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! Introduction 

The strong interaction between structural dynamics and active control is a well-recognized 
challenge in the analysis of controlled flexible structures. But it is only recently that the same 
interaction has been exploited in the design process. The traditional design approach in which 
the control design comes very late in the development--typically after the structure has been 
designed and built--is no longer viable. Although this approach has produced satisfactory results 
for the attitude control of relatively rigid space structures, it will not be suitable for the ambitious 
space missions that require precise controlled pointing of telescopes, interferometers and the 
vibration suppression for science instruments mounted on large flexible structures. In such 
systems, designing the structure and designing its control become entwined. This dictates early 
consideration of the control design--well before any detailed structural design is finalized. And 
just as the structure is optimally designed to meet such performance metrics as minimum mass 
or response to external disturbances, it should be optimally designed to meet its ultimate control 
performance as well. 

A natural way to introduce the control element into the overall design process is through 
an optimization procedure that combines the structural and control design criteria into a single 
problem formulation. Bodder and Junkins (1984), Lira and Junkins (1989), Khot et al. (1985), 
Morrison et al. (1988), Salama et al. (1988), Milman et al. (1989) and Hale et al. (1985) have taken 
this perspective. In terms of the types of design parameters and constraints considered, (Lim and 
Junkins 1989) is probably the most extensive in that the design variables include structure 
parameters, actuator locations and the elements of the feedback matrix. Static output feedback 
is used, and the performance objectives include total mass and robustness measures. Constraints 
are imposed on the eigenvalue placements, performance bounds, and structural constraints. Since 
not all of the constraints are commensurate, they are relaxed using a homotopy approach. Just 
as with Milman et al. (1989), the approach taken in the present paper is not to produce the "best" 
optimized point design, but to produce a family of Pareto optimal designs representing options 
that asgist in early trade studies. The philosophy is that these are candidate designs to be passed 
on for further consideration, and their function is more to guide the system design rather than 
to represent the ultimate design. 

An optimization approach that is consistent with this philosophy is to utilize multiple cost 
objectives that include an LQG cost criterion in conjunction with structural cost(s), and possibly 
other control related costs. After introducing the combined objective formulation in the setting 
of vector optimization, we derive the necessary conditions for Pareto optimality. No behavioral 
constraints are explicitly imposed in the problem formulation and a homotopy approach is used 
to generate a family of optimum designs. Since the primary intent of this paper is to explore this 
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design approach and to provide an exposition to the computational aspects of the problem using 
simple numerical examples, the analysis is focused on a narrow regime of problems. Thus, a 
number of simplifying assumptions have been made, some of which are due to limitations in the 
underlying analysis, while others are made to facilitate the exposition. In the appropriate sections, 
alternatives will be discussed for relaxing these assumptions and extending the analysis to a 
broader range of applicability of the design approach. 

2 Combined optimization 

The combined optimization approach can be best appreciated when contrasted with the tradi- 
tional sequential optimization. In the sequential optimization, the structure is first optimized by 
selecting the design variables, ~ (e.g. member sizes) which minimize a structural criterion 
Js(e)--often taken as the mass of the structure subject to some behavioral constraints h(e) > 0 
on deformations, stresses, open-loop frequencies, etc. 

rain J~(~); h(a) > 0, ~teD (2.1) 

where D is the physical domain for ~. Second, having completely specified the optimal structural 
design ~*, the control optimization is carried out with e* fixed. For example, LQG or H~ optimal 
control designs pose the problem: 

rain J~(e*, C) (2.2) 
C 

where Jc represents either of the control criterion, and C is allowed to very over the class of 
stabilizing compensators for the plant. 

By contrast, in the combined optimization formulation, the goal is to first merge the criteria 
of interest (here Js and J~) into one using non-negative multipliers fl, and ~, then optimize the 
combined criterion over the original design variable space ~, C: 

rain [flJ~(~) + fiJc(a, C)]. (2.3) 
~t.C 

The following expression compares the results of the two optimization procedures outlined 
above. 

min [fiJs(~) + 5Jc(~, C)] = [min fiJs(~) + min fiJc(~*, C)]. (2.4) 
~t,C ~t C 

The right-hand side of (2.4) corresponds to performing the sequential optimization by solving 
(2.1) for ~t*, followed by solving (2.2) for C*. Note that the optimal solution of the right-hand 
side is independent of fl and 6- but not so for the combined optimization embodied by the 
left-hand side. In terms of the total cost, expression (2.4) states the fact that the combined 
optimization is never inferior to the sequential optimization. In the vector optimization setting, 
the relative weighting of B and 6 serves as a parameter that allows the generation of an entire 
family of Pareto optima. 

In the present paper, only two objective criteria are dealt with. But it is not difficult to 
generalize the approach to incorporate other criteria such as minimum open-loop frequency and 
certain controller robustness measures. In general these criteria are noncommensurate, and there 
is no unique solution that minimizes all criteria J1,-.., JN simultaneously. Thus, one must look 
for Pareto optimal solutions as outlined below. 

First one assembles the criteria J i :D~R,  i= 1,...,N into a single criterion J : D ~ R  N, 
J(e) = (Jl(e)), . . . ,  (JN(e)) r. Then the cone Co = {xeRN:xi > 0, i = 1,..., N} is defined to induce a 
partial ordering < on R N by x < y  ify - xeCo. Now let ~teD. A design vector e*eD is said to be 
(strongly) Pareto optimal if J(e) < J(e*) implies J(~t) = J(e*). A necessary condition for Pareto 
optimality is contained in the following theorem due to Lin (1976). 
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Theorem 2.1. I f  at* is Pareto optimal for the combined criterion J, and D is an open set, then there 
exists a nonzero vector Z e C  o such that Z r  J,(ot *) = O. Here J ,  denotes the differential of J. 

For the two-term optimization problem in (2.3), we find that the Pareto optimal solutions to 
J -- (Js, Jc) r can be generated by solving for the necessary conditions for extremizing the following 
convex combination Jx: 

J~ = (1 - A) J~(~) + 2Jc(ar C); ;~[0,  1] (2.5) 

where 2 replaces fl, 6 in (2.3). The form of Eq. (2.5) suggests a homotopy (or continuation) 
approach for generating a family of Pareto optima as 2 is propagated from 0 to 1. Although no 
behavioral constraints are explicitly imposed in this paper on Js(a) or J~(ar C), we note that the 
homotopy approach has direct applicability to penalty methods for solving inequality constraint 
problems as well. For example, suppose that in addition to extremizing the convex combination 
in (2.5), one wished to include a constraint of the form [h(e) - coo > 0], where h(e) denotes the open 
loop fundamental frequency of the structure and coo is some preselected value. To accomodate 
an inequality constraint of this type, define 

g(~)={(0 h(Or176 ifh(a)<co~ (2.6) 

and introduce the three-cost objective function 

Ja =(1 - 2){tsJs + t~Jr +20  (2.7) 

where t~ + t~ = 1 with ts, tc > 0. Fixing t~ and t~, and letting 2 ---, 1 corresponds to a penalty method 
for solving 

min {t~J~(e) + t~J~(e)} subject to h(a) > co o. (2.8) 
~t 

Although numerical ill-conditioning could easily result as 2 ~ 1 if the approach above is applied 
directly, several refinements of this penalty method that ameliorate the conditioning problem can 
be formulated in this context Fletcher (1987). 

