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Abstract. Abstract polytopes are combinatorial and geometrical structures with a 
distinctive topological flavor, which resemble the convex polytopes. C-groups are 
generalizations of Coxeter groups and are the automorphism groups of abstract 
polytopes which are regular. We investigate general properties of quotients of abstract 
polytopes and C-groups. 

1. Introduction 

It is a s tandard method to derive, from a given combinatorial  structure, new 
structures by making suitable identifications. This quotient construction also 
applies to the general class of abstract polytopes. Abstract polytopes are combina-  
torial and geometrical structures with a distinctive topological flavor, which 
resemble the convex polytopes. In recent years much work has been done on the 
classification by topological type of those abstract polytopes which are regular. 
For  background material, basic results, and more advanced classification results 
the reader is referred to, for example, [1] - [8] .  

In this note we investigate quotients of  abstract polytopes and C-groups. In 
our  earlier works [4 ] - [7 ]  we often ran into trouble with constructions of quotients 
where certain facts were intuitively clear but nevertheless required a tedious, if not  
complicated, proof. It is the purpose of this note to give a short exposition on 
general facts about  quotients which we could not find in this form in the literature. 

* Supported by NSF Grant DMS-9202071. 
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2. Basic Notions 

An (abstract) prepolytope of rank n, or an n-prepolytope, is a partially ordered set 
with a strictly m o n o t o n e  rank function with range { - 1, 0 . . . . .  n}. The elements 

of  rank i are called the i-faces of ~ ,  or vertices, edges, and facets of 9~ if i = 0, 1, 
or  n - 1, respectively. Theflags (maximal  totally ordered subsets) of ~ all contain 
exactly n + 2 faces, including the unique minimal  ( improper) face F_  1 and the 
unique maximal  ( improper)  face F.  of  ~ .  Also, if F and G are an (i - 1)-face and 
an (i + 1)-face with F < G, then there are exactly two /-faces H such that  
F < H < G. Equivalently, if 0 < i < n - 1 and �9 is a flag of ~ ,  exactly one flag 
exists, the i-adjacent flag �9 i of O, which differs f rom �9 in exactly the/ - face .  Fo r  
two faces F and G with F < G we call G/F:= {H[F < H < G} a section o f ~ .  We 
usually safely identify a face with the section F/F_ 1. For  a face F the section F,/F 
is called the coface of ~ at F, or  the vertex-figure at F if F is a vertex. By ~ ( ~ )  
we denote the set of flags of ~ .  

A prepolytope ~ is calledflag-connected if any two flags �9 and q '  can be joined 
by a sequence of flags �9 = �9 o, O1 . . . . .  Ok-  1, Ok = ~ .  which are such that  Oj_ 1 
and Oj are adjacent  (differ by exactly one face) for each j. A prepoly tope  ~ is 
strongly flag-connected if each section of ~ (including ~ itself) is flag-connected; 
equivalently, for the above sequence we may  further assume that  �9 n W c Oj for 
each j. By a polytope of rank n, or simply an n-polytope, we mean  a strongly 
flag-connected n-prepolytope.  

In studying quotients  we are mainly interested in polytopes.  An n-polytope 
is regular if its au tomorph i sm group A(~) is transitive on the flags. The 

group  A(~) of a regular n-polytope ~ is generated by distinguished generators 
Po . . . . .  P , -  1, where pl is the unique involutory au tomorph i sm which keeps all but 
the / - face  of a baseflag �9 = {F_I, F o . . . . .  F.} of ~ fixed. In particular,  A(~)  has 
the intersection property (with respect to Po . . . . .  P , -  0, namely, 

(1) ( p i l i ~ I )  c ~ ( p i l i e J ) = ( p i l i e l c ~ J )  fo ra l l  l, J c { 0  . . . . .  n - l } .  

Also, the generators  p~ satisfy the relations 

(2) (pip j) 2 = e if 0 < i < j - l _ < n - 2  

and 

( P i - l P i )  p' = 13 if 0 < i < n -- 1, 

with the pi's given by the Schl~ifli symbol  {Pl . . . . .  P , -  1}. 
By a C-group ( " C "  in honour  of Coxeter) we mean  a group  which is generated 

by involutions such that  (1) holds. If  (2) also holds, the group  is called a string 
C-group. Examples  of  string C-groups  are the Coxeter  groups  with a string 
d iagram;  however,  there are lots of  other  examples.  It is known that  the string 
C-groups  are precisely the groups  of the regular polytopes  I-5]. We remark  that, 
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in dealing with C-groups, it is usually the intersection property that causes 
problems. On the other hand, this property is the crucial one for polytopality. 

