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Abstract: MadGraph 5 is the new version of the MadGraph matrix element gen-

erator, written in the Python programming language. It implements a number of new,

efficient algorithms that provide improved performance and functionality in all aspects of

the program. It features a new user interface, several new output formats including C++

process libraries for Pythia 8, and full compatibility with FeynRules for new physics

models implementation, allowing for event generation for any model that can be written

in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous

versions, and its design allows it to be used as a collaborative platform where theoretical,

phenomenological and simulation projects can be developed and then distributed to the

high-energy community. We describe the ideas and the most important developments of

the code and illustrate its capabilities through a few simple phenomenological examples.
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1 Introduction

Identifying the fundamental building blocks of matter and describing their interactions

from first principles is the goal not only of current accelerator based experiments, such as

those operating at Tevatron and the LHC, but also of many other experiments, including

flavour and neutrino experiments, and dark matter detection experiments in underground

laboratories or satellites.

Discoveries from these experiments as well as their interpretation will rely on our

ability to perform accurate simulations for both the signals and their backgrounds. At

the LHC, for instance, extracting physics from the data will present several significant

challenges. First, proton-proton collisions at very high energies produce final states that

involve a large number of jets, heavy-flavour quarks, leptons and missing energy, providing

an overwhelming background to many new physics searches. Second, even in the presence of

a clear “anomaly” with respect to the Standard Model prediction, its interpretation in terms

of an underlying phenomena or theory could be extremely difficult. Tools that are able to

make precise predictions for wide classes of Beyond the Standard Model (BSM) physics,

as well as those that help in building up an effective field theory from the data, will be

employed. Before one or a few candidate theories can be selected, accurate measurements of

the corresponding parameters (masses, couplings, spin, charges) will be needed. Production

rates and/or branching ratio measurements, for example, will provide constraints only if we

are able to connect them to the fundamental parameters of a model through an accurate

calculation, at least at next-to-leading order in perturbative QCD.

In this context, there is no doubt that Monte Carlo simulations play a key role at

each stage of the exploration of the TeV scale, i.e., from the discovery and identification

of BSM physics, to the measurement of its properties. The realization of the need for

better simulation tools for the LHC has spurred an intense activity in recent years, that

has resulted in several important advances in the field.

General purpose matrix-element based event generators, such as Com-

pHEP/CalcHEP [1–3], MadGraph/ MadEvent [4–6], Sherpa [7] have been

available for several years now. More recently highly efficiencient multiparton techniques

which go beyond usual Feynman diagrams have been introduced [8–11], and implemented

in publicly available codes, such as Whizard [12, 13], Alpgen [14], Helac [15] and

Comix [16]. As a result, the problem of automatically generating tree-level matrix

elements (and then cross sections and events) for a very large class of renormalizable

models has been solved. The recent introduction of FeynRules [17] has provided a

new method for implementing new physics models as well as setting a new standard in

terms of validation and availability [18, 19]. Communication between FeynRules and
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matrix element programs is being standardized via the new Universal FeynRules Output

format, the UFO [20].

A connected effort is being made in the automation of NLO computations. The gen-

eration of the real corrections with the appropriate subtractions has been achieved in an

automatic way [21–26]. For virtual corrections, several new algorithms for numerical cal-

culation of loop amplitudes have been proposed (see, e.g., [27] for a review) and some of

them successfully applied to the computation of SM processes of physical interest [28–32].

Very recently, CutTools [33] has been successfully interfaced with MadGraph. The

resulting tool, MadLoop [34] interfaced to MadFKS [26], allows a fully automatic cal-

culation of infrared-safe observables at NLO in QCD for a wide range of processes in the

Standard Model.

Last but not least, an accurate simulation of a hadronic collision requires a care-

ful integration of the matrix-element hard process, with the full parton showering and

hadronization infrastructure [35–37]. Here again, significant progress has been made in the

development of merging algorithms, such as CKKW and MLM merging [38–44], and in

their comparison [45, 46], with applications to SM [41, 47, 48] and to BSM [49] processes.

A breakthrough in merging fixed order calculations and parton showers was achieved in

refs. [50, 51], where it is shown how to correctly interface an NLO computation to avoid

double counting and delivered the first event generator at NLO, MC@NLO. More recently,

another method along the same lines, dubbed Powheg, has been proposed [52] and applied

to a variety of processes at the LHC through the PowhegBox general implementation [53].

The new version of MadGraph has been designed to support and advance the lines

of development mentioned above, with three main objectives:

1. Lagrangian-based BSM physics via FeynRules for any renormalizable or effective

theory.

2. Full automation and optimization of NLO computations in the SM and beyond.

3. Merging to showering/hadronization codes for complete event simulation at LO (via

CKKW and MLM methods) and at NLO (via MC@NLO and Powheg), as well as

the combination of the two (“CKKW at NLO”).