3 Conditions of optimality 

We begin with the n s degree-of-freedom dynamical system 

M(e)~" + D(a)O + K(a0r = Gtu + G2o (3.1) 

where M, D, and K are the ns x n~ mass, damping and stiffness, G1 is the constant ns x n,, control 
influence matrix, and G 2 is the constant ns x n a disturbance matrix. The vectors r, u, and v are 
respectively, physical degree-of-freedom, control forces and disturbances. Let x = (r,/.)r. Then 
the first order state equation is 

k = a(a0x + Bl(m)u + B2(a0o + t/ (3.2) 

where 

A=(0 i ) . 1 ( 0 ) . 2 _ _ ( 0 )  ,32a, 
_ M - 1 K  _ M - I D  ' M-1G1 M - 1 G /  

and an additional disturbance v' independent of ~ has been introduced for greater flexibility of 
the formulation. We assume that (3.2) has measured output variables y and controlled output 
variables z: 

y = Clx + w, 
z = C2x (3.3) 
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and that o, o', and w are uncorrelated white noise processes with intensities Qv, V, and Qw, 
respectively. 

In the remainder of this paper, the total mass of the structure is assumed to represent the 
structural criterion J~. Thus, for a structure consisting of n, one-dimensional finite elements, each 
having a cross-sectional area ei, length li and density p: 

na 

Js = ~i pli~ (3.4) 

For the control criterion Jc associated with (3.2) and (3.3), we assume the LQG index 

Jc = lim E{zr(t)Doz(t) + ur(t)Ru(t)} (3.5) 

where E is the expectation, D o is a non-negative definite weighting matrix which could have an 
explicit dependence on a~, and R is positive definite. This would arise, for instance, if the first 
term in (3.5) were to represent the total energy in the system with z = (r,/,)r and D o = diag(K, M). 
Without loss of generality, in the sequel we will take z = x. Under standard assumptions of 
stabilizability and detectability, the optimal compensator C* for (3.5) is implemented (Kwakernaak 
and Sivan (1972)) by: 

Uo = - R -  1B~Pxo (3.6) 

k o = (A - KfC)xo + Kfy + B~uo, 

and the optimal cost Jc associated with this compensator is 

Jc(C) = tr{P(BzQoB~ + V) + P : P B t R -  ~B~P}. (3.7) 

where P and P :  are the unique positive definite solutions to the algebraic Riccati equations 

G~(o~, P, P : )  = A T P + P A  + D o - P B t R -  t B ~ P  = 0, 
Gz(~, P, P: )  = AP:  + PyA r + B2Q.B2 r + V - P :  C~rQ~ t C~P: = 0 (3.8) 

and 

K : = P : C ~ Q ~  1. 

With the above representation for Jc, we seek the optimality conditions for 

rain J~(~) = (1 - 2 ) J ~ ( o ~ )  + ( v, ~ )  + 2 tr {P(B2Q~B ~ + V) + P f P B ~ R -  ~B~rP} (3.9) 

subject to the constraints [G1, G2] = G(~, P, P r ) =  0 of (3.8). In (3.9) in n,-dimensional vector 
vsR "a has been introduced to "regularize" the problem and to serve the purpose of initializing 
the homotopy path. 

Assumption A. For every ~ D  (the closure olD), G1 and G2 have unique positive definite solutions. 
These conditions are satisfied if the open loop system possesses damping, or more 9eneraUy, if the 
system is stabilizable and observable for each o~. 

Let 22+ denote the set of symmetric n~ x n~ positive definite matrices. Fix 2~[0, 1] and define 
f : R  "~ • ~,+ • ~+ ~ R  by 

f(m, P, P f) = (1 - 2)J~(a~) + ( v, a~) + 2 tr {P(B2Q~B ~ + V) + PyPB, R-  1B~p}. (3.10) 

The optimization problem (3.9) is then equivalent to 

m i n f ( a , P ,  Py) subject to G(o~,P, Py )=0 .  (3.11) 
~,P, Ps 

The local condition for optimality is contained in 

Proposition 3.1. Suppose Assumption A holds and that (a*,P*,P~) is a local extremum for 
(3.11). Then there exist unique matrices Z~, Z2s2;+ such that 
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OJ~ { 0(B2Q.B2 r + V) c~(BIR- ~B r) 
O=(1--)')~i~i+vi+2tr P c~c~i + P P f P  a~i 

[~Ar  p + _ _ +  ~ D o _ p  + z 1 L  ~ i  p ~ A  ~(B1R-1BT) p ]  

z VaA OA r a(B2Q.BT +V) p a(CrQ lCl)p:]}, 
21- 2 L t~O~i P f + P f 63~ + ~O~i t~O~i 

i = 1 . . . .  n, (3.12a) 

0 = (A - B~R- ~B~P)Z~ + ZI(A T - PB~R- ~B~) 
+ B2Q.B~" + V + Pf PB~R-~B~ + B~R-xB~PP: (3.12b) 

0 = (A r - C~rQ~ lc~P: )Z2  + Z2(A - P:C~rQ~ ~C~) + PB~R- ~B~'P. (3.12c) 

Proof. Suppose (~*, P*, P~) is a local extremum. We first verify that the problem is regular, 
that is, the differential G ,  of G has full rank at (e*, P*, P}). Noting that 

G,  :R n" x R n~(nx + 1)/2 x R n~(n~ + 1)/2 __+ R.~(.= + ,)/2 x R nx(nx + 1)/2 

it is sufficient to verify that G, restricted to Rnx(nx+l)12x R nx(nx+l)12 is invertible. By direct 
computation we determine that at ~*, P* 

c~G~: S~ --, AT(~*)S~ + S~A(~*) - St B~(a*)R- ~Btr(a*)P * - P*B~ (of*)R- ~Br(a*)St 
aP 

for any S t ~2~. Note that A(a~*)- BI(~*)R-1Bl(~*)P* is a stable matrix. So by the uniqueness 
of the solution of the Lyapunov equation that $1 solves when ~?G1/OP(S1) vanishes, it follows 
that Sl vanishes. Hence, c?G/OP is one to one. In a similar manner we can verify that cOGz/c3Pf 
is also one to one, and thereby establish that G,  is onto. 