3. Quotients 

Though the quotient construction applies more generally to other kinds of posets, 
we restrict our attention to abstract polytopes and prepolytopes. 

Let ~ and .~ be two prepolytopes of the same rank. An incidence-preserving 
mapping tp: ~ - ~ . ~  is called a rap-map if ~o is rank (preserving) and adjacency 
preserving, the latter meaning that adjacent flags of ~ are mapped onto (distinct) 
adjacent flags of -~. Note that ~o is automatically surjective if .~ is flag-connected. 
A surjective rap-map ~o is called a covering. A covering tp is called a k-covering if 
it maps sections of ~ of rank at most k by an isomorphism onto corresponding 
sections of.~; that is, if F, G e ~ are such that F < G and rank G - rank F = k + 1, 
then ~o induces an isomorphism of G/F onto Gq~/Fq~. If a covering ~0: ~ ~ .~ exists, 
then we also say that ~ is a covering of .~, or that ~ covers .~, or that .~ is covered 
by ~.  We use similar terminology for k-coverings. A particularly interesting case 
is that of ( n -  1)-coverings; here, ~0 preserves the structure of the facets and 
vertex-figures of ~.  

(3) Theorem. Let ~ be a polytope, let .~ be a prepolytope, and let qg: ~ ~ . ~  be a 
rap-map. Then .~ is a polytope (and q~ is a covering) if and only if the image of  each 
section of  ~ is a section of  .~. 

Proof. Suppose first that the image of every section of ~ is a section of .~. Let 
f ,  d be faces of .~ with f < G. Then d = G~p for some face G of ~. Since, by 
assumption, f e G/F_ 1 = (G/F_ 1)qJ, we have F = F~o for some face F with F < G. 
By assumption again, d / f  = (G/F)q~. Since G/F is flag-connected, it follows that 
G / f  is flag-connected. Since F, d are arbitrary, we see that -~ is strongly connected, 
and hence a polytope. 

Conversely, suppose that the image of some section of ~ is not a section of .~. 
Let G/F be a minimal such section of ~.  If f . '=  Fq~, d := Gq0, we then have 
(G/F)q~ c G/ft. Hence there is a face A of.~, such that P < / ~  < d, but H ~ (G/F)~o. 
However, if/~ is any such face, then no flag of G / f  containing/: /can meet (G/F)q~ 
(except at g and G), otherwise G/F would fail to be minimal. It follows that d / f  
is not flag-connected, so that .~ is not a polytope. []  

(4) Corollary. Let ~ be a polytope, let .~ be a prepolytope, and let tp: ~ ~-~.~ be 
a rap-map. Then .~ is a polytope if and only if, whenever if, d,  i7i are faces of.~ with 
F < Iq < G, and ff = F~p, d = Gtpfor some faces F, G o f ~ ,  then I-) = Hcpfor some 
H E G/F. 

Proof. This really restates Theorem (3), since the condition P = Fq~, d = G~ with 
F < G really defines G/ft. [] 
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A c o m m o n  way to obtain  coverings is the construct ion of quotients. Let ~ be 
an n-polytope and let N be a subgroup  of A(~). In most  of our  applications ~ is 
regular and N is a normal  subgroup  of A(~'). However ,  we do not generally impose 
these restrictions on ~ and N. 

By ~ / N  we denote the set of orbits of N in ~'. For  a face F of :~ we write its 
orbit  in the form F . N .  O n  ~ / N  we introduce a partial  order as follows: if 
Z1, Z2eg~/N, then Z 1 < Zz if and only if Z1 = F . N  and Z 2 = G - N  for some 
faces F and G of :~ with F < G. The set ~ / N  together  with this partial  order is 
called the quotient of ~ with respect to N. The mapp ing  n: Fv--,F.N from g~ 
on to  ~ / N  is called the canonical projection. 

(5) Proposition. Let 9 ~ be an n-polytope and let N be a subgroup of A(:~). Then 
~ / N  is a flag-connected (ranked) poset of rank n with a unique minimal face and a 
unique maximal face. 

Proof Clearly, F_  1 �9 N = {F_a} and F d. N = {Fd}. The rank function o f ~ / N  is 
given by rank(F .  N ) : =  rank F for F e ~ .  The  canonical projection rr: ~ ~ ~ / N  
induces a surjective mapp ing  72: ~ ( ~ ) ~ ( ~ / N )  between the sets of flags of 
and 5~/N; here, if ve = {G_ 1, Go . . . . .  G.} ~ o~(~), then 

qJ~ := ,{G_ x" N, Go" N . . . . .  G." N} = qJrc. 

