
Symbolic Model-Checking Using ITS-Tools

Yann Thierry-Mieg

Sorbonne Universités, UPMC Univ. Paris 6, LIP6, and CNRS UMR 7606,
4 place Jussieu, F-75252 Paris Cedex 05, France

yann.thierry-mieg@lip6.fr

Abstract. We present verification toolset ITS-tools, featuring a symbolic model-
checking back-end engine based on hierarchical set decision diagrams (SDD) that
supports reachability, CTL and LTL model-checking and a user-friendly eclipse
based front-end. Using model transformations to a Guarded Action Language
(GAL) as intermediate format, ITS-tools can analyze third party (Uppaal, Spin,
Divine...) specifications.

1 Introduction

ITS-tools is a symbolic model-checker relying on state of the art decision diagram (DD)
technology. It offers model-checking (CTL, LTL) of large concurrent specifications ex-
pressed in a variety of formalisms: communicating process (Promela, DVE), timed
specifications (Uppaal timed automata, time Petri nets) and high-level Petri nets. We
are focused on verification of (large) globally asynchronous locally synchronous spec-
ifications, an area where DD naturally excel due to independent variations of (small)
parts of the state signature.

We leverage model transformation technology to support model-checking of domain
specific languages (DSL). Models are transformed to the Guarded Action Language
(GAL), a simple yet expressive language with finite Kripke structure semantics.

Most of this paper is a discussion of the elements visible in Fig. 1. The top of the
figure corresponds to the front-end (sections 2, 3), and is embedded in Eclipse, while
the bottom of the figure corresponds to the back end (sections 4, 5).

2 Guarded Action Language

We define GAL as a pivot language that essentially describes a generator for a labeled
finite Kripke structure using a C like syntax. This simple yet expressive language makes
no assumptions on the existence of high-level concepts such as processes or channels.
While direct modeling in GAL is possible (and a rich eclipse based editor is provided),
the language is mainly intended to be the target of a model transformation from a (high-
level) language closer to the end-users.

A GAL model contains a set of integer variables and fixed size integer arrays defin-
ing its state, and a set of guarded transitions bearing a label chosen from a finite set. We
use C 32 bit signed integer semantics, with overflow effects; this ensures all variables
have a finite (if large 232) domain. GAL offers a rich signature consisting of all C opera-
tors for manipulation of the int and boolean data type and of arrays (including nested

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 231–237, 2015.
DOI: 10.1007/978-3-662-46681-0_20



232 Y. Thierry-Mieg

libITS
Instan able Transi on System  [TACAS 09]

Parametric GAL

Guarded Ac on LanguageExtended Table 
Format

       . etf

its-ltl
Fully Symbolic [EL 01,OWCTY 02]

Hybrid [ATVA11]
Stu ering [ACSD 08, TACAS14]

Discrete me
unit step or

essen al state

instan ate

Linear Time Logic
Property Speci ca on Language

Time Petri Nets

Romeo TinaLTSmin

Verdict, 
Shortest trace(s), 
Explana on (CTL), 

Sta s cs, 
GraphViz dot

libDDD 
Split -Equiv [CAV13] Auto Satura on [ATPN08], 
Hierarchy [FORTE05] Homomorphisms [ATPN 02]

its-reach

Reachability or 
Invariant Predicate

      . prop

its-ctl
Forward CTL [ICCAD 96]

Computa on Tree 
Logic

Spot
 [IJCCBS 14]

M
odel-to-M

odel 
transform

a
ons

Th
ird-party 

too
ls and 

form
ats

Sym
bolic kernel

M
odel checking

Spin

Promela

. pml

Divine

DiVinE

. dve

High-Level Petri 
nets

iso-iec
15909

. pnml

Timed automata

Uppaal

. xta . tpn

.gal

. gal

. ltl .psl

. ctl

. txt

simplify

Fig. 1. Architecture of ITS-tools. Square boxes are files, rounded boxes are tools

array expressions). There is no explicit support for pointers, though they can be simu-
lated with an array heap and indexes into it. In any state (i.e. an assignment of values
to the variables and array cells of the GAL) a transition whose boolean guard predicate
is true can fire executing the statements of its body in a single atomic step. The body
of the transition is a sequence of statements, assigning new values to variables using
an arithmetic expression on current variable values. A special call(λ) statement allows
to execute the body of any transition bearing label λ, modeling non-determinism as a
label based synchronization of behaviors. A special fixpoint instruction is provided al-
lowing to express modal µ-calculus least and greatest fixpoints thus giving the language
a potent expressive power.

