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Abstract. A formulation is presented for finding the combined optimal design of a structural system and its control by 
defining a composite objective function as a linear combination of two components; a structural objective and a control 
objective. When the structural objective is a function of the structural design variables only, and when the control objective 
is represented by the quadratic functional of the response and control energy, it is possible to analytically express the optimal 
control in terms of any set of "admissible" structural design variables. Such expression for the optimal control is used 
recursively in an iterative Newton-Raphson search scheme, the goal of which is to determine the corresponding optimal set 
of structural design variables that minimize the combined objective function. A numerical example is given to illustrate the 
computational procedure. The results indicate that significant improvement of the combined optimal design can be achieved 
over the traditional separate optimization. 

1 Introduction 

The optimal design of structural systems whose response to disturbances must be controlled to meet 
certain design objectives has traditionally proceeded along two separate but sequential paths. First, 
the structure is optimized by selecting an optimal set of structural design variables a*, which minimize 
a structural objective function Js - often taken as the mass of the structure - subjected to a set of 
predetermined behavioral constraints hi(a) > 0 on deformations, stresses, frequencies, etc.: 

Js(a*) = minJs(a); hi(a) >_ 0; a*e a (1) 
a 

During the structural optimization, the external loads are taken to be design-invariant, regardless 
of whether they are due to external disturbances or due to actions for controlling the response of 
interest. 

Second, having completely specified the optimal structural design a*, optimal control theory is 
used to determine an optimal set of control variables u* that minimize a control objective function 
Jc - frequently taken as a quadratic cost functional of the response and control energy: 

Jc(a*, u*) = minJc(a*, u); u*~ u (2) 
U 

During the minimization in (2), a* is not allowed to change. Performing the two minimization 
problems (1) and (2) sequentially, is mathematically equivalent to finding the linear sum, J(a*, u*), 
of two separate minima: 

J(a*, u*) = rain Js (a) + rain Jc (a*, u) (3) 
a u 

During each minimization, the design space is artificially decoupled into a structure design space 
and a control design space, and searching for the optimal a* and u* is carried out in their respective 
spaces, separately. 

* The research described in this paper was performed by the Jet Propulsion Laboratory, California Institute of Technology, 
and was sponsored by the Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, through 
an agreement with the National Aeronautics and Space Administration 
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The question then arises as to whether or not it is possible to attain a more superior optimum 
by determining the minimum of a single objective function which linearly combines the structure 
and control objectives, instead of linearly combining their separate minima as in (3). The former 
approach is referred to herein as "simultaneous" optimization, while the latter is the traditional 
"separate" optimization. 

The paper is focussed on developing a methodology for performing the simultaneous optimiza- 
tion problem and contrasting the results with those from the traditional separate optimization. In 
a simultaneous optimization approach, one is interested in selecting values of the set of structural 
and control design variables, a** and u**, which together, must minimize a combined objective 
criterion J(a**, u**), subject to certain behavioral constraints hi(a). Thus; 

J (a**, u**) = min [.Is (a) + Jc (a, u)]; hj (a) > 0 (4) 
a,. 

Since the "rain" is a nonlinear operator which decreases the value of the operand, it follows from 
(3) and (4) that 

J(a**, u**) <_ J(a*, u*) (5) 

i.e., the minimum of the sum is less than or equal to the sum of the minima, and the simultaneous 
optimum is expected to be superior to the separately obtained optimum. 

The basic motivating idea embodied by Eq. (5) has been recently recognized by a number of 
investigators (Hale et al. 1983; Hanks and Skelton 1983; Komkov 1983; Messac and Turner 1984; 
Venkayya and Tischler 1984). In this paper, we present a methodology for performing the simultane- 
ous optimization when the structural objective function does not depend on the control variables 
and a quadratic control objective function is assumed. Structure-control systems belonging to this 
class are shown here to lead to a simple formulation that enjoys the same theoretical guarantees 
regarding stability and controllability of the system as for the conventional state regulator problem. 
A suitable computational scheme is developed, and the results of the method are illustrated by a 
numerical example. 