The surjectivity of $ is an immedia te  consequence of the definition of the partial  
order  on ~/N.  However,  then the flag-connectedness of ~ / N  follows from the fact 
that  ~ maps  adjacent  flags of  ~ onto  equal or  adjacent flags of ~/N.  [] 

Similar a rguments  to those in the p roof  of  Proposi t ion  (5) show that  all sections 
of  rank  n - 1 of ~ / N  are flag-connected. M o r e  generally, if F is a face of  ~ ,  then 
any two flags of ~ / N  which contain the face F .  N can be joined by a suitable 
sequence of flags which all contain  F .  N. However ,  further connectivity propert ies 
of ~'/N will depend on the choice of  N. 

To  give an example  that ~ / N  need not be a prepolytope,  consider the square 
tessellation ~ = {4, 4} with vertex set 7/2, and take for N the group generated by 
the translat ion z with t ranslat ion vector  (1, 1). Then the fundamental  region of N 
is an infinite strip and  ~ / N  is a " tessel lat ion" of  this strip. If  �9 -- {Fo, Fx, F2} is 
the base flag o f ~  with F 0 = (0, 0), F1 = {(0, 0), (0, 1)}, and F 2 = {(0, 0), (0, l), (1, 0), 
(1, 1)}, then there are four faces of rank 1 in the 1-section F 2 " N / F  o �9 N of ~'/N, 
namely,  H"  N with H an edge of F2. 

General ly  we are interested in quotients  ~ / N  which are again polytopes and 
have certain kinds of  sections i somorphic  to those of  the original polytope ~ .  This 
proper ty  can be achieved by imposing  certain condit ions on N. 

Let - 1 _< i < j _< n, and let F be an / - face  and let G be a j-face of ~ such that  
F < G. Then F n  is an / - face  and  Gn is a j-face of ~ / N  such that  Frr < Grc. Let F 
be a chain of  ~ of type { - 1, 0 . . . . .  i - 1, i ,j , j  + 1 . . . . .  n} which contains F and 
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G. By Nr we denote the stabilizer of F in N. Then we have the canonical projection 
fl: G/F ~-~ (G/F)/Nr as well as the incidence-preserving mapping 

$7 : (G/F)/Nr v-~ GTr/Fzt, 
(6) 

H" N r ~-~ H" N (H ~ G/E). 

In particular, fly = 7t (or, more exactly, f17 is the restriction of rt given by 
~: G/F~---,Gn/Fn). Further, 7 is injective if and only if two faces of G/F are 
equivalent modulo N r whenever they are equivalent modulo N. Note that if 7 is 
bijective, it must be an isomorphism; in fact, the special nature of 7 guarantees 
that 7-~ preserves incidence. Clearly, if 7 is an isomorphism, then it induces a 
bijection 

~((G/F)/Nr) ~ ~(G~/F~). 

(7) Proposition. Let ~ be an n-polytope and let N be a subgroup of A(~). Then 
~ / N  is an n-polytope if and only if the following two conditions hold: 

(a) 7 of(6) is surjective for all F, G, and F as above. 
(b) fl, 7 are injective if rank G - rank F = 2. 

Proof First, note that y is surjective if and only if n (restricted to G/F) is surjective. 
Also, each flag of ~ / N  has exactly one/-adjacent flag for each i if and only if fl, 
? are isomorphisms when rank G -  rank F = 2; in this case, n is a rap-map. 
However, then the statement follows from Theorem (3) and Proposition (5). [] 

By ~ ( ~ ) / N  we denote the set of orbits of o~(.~) under the action of N. Then 
we have the mapping 

(8) 
It: ~ ( # ) / N  ~ ,~(~/X),  

qJ " N ~ ~rc (~  e o~ (.~)). 

It follows from the proof of Proposition (5) that it is surjective. Our  next theorem 
answers the question when ~ ( ~ ) / N  and ~ ( ~ / N )  can be naturally identified 
under p. 

(9) Theorem. Let ~ be an n-polytope and let N be a subgroup of A{~) such that 
~ / N  is a polytope. Then it of(8) is a bijection if and only if, for all F, G, and F as 
above, 7 of (6) is an isomorphism. 