Parametric GAL specifications may contain parameters, that are defined over a finite
range. These parameters can be used in transition definitions, compactly representing
similar alternatives. They can also be used to define finite iterations (for loop), and as
symbolic constants where appropriate. Parameters do not increase expressive power,
the symbolic kernel does not know about them, as specifications are instantiated be-
fore model-checking. The tool applies rewriting strategies on parametric transitions
before instantiation, in many cases avoiding the polynomial blowup in size resulting
from a naive parameter instantiation. Rewriting rules that perform static simplifications
(constant identification...) of a GAL benefit all input formalisms.



Symbolic Model-Checking Using ITS-Tools 233

Model to Model Transformations. Model-driven engineering (MDE) proposes to de-
fine domain specific languages (DSL), which contain a limited set of domain concepts
[28]. This input is then transformed using model transformation technology to produce
executable artifacts, tests, documentation or to perform specific validations. In this con-
text GAL is designed as a convenient target formally expressing model semantics. We
thus provide an EMF [1] compliant meta-model of GAL that can be used to leverage
standard meta-modeling tools to write model to model transformations. This reduces the
adoption cost of using formal validation as a step of the software engineering process.

3 Third-Party Support

We have implemented translations to GAL for several popular formalisms used by third
party tools. We rely on XText for several of these: with this tool we define the grammar
and meta-model of an existing formalisms, and it generates a rich code editor (context
sensitive code completion, on the fly error detection,...) for the target language. The ed-
itor obtained after some customization is then often superior to that of the original tool.
We applied this approach for the DVE language of DiVinE [5], the Promela language
of Spin [3] and the Timed Automata of Uppaal [4] (in Uppaal’s native XTA syntax).

The translation for DVE (succinctly presented in [13]) is quite direct, since the lan-
guage has few syntactic constructs, and they are almost all covered by GAL. Channels
are modeled as arrays, process give rise to a variable that reflects the state they are in.
Similarly, the translation for Promela presents no real technical difficulty, although a
first analysis of Promela code is necessary to build the underlying control flow graph
(giving an automaton for each process). We currently do not support functions and the
C fragment of Promela.

Discrete Time. The support for TA and TPN uses discrete time assumptions. Note that
analysis in the discrete setting has been shown to be equivalent to analysis in a dense
time setting provided all constraints in the automata are of the form x ≤ k but not x < k
[21,8]. For both of these formalisms, we build a transition that represents a one time
unit delay and updates clocks appropriately. This transition is in fact a sequence of tests
for each clock, checking if an urgent time constraint is reached (time cannot elapse),
if the clock is active (increment its counter) or if it is inactive either because it will be
reset before being read again, or because it has reached a value greater than any it could
be tested against before a reset (do nothing).

A translation from high-level Petri nets (HLPN) conforming with the recent iso stan-
dard (thus produced by a variety of tools) is also available. HLPN are roughly to Place/-
Transition nets what parametric GAL are to GAL: they are not more expressive (if all
data types are finite) but they are much more compact and readable. Interestingly, the
instantiation of GAL parameters is often much less explosive than the translation from
HLPN to P/T nets: synchronizations of independent behaviors (e.g. interaction between
a server S and a client C) can be represented using a sequence of call(λ) in GAL, where
the P/T net must explicitly have a transition for each possible synchronization choice.



234 Y. Thierry-Mieg

4 Symbolic Kernel

ITS-tools use symbolic representations of sets of states using decision diagrams to face
the combinatorial state space explosion of finite concurrent systems. Its kernel is lib-
DDD, a C++ decision diagram library supporting Data Decision Diagrams (DDD [15])
and hierarchical Set Decision Diagrams (SDD [16]). Operations on these decision di-
agrams are encoded using homomorphisms [15], giving a user great flexibility and ex-
pressive power. The library can automatically and dynamically rewrite these operations
to produce saturation effects in least fixpoint computations [20]. The Split-equiv algo-
rithm introduced in [13] enables efficient evaluation of complex expressions including
array subscripts and arithmetic, a feature heavily used to symbolically encode the se-
mantics of GAL.

libITS is a C++ library built on top of libDDD, offering a simple and uniform API
to write symbolic model checking algorithms for any system that can be described as
an Instantiable Transition System (ITS). An ITS is essentially a labeled transition sys-
tem with successor and predecessor functions described as operating on sets of states,
and a boolean predicate function enabling state based logic reasoning. The tool sup-
ports compositions of labeled transition systems by directly using hierarchy in the state
representation reflecting the composition [27]. libITS has native adapters for several
formalisms (not represented on the figure), we focus in this paper on GAL.