2 Formulation 

2.1 Optimization objective 

Consider a structural system subject to known initial conditions v (to) = v 0, ~ (to) = ~0. The discrete 
system equation which include a force vector u (t) for controlling the dynamic response v (t) is: 

M (a) b" + D (a) ~ + K (a) v = Bo u (6) 

where M (a) is (n s × n,) symmetric positive definite mass matrix, ns being the number of dynamic 
degrees-of-freedom of the second order system in (6); K(a) is (ns x n~) symmetric definite or semi- 
definite stiffness matrix; v is ns-dimension vector of physical coordinates; and u is nc-dimension 
vector of control forces whose points of application are mapped onto the structure by the (ns × no) 
control influence matrix B 0. Additionally, the damping matrix D (a) is congruent to a diagonal 
matrix through the modal transformation: 

092 • V = l i l t / ;  ( I I T M c I )  = I ;  (I~TK(I) = diag ( . s ) ,  ~ T D ~  = diag (2~. co.~) (7) 

The first order form of Eq. (6) may be expressed in 2ns coordinates x r = (v, ~), and leads to: 

= A (a) x + B (a) u (8) 

where 

( °I ,  ) (°0) A ( a ) =  - - M _ 1 K  _ I ~ _ 1 D  ; B ( a ) =  M_-IB 

The structural system described by (6), (7), and (8) is assumed to consists of na independent design 
variables, a, whose magnitudes may be adjusted to create designs having various degrees of efficiency. 
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For example, a, may designate member sizes of bars or beams, or thicknesses of plates or membranes. 
As such, M, D, K, A, B, and e3,s are all function of the design variables a. 

We assume an output measurement vector z of dimension nm, 

z = ex (10) 

where c = [cb e2] is (nm × 2n,) observation matrix. 
In accordance with (4), the simultaneous optimization problem may be stated as follows: 
Find the optimal set of  variables [a**, u**] s [a, u] that minimize the objective 

[ 1 2 S ( x r Q x + u T R u ) d t ]  (1l) y(.,u)= 

subject to the state Eq. (8), along with any nh number of compatible behavior constraints hi(a) on 
frequencies, deformations, stresses ... etc. 

hj(a) = 0 -  Uj(a) _> 0; j =  1,2, . . .  nh (12) 

and upper bound 6 or lower bound a on the i-th design variable ai: 

6 >  g i>  a; i =  1,2, ... n a (13) 

In the present simultaneous structures-control problem, the composite objective function in (11) is 
selected as a linear combination of two parts; a structural objective, and a control objective. The 
assumption is made further that the first part Js (a) representing the structural measure of optimality 
is dependent only upon the structural design variables a, while the second part Jc(a, u) representing 
the control measure of optimality - here taken as the traditional quadratic performance index - is 
dependent upon both a and u. Since the two parts of  the objective function do not necessarily have 
the same units or magnitudes, one may choose the scalar coefficient Q so as to control the relative 
importance of the two objectives during computations. 

2.2 Optimality conditions 

Since the control objective in (1 l) is dependent upon both a and u, while the structural objective is 
dependent only on a, Eq. (11) may be restated as: 

For a specified initial condition x (0) = x0, it is known that (Athans 1966): 

rain + uVR u) dt = ~ x o P (a) Xo (15) 
u t 

and that the corresponding optimal control u** is obtained from: 

u** = - R -  1 (a)  B r ( a )  P (a)  x (16)  

where P (a) is the positive definite solution of the algebraic Ricatti equation: 

At(a)  P(a) + P(a) A(a) + Q(a) - P(a)  B(a) R -1 (a) Br(a) P(a)  = 0 (17) 

From the above, it is seen that the optimal control u** and the expression for the minimum in (15) 
are implicit functions of the design variables a. The stability of  the closed loop system is assured by 
the positive definiteness of  P (a) for all physically meaningful values of a. It is assumed here that 
conditions for the existence of  a positive definite solution to the Ricatti equation are satisfied. 