Proof. By Proposition (7), the maps y are surjective. Now suppose that # is a 
bijection, and let F, G, and F be as above. To prove that y: ( G / F ) / N r ~ G n / F n  is 
injective, let K and L be faces in G/F such that K" N = L.  N. Choose flags W and 
f~ of ~ such that F c  W, f~ and K e W ,  Let2 .  Then qJ:= { H ' N I H e W }  and 
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t~.'= { H ' N I H  e ~} are flags of ~ / N  which contain the face K .  N = L .  N as well 
as the chain 1~:= { H ' N I H e F } .  Let k. '= rank K ( = r a n k  L). Since ~ / N  is a 
polytope, a sequence 

~'  = q 'o ,  9 ~  . . . . .  ~em_ ~, ' i ' .  = f i  

of flags of  ~/N,  all containing K .  N and i ~, exists such that ~ t -  ~, ~ t  are adjacent 
for I = 1 . . . . .  m; then ~ t -  1, ~ t  are iradjacent for some i t with rank F = i < i~ < j = 
rank G, i I r k. Nevertheless/~ is a bijection, so that, for all l = 0 . . . . .  m, a flag Wt 
of ~ exists such that ~ t  = (q~t" N)#. Here we may  assume that q'o = q~- However,  
now, by condit ion (b) of Proposi t ion (7), adjacent flags of ~ are never in the same 
orbit of  N, so that the canonical mapping f f ( ~ ) ~  ~ ( ~ ) / N  followed by # sends 
adjacent flags of  ~ '  to adjacent flags of ~/N. It follows that, starting with q~o = q~, 
we can choose the flags q't of ~ in such a way that  q~_ ~ and Wt are i radjacent  
for l = 1 . . . . .  m; here, i t is as above. This gives us a sequence 

W . N  = W o ' N ,  W1 . N  . . . . .  W m - i ' N ,  W ~ . N  = f l . N  

of orbits of  N, where the sequence W = Wo, ~F1 . . . . .  qJ= in ~ ( ~ )  has the same 
adjacency properties as the corresponding sequence in ~(~/N) .  Note  that 
here we cannot  conclude that qJm = f~. However,  since i <  it < j  and i t ~: k 
for all l, each flag Wz of ~ must contain both the face K and the chain F. Also 
q~m'N = f2 .N ,  so that t p e N  exists such that qJ,~0 = f~ and thus K~o- -L .  
However  F c f~, so that q3 e N r. It follows that  K-  N r = L .  Nr .  This proves that 

is injective. 
Conversely, let all maps 7 be isomorphisms. To prove that # is injective, let 

~1 = {F-t ,  Go,.. . ,  G,-1, F,}, ~ 2  = {F-l,  Ho . . . . .  n,_~, F,} be flags of : such 
that W i n -  qJ2rr. Then WI" N = W 2 �9 N if we can prove by induction on j that  
~0 e N exists such that  Gt~o = H i for 0 < i < j .  F o r j  = 0 this is true by assumption. 
To prove it f o r j  + 1, assume tp e N has been chosen such that G~q~ = Ht for i < j. 
Then Hj < GI+ ltp, H~+I. However,  Gi+ 1 �9 N = H j + I - N ,  so that G~+~q~ and Hi+ 1 
are faces of the section FJHj which are in the same orbit of N. On the other hand, 
the map  y defined by G. '= F, ,  F . '=  Hi, and F. '= {F_ 1, H 0 . . . . .  Hi, F,} is an 
isomorphism, so that Gi+l~o and Hj+I  are also in the same orbit of  Nr; that  is, 
Gj+tq~z = Hj+I for some z e N  r. Thus, i f / < j  we also have Giq~z = Hiz = Hi, so 
that  q~z has the required proper ty  with respect to j + 1. This completes the proof  
of  Theorem (9). [ ]  

Theorem (9) explains why in most  applications it is natural to require that the 
mappings 7 of  (6) are isomorphisms. We usually impose this condition. For  regular 
polytopes we also give a further justification in Theorem (15). The following 
theorem identifies the groups of  quotients of regular polytopes. 

(10) Theorem. Let ~ be a regular n-polytope and let N be a subgroup of A(~). 
Assume that, for all F, G, and F as above, ), of (6) is an isomorphism, and that 
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fl is injective i f  rank G -  rank F = 2. Then ~ / N  is an n-polytope with group 
A ( ~ / N )  ~- B /N,  where B is the normalizer o f  N in A(~).  In particular, ~ / N  is regular 
if and only if  N is normal in A(~),  in which case A ( ~ / N )  ~- A(~) /N .  

Proof  By Proposi t ion (7) and Theorem (9), ~ / N  is an n-polytope and/~ of (8) is 
a bijection. Now, to prove the statement about  A(~ /N) ,  observe that for each 
~0 e B the mapping ~b: F .  N ~ Fq~- N defines an au tomorphism of ~ / N .  Thus there 
is a homomorph i sm ~: B ~ A ( ~ / N )  given by q~ct = ~b. Let z e ker(~). Then, for any 
qa e ~ ( ~ )  we have WTz = (Tz)n. Hence, since # is injective, Wz = Wq~ for some 
q~ e N, and thus z = ~0 e N. It follows that ker(~) = N. It remains to show that ~t 
is surjective. 