ETF Support. A native ETF to ITS adapter is provided with libITS, supporting this out-
put format of LTSmin. ETF files [10] represent the semantics of a finite Kripke structure
in a format adapted to symbolic manipulation. This allows to analyze (CTL, LTL) mod-
els expressed in the many formalisms that LTSmin supports, provided generation of
ETF succeeds (essentially if LTSmin can compute all reachable states).

5 Model-Checking

Using the ITS API we have built several model-checking tools. The tool its-reach can
compute reachable states, and shortest witness paths (one or more if so desired) to target
states designated by a boolean predicate. In a discrete time setting, this can be used to
compute best or worst case time bounds on runs. It can also perform bounded depth
exploration of a state space (a.k.a. bounded model-checking). It implements several
heuristics to compute a static variable order for the input model.

The tool its-ctl performs verification of CTL properties (though fairness constraints
are currently not supported). It reuses a component of VIS [11], a model-checking tool
for verification and synthesis of gate level specifications, to transform input formulae
into forward CTL form [22]. Forward CTL often allows (but not always) to use the
forward transition relation alone, which is easier to compute than the backward (prede-
cessor) transition relation. Hence forward CTL verification is more efficient in general,
and furthermore many subproblems can be solved using least fixpoints (e.g. Forward
Until) that benefit from automatic saturation at DD level.

The tool its-ltl performs hybrid (i.e. that build an explicit graph in which each node
stores a set of states as a decision diagram) or fully symbolic verification of LTL and



Symbolic Model-Checking Using ITS-Tools 235

PSL properties. The transformation of the formula into a (variant of) Büchi automaton
and the emptiness checks of the product for hybrid approaches rely on Spot [24,17],
a library for LTL and PSL model-checking. Fully symbolic model-checking uses for-
ward variants of Emerson-Lei [19] or One-Way Catch Them Young [26]. The hybrid
approaches efficiently exploit saturation and often outperform fully symbolic ones [18].
When the property is stuttering invariant (e.g. LT L\X) we also offer optimized hybrid
[23] and fully symbolic [7] algorithms that exploit saturation.

Other prototypes for solving games [29] and to exploit symmetries [14] on top of
decision diagrams have been built, showing the versatility of the ITS API, but these
tools are not part of the current release.

6 Case Studies and Experiments

In [6] ITS-tools were used to analyze compositions of time Petri nets produced from a
DSL VeriSensor dedicated to wireless sensor network modeling. The specification ana-
lyzed contained around 50 clocks, many of which are concurrently enabled, preventing
analysis by explicit tools such as Tina. With "its-reach" functional properties could be
checked as well as quantitative measures such as worst-case lifetime analysis. In the
Neoppod project [12] the CTL component was used to verify response and consistency
properties of a protocol for a distributed database. Inria’s Atsyra project [25] computes
attack defense trees from a DSL using a model-to-model transformation to GAL.

In terms of raw benchmark power, ITS-tools participated in several editions of the
model-checking contest at Petri nets conference, ranking first place in several categories
[2]. It is compared favorably to LTSmin and to SAT solver Superprove on the bench-
mark BEEM[13]. It outperformed the symbolic tool Smart using its own benchmark
models in [27]. On timed models, comparisons to Uppaal show that we tend to scale
better in number of clocks, but are more sensitive to large bounds on clocks, something
that was reported in previous similar experiments [9].

7 Conclusion

The ITS-tools are freely available from the webpage http://ddd.lip6.fr, offering
easy access to efficient symbolic model-checking for a wide range of formalisms thanks
to the general purpose Guarded Action Language.

Acknowledgements. The ITS-tools is the result of many years of collaborative devel-
opment with both colleagues and students at LIP6, without whom this tool presentation
would not be possible.