Having established regularity of the problem it follows that (~*, P*, P~) is a stationary point 
of the Lagrangian L, 

C = f  +TG, 
where 7:2Jx 2J~R denotes the Lagrange multiplier. It is straightforward to show that there 
exists a unique pair of matrices Z~, Z2E2J such that 

y(Sl, S2)=tr{Z1S 1 +Z2S2} for all S1,S2e2L 

At the stationary point all of the partial derivatives of L must vanish. Hence, 3L/3P: must vanish. 
This implies that 

tr {(PB~R- 1BTp + Z2(A - p:CTQ~ ~C~) + (A T - CTQ,~ ~C1P:)Z2)S2} = 0 

for all $2~2J. A sufficient condition for this is for Z2 to satisfy the Lyapunov Eq. (3.12c). A similar 
argument establishes (3.12b). Finally, the equations in (3.12a) are derived from ~L/O~i=O , 
i=  1 .... ,n a. [] 

Thus for the LQG formulation, the necessary conditions involve solving two algebraic Riccati 
Eqs. (3.8), two Lyapunov Eqs. (3.12b, c) and a gradient Eq. (3.12a) for % i =  1 .... ,n o. The LQR 
optimality conditions are recovered by eliminating equations and terms involving Z 2 and P: .  
Specifically, these optimality conditions are the zeros of the function H: R x R"" x 2;+ x 2J+ --, 
R"" x2J+ x 2J+ defined by H =  [H-bH2, H3] which involve one gradient equation for 0c/, 
i = 1 .... , n a, one Lyapunov equation, and one Riccati equation; 

H~(2, ~, Z, P) = (1 -- 2) ~ + v, + 2 t r a J ~  { P O(B2Q"BT~c~i + V) 

[ ~ i  w ~ O A  3Do pO(B~R-tBr)p]}oe, J ; 
+ Z  2P ~Z + ~ 2 - - -  i =  1,...,n, (3.13a) 
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H2(2, ~, Z,P) = A~Z + ZA~ r + B2QoB~" + V, (3.13b) 

Ha(),, m, Z, P) = ATp + PA + Do -- PB1R- iBm'P, (3.13c) 

with A~ = A - B1R- 1B~rP. 
We note that after averaging over initial conditions, it can be shown that (3.13) is equivalent to 

the equations derived in (Salama et al. 1988), but require fewer Lyapunov equations to implement 
(one versus n~). 

4 Homotopy strategy 

For all 2e[0, 1], our goal is to minimize (3.9) in the case of the LQG formulation or it's LQR 
equivalent (where P$ = 0) by finding the design variables e that satisfy the corresponding 
optimality conditions (3.12) or (3.13). The basic strategy is: given the solution at a value 2o, 
smoothly propagate it to a new solution at 20 ~ A2 via some local mechanism such as a Newton 
method or iterative optimization. This strategy has been analyzed in detail by Milman et al. (1990). 
In the following, only a summary of the results is given assuming the LQR formulation. 

Let x denote a generic point (a~, Z, P)eR "~ x ~+ x Z+ so that H(2, x) stands for H(2, ~, Z, P). 
In determining the zeros of H, the following proposition asserts that in a small neighborhood 
about the optimal at ,~ = 0, there is a smooth path parameterized by 2 consisting of the global 
optimal solution. The proof is included in the Appendix. 

Proposition 4.1. Suppose that min J~(a 0 has a unique global solution ~* satisfying the second 
order sufficiency condition on the positivity of the Hessian [Js(~*)],,,,j > 0. Further, assume 
that J~ is coercive so that I J~(~)l ~ ~ as I~1--" ~ .  Then there exists e > 0 such that (3.9) has a 
unique global solution for 2 < 5. 

The next proposition provides a sufficient condition for the path to remain locally optimal. 
It's proof is contained in (Milman et al. 1990). 

Proposition4.2. Let q~(2)=()~,x(2)) denote a smooth path in [0, r )x  R"~ 2J+ x 2J+ with 
H(~b(2)) = 0 and H x invertible for 2e[0, r). Such an r is guaranteed by Proposition 4.1. Then ~(2) 
is a local minimum for Jz for each 2e[0,r). 

The purpose of the following lemma is to demonstrate that the zero set of H is "generically" 
well-behaved. 

Lemma 4.3. Suppose that H(0,x)= 0 has a unique solution. Then for almost every choice of 
veR"", the solution path emanating from (0, x*) is diffeomorphic to the real line R. 

The main point of this lemma (which is proved in the Appendix) is to demonstrate that, at 
least topologically, the zero set of H is well-behaved in a generic sense ("with probability one"). 
Thus, following the path defined by one of the zero curves of H, not just the one emanating 
from the optimal at 2 = 0, will not lead to a pathological behavior such as bifurcations or curves 
with infinite length in bounded sets. Another fundamental and generally difficult question that 
arises when employing homotopy methods is whether or not the path remains bounded. The 
following result provides a partial answer to this question. 

Theorem 4.4. Suppose that J~, Bi, Do, and A are all polynomials in ~l,...,ct,,, and assume 
coercivity of J~(at)/l~t [. I fH(O,x )= 0 has a unique solution, then for any ~ > 0 and for almost every 
veR  n~ the component of H-l(O) containing (0, x*) can be continued to 2 = 1 --~ and is a bounded 
set in ,Q = EO, 1 - 5] x R ~~ x ,~+ x ,~+. 

The proof of Theorem 4.4 in the Appendix contains a number of important points. First, it 
shows that if any component of H -  ~(0) is nondegenerate in the sense that there exists at least 
one point in the component where aH/Ox is invertible, then that component is also a bounded 
set in 12. This observation is relevant to the problem of finding Pareto optimal solution where 
it may be necessary to follow paths other than the one emanating from (0, x*). The "e" appears 
in the theorem because the cost functional makes it possible for ~(2) to become unbounded 
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in a neighborhood of one. The coercivity assumption in the theorem can be relaxed to 
lim [ J s ( 6 ) - ( v ,  6)]--->~ without modifying the proof. With regards to the hypothesis of 

polynomial dependence on the design parameters it should be observed that these conditions 
hold for an arbitrary Taylor expansion of the system matrices about an initial design. 

A slight generalization of Theorem 4.4 can be derived for systems arising from finite element 
models which typically have a polynomial dependence on the design parameter in their mass, 
damping and stiffness matrices (Milman et al. 1990). 

In the next proposition, we state the conditions under which the solution H(2, x) = 0 remains 
stable if the data of the problem are slightly perturbed. The proof is contained in (Milman 
et al. 1990). 

Proposition 4.5. Let F(t, 2, x) denote a family of functions parameterized by t6(-fl,/~) such that 
F(0,2,x) =H(2,x) and F(.,., .) is twice continuously differentiable. Let G = H-1(0)c~s (cf. 
Theorem 4.4) and let B denote a closed bounded set containing G. Then given ~' > 0 there exists 
6 > 0 such that 

(i) If I t0[ < 6, then any solution (2, x) of F(to, 2, x) = 0 in B has the property that the distance 
d(G, (2, x)) < e'. 

(ii) There exists an open set T(G) = G such that F(t,., .)IT(G) has no critical points; that is, 
for each t with Itl < 6, F(t,., .)-I(0)c~T(G) is a one-dimensional manifold. 