In deriving conditions (15), (16) and (17), use was made of the state Eq. (8), but the behavior 
and side constraints (12) and (13) were not enforced. The minimization of (11) is thus reduced to 
selecting an optimal set of  structural design variables a** that minimize F (a): 
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F(a) = [Js(a) + ~oZx~P(a)xo] (18) 

subject to constraints (12) and (13). The relationship between the optimal control variables u** and 
optimal structural variables a** is implicitly preserved by satisfying Eqs. (12), (13), (16), (17) and 
(18). The constrained problem (18), (12) and (13) may be converted to an unconstrained one of the 
form: 

nh na 

L = F +  ~ 2jhj+ ~ [# i (a i -  a) + vi(a - ai)] (19) 
j = 0  i = 1  

where )7, #i and vi respectively are unknown multipliers, one for each constraint. A local opt imum 
of (19) must  necessarily satisfy the following first order Kuhn-Tucker optimality conditions (Hadley 
1964): 

F,a, q- 2 )cJhJ,a, -]- #i-t- v i = 0; )~jhj = 0; #i (a i -  9) = 0; vi(6 - ai) = 0 (20) 
j=l 

where the multipliers 2j, #i, vi must  be non-negative for all j -- 1,2 ... nh, and i = 1 ,2 . . .  n a. 

3 Computational aspects 

3.1 Recursive relations 

A first order minimization based on Fletcher-Powell method was first at tempted to perform the 
optimization numerically. However, the convergence rate was extremely poor. This led us instead, 
to employing a second order minimizaton based on a modified Newton-Raphson scheme to insure 
satisfaction of the optimality condition (20). The method is relatively general so as to allow various 
forms of dependence of Q (a), R (a), B (a), and various types of constraints hi. The set of design 
variables a** and multipliers 2 that satisfy (18) are obtained iteratively from the recursive relations: 

r + l  

Faa. .  ~ 2~ jh j ,  aa hj, a -1 
J 

hi,,, 0 r 

Fa-~- 21~jhj, a 
J 

(21) 

Rather than including the multipliers #i and v; for the side constraints in (21), these are dealt with 
indirectly through the parameter e which limit the step size during an iteration so that none of the 
design variables go outside their range a and 4. 

3.2 Expression for gradients 

The implementation of Eq. (21) requires the availability of the first and second derivatives of the 
Ricatti solution P, structural cost function, and constraints, all with respect to the design variables 
a. The first derivatives P,a,, i = 1,2 . . . .  na are obtained from Eq. (17), and are governed by the 
Lyapunov equation: 

cl + c2P,a, +P,a~c~ = 0 

where 

cl = A.T~ P + PA.a, - PE,.~P + Q,~; 

Similarly, the second derivatives P,~,ak 
equation: 

c3 + CzP,~,ak + P , a ,  ak C T -= 0 

c2 = A r -  P E; 

( i=  1,2, ... na, 

(22) 

E = B R -  1B r (23) 

k = 1 ,2 , . . .  na) also obey the Lyapunov 

(24) 
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where 

c 3 = C 4 -[- C4 T -[- e 5 --]- e T 

A T , , e4 = ( ,al - P , a ,  E - P E  a ) P  ak 

1 
c5 = A~,ak P + ATkp a, - . . . .  P a~E "kP --21PE ~.k, P + ~ Q,~,a~ (25) 

Other gradient information for the structural objective function and constraints have been dealt 
with in the literature (Fleury 1979; Fox and Kapoor 1968; Nelson 1976; Plaut and Huseyin 1973). 
For example, if a lower bound is placed on the lowest open-loop frequency co2 > *2 co , then 

h 1 = COl 2 - 60 *2 ~ 0 (26) 

According to Eq. (20), both co21,a, and co~,aia~ are needed, and may be computed in a number of ways 
as discussed in (Fox and Kapoor 1968; Nelson 1976). 

3.3 Minimization algorithm 

The algorithm begins with a feasible initial design with which an unconstrained minimization is 
carried out. This is accomplished by performing a line search using the gradient information to 
move down in the direction of the negative gradient of the combined objective function. The 
unconstrained minimization is continued until the minimum is reached, or until the constraints 
become binding. If the latter occurs, constrained minimization is employed, during which all 
emergent designs are kept in the feasible domain. If a design moves in the unfeasible domain, the 
step length is continually reduced until it becomes feasible again. If this caused the step length to 
be unduly small, an automatic restart is initiated with a new feasible design that lies in the neighbor- 
hood of the lastly calculated design. At each step in the constrained minimization procedure, the 
emergent design is checked to ascertain the extent to which the constraints are satisfied. When the 
design moves away from the constraints, unconstrained minimization is reverted to. 