Let p e A ( ~ / N )  and let �9 = {F_ 1, Fo . . . . .  F.} be the base flag of ~ .  Since ~ is 
regular (by assumption) and p preserves flags of ~ / N ,  we have (Ort)p = (Otp)n for 
some q9 ~ A(~). We shall prove that this implies ((Oq~)rt)p = (O~k~p)rt for each 
~h ~ A(~). 

To see this, join the flags �9 and (I)~ of ~ by a sequence 

(1) = ( I )o ,  (I) 1 . . . . .  (I)k - 1, (i)k ~--- (I)l]/, 

in which any two consecutive flags are adjacent. Then 

(I)(0 : ( I )0(0  , (1) l (  p . . . .  , O k _  l~O , (I)k~O = (I)~t~O 

is a similar such sequence joining O~0 and Offq~, in which the flags O,,_ ~o and 
O,,~0 differ in a face of  the same rank as O,,_1 and O,, (m = 1 . . . . .  k). However,  
the images of adjacent flags in ~'  under the canonical mapping ~ ' ( ~ ) ~  ~ ( ~ / N )  
cannot coincide, so that the sequences 

07:  = 0 o ~ ,  (01~ . . . . .  O k -  1re, Okrc = (04,)re 

and 

(O~o)n = (Oo ~o)rc, (Ol~o)z . . . . .  (Ok-l~o)r~, (Ok~o)rc = (Or 

have the same adjacency properties as their preimages. Hence, since (On)p = (O~0)n 
and p preserves the type of adjacency, we must have (O,,g)p = (O,,~o)~ for all m. 
For  m = k this proves ((O~k)Tz)p = (O~q~)~, as required. 

Now, for ~, e N, this equation implies 

( o ~ o ) ~  = ( ( o r  = (O~)p = (o~o)~. 

However, this in turn shows that OqJ~0 = O~oT and thus qJq~ = ~pz for some z e N. 
It follows that q~ e B. Also, since ((O~,)lr)p = ((O~,)q~)lr for each ~b e A(~), we have 

(F " N)p = (F~)p = (Ftp)r~ -- Ftp " N = (F.  N)(o 
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for each F in ~', and thus p = ~b. This proves that  0t is surjective, and hence 
A(~/N)  = B/N. 

Finally, consider the base flag *Iv of ~ / N .  Then any flag of ~' /N is of the form 
(Otp)zr with q~ e A(:~). Hence, ~ / N  is regular if and only if, for each q~ e A(~), ~ e B 
exists such that  (*~p)Tr = (07r)'~ = (*z)lr and thus (*q~)-N = (Oz) .N,  or, equi- 
valently, q~ e zN c B. It follows that  :~/N is regular if and only if B = A(~'), in 
which case B/N = A(:~)/N. This completes the proof. [ ]  

Note  that  in Theorem (10) the hypothesis  on fl is equivalent to requiring that  
N does not  contain a conjugate of  a distinguished genera tor  p~ of A(~). The 
following proposi t ion deals with an interesting special case in which all mappings  
~, are isomorphisms.  See also Theorem (16) for an equivalent version of Theorem 
(11), in the regular case. 

(11) Theorem. Let ~ be an n-polytope and let N be a subgroup of A(~) such that 
each orbit of  N intersects each proper section of ~ in at most one face. Then, for 
all F, G, and F as above, the map 7 of (6) is an isomorphism (with N r = 1 if G/F is 
proper) and the sections Gx/Fzr of ~ / N  and G/F of ~ are isomorphic. In particular, 
rt: ~--~ ~' /N is an (n -- 1)-covering of n-polytopes. 

Proof Let G/F be a proper  section of ~ .  By our assumptions,  N v = 1, so that  
in (6) we may  identify H"  N r with H. Since G/F c~ H -  N = {H} for all H e G/F, 
the map  7 is clearly injective. To  prove  surjectivity let H .  N e Gn/FTr = G" N/F" N. 
Here we may  assume that  F < H. Also, q~ e N exists such that  H < G~p. However,  
if F # F_  t, then G and Gq~ are faces in the proper  section F,/F of ~ which are 
in the same orbit ;  hence we must  have G = Gq~ and H e G/F. If F = F_  1, then 
G :/: F ,  and similar a rguments  work  with the roles of  F and G interchanged. It 
follows that  y is surjective. No te  also that  fl is injective if G/F is proper.  [ ]  

Concluding this section we discuss analogues of the intersection proper ty  for 
the groups of regular polytopes.  