MadGraph 5 is open source software written in Python and features a collaborative

development structure. It can generate matrix elements at the tree-level for any Lagrangian

based model (renormalizable or effective) implemented in FeynRules via the UFO inter-

face, and automatic generation of the corresponding helicity amplitude subroutines via the

ALOHA package [54]. With respect to MadGraph 4, a significant improvement in effi-

ciency has been attained, and the possibilities for tree-level matrix element generation (and

diagram plotting) have been extended, including optimization of the MadEvent output

and reorganization of multi-jet final state subprocesses. It features a wide set of flexible

output formats in Fortran, C++, and Python, and dedicated matrix element output for

Pythia 8 [55].

This work documents and describes the general philosophy of the new MadGraph

version, as well as some of the most important improvements in the code. The paper is
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structured as follows: In section 2 we give a general overview on the code structure and

of the algorithms employed. In dedicated subsections we describe the diagram genera-

tion algorithm, the fermion-flow algorithm, the colour algebra module, and the generation

of decay chains. We then present the available output formats, the new multiprocesses

optimization in MadEvent and process library generation for Pythia 8 as well as the

new diagram drawing algorithm. Model inheritance from FeynRules via the UFO and

ALOHA is presented in section 4 together with a comprehensive list of available models

and the suite of model tests that can be performed at the process level. The following sec-

tion describes the validation checks that have been performed for SM, MSSM, HEFT and

RS processes, as well as some key indicators for the performance improvements in speed

compared to previous versions of MadGraph/MadEvent. Section 6 provides a selective

set of examples of applications. We leave our conclusions and the discussion of the outlook

to the last section. Technical appendices follow, where the interested reader can find more

details and examples.

2 Overview and algorithms

MadGraph [4] is a tool for automatically generating matrix elements for High Energy

Physics processes, such as decays and 2 → n scatterings. First, the user specifies a pro-

cess in terms of initial and final state particles (allowing for a number of refined criteria,

including forced or forbidden s-channel resonances, excluded internal particles, and forced

decay chains of final state particles). Multiparticle labels can be used to specify all possible

processes involving a range of particles. As a result, MadGraph generates all Feynman

diagrams for the process, and outputs the computer code necessary to evaluate the ma-

trix element at a given phase space point. The matrix element evaluation is done using

calls to helicity wavefunctions and amplitudes, as were first implemented in the HELAS

package [56]. This implementation is efficient because it naturally allows helicity wavefunc-

tions corresponding to identical subdiagrams to be reused across diagrams. MadGraph

also produces pictorial output of the Feynman diagrams for the process in question. The

computer code produced by MadGraph can then be used for cross section or decay width

calculations and event generation, e.g. using the MadEvent package [5], which is included

with MadGraph 5.

While previous versions of MadGraph were written in Fortran 77, MadGraph 5 is

written in Python. This object oriented computer language allows for completely new algo-

rithms, and removes many of the restrictions that were inherent in the Fortran versions. As

a result, both MadGraph 5 and the code it produces run significantly faster than previous

versions. Even more important however, is that the structure of the new implementation

greatly facilitates selective use of modules and additions of new features. In this paper we

will discuss a few such additions, such as implementation of new colour representations

(colour sextets and ǫijk), implementation of multi-fermion vertices and addition of new

output formats, including output in C++ and Python.
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2.1 Diagram generation

The diagram generation algorithm used in MadGraph 5 is faster, more efficient and

produces better optimized code than earlier MadGraph versions.

In MadGraph 4 diagrams generation is based on the following algorithm:

1. Generate all topologies with appropriate number of external legs.

2. Assign particles to external legs.

3. Identify vertices with at most one unassigned line.

4. Check to see if there is any interaction in the model that will accomodate the as-

signed lines.

5. If yes,

(a) if a vertex had an unassigned line, assign to it the appropriate particle ID from

the interaction, then check next vertex.

(b) if all lines in the vertex are known, diagram is complete. Write it to file.

6. If no, diagram fails, try next topology.

This algorithm is straightforward to implement, but the time requirement grows quickly

with the number of external particles since every topology must be explicitly checked, even

if only a small fraction contribute to viable diagrams.

The algorithm in MadGraph 5 eliminates this inefficiency by making use of the model

information to effectively only construct topologies that will yield valid diagrams. Fur-

thermore, it recursively generates all of the diagrams in parallel. This ensures that any

combination of external legs (a,b), (a,b,c) etc. that is common to multiple diagrams will be

recognized as such, allowing for optimal recycling of already calculated subdiagrams in the

resulting helicity amplitude code. It also removes restrictions on the number of particles

in an interaction vertex, paving the way for implementation of higher-dimensional effective

interactions with 5 or more fields.