Thus, the minimization process alternates between iterations which involve unconstrained mini- 
mization using the gradient search direction, and iterations which involve constrained minimization 
utilizing the Hessian matrix. Generally, it was not required in the examples studied to compute the 
Hessian matrix or the gradient direction at every iteration. Updates were performed every fifth 
iteration. This reduced the computational effort substantially while providing for rapid convergence 
with negligible loss of accuracy. As indicated by Eq. (21), the iterative Newton method requires an 
initial estimate of 2 each time a constrained minimization is reverted too. The initial estimate used 
in this study was taken to be. 

~" - -  [ H  T H I - I H T F , a  (27) 

where 

H = [hi,,, h2,a,..., hnh,j 

3.4 Numerical example 

The analytical and computational methodology developed in the preceding sections is illustrated by 
the following numerical example. Consider a cantilever beam modeled by three finite bending 
elements of equal fixed length l. A lateral control force is applied at the free tip. An optimal design 
of the structure and control is desired such that 

3 
(1) The total structural mass Js = ~, li ai mi is minimized. 

i=1 

(2) The control energy Jc = ~ (xrQ x + uVRu) dt is minimized. 
t=0  

(3) The fundamental open loop frequency co > 0.10 rad/sec. 
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Fig. 1. Structural model; mass density = 1660kg/m3; elastic 
modulus = 9.56 x 10 m N/m 2 

The structural model is shown in Fig. 1. The element mass matrices are assumed diagonal with the 
mass linearly dependent upon the cross section area a i. The element bending stiffness is represented 
by a quadratic function of  a i such that EI~ = bl ai + b2 a { For a tubular cross section with fixed inner 
diameter di, bl = (Ed/Z/8) and b2 = (1/4re). Damping is assumed independent of the design variables 
and equal 0.5 % of  the critical damping of  modes of  the uniform design. An initial uniform design 
a i =  0.001 m 2, i = 1,2,  3 with a corresponding first open loop frequency co = 0.1185 rad/sec, is used. 

We assume that the beam is given an initial displacement vector x 0 of  the form: 

x0 = (0.011, 1.35 - 03, 0.037, 0.002, 0.0688, 0.00216) 

The x0 values correspond to V1 to V 6 degrees-of-freedom in the fundamental mode of a uniform 
beam. The associated initial velocities are assumed zero. The control weighting matrices Q and R 
are arbitrarily taken to be identity matrices. We note that since Js is a linear function of  a, its 
gradient is constant and its Hessian is zero. In the following, comparison is made between the two 
optimization approaches discussed. A minimization of  Js and Jc separately leads to an objective 
function value equal to [(Js)min + (@2 Jc)min]; while the simultaneous optimization minimizes the sum 
[Js + Q2Jc]. Figure 2 gives the iteration histories and final results of  the two approaches, and Fig. 
3 shows the associated iteration histories of  the individual contributing parts. All iteration histories 
in Figs. 2 and 3 are normalized to their own starting values. Table 1 gives the numerical details. The 
following observations can be made from the results: 

(1) The minimum value of  the objective function when both the structural and the control cost 
functions are simultaneously minimized is less than that obtained when the two are separately 
minimized. In the case considered, the simultaneous minimization yielded 50% lower value than 
the separate minimization, Fig. 2. 

(2) The simultaneous optimization of the structural and control costs of Eq. (11) may be thought 
of as a minimization of  the structural cost subject to a "control penalty". It would be expected, 
therefore, that Js(a*) < Js(a**), where Js(a**) is the structural cost evaluated for the design a**ob- 
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Figs. 2 and 3. Iteration histories; 2 for the "separate" and "simultaneous" optimization; 3 iteration histories of components 
of the "separate" and "simultaneous" optimization 
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Table 1. Numerical detail of iteration histories. ( ) = normalized to initial value 
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Iteration Approach I Approach II 

Optimum structure (Js) Opt. Control Sum of Simultaneous optimization 
for (Js) (Js)mi. + 

No. Areas co (Js)ml, (42 Jc)min (0 2 Jc)min Areas co (Js q- (Js) (62 Jc) 
O2 JC)mi n Component Component 

l 1.000-3 0.118525 74.700 3.525 78.255 1.000-3 0.118525 78.255 74.700 3.525 
1.000-3 (1.0) (1.0) (1.0) 1.000-3 (1.0) (1.0) (1.0) 
1.000-3 1.000-3 

