity primitives, such as pseudorandom generators, functions or permutations, do
not appear to be simulatable. The problem seems to be in verifying the winning
condition (condition (3) of simulatability), since this has to be done with respect
to the actual secret key not known to the attacker. For PRFs (or PRPs), it
is tempting to solve the problem by using an equivalent definition, where the
attacker can learn the value of PRF at any point, but then, as a challenge, must
distinguish the value of the PRF at an un-queried point from random. Although
this variant allows the attacker to check the winning condition during the first
“virtual” run, it now creates a different problem in that the challenge point
during the second “actual” run might have been queried during the first run,
making such an attacker A’ invalid.

Interestingly, the above “fix” works for a useful relaxation of PRFs, known
as weak PRFs (wPRFs). Here the attacker only gets to see the values of the
PRF at several random points, and has to distinguish a new value from random.
Assuming a large enough input domain, the probability of collision between the
PRF values revealed in the first first run and challenged in the second run, is
negligible, which allows to complete the (valid) simulation. Similarly, it works
for a slightly stronger relaxation of PRFs, known as random-challenge PRFs. As
with wPRFs, A gets as the challenge a real-or-random evaluations of the PRF at
a random point, but can additionally query the PRF at arbitrary points different
from the challenge point. In we show that wPRFs are all we need to
apply our results to a generic key derivation function.

3.2 A Generic Key Derivation Function

So far we have discussed the applications of our generalized Leftover Hash
Lemma and [Theorem 2 to the derivation of cryptographic keys in entropy-
constraint environments for specific applications. Although our analysis covers
many such applications, it does not cover all, including PRFs and stream ci-
phers. In this section we make a simple observation which allows us to overcome
this limitation and design a generic key derivation function (KDFs) which is
(computationally) secure for any cryptographic application while still enjoying
the same entropy loss savings. The idea is to compose universal hash functions a
weak PRF (wPRF), where the random input to the wPRF now becomes part of
the extractor seed, and use the fact that wPRF's fall under the class of simulatable
applications as defined in Section 3.1l

Leftover Hash Lemma, Revisited 15

Specifically, we define the KDF on the basis of a (1 + +)/2%-universal hash
family H with v-bit outputs and a wPRF F' taking a k-bit input w and a v-
bit key r, and outputting a v-bit output y = F,.(w), as follows. The public
seed s for the KDF Ext is a pair s = (h,w), where h is a random universal
function from H and w is a random element in the domain of F'. We then define
Ext(z, (h,w)) = F(z)(w); ie., the initially extracted value h(x) is used as a
wPRF key, which is then used to evaluate F' on w.

We also notice that if one needs to extract multiple keys for several applica-
tions, we can simply use the output of our computational KDF as a seed of a
regular PRG or PRF, since such applications are now “covered”.

Remark 1. For the case of deriving multiple keys, as above, we notice that the
wPRF step is not needed provided all the keys are for cryptographic applications
covered by our technique (i.e., strongly secure, unpredictable, or simulatable
primitives). Namely, in such a case we can directly use the initially extracted key
H(X) as a seed for the (regular) PRF/PRG to derive all the required keys. This
allows us to avoid increasing the seed length by & bits, and saves one application
of wPRF. The proof of this claim follows by a simple hybrid argument (which
we omit). In general, though, the wPRF-based solution is preferable, as it adds
considerable generality at a relatively moderate cost.

4 Reducing the Seed Length

In this section we study the soundness of the natural expand-then-extract ap-
proach described in the Introduction, showing our negative result in [Section 4.1
and our two positive results in [Section 4.2 and [Section 4.3]

NEGLIGIBLE AND FRIENDS. We use k to denote a security parameter. A function
p: N — [0,1] is negligible if for any ¢ > 0 there is a ko such that u(k) < 1/k¢
for all £ > kg. To the contrary, u is non-negligible if for some ¢ > 0 we have
w(k) > 1/k¢ for infinitely many k. Throughout, negl(k) denotes a negligible
function in k.