(iii) Given any (2", x*)~G there exists 6(2", x*) > 0 such that F(t, 2, x) = 0 has a solution (2t, x,) 
for each t with Itl < 6(2", x*) and d((2t, xO,(2*,x*))  < e.'. 

Several of the theorems and propositions above assume that the structural objective J=(6) is 
a convex and coercive function of the design variables 6. These conditions are easily met when 
Js represents the mass of the structure and 6 represents cross sectional areas. In more general 
cases (e.g. when 6 represents shape design variables) these conditions may not be satisfied, and 
the theorems above may require modifications. A possible way for circumventing nonconvex 
problems in shape optimization is to initially seek (i.e. for small values of 2) optimal shapes in 
the vicinity of a nominal a priori known configuration. A way to fit this into the current framework 
is to introduce a quadratic form of a structural cost J= which is uniquely minimized by the 
desired nominal configuration, thereby restoring the convexity of the problem. 

5 Newton methods 

Numerous approaches have been proposed for solving parameterized systems of the form 

G(6, 2) = 0 (5.1) 

where 2 may be a multidimensional parameter and G is a smooth mapping from some function 
space S into itself (6~S, G(6, 2)eS). In our case G is derived by the differentiation 

G(6,  = (5.2) 

where Ja(6) is given by (3.9) in terms of a one-dimensional parameter 2~ [0, 1]. Then G(6, 2) denotes 

an na-dimensional vector with components G(6, 2) "), (i~ { 1, 2, . . . ,  n,}). Correspondingly, 0G(6, 2) 
06 

denotes on n, • na matrix whose (i,j)-component will be denoted by 0G(6, 2) liJ) - -  ( i , j~{1 ,2 , . . , na} ) ,  
06  

and 0G(6, 2) denotes an n=-dimensionat vector with components 0G(6, 2) ") (ie{ 1 , . . ,  n,}). 
g2 Q2 " 

Under suitable regularity conditions, the system (5.1) determines 6(2) where 6 is now para- 
meterized by 2 (Keller 1987). In some cases one may be interested only in the solution ~ for a 
particular value of 2. There, global homotopy methods can be used (Keller 1987; Watson 1986). 



8 Computat ional  Mechanics 8 (1991) 

But because the zeros of the system (5.2) are relevant for a continuum of values, global homotopy 
methods cannot be used here. 

Newton methods have several advantages when approximations for e are desired over some 
range of the parameter since the underlying smooth structure of the problem as well as the useful- 
ness of nearby parameterized values can be exploited. Thus we suppose first that ~t{01 = 0~(2o) 
has been determined for 2 = 20, and consider the solution ~t m = ~(21) for a nearby value of the 
parameter. Then subject to suitable regularity conditions the iteration. 

Ix(O) - -  (~1 - -  ~0) 3(~(~[01, ~ 0 ) -  1 9G(~[Ol ,  ~o) 
m = ~(o) 9~ 92 

,r 1) = ~,(k) 4-/t (k) (ke{0, 1 ,2 , . .} )  (5.3) [11 - - I l l  - -  - -  [13 
(k) - 1 

a (k) = 9G(~m,~1) G(~ (k) 20 N 
[11 9~t - [11, 

will converge quadratically (Keller 1987) to 21(i.e., limk_, o~ ~tlk~ = era)" 
Variations can be implemented according to the nature of the problem. For example, the non- 

invertibility of t?G which can occur at a fold, at a bifurcation point or at a limit point, can some- ~ '  

times be circumvented by a different parameterization of the problem (e.g., an arclength para- 
meterization as discussed in (Keller 1987)). Another possibility is that the matrix can be made 
invertible by the addition of a suitably chosen positive definite matrix. Then even if the iteration 
diverges, the step AI~ ~ can be used as inputs to line search routines (Fletcher 1987) for the 
optimization of Jx(~). 

To simplify the analysis we restrict the consideration here to the LQR formulation of the 
optimality conditions summarized in (3.13). We also assume the conditions of Propositions 4.1 
and 4.2 so as to assure the well-posedness of the continuation process. Therefore, for the LQR 
formulation 

d(~t, 2) = (1 - 2)d=(~) + (v, ~t) + 2tr {P(B2Q~B r + V)} (5.4a) 

Arp + PA + D o - PB1R- 1BIrp = 0. (5.4b) 

Now the Riccati Eq. (5.4b) can be formally inverted to determine P as a function of the parameters 
of the system: 

P = F(A, Do, B1R- 1B[). (5.5) 

Then the function J(at, 2) in (5.4a) can be treated as a function of ~t and ~.. From (5.2) and (5.4a) 
we have 

pg(B2QoB r + V)} 
G(~, 2) (̀ ) = (1 - 2) 9J=(oO + v + 2 tr ~ 9P(B2QoBr + V) + (5.6a) 

9G(~'2)(i'i) = ( 1 _ 2)92J=(~) + 2tr { 92P r 9P 9(B2Q~ B r + V )  
9~ 9~(f~j ~ (B2QOB2 AI- V)  -1- 9(xi 9o~j 

+ 9~jSP (?(B2QoB rg~, + V) + p 82(B2Q~B r~,&~j + V)} (5.6b) 

9G(o~, 2) (`) 9J=(~ tr ~P(B2Q~B2 r + V) + P 9(B2Q~ + V)} (5.6c) 

To determine the ~t-derivatives of P, it is necessary to differentiate (5.4b). As in (3.13), we define 

Ac = A - B1R- 1BtrP. (5.7) 
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Then differentiation of (5.4b) gives 

A Tc~P t?PA~ s~i, 4- + = 0 (5.8a) 
c ~o~i t~ai 

S,~,_0ATp+p0_A p0(BIR-~B~ ") (5.8b) 

c?~ i 0~ &~ 

for is [1, 2,..., n,}. The Lyapunov equations (5.8a) can be formally inverted to give: 

c~P 
- -  = ~ ( A ~ ,  S~ i)) (5.9)  
00~i 

where the Lyapunov solution can be written explicitly as (Kwakernaak and Sivan (1972)): 

L,o (A~S~I) = ~ exp (Art)S~ ~1 exp (Act) dc (5.10) 
0 

It is worthwhile to note (as in the proof of Proposition 4.2) that the expression for the right-hand 
side of (5.6a) can be simplified by exploiting the properties of the trace operator: 

} tr  (B2QvB 2 + V) tr {~o (A~, (i) r 
= S 1 )(B2QoB 2 + V ) }  

oO 

= ~ tr { exp (Art)s~ i) exp (A~t)(B2Q~B r + V)}dt 
o 

o 0  

= I tr {exp (AJ)(B2QoB r + V) exp (A[ t )S]~  
o 

= tr {~o (A/,B2Q,Br + V)S~il}. (5.11) 

Thus, the computation of the na components of G(e, 2) requires the solution of one Riccati 
equation as given by (5.6c) and one Lyapunov equation as given in (5.11). The computation of 
c?G 
- -  as given by (5.5c) requires the solution of no additional algebraic equations; however, the 
62 

aG 
computation - -  as given by (5.6b) will require the solution of the n, Lyapunov equations for the 

QP 
- -  as given by (5.9). The details of this procedure are given in (Milman et al. 1990). 