(12) Proposition. Let ~ be a regular n-polytope with group 

A(~) = (Po . . . . .  P . -  1 ), 

and let N be a subgroup of  A(#)  such that N does not contain a conjugate of a 
generator Pi and, for all F, G, and F as above, ~ of(6) is an isomorphism. Then, for 
each i, j with - 1 < i < j < n, and each qJ e A(~), we have 

(pk[k > i)tpN n (pk[k < j)qgN = (pkli < k < j) tpN. 

Proof. By assumption,  ~ / N  is a polytope  and p of (8) is a bijection. Let 
= {F_ 1, Fo . . . . .  F,} be the base flag o f ~ .  Write Fk := FktP" N for k = - 1 . . . . .  n. 

Consider  the orbits  (r N, with 

"ctpN c (Pi+ 1 . . . . .  pn_ 1 ) t # N  r3 ( P o  . . . . .  Pj- l)q )N" 
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Their  images under # all contain { f - l ,  Fo . . . . .  F i, Fj, Fj+ 1 . . . . .  /~.}, so that  their 
restrictions to sections of ~ / N  of type {i . . . . .  j} form flags of f i / f l .  However ,  the 
m a p  .; with 

F = Fi~o, G =  Fjcp, F = {F_I ,  Fo~ p . . . . .  Fiq~,Fjqg, Fj+lq~ . . . . .  F,} 

is an isomorphism, so that  these flags are the images under # of orbits of the form 
(@z~p)- N with z ~ <Pi+ 1 . . . . .  P j -  1 ). Nevertheless, p is bijective, so that  the orbits 
must  actually coincide. Thus zq~N ~ (p  j+ 1,. , Pk-I)~oN. This proves one inclu- 
sion, and the opposite inclusion is trivial. [ ]  

Note  that, if N is normal  in A(~), Proposi t ion (12)just  gives the intersection 
proper ty  for A ( ~ / N )  = A(~) /N ,  the group of the regular polytope ~ / N .  For  a 
general N, the condition of Proposi t ion (12) is really a condit ion for orbits of flags 
of ~ ,  and thus cannot  be expected to characterize polytopal i ty  of ~ / N  completely. 
In contrast,  the condition of our next proposi t ion can be seen as a condit ion for 
flags of ~ / N ,  and does indeed characterize polytopality.  

(13) Proposition. Let ~ be a regular n-polytope with 9roup 

A(~)  = <Po . . . . .  P , -  1 >, 

and let N be a subgroup of  A(~).  Then ~ / N  is an n-polytope if and only if the 
followin9 two conditions hold: 

(a) For each i, j, k with - 1 <_ i < k < j < n, and each ~o ~ A(~),  

(p~ll # k><ptll > i>~oN n (pill  # k>(plll < j>q~N 

= (pill  # k)<ptli < l <j>q~N. 

(b) For each k = 0 . . . . .  n - 1 and each r ~ A(~),  

( p t l l #  k>p k n tp-lNq9 = ~ .  

Proof  We use Proposi t ion (7). First we prove that  (a) of Proposi t ion (7) and 
(a) of Proposi t ion (13) are equivalent. Let �9 = {F_I,  F o , - . . ,  F,} be the base 
flag of ~ .  Then general chains of ~ are equivalent under A(~) to subsets of 
�9 , so that  for Proposi t ion (7) we may  assume that  F = Fifo, G = Fj~0, and 
F = {Ftqg[l # i + 1 . . . . .  j - 1} for some q~ ~ A(~), and thus we have the mapp ing  
?: (Fjtp/Fiqg)/Nr~--~ Fjqg"N/Fitp" N. Let i < k < j. The k-faces o f ~ / N  incident with 
Fjq~.N are just those of  the form FkOqtp. N with cq~<po  . . . .  , P j - I > ,  while 
those incident with Fiq~" N are of the form FkO~2~" N with 0~ 2 G <Pi+l . . . . .  Pn-l>" 
In particular,  the k-faces in Fjq~.N/Fiq~. N can be expressed both  ways, and if 
FkO~It p �9 N = FkO~2q)" N ,  then we have ~qtp ~ (pill  # k>O~EqgN. 
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Hence, if the condit ion in (a) holds, then ~Zlq~E(plll # k)o~aqgN for some 
~z3 ~ (pl[i < l < j ) ,  and thus Fk~l~o " N = FkCX3qg " N ;  but FkOC3C p ~ Fjq~/Fi~o, so that  

is surjective. Conversely,  if ~, is surjective, then a k-face Fk~l~o. N = Fk~2q~" N 
in F j ~ o ' N / F i ~ o ' N  is of the form Fkot3q~.N with o t 3 6 ( p l l i < l < j ) .  Hence, 
if ill, f l 2 E ( p l l l # k ) ,  ~ l ~ ( P o  . . . . .  P j - I ) ,  and ~ 2 ~ ( p i +  1 . . . . .  P , - 1 )  are such 
that  f l loqq~N=fl2~2qgN, then F k ~ o . N = F k ~ Z 2 c P . N = F k O ~ a q g . N  for some 
c~3~(p~li < 1 < j ) ,  and thus fllO~lq~N = ( p t [ l  4: k ) (p t l i  < 1 < j)q~N. This proves 
one inclusion of (a), and the other  is trivial. 