A function 7(-) : N — [0, 1] is overwhelming if 1 —7(-) is negligible. A function
¢ : N — [0,1] is noticeable if for some ¢ > 0 there is an ko such that ¢(k) >
1/k for all k > ko. Note that non-negligible is not the same as noticeable. For

example, u(k) 4 1 mod 2 is non-negligible but not noticeable.

def

COMPUTATIONAL EXTRACTORS AND PRGS. Recall that with Ap(X,Y) =
| Pr[D(X) = 1] — Pr[D(Y) = 1] | we denote the advantage of a circuit D
in distinguishing the random variables X and Y. Let D; denote the class of all
probabilistic circuits of size t. With CD4(X,Y) = maxp Ap(X,Y’) we denote the
computational distance of X and Y, here the maximum is over D € D;. When
t = oo in unbounded, we recover the notion of statistical distance SD(X,Y).
When X = X and Y = Y}, are families of distributions indexed by the security
parameter k, we will say that X and Y are computationally indistinguishable,
denoted X =Y, if for every polynomial £(.), CDyx) (X, Yr) = negl(k).

16 B. Barak et al.

Definition 4 (Computational Extractor). We say that an efficient function
Ext : X x {0,1}" — {0,1}" is an (average-case, strong) computational m-
extractor (for space X), if for all efficiently samplable X, Z such that X is
distributed over X and Hoo(X|Z) > m (here X,n,v,m are all indezed by a
security parameter k)

(Ext(X;9S), S, Z) =~ (Uy, S, Z)
Definition 5 (Pseudorandom Generator). A length increasing function

Prg: {0,1}* — {0,1}" is a pseudorandom generator (PRG) if Prg(Uy) = U,,.
We also say that Prg is (T, 0)-secure if CDy(Prg(Uy),U,) < 4.

COMPUTATIONAL EXTRACTORS WITH SHORT SEEDS? We are ready to formal-
ize our main question: Is it safe to expand an extractor seed using a PRG?
Hypothesis 1. [Expand-then-Extract] If Ext is an (m(k),e(k))-extractor with
seed length n(k) where (.) is negligible and Prg : {0,1}* — {0,1}"®) is q
pseudorandom generator, then Ext’ defined as

Ext’(x;s) = Ext(x; Prg(s))

s a computational m-extractor.

4.1 Counter-Example: Expanding Seeds Is Insecure in General
In this section we show that, unfortunately, Hypothesis [l is wrong in general.

Theorem 5 (Hypothesis [l wrong assuming DDH). Under the DDH as-

sumption, there exists a pseudorandom generator Prg(.) and a strong extractor

Ext(.;.) (which is a perfectly universal hash function) such that Ext'(z;s) def

Ext(z; Prg(s)) can be efficiently distinguished from uniform on any input distri-
bution (i.e. Ext’ is not a computational extractor.)

Proof (of [Theorem 3). Let G be a prime order p cyclic group with generator g
where the DDH problem is hard. Then Prg : Zg — GY defined as

Prg(a,b,¢) = (9% ¢°, 9, g%, g°, g°*°)

is a a secure pseudorandom generator [28]. Let Ext : Z;; x G% — G2 be
Ext((z,y,2); (4,B,C,D,E,F)) = (A*BYC?*, D*EYF?)

It is easy to see that Ext is a perfectly universal hash function from Z;; — G2
(and, by [Lemma 1l strong (2logp + 2log (1/¢), €)-extractor). Now consider the
distribution

[Ext((z,y, 2); Prg(a,b.¢)) , (a,b,¢)] = [(g°° 9" 9", g*“ 4" g****) , (a,b,c)] (8)

The distribution (§) is not pseudorandom as any tuple («, 3), (a,b,c) € G2 x z3
of the form (8) satisfies o = (3, which can be efficiently verified, while a random
distribution will satisfy this relation with probability 1/p.

5 In order to avoid an extra parameter, we simply assume wlog that the seed length
of our PRG is equal to the security parameter k.

Leftover Hash Lemma, Revisited 17

4.2 Expanding Seeds Is Safe When Extracting Few Bits

By the following theorem, the expand-then-extract Hypothesis does hold, if the
pseudorandom generator Prg used for expansion is sufficiently strong. The re-
quired hardness depends exponentially on the output length v of the extractor.
The proof of the following Theorem is given in the full version of this paper [I].

Theorem 6. Assume Ext : X x{0,1}" — {0,1}" is a (m, €)-extractor with run-
ning time teq, and Prg : {0, 1}% — {0,1}" is a (T, \/¢)-pseudorandom generator,
for some

T € O (2%(n + v)tex/€) (9)

Then Ext'(z;s) of Ext(z; Prg(s)) is a (m,4+/e)-extractor. In particular, if the
running time of Ext is polynomial in k, its error (k) = negl(k), its output size
v = O(logk), and Prg is secure against polynomial (in k) size distinguishers,
then Ext’ is an (m,€’)-extractor for €' (k) = negl(k).

4.3 Expanding Seeds Is Safe in Minicrypt

Before we can state the main result of this section, we need a few more definitions.