6 N u m e r i c a l  r e s u l t s  

The numerical experiments described in this section demonstrate the results of the foregoing 
theory. Three prototype examples are used; all employing the LQR formulation. Implementation 
of the homotopy strategy of Sect. 4 is achieved by iterative optimization in the first two examples, 
and by Newton's method in the last example. 

I t e r a t i v e  o p t i m i z a t i o n .  In this approach, the homotopy parameter 2 starts at ), = 0 with al, . . .  , %a 
initialized to a predetermined sufficiently small allowable size a0. At this point in the solution 
space, Jz is fully weighted toward minimizing Js only. Then by minimizing Jzo one obtains 0t3 
for which H(2o, x*)= 0. For the next iteration and for every succeeding one, 2 is incremented 
and the weighting is shifted gradually toward Jc. For a typical iteration j, the following steps 
are performed: 

(i) 2;  ~ )o j _  ~ + A,~ v _  



10 Computational Mechanics 8 (1991) 

(ii) Initialize the minimization of J~j by using a~ i~a*  t" This will result in a* for which 
conditions (3.13) hold. 

In performing the minimization in (ii) above, we employed the Automated Design Synthesis 
(ADS) system of general purpose subroutines (Vanderplaats 1984). ADS provides a wide selection 
of options at three levels: strategy, optimization, and line search. Available strategies include 
sequential linear and quadratic programming, and sequential unconstrained minimization coupled 
with various penalty methods. At the optimization level, one can choose between the Fletcher- 
Reeves algorithm and the variable metric method of Broydon-Fletcher-Goldfarb-Shanno (BFGS) 
for unconstrained minimization, or Zoutendijk's method of feasible directions and modifications 
thereof for constrained minimization. For one-dimensional line search, the options include a 
combination of polynomial interpolation/extrapolation, solution bounding, and the method of 
Golden Section. Not all combination of options are compatible at the three levels, and the 
program parameters must be adjusted to suit the problem at hand. For this purpose, an analytical 
function was contrived which possessed such features as: easy to compute closed form solution, 
multiple minima, and insensitivity of the functions gradient near the minima to design parameters. 
Several compatible options were tried and the program parameter values (e.g., move limits and 
convergence criteria on the absolute and relative changes in objective function between two 
successive iterations) were adjusted until the closed form and numerical solution agreed within 
as few iterations as possible. As a result of these numerical experiments, the popular BFGS 
variable metric method for unconstrained minimization emerged as the one of choice for use in 
the combined control-structure optimization examples that follow. During the one dimensional 
line search, the minimum is located by first computing the bounds, then using polynomial 
interpolation. 

Example 1. The cantilever beam of Fig. 1 resembling a flexible appendage of a large structure 
is modelled by three finite elements with two degrees-of-freedom (dof) at each node. The structural 
design variables ~1, e2, e3 determine the cross sectional areas ~1, e2, ~3 of the elements by the 
relation ~i = ~/2 + ~o. The disturbance o represents a transverse sound pressure modelled by un- 
correlated unit impulses at t = 0 concentrated at the three nodal transverse dof. Thus Qo = identity. 
The control force u is applied at the free end along the transverse dof direction. With the J~ 
given by (3.4), we seek the minimum of (5.4a) for 2E[0, 1], subject to conditions (3.13). Here, the 

t.0 
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E 0.6 o 
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Figs. 1 and 2. 1 Example 1. Cantilever beam problem; mass dens i ty= 1660Kg/m s, modulus=9 .56  x 10t~ modal 
damping = 0.5%; disturbance = transverse pressure impulse concentrated at the nodes, response energy weighted by D O = 
Diag(K,M) x 102, control energy weighted by R = 1 x 10 -4 ;  design variables: cq, c~2, % > 1 x 10 -7.  2 Cantilever beam 
optimization 
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weighting matrices were taken as Do = 10 z x diag (K, M), and R = 10-4. Additionally, v = - 15.75 
and eo = 10-v. 

Table 1 lists the family of opt imal  designs that  minimize Jz, 2~[0, 0.99] along with the corres- 
ponding  values for Jo J~ and J~. The variations of the Pareto optimal  Jc(2), J~(2) and Jz(2) are 
shown in Fig. 2. A number  of observations can be made  from Table 1 and Fig. 2: 

Table 1. Optimal designs of Example 1 

Optimal design (m 2) x 10 -6 

2 ~1 ~z ~3 Jc Js Ja 

0.000 0.2000 0.2000 0.2000 405040.8076 0.0149 0.1354e -6 
1.000e -6 0.8514 1.6590 1.0774 63057.2500 0.0893 0.1035 
1.000e -s  2.3723 4.9960 3.1182 21379.1719 0.2611 0.3890 
1.00e -4 7.1029 15.2422 9.2979 6972.8296 0.7879 1.3299 
0.005 48.5681 100.2801 64.0088 882.0427 5.3001 9.2907 
0.010 68.3854 138.5623 88.9325 599.5123 7.3674 12.8250 
0.020 96.9295 191.4519 124.8242 400.0817 10.2888 17.5360 
0.040 136.4523 262.4428 173.9179 265.9015 14.2630 23.6820 
0.100 216.3664 405.5988 274.5324 148.6908 22.3228 34.1500 
0.200 315.0205 573.3193 393.8050 91.9583 31.9254 42.9630 
0.300 401.4612 717.4291 496.6321 66.9654 40.2265 47.1600 
0.400 487.2732 861.6987 600.1050 51.5784 48.5320 48.5550 
0.500 583.8055 1023.7800 716.5723 40.2783 57.8715 47.7690 
0.600 679.0599 1212.8807 852.7400 31.5295 68.7907 45.0100 
0.700 841.8542 1452.9294 1025.8928 24.2444 82.6848 40.2150 
0.800 1063.1860 1819.2931 1291.5679 17.4467 103.9338 32.9930 
0.900 1518.2933 2564.1045 1834.4232 10.5185 147.3288 22.1140 
0.940 1946.9393 3263.9368 2349.5378 7.3549 188.2543 15.8510 
0.980 3375.1292 5451.4126 3998.1328 3.3907 319.3344 6.6362 
0.990 5057.3018 7818.5498 5873.0239 1.9442 466.8470 2.8740 

Table 2. Optimal designs for Example 1 

Initial design (m 2) • 10 -6  Optimal design (m 2) • 10 -6 
~1 ~2 83 81 82 83 Jc J~ J 

2 = 0.200 
216.3664 405.5988 274.5324 315.0205 573,3193 393.8050 91.9583 31,9254 42.9630 
702.3500 405.5988 274.5324 310.7759 572.5534 392.6549 92.5688 31.7720 42.9650 
405.5988 405.5988 274.5324 314.3820 573.3193 394.2019 91.9817 31.9194 42.9630 
274.5324 274.5324 405.5988 315.5886 570.4977 393.6462 92.1948 31.8653 42.9630 