Next we need to show that  parts (b) of Proposi t ions  (7) and (13) correspond 
to each other. First note that  N does not contain a conjugate of  a Pi (this is a 
weaker  requirement  than (b)) if and only if orbits under N of adjacent flags of 
are distinct; in fact, if q~ e A(~@), then (~0)  i. N = (~q~)~p-~p~q~. N. Hence, if (b) of 
Proposi t ion  (13) holds, then the orbits of adjacent  flags of ~ must  be distinct, so 
that/~, y of (b) in Proposi t ion  (7) must  be injective. Conversely,  assume that  (b) of 
Proposi t ion  (13) does not hold for some k and ~0, that  is, pk~o -~ ~ (pil l  4= k)q~-~N. 
However ,  then F ~ p ~ q ~ - X . N = F ~ o - a . N ,  so that  the two faces F~p~q~ -~ and 
F~q~ -1 of the section F~+iqg-~/Fk_~q~ - ~ are identified under  ~ =/~7- Hence / / ,  7 
cannot  both  be injective. This completes the proof. [ ]  

4. C-Groups 

In verifying that  a given group  is a string C-group  the following quotient lemma 
is somet imes useful. 

(14) Lemma.  Let A = (Po . . . . .  p , _ ~ )  be a group with property (2), and let 
.4 = ( a o . . . . .  a ,_ 1) be a string C-group (with respect to the distinguished generators 
ai). I f  the mapping pi~--,aj (j  = 0 . . . . .  n -  1) induces a homomorphism ~: A~-, .4,  
which is one-to-one on A , - 1  := (Po . . . . .  P . - 2 )  or on Ao:=  (Pl  . . . . .  P , -1 ) ,  then A 
is also a string C-group, and ~ induces a covering ~ ( A ) ~  ~(.4) o f  the corresponding 
polytopes. 

Proof. Assume that  ~ is one- to-one on A,_ ~ (say). Since A,_ ~ is a string C-group,  
it suffices to check 

A n - I  ~ ( P j  . . . . .  P n - 1 )  = ( P j , ' ' ' , P n - 2 )  

for each j = 1, . . . ,  n - 1. Let tp ~ A,_ 1 c~ (Pi  . . . . .  P , -  1 ). Then 

q)O~ ~ <a  0 . . . . .  O'n - 2 )  6"3 ( f f  j . . . . .  O'n - 1 ) = ( U j  . . . . .  O'n - 2 ) '  

and hence ~oa has a pre image in (p j  . . . . .  P , - 2 ) .  However ,  ~ is one- to-one on A._ ~, 
so that  ~o is the only pre image of ~oo~ in A._I .  It follows that  ~o E (p j  . . . . .  P . - 2 ) .  
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This proves one inclusion, and the other is trivial. Therefore A is a string C-group. 
Finally, it is immediate that 

(P2IJ ~ i)q)~"(ajlJ # i)((pct) (i = - 1 , 0  . . . . .  n; (peA) 

gives a covering ~ ( A ) ~  ~(,z]). [ ]  

Our  next two propositions relate quotients of string C-groups to quotients of 
polytopes. In particular, in Theorem (15) it is explained why in our  discussion in 
Section 3 it was usually assumed that the maps 7 of (6) are isomorphisms. Finally, 
Theorem (16) is an equivalent version of Theorem (11). 

(15) Theorem. Let ~ be a regular n-polytope with group A(~) = (Po . . . . .  P , - I> ,  
and let N be a normal subgroup of A(~). I f  A(~)/N is a strin# C-group (with 
distinyuished generators Npo . . . . .  Np,_i),  then the two polytopes ~'/N and 
~(A(~)/N) are isomorphic, with group A(~/N) = A(~')/N, and all maps ~ of (6) are 
isomorphisms. 