BIT-AGREEMENT. Bit-agreement is a protocol between two efficient parties,
which we refer to as Alice and Bob. They get the security parameter k in unary
(denoted 1%) as a common input and can communicate over an authentic chan-
nel. Finally, Alice and Bob output a bit ba and bg, respectively. The protocol has
correlation € = €(k), if for all k, Pr[ba = bg] > (1 + €(k))/2. Furthermore, the

protocol has security § = 6(k), if for every efficient adversary Eve, which can ob-
serve the whole communication C, and for all k, Pr[Eve(1*, C) = bg] < 1-4(k)/2.

KEY-AGREEMENT & PKE. If ¢(-) and 4(-) are overwhelming then such a proto-
col achieves key-agreement. Using parallel repetition and privacy amplification,
it is known [20/I9] that any protocol which achieves bit-agreement with no-
ticeable correlation €(-) and overwhelming security 0(-) can be turned into a
key-agreement protocol, without increasing the number of rounds. A 2-message
key-agreement protocol is equivalent to public-key encryption (PKE). The proof
of the following Theorem is given in the full version of this paper [I].

Theorem 7 (Hypothesis[Il holds in minicrypt). If there exists a secure pseu-

dorandom generator Prg and a strong extractor Ext where Ext’(.; .)déf Ext(Prg(.);.)
is mot a computational extractor, then the protocol from Figure [is a two-
message bit-agreement protocol with noticeable correlation and overwhelming se-
curity (and thus implies PKE).

Remark 2. In the above theorem not being a secure computational extractor
means that there exists an efficient uniform D that can distinguish Ext(Prg(.);.)
with noticeable advantage (in the security parameter k). If Ext(Prg(.);.) is only
insecure against non-uniform adversaries, then also the resulting protocol (which
uses D) will be non-uniform. If the distinguisher D only has non-negligible advan-
tage (i.e. only works for infinitely many, but not all, security parameters k), then

18 B. Barak et al.

Alice Bob
s« Uyg; 8" «— Prg(s) s (z,2)—(X, 2)
_
bg—U1

if bg = 0 then r « Ext(=;s’)
else if bg = 1 then r «+— U,

ba — D(r,s, z)

Fig. 1. A bit agreement protocol from any Prg, Ext that constitute a counterexample
(via distinguisher D) to Hypothesis [l

also the protocol will work for infinitely many k. This issue is inherent in win-win
type results where an adversary is turned into a “useful” protocol [133212/33].
It roots in the fact that in cryptography we usually put weak requirements for
adversaries to be considered efficient (can be non-uniform and only have non-
negligible advantage), whereas we usually require from practical algorithms to
be uniform and secure for all (sufficiently large) security parameters.

We obtain the following corollary whose proof is immediate from Figure [I1

Corollary 1. Assume Prg is a secure pseudorandom generator. Assume further
that there exists no public-key encryption scheme (with non-negligible gap be-
tween security and decryption correctness) with pseudorandom ciphertexts, whose
secret key is the seed of Prg and whose public key is the output of Prg. Then the
expand-then-extract hypothesis is true for Prg.

DISCUSSION. reduces the soundness of the expand-then-extract ap-
proach to the impossibility of constructing public-key encryption from the given
PRG in a very particular way, where the ciphertexts are pseudorandom and, more
importantly, the key-generation algorithm samples a random s and sets sk =
s, pk = Prg(s). To the best of our knowledge, this impossibility assumption seems
very likely for “practical” PRGs, such as AES. For example, not only there is no
black-box construction of PKE (or key agreement) from a PRG alone, as shown
by Impagliazzo and Rudich [23], but, in fact, it is entirely consistent with current
knowledge that these two tasks are separable, in the sense that there is some com-
putational model /complexity class (e.g., perhaps some extension of BQP or AMN
coAM) that is powerful enough to break all public key schemes, but not powerful
enough to break AES. If this is the case, then the AES-bases expand and extract
scheme is secure with respect to all efficient input distributions and distingiuish-
ers (even those that are based on public key tools such as factoring, lattices etc.).
Moreover, we do not know any black-box construction of PKE from PRG and
any other “cryptomania” assumption (like non-interactive zero-knowledge proofs,
fully-homomorphic or identity-based encryption, etc.), where the public key of the
PKE is simply the output of the PRG. To summarize, our results give strong ev-
idence that the expand-then-extract approach is secure using any practical PRG
(like AES), despite being (generally) insecure in theory.