0.1000 0.1000 0.1000 312.4349 574.4692 393.5273 92.1295 31.8827 42.9640 

2 = 0.700 
697.0599 1212.8807 852.7400 841.8542 1452.9294 1025.8928 24.2444 82.6848 40.2150 

2025.1000 1212.8807 852.7400 844.6998 1460.3334 1032.0515 24.0747 83.0934 40.2150 
1212.8807 1212.8807 852.7400 834.0389 1461.5564 1033.9153 24.1539 82.9048 40.2160 
852.7400 852.7400 1242.8807 845.9210 1460.3334 1030.9595 24.0734 83.0966 40.2150 

0.1000 0.1000 0.1000 845.2230 1459.4165 1030.9595 24.0901 83.0564 40.2150 

= 0.900 
1063.1860 1819.2931 1291.5679 1518.2933 2564.1045 1834.4232 10,5185 147.3288 22,1140 
3192.3499 18t9.2931 1291.5679 1522.1923 2572.0098 1839.4806 10.4740 147.7487 22.1130 
1819.2931 1819.2931 1291.5679 1524.0654 2560.6624 1835.1942 10.5107 147.4061 22.1140 
1291.5679 1291,5679 1819.2931 1503.5229 2568.1567 1831.3407 10.5534 146.9852 22.1140 

0.1000 0.1000 0.1000 1522.4263 2571.2998 1841.5397 10.4699 147.7881 22.1130 
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Figs.3-5. 3 Example 2. Hub-beam problem; mass density = 1660 Kg/m 3, modulus = 9.56 x 101~ N/m2; modal damping = 
0.5%; disturbance = unit impulse, response energy weighted to minimize end displacement, R = 1 x 10-4; design variables; 
d l , . . . ,  d4 > 0.001.4 Hub-beam optimization. 5 Optimum shapes 

(i) The noncommensurate nature of the two costs Jc and Js is apparent as the weight is 
shifted between them: while Jc is a strictly decreasing function of 2, Js is a strictly increasing 
function of 2. This is consistent since a stiffer structure requires less control energy. 

(ii) Except near 2 = 0, the optimal structural shapes that minimize Ja for the disturbance, 
choice of D o and R, and control forces described above correspond to 51,53 <52. This is a 
physically plausible optimal shape for the given distribution of disturbance and control force. 
The presence of the control force at the free end provides a sustaining dynamic reaction to the 
uniform pressure distribution along the beam. As a result, the cantilever beam (with highest 
strain energy at the fixed end) is made to act as a "propped" cantilever, with highest strain energy 
shifted away from the fixed end. Other choices of disturbance, control location and Do, R are 
expected to alter the optimal beam shape. 

(iii) Although the design at 2 = 0 is guaranteed to be globally optimal (Proposition 4.1), it is 
possible that designs generated as 2 is continued may be only locally optimal. To assess this 
possibility, the optimal designs listed for 2 = 0.200, 2 = 0.700 and 2 = 0.900 were re-examined 
separately. For each case, the minimization was restarted with randomly selected initial ~ values. 
In most cases, the minimization converged to the same or to a higher minimum than obtained 
in Table 1. This is shown in Table 2. 

Example 2. The beam in this example (Fig. 3) simulates a flexible appendage (length = 45 m) 
attached to a rigid hub ( radius- -10m and inert ia= 50Kg.m 2) to which a control torque is 
applied to counteract the transverse unit impulse at the free end. The beam is modelled by three 
finite elements of constant width = 0.001 m, but whose nodal depths d l , . . . ,  d4 represent design 
variables having a lower bound -- 0.001 m. Here again, Js represents the total mass of the flexible 
beam (excluding the hub). For the control objective Jc, the response energy is weighted by D o 
so as to minimize the transverse free end displacement, and R is taken = 10 -4. 

Table 3 and Fig. 4 represent analogous results to those presented for Example 1 in Table 1 
and Fig. 2. In addition to observation (i) of the previous example--which holds here as well-- the 
following remarks can be made with reference to the results of this example: 

(i) For small values of 2 (e.g., 2 = 0.1), where the total mass J~ dominates the minimization 
of J~, the optimal shapes tend to have a small slope from dl ~dz~d3, followed by ~i sharper 
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Table 3. Optimal designs for Example 2 

13 

Opt imum design (m) 

2 dl d2 d3 d4 Jc J~ J~ 

0.000 0.001 0.001 0.001 0.001 1.6 x 10 +1~ 0.075 0.075 
0.0001 0.02404 0.02363 0.02291 0.01366 3355.26 1.628 1.963 
0.001 0.03552 0.03485 0.03359 0.02065 482.6 2.404 2.884 
0.010 0.05223 0.05134 0.04940 0.03043 70.78 3.54 4.21 
0.100 0.07699 0.07559 0.07157 0.05303 10.03 5.28 5.757 
0.200 0.08759 0.08563 0.08031 0.06659 5.33 6.05 5.906 
0.300 0.09550 0.09267 0.08657 0.07847 3.54 6.62 5.703 
0.400 0.10258 0.09867 0.09187 0.09085 2.56 7.15 5.31 
0.500 0.10944 0.10389 0.09670 0.10470 1.93 7.66 4.79 
0.600 0.11715 0.10948 0.10135 0.12176 1.46 8.22 4.17 
0.700 0.12657 0.11576 0.10681 0.14516 1.08 8.92 3.43 
0.800 0.13944 0.12322 0.11304 0.18055 0.77 9.87 2.59 
0.900 0.16369 0.13641 0.12430 0.24923 0.47 11.63 1.59 
0.920 0.17299 0.14104 0.12893 0.27374 0.41 12.28 1.355 
0.940 0.18542 0.14815 0.13565 0.30544 0.34 13.18 1.107 
0.960 0.20578 0.16117 0.14818 0.35131 0.26 14.64 0.83 
0.980 0.25035 0.19468 0.18421 0.42401 0.16 17.83 0.52 
0.990 0.29401 0.25488 0.24878 0.48165 0.09 22.20 0.32 

slope from d 3 --* d 4. As 2 increases, minimizing Js becomes less important than minimizing Jc (tip 
displacement response energy plus control energy). As a result, the beam becomes gradually 
stiffer, and the monotonic slope from d 1 --. d 2 ~ d 3 ~ d 4 associated with small 2 values gradually 
disappears at 2 -~ 0.45, then gives way to a pronounced inflection of slope for d3 --, d4 for 2 > 0.45. 
This results in a larger allocation of mass at the tip. This type of shape is physically consistent 
with the requirements of the two parts of the control objective Jc: a stiffer structure near the 
hub that is reduced toward the tip (free end) makes best distribution of mass, while minimizing 
the tip displacement response. On the other hand, a large mass at the tip (where the disturbance 
exists) makes the disturbance less effective--thus requiring less control effort. 