2 0.667-3 0.100054 49.840 3.096 52.936 0.647-3 0.100136 50.484 47.460 3.025 
0.667-3 (0.667) (0.878) (0.667) 0.637-3 (0.645) (0.635) (0.858) 
0.667-3 0.622-3 

3 0.441-3 0.112005 26.381 2.344 28.725 0.457-3 0.108975 26.962 24.668 2.294 
0.425-3 (0.353) (0.665) (0.367) 0.318-3 (0.345) (0.330) (0.651) 
0.194-3 0.216-3 

4 0.261-3 0.138112 12.553 4.114 16.667 0.280-3 0.128120 13.805 11.803 2.002 
0.227-3 (0.168) (1.16) (0.213) 0.153-3 (0.176) (0.158) (0.568) 
0.163-4 0.409-4 

5 0.109-3 0.123045 4 .661  4.583 9.243 0.152-3 0.159051 5.146 4.180 0.966 
0.740-4 (0.062) (1.300) (0.118) 0.139-4 (0.066) (0.056) (0.274) 
0.437-5 0.209-5 

6 0.451-4 0.133043 1 .407  3.746 5.153 0.887-4 0.125635 3.238 2.408 0.831 
0.101-4 (0.019) (1.063) (0.065) 0.594-5 (0.041) (0.032) (0.236) 
0.133-5 0.209-5 

7 0.318-4 0.100415 0.877 3.284 4.161 0.849-4 0.147986 2.917 2.134 0.783 
0.211-5 (0.012) (0.932) (0.053) 0.625-6 (0.037) (0.029) (0.222) 
0.133-5 0.149-6 

tained from the simultaneous optimization, and Js (a*) is the structural cost obtained without regard 
to the control cost. The extent of the above inequality would indeed depend on the relative 
contribution of the control penalty cost to the total objective function (Js + O2Jc). This observation 
is born out in Fig. 3 curves I-S and II-S, where during the last few iterations, the ratio Js(a*)/Js(a** ) 
is of the order 1/(2.3). That Js (a*) ;~ Js (a**) during intermediate iterations is due to the fact that the 
iteration histories of the two approaches follow different paths of their respective minima. 

(3) As a consequence to the preceeding two observations; 

n a m e l y  [Js (a**) 4- ~2 J C (a**, u**)]mi n < [Js (a*)min 4- ~2 Jc  (a*, li*)min ] 

and Js (a*)min <- Js (a**) 

it follows that: Jc(a**, u**) <_ Jc(a*, u*),~in 
This is evident from curves I-C and II-C of Fig. 3. Here again, the extent of this inequality depends 
on the relative contribution of the control cost to the total cost function. In turn, the control cost 
depends upon the choice of the initial design, the weighting factor ~, the matrices Q and R, and the 
nature of the control force. Numerically, the ease with which the minimum could be located depends 
on several factors such as the initial trial deisgn, step size, frequency, and accuracy of computing 
the gradient and Hessian, and the criteria for determining the convergence. 

4 Conclusions 

Being at the the intersection of two relatively complex and computationally demanding problems, 
a successful simultaneous optimization of the structure-control system crucially depends upon 
simplicity of the formulation and the strength of its theoretical foundation. The composite objective 
function introduced here as a linear combination of a structural objective (which is function of the 
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structural design variables, a) and a control objective (which is function of both a and the control 
design variable u) allowed a simple and computationally tractable solution. By assuming the usual 
quadratic performance for the control objective, it is possible to solve analytically for the optimal 
control variables u** (a). As such, one is able to carry over without modification all mathematical 
bases for solution existence, stability, and robustness, readily available in the optimal control 
literature. Being valid for all feasible structural design variable a, the analytical expression for the 
optimal control u** is easily encapsulated within an iterative numerical search scheme to determine 
a corresponding optimal set of structural variables a**, without increasing the dimensionality of the 
design space being searched. This is an important consideration for computatinal efficiency, es- 
pecially as one seeks to solve practical problems having larger number of variables a and u, and 
constraints hi. 

The example discussed in this paper illustrated the numerical results for a set of structural and 
control parameters. It was shown that the separate optimization of (Js)min and ~2(Jc)mJ ~ produced 
a final (structure + control) design which is inferior by 50% to the joint optimum (Js + ~2Jc)mi~ 
produced by the simultaneous optimization approach outlined in this paper. 
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