References

1. Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
2. Model checking contest @ petri nets home page, http://mcc.lip6.fr/
3. Spin model checker home page, http://spinroot.com/

http://ddd.lip6.fr
http://www.eclipse.org/modeling/emf/
http://mcc.lip6.fr/
http://spinroot.com/


236 Y. Thierry-Mieg

4. Uppaal home page, http://www.uppaal.org
5. Barnat, J., Brim, L., Havel, V., Havlíček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill, V.,

Weiser, J.: DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C &amp; C++
Programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 863–868.
Springer, Heidelberg (2013)

6. Ben Maïssa, Y., Kordon, F., Mouline, S., Thierry-Mieg, Y.: Modeling and Analyzing Wireless
Sensor Networks with VeriSensor: an Integrated Workflow. Transactions on Petri Nets and
Other Models of Concurrency (ToPNoC) VIII, 24–47 (2013)

7. Ben Salem, A.E., Duret-Lutz, A., Kordon, F., Thierry-Mieg, Y.: Symbolic model checking of
stutter-invariant properties using generalized testing automata. In: Ábrahám, E., Havelund,
K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 440–454. Springer, Heidelberg
(2014)

8. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata. In: Oliveira,
J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, p. 318. Springer, Heidelberg (2001)

9. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for BDD-based verification of real-time
systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 122–125.
Springer, Heidelberg (2003)

10. Blom, S., van de Pol, J., Weber, M.: LTSMIN: distributed and symbolic reachability. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359. Springer,
Heidelberg (2010)

11. Brayton, R.K., et al.: VIS: A System for Verification and Synthesis. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)

12. Choppy, C., Dedova, A., Evangelista, S., Hong, S., Klai, K., Petrucci, L.: The NEO protocol
for large-scale distributed database systems: Modelling and initial verification. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 145–164. Springer, Heidelberg
(2010)

13. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Towards distributed software model-
checking using decision diagrams. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 830–845. Springer, Heidelberg (2013)

14. Colange, M., Kordon, F., Thierry-Mieg, Y., Baarir, S.: State Space Analysis using Sym-
metries on Decision Diagrams. In: Application of Concurrency to System Design (ACSD),
pp. 164–172. IEEE Computer Society (2012)

15. Couvreur, J.M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.A.: Data deci-
sion diagrams for Petri net analysis. In: Application and Theory of Petri Nets (ICATPN),
pp. 129–158 (2002)

16. Couvreur, J.M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model struc-
ture. In: Formal Techniques for Networked and Distributed Systems (FORTE), pp. 443–457
(2005)

17. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. International Journal on Critical
Computer-Based Systems 5(1/2), 31–54 (2014)

18. Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Self-loop aggregation product —
A new hybrid approach to on-the-fly LTL model checking. In: Bultan, T., Hsiung, P.-A. (eds.)
ATVA 2011. LNCS, vol. 6996, pp. 336–350. Springer, Heidelberg (2011)

19. Emerson, E.A., Lei, C.L.: Modalities for model checking: Branching time logic strikes back.
Science of Computer Programming 8(3), 275–306 (1987)

20. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical Set Decision Diagrams and Auto-
matic Saturation. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062,
pp. 211–230. Springer, Heidelberg (2008)

21. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

http://www.uppaal.org


Symbolic Model-Checking Using ITS-Tools 237

22. Iwashita, H., Nakata, T., Hirose, F.: Ctl model checking based on forward state traversal. In:
Computer-Aided Design (ICCAD). pp. 82–87. IEEE/ACM (1996)

23. Klai, K., Poitrenaud, D.: MC-SOG: An LTL model checker based on symbolic observa-
tion graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062,
pp. 288–306. Springer, Heidelberg (2008)

24. Spot, L.R.D.E.: a library for LTL model-checking, http://spot.lip6.fr/
25. Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for supporting

computer-aided risk analysis. In: Workshop on Formal Methods in the Development of Soft-
ware (co-located with SEFM) (2014)

26. Somenzi, F., Ravi, K., Bloem, R.: Analysis of symbolic SCC hull algorithms. In: Aagaard,
M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 88–105. Springer, Heidel-
berg (2002)

27. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical set decision diagrams
and regular models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 1–15. Springer, Heidelberg (2009)

28. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,
Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013)

29. Zhang, Y., Bérard, B., Kordon, F., Thierry-Mieg, Y.: Automated Controllability and Syn-
thesis with Hierarchical Set Decision Diagrams. In: Workshop on Discrete Event Systems
(WODES). pp. 291–296. IFAC/Elsevier, Berlin, Germany (September 2010)

http://spot.lip6.fr/

	Symbolic Model-Checking Using ITS-Tools
	1 Introduction
	2 Guarded Action Language
	3 Third-Party Support
	4 Symbolic Kernel
	5 Model-Checking
	6 Case Studies and Experiments
	7 Conclusion