(ii) To confirm the above interpretation, the case of 2 = 0.7 in Table 3 (i.e. R = 10 -4) was re- 
examined for smaller and larger values of R; R = 10 - 6  and R = 10 -z, respectively. As Fig. 5 shows, 
smaller values of R give more weighting to the tip displacement response energy part of J~, thus 
giving rise to the optimum shape being a stiffer structure near the hub which is reduced toward 
the tip. Conversely, larger values of R (e.g. R = 10-z) give more relative weighting to the control 
energy part of J~, which is best minimized by the presence of the heavier tip mass. It is interesting 
to note the similar effect of varying R and varying 2 on the optimal shapes. 

(iii) Of general interest to problems in combined optimization--at  least numerically--is the 
question as to the degree of "roughness" of the hyper-surface J~(e). A partial answer to this 
question is provided in Fig. 6 after introducing idealizations that reduce the number of variables 
from four (dl . . . .  , d4) to only two (da, d4), so that a three dimensional plot could be generated. 
Figure 6 shows such a surface in the neighborhood of the optimum for the case 2 = 0.7 in Table 3. 
This is achieved by fixing dl = 0.13, allowing d3 and d 4 to assume various values larger and smaller 
than those in Table 2 for 2 = 0.7, and letting d2 =-}(dl + d3). Assuming that the idealizations 
above (which led to reducing the dimensionality of the Ja surface) did not alter the basic topology 
of the Jz surface, it appears from Fig. 6 that Jx is a smooth function of the design variables--at 
least in the neighborhood of the minimum. Furthermore, with these idealizations it appears 
that J~ is relatively flat near the minimum along the d4 axis, and that the optimum shape is 
some linear combination of the four basic shapes depicted at the corners. 

Example 3. This last example illustrates the use of the Newton method discussed in Sect. 5 to 
solve for optimal designs. Again we consider the three-element cantilever beam model (Fig. 1) 
which is discussed in Example 1. The structural design variables c~1, e2, e3, determine the circular 
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Fig. 6. Ja(d 3, d4) surface near the minimum, 2 = 0.7 

Table 4. Optimal designs for Example 3 

Optimal design (m z) x 10 -6  

2 ~ l ~a 63 Jc J~ Jx 

0.0 0.2 0.2 0.2 5770000. 0.015 0.135e-6 
0.1 138.0 227.0 179.0 44.1 13.5 16.0 
0.2 175.0 282.0 224.0 24.0 17.0 17.7 
0.3 203.0 325.0 259.0 15.9 19.6 17.8 
0.4 230.0 366.0 292.0 11.4 22.1 17.0 
0.5 257.0 407.0 327.0 8.38 24.7 15.7 
0.6 288.0 453.0 364.0 6.15 27.5 13.8 
0.7 325.0 508.0 410.0 4.37 31.0 11.4 
0.8 377.0 586.0 475.0 2.87 35.8 8.43 
0.9 477.0 728.0 597.0 1.50 44.9 4.68 

cross-sectional areas sl,  e2, ~3 as in Example 1. The disturbance o represents a transverse sound 
pressure modeled by uncorrelated unit impulses at t = 0 concentrated at the three nodal transverse 
degrees of freedom (i.e., Qo = I, where I is the identity). The control force u is applied at the free 
end along the transverse direction. The extremal values of the functional J~ are solved for 2e [0, 1] 
by means of an iteration of the form (5.3), where the connection with the optimization problem 
is given by (5.2) and the formulas given in (5.11) are used to make the necessary approximations. 
Here again we use v= - 15.75, ~o = 1 0 - 7 ,  V = 0 ,  R = 10 -4, but Do = 10 x I. 

Table 4 lists the calculated family of optimal design 5i that minimize Ja for 2E[0, 1] along 
with the corresponding values for Jc, J~ and Jx. The general observations of Example 1 ((i), (ii), 
(iii)) also apply here. 

7 Conclusions 

An approach for combined control-structure optimization keyed to enhancing early design 
trade-offs has been outlined and illustrated by numerical examples. The approach employs a 
homotopic strategy and appears to be effective for generating families of designs that can be 
used in these early trade studies. 

Analytical results were obtained for classes of structure/control objectives with LQG and 
LQR costs. For these, we have demonstrated that global optima can be computed for small 
values of the homotopy parameter. Conditions for local optima along the homotopy path were 
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also given. Details of three numerical examples employing the LQR control cost were given 
showing variations of the optimal design variables along the homotopy path. The results of the 
second example suggest that introducing a second homotopy parameter relating the two parts 
of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto 
optima, but its effect on modifying the optimal structural shapes may be analogous to the original 
parameter 2. 
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Appendix 

Proof of Proposition 4.1. Let Z* and P* denote the unique zeros of (3.13b) and (3.13c) 
corresponding to ~t*, and note that if x* = (~t*, Z*, P*) then for (&S,T)~R "~ x ~ • Z 

0H(0, x*): (h, S, T) 
0x 

A V~ZJ=(h) 
~S + SAc r + V,Ac(h)Z + ZV,A/(h) - B1R- 1B]"TZ, - Z,TB~R - 1B~r + V,[B2QvB~ + V](h) 

ArT + TAc + V~A r(h)P* + P* V~Ac(h) + V~Do(h ) - V~ [-B~ R-~B T] (h)P* 

It follows from the second order sufficiency condition that V2j=(h) vanishes if and only if h = 0. 
Since A~ is stable, if h = 0, the third term on the right above vanishes if and only if T = 0. 
Furthermore, given that both h and T are zero, the second term on the right above vanishes if and 
only if S = 0. Hence, the null space of 0H/c3x consists of the zero vector and thus OH/0x is invertible 
at (0, x*). The implicit function theorem then implies that we can uniquely solve H(2, x(2))= 0 
in a neighborhood about 2 = 0 with 2 ~ x(2) smooth. 

Now choose a closed ball B containing (0, x*) so large that all global optima for Jx are 
contained in B for 2e[0, 1/2]. Such a B exists by the coercivity of J=. Suppose there exists a 
sequence { (2=, x',) } c B with 2, ~ 0 such that H(2,, x',) = 0 and x', # x(2,) for all n. (If no such 
sequence exists, then for 2 sufficiently small the only solutions to H(2, x) = 0 with (2, x) = 0 with 
(2,x)eB are of the form (2,x(2)), and we would be done since B contains all global optimal 
solutions for 2el0, 1/2].) Since B is compact there exists a subsequence X,k that has a limit point 
Xo in B. 