Proof. Let �9 = {F_I,  F o , . . . ,  F,} be the base flag of ~ .  Write .4:= A(.~)/N 
and let ~t:A(~)~--,.4 be the canonical projection. For  i = - 1 ,  0 . . . . .  n define 
Ai:= ( p / j  # i) and ,4i:= (Np~[j # i). Note  that .,ti ~ - t  = AiN for each i. By 
assumption ,4 is a string C-group, so that ~(.~) is defined, with base flag 
{A_ t, ,4o, . . . ,  -d,}. Consider the mapping 

,~: ~ / N  ~ ~'(~), 

Fi q~ " N ~ .~i(q~) (i = - 1, 0 . . . . .  n; 9 e A(~)). 

For  q~, $ e A(~), we have Fi~o. N = Fi~k" N in ~ / N  if and only if AiNq9 = AiN~k; 
that is, if and only if ,41(~oct) = .di($~) in ~(A). It follows that x is a bijection. 
However,  x also preserves incidence in both directions. In fact, in ~ / N  a pair of 
incident faces is of the form F~cp.N and Fjztp. N with i < j ,  q~eA(~), and 
z ~ (Pi+ t, . . . ,  P n - t ) ;  by x they are mapped onto the faces Ai(q~) and Aj~z~)(q~0t) 
of ~(.4), which are again incident because ra e (Npi+l . . . . .  Npn- t ) .  Conversely, 
if .4i(q~a) and Aj(r~t)(~0a) are incident in ~(z]), with za e (Npi+ 1 . . . . .  Np,_ 1), then 
z ~ (Pi+ t . . . . .  p~_l)N and thus Fiq~. N and Fjzq~. N are incident in ~/N.  

It follows that # / N  and ~(,4) are isomorphic polytopes and thus have the 
same group ,4. By Theorem (9), all maps ~ are isomorphisms if the mapping 
!a: ~ ( ~ ) / N ~ - - ~ ( ~ / N )  of (8) is a bijection. To prove this, consider the chain of 
maps 

o,~(.~(fi.)) ~ ,2 ~. ~(~)/N ~-~ ~(~/N), 

Here, #1 is a bijection because ~(.4) is a regular polytope with (the simply 
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f lag-transi t ive)  g r o u p  .4; a n d  #2 is a b i jec t ion because  Oq~. N = ~ b "  N in ~ ( ~ ) / N  
if a n d  on ly  if ~0~ = N~o = N~k = ~Occ Nevertheless ,  #1#2# is also a b i jec t ion because  
it is the m a p  i nd u c ed  by  the i s o m o r p h i s m  x -  ~ : ~ ( A )  ~ ~ / N .  Hence /~  mus t  be a 
bi ject ion,  a n d  the p ro o f  is complete .  [ ]  

(16) Theorem.  Let  ~ be a regular n-polytope with group A(~)  = (Po . . . . .  P , -  1), 
and let N be a normal subgroup of  A(:~) such that 

N n  (pa . . . . .  P . - I>(Po  . . . . .  P . - 2 )  = {e}. 

Then 

(a) A ( ~ ) / N  is a string C-group, and ~ / N  and ~ ( A ( ~ ) / N )  are isomorphic regular 
polytopes with group A ( ~ / N )  = A(~) /N.  

(b) The facets and vertex-figures o f  ~ / N  are isomorphic to the facets and 
vertex-figures o f  ~ ,  respectively; that is, ~ is an (n - 1)-covering of  ~ / N .  

Proof  We use the same  n o t a t i o n  as in the p roo f  of T h e o r e m  (15). F i rs t  n o t e  
tha t  N n A . _ t  = {~} = N c~ Ao, so tha t  the res t r ic t ions  of  ~ to the s u b g r o u p s  
A , _  1 and  A o are i somorph i sms .  In  par t icu la r ,  A , _ I ~  = ( N p o  . . . . .  N p , - 2 )  a n d  
Ao~t = ( N p l  . . . .  , N p , _  x) are s t r ing  C-groups .  

T o  prove  tha t  A is a s t r ing  C - g r o u p  observe  tha t  (2) holds  trivially. F o r  (1) it 
suffices to check 

A . - l a  n Aoa = (Pl  . . . . .  P n - 2 )  ~, 

because  b o t h  g roups  on  the  left are  s t r ing  C-groups .  Let  q ~ A , _  1, @ c A  o, 
a n d  q~at = @cc T h e n  ~kq~- 1 ~ ker(ct) c~ A oA  ._ 1 = N c~ AoA  ._ 1 = {e} a n d  thus  

tp = ~b e A ,_  1 n A o = ( P l  . . . . .  P , - 2 ) .  However ,  this proves  (1). N o w  we can  app ly  
T h e o r e m  (15) to comple te  the p ro o f  of par t  (a). P a r t  (b) follows f rom ,4,_ 1 ~ A , _  1 

a n d  -4o ~ Ao. [ ]  
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