Leftover Hash Lemma, Revisited 19

Acknowledgements. We would like to thank Russell Impagliazzo and Ronen
Shaltiel for useful discussions.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert,

F.-X., Yu, Y.: Leftover hash lemma, revisited. Cryptology ePrint Archive, Report
2011/088 (2011), http://eprint.iacr.org/

. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with

applications to /dev/random. In: ACM CCS (2005)

. Barak, B., Shaltiel, R., Tromer, E.: True Random Number Generators Secure in a

Changing Environment. In: Walter, C.D., Kog, C.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 166-180. Springer, Heidelberg (2003)

. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public dis-

cussion. SIAM Journal on Computing 17(2), 210-229 (1988)

. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure Remote Authen-

tication Using Biometric Data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147-163. Springer, Heidelberg (2005)

. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient

functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, p. 453. Springer, Heidelberg (2000)

. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-

puter and System Sciences 18, 143-154 (1979)

. Chevalier, C., Fouque, P.-A., Pointcheval, D., Zimmer, S.: Optimal randomness

extraction from a diffie-hellman element. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, Springer, Heidelberg (2009)

. Dodis, Y., Gennaro, R., Hastad, J., Krawczyk, H., Rabin, T.: Randomness extrac-

tion and key derivation using the cbc, cascade and hmac modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, Springer, Heidelberg (2006)

Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. STAM Journal on Comput-
ing 38(1), 97-139 (2008)

Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
STOC (2006)

Dziembowski, S.: On Forward-Secure Storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251-270. Springer, Heidelberg (2006)

Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed diffie-hellman over non-
ddh groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, Springer, Heidelberg (2004)

Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: STOC
(1989)

Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from parvaresh—vardy codes. J. ACM 56(4) (2009)

Hast, G.: Nearly one-sided tests and the goldreich?levin predicate. J. Cryptol-
ogy 17(3), 209-229 (2004)

http://eprint.iacr.org/

20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

B. Barak et al.

Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of pseudorandom
generator from any one-way function. SIAM Journal on Computing 28(4), 1364—
1396 (1999)

Holenstein, T.: Key agreement from weak bit agreement. In: STOC (2005)
Holenstein, T.: Strengthening Key Agreement using Hard-Core Sets. PhD thesis,
ETH Zurich, Zurich, Switzerland (2006)

Hsiao, C.-Y., Reyzin, L.: Finding Collisions on a Public Road, or Do Secure
Hash Functions Need Secret Coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 92-105. Springer, Heidelberg (2004)

Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory Conference, pp. 134-147 (1995)

Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC (1989)

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC (2008)

Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631-648. Springer, Hei-
delberg (2010)

Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, Springer, Heidelberg (1997)
Mitzenmacher, M., Vadhan, S.P.: Why simple hash functions work: exploiting the
entropy in a data stream. In: SODA (2008)

Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS (1997)

Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, Springer, Heidelberg (2009)
Nevelsteen, W., Preneel, B.: Software Performance of Universal Hash Functions. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 24. Springer, Heidelberg
(1999)

Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Sciences 52(1), 43-53 (1996)

Pietrzak, K.: Composition implies adaptive security in minicrypt. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg (2006)
Pietrzak, K., Sjodin, J.: Weak pseudorandom functions in minicrypt. In: Aceto, L.,
Damgard, I., Goldberg, L.A., Halldérsson, M.M., Ingdlfsdéttir, A., Walukiewicz, 1.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 423-436. Springer, Heidelberg
(2008)

Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM Journal on Computing 13(1), 2-24 (2000)

Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrar-
ily weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, Springer,
Heidelberg (2003)

Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin
of the EATCS 77, 67-95 (2002)

Stinson, D.R.: Universal hashing and authentication codes. Designs, Codes, and
Cryptography 4(4), 369-380 (1994)

Stinson, D.R.: Universal hash families and the leftover hash lemma, and applica-
tions to cryptography and computing. Journal of Combinatorial Mathematics and
Combinatorial Computing 42, 3-31 (2002),
http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html

http://www.cacr.math.uwaterloo.ca/~dstinson/publist.html

	Leftover Hash Lemma, Revisited
	Introduction
	Reducing the Entropy Loss
	Reducing the Seed Length
	Related Work

	Standard Leftover Hash Lemma
	Reducing the Entropy Loss
	Improved LHL for Key Derivation
	A Generic Key Derivation Function

	Reducing the Seed Length
	Counter-Example: Expanding Seeds Is Insecure in General
	Expanding Seeds Is Safe When Extracting Few Bits
	Expanding Seeds Is Safe in Minicrypt

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