Suppose first that x o = x*, and recall that the implicit function theorem implies that solutions 
to H(2, x) = 0 in a neighborhood of (0, x*) are unique. Thus it follows that for k sufficiently large, 
X',k = X(2,k); and consequently X,,k is not distinct from X(2,k) as assumed. Therefore, x o # x*. So 
next we claim that the subsequence {X',k} does not contain a further subsequence consisting of 
global optima. For if it did, the continuity of J (as a function of 2 and e) would imply that 
J=(o~o) ~ Js(Ot*) (where x o = (e0, Zo, Po)), thereby contradicting the uniqueness of e*. Now since 
the global optima exist (and in fact are contained in B for 2el0,  1/2]), it follows that for 2 
sufficiently small these optima are precisely those obtained from the unique solutions to H(2, x) = 0 
in a neighborhood of (0,x*). [] 

Proof of Lemma 4.3. We first argue that for almost every veR "a, zero is a regular value of H. 
To establish this define Y:R"a-~Z+ • Z+ as in the proof of Proposition 4.2. Sard's theorem 
implies that for almost every vER "a, zero is a regular value of H1(2, a~, Y(a0). Hence, for almost 
every v, 

L 02 t~x Y, 
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where Y, again denotes the differential of Y. To prove that zero is regular when this condition 
holds it is sufficient to show that dim N(H,) = 1 at every zero of H(2, ~, Z, P). 

So assume that [rhST] ~N(H,). Noting that H 2 and H 3 are indepenctent of 2, it follows that 

tgH2 I i l =  tgH3 Ihs ] =  0. 

LT_J 

But this implies that 

Hence, 

d i m N ( H . ) = d i m { [ ; ] : ~ 2 t r + ~ ? H l [  I l h = 0 } = l .  
L Y ,  

And indeed zero is a regular value of H for almost every w R  "a. 
As discussed above the component of H-1(0) containing (0, x*) is diffeomorphic to a circle 

or R. Recalling the argument in Proposition 4.1, the solution path cannot return to (0, x*) because 
of the uniqueness of the solution in a neighborhood containing (0, x*). Hence, the result follows. 

Proof of Theorem 4.4. Lemma 4.3 implies that for almost every v we may assume that zero is 
a regular value of H. We will assume that such a choice has been made, and denote the component 
containing (0, x*) as C. Standard topological arguments using the regularity of C, the uniqueness 
of the solution at 2 = 0, and the fact that aH/Ox is invertible at (0, x*) (cf. Proposition 4.1), show 
that the path can be continued in 2 so long as it remains bounded. 

Now assume that det (~?H/~x) = 0 at only a finite number of points of C. (This will be proven 
later.) There are two cases to consider under this assumption: 

(i) 2 is ultimately increasing along C, or 
(ii) 2 is ultimately decreasing along C. 

Let (2, if(2), Z(~t(2)), P(~(2))) be a parameterization of C, and let M(~t) = Bz(e)QoB2r(~) + V. 
Then observe that if 2 is either strictly increasing or decreasing 

J~(e(2)) = ~ { (1 - 2)Js(e(2)) + ( v, e(2) > + 2 tr [P(e(2))M(e(2)) ] } 

= - J~(~(2)) + tr {P(~(2))M(~(2))} + 

= - Js(a(2)) + tr {P(~(2))M(a(2))}, 

since V~J vanishes along C. 
We now consider Case (i) where )~ is ultimately increasing. Define J - (2 )=  J~(~(2))/2, and 

compute its derivative to obtain 

' 5 - 2 [ -  J~(e(2)) + tr {P(e(2))M(e))} ] - Ja(e(2)) 

1 
- 22 - < v, 

The coerdvity assumption on J, implies then that J -  (2) is a decreasing function for ] el sufficiently 
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large. Therefore I~(~)1 must remain bounded as 2 increases. (For if not, Ja(a~(2)) would grow 
unboundedly, and hence, so would J - . )  Now Assumption A together with the continuity of the 
maps a ~ P ( a ) , Z ( a 0  in turn imply that P(~(2)) and Z(a(2)) (the zeros of (3.13c) and (3.13b), 
respectively), also remain bounded. Thus if 2 is ultimately increasing, Ix(k)[ remains bounded. 

Next we consider the case in which 2 is ultimately decreasing. The argument is essentially 
the same except we use the function J+(2 )=  1/(1 -2)J~(a~(2))-  1/(1 - 2 ) (  I,, a~(2)). Differentiating 
this function we obtain 

1 
d/d2j+(2) - 

( 1  - 2) 2 
>0 .  

tr [P(e(2))M(e(2))] 

Thus we see that J + is an increasing function of 2, and hence must decrease with decreasing 2. 
Then for the same reasons as above we find that I x(,~)l must remain bounded as 2 decreases. 

It remains to show that det (SH/Sx) indeed vanishes at only a finite number of points along 
C. To begin, we define the variety V 

V = {(2, x)eC x C"~ 1):H(2, x ) =  0}, 

where C denotes the complex plane. Here we are interpreting t t  in the sense of a polynomial 
system of equations in the indeterminants e~, z~j, and Pij, where the z~j and plj are the entries of 
the matrices Z and P respectively in (3.13b)-(3.13c). Furthermore,  we are considering all complex 
solutions to this system of equations. Hence the component  C is a subset of V. 

We will show that C is contained in a single irreducible subvariety of V. To see this first 
note that since zero is a regular value of H, the matrix H, ,  

H ,  = [8H/82 OH/Ox] 

has full rank at every point of C. Since all of the entries of H ,  are real along C, H ,  also has 
full rank when considered as a matrix acting on a complex vector space. Since C is connected 
(Lemma 4.3), and varieties are closed sets, it follows that if C is not contained in a single irreducible 
variety, then there must be a point, say peC,  with p e r  1 n V  2, where V 1 and V 2 are irreducible 
subvarieties of V such that neither is contained in the other. Thus it follows that 
dim Vl -- dim V 2 -- 1, for if one of them had dimension equal to zero, being irreducible, it would 
necessarily consists of the single point p, and thus be contained in the other. 

Now since I t ,  has full rank, the implicit function theorem implies that in a neighborhood 
of p, V can locally be described as the graph of an analytic function of one variable. Then without 
loss of generality we may assume that there exists an open set U in C "~ § § 1) containing p and 
an analytic function h : W ~ U  where W is an open neighborhood of 0 e C  such that 

v n u  = { ( w , h ( w ) ) : w e W } .  

But now note that if a polynomial g vanishes on V 1 n U it necessarily vanishes o n  V 2 ~ U as 
well since g(w, h(w)) is an analytic function on W whose zero set contains limit points in W; and 
thus must identically vanish on W. The polyonomials that vanish on Vi n U are precisely those 
that vanish on Vi. Therefore J ( V 0  = J(V2), and as V 1 and V 2 are both varieties, it follows that 
V 1 = V 2, contradicting the assumption that they are distinct. Therefore C is contained in a single 
irreducible variety, say V 1. 

Next consider the subvariety V' 1 c V 1, 

V' 1 = {),, x)~V 1 :det (SH/Ox) = 0}. 

V' 1 is a proper subvariety of V1 since we have shown in Proposition 4.1 that 8H/Sx is invertible 
at (0,x*). Thus dim V' 1 = 0. Consequently V' 1 consists of a finite number of points, completing 
the proof of the theorem. [] 
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