The algorithm, presented below, is based on recursively creating sub-diagrams from

the diagrams by merging legs, with the crucial addition of a flag, from group, which is used

to indicate whether a given particle results from a merging of particles (i.e., it is connected

to a given set of particles) in the previous step (True), or if it is simply copied from the

previous step (False). This flag helps ensure that no diagrams are double-counted by

the algorithm.

1. Given the model, generate two hash maps (called dictionaries in Python), contain-

ing information about the interactions in the model. The first dictionary (called

Vertices) maps all combinations of n particles to all n-point interactions combining

these particles, and maps all pairs particle-antiparticle to “0”. The second dictionary

(called Currents) maps, for all n-point interactions, n−1 particles to all combinations

of resulting particles for the interactions.
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1st iteration Groupings After replacements Result

e−, e+, u, ū, g

(e−, e+), u, ū, g
(γ), u, ū, g Failed (only 1 FG=True)

(Z), u, ū, g Failed (only 1 FG=True)

e−, e+, (u, ū), g

e−, e+, (γ), g Failed (only 1 FG=True)

e−, e+, (Z), g Failed (only 1 FG=True)

e−, e+, (g), g Failed (only 1 FG=True)

e−, e+, (u, g), ū e−, e+, (u), ū Failed (only 1 FG=True)

e−, e+, u, (ū, g) e−, e+, u, (ū) Failed (only 1 FG=True)

(e−, e+), (u, ū), g

(γ), (γ), g Failed (no vertex)

(γ), (Z), g Failed (no vertex)

(γ), (g), g Failed (no vertex)

(Z), (γ), g Failed (no vertex)

(Z), (Z), g Failed (no vertex)

(Z), (g), g Failed (no vertex)

(e−, e+), (u, g), ū
(γ), (u), ū Diagram 1

(Z), (u), ū Diagram 2

(e−, e+), u, (ū, g)
(γ), u, (ū) Diagram 3

(Z), u, (ū) Diagram 4

Table 1. Tabel to illustrate the steps of the diagram generation algorithm. See text for explana-

tions. from group has been abbreviated as FG.

2. Flip particle/anti particle status for incoming particles in the process (i.e., consider

all the particles outgoing). Set the flag from group = True for all external particles.

3. If there is an entry in the Vertices dictionary combining all external particles, create

the combination [(1,2,3,4,. . . )] if at least two particles have from group = True.

4. Create all allowed groupings of particles with at least one from group=True present

in the Currents dictionary.

5. Set from group=True for the newly combined particles, and False for any particle

that has not been combined in this iteration. Repeat from 3 for the reduced set of

external particles.

6. Stop algorithm when at most 2 external particles remain.

As a simple, yet complete example, let us consider the process e+e− → uūg in the

standard model. The procedure is illustrated in table. 1, and described in detail below.

The relevant interactions are (e+e−γ), (e+e−Z), (uūγ), (uūZ), and (uūg).

First iteration: after flipping the particle/antiparticle identities for the initial state, we

have the external particles e−, e+, u, ū, g.

1. No grouping (e−, e+, u, ū, g) is possible.
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e+

1
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z

u~

4

g

5

u~

u

3

 diagram 4 

Figure 1. Diagrams for the process e+e− → uūg. Note that ū is denoted by “ũ ” and γ by “a” in

the diagrams.

2. Create all possible particle groupings (see table 1):

[(e−, e+), u, ū, g], [e−, e+, (u, g), ū], [e−, e+, u, (ū, g)],

[(e−, e+), (u, ū), g], [(e−, e+), (u, g), ū], [(e−, e+), u, (ū, g)]

and replace the grouped particles with the resulting particles from the interactions:

[(γ), u, ū, g], [(Z), u, ū, g], [e−, e+, (γ), g], [e−, e+, (Z), g], [e−, e+, (g), g],

[e−, e+, (u), ū], [e−, e+, u, (ū)], [(γ), (γ), g], [(Z), (γ), g], [(γ), (Z), g], [(Z), (Z), g],

[(γ), (g), g], [(Z), (g), g], [(γ), (u), ū], [(Z), (u), ū], [(γ), u, (ū)], [(Z), u, (ū)]. Note that

only the particles in parentheses now have from group = True.

Second iteration: the resulting reduced sets with four particles all have only one

from group = True, and can therefore not give valid diagrams. We therefore ignore these

and focus on the reduced sets with three particles.

3. The combinations allowed by the interactions are:

((γ), (u), ū), ((Z), (u), ū), ((γ), u, (ū)) and ((Z), u, (ū)).

4. Any further combination in the Currents dictionary will result in an external state

with only one from group = True, which can not give any diagrams.

5. The iteration stops, since no external particles are left.

The resulting diagrams are found in figure 1.
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2.2 Helicity amplitude call generation and fermion number violation

The code for matrix element evaluation generated by MadGraph (previous versions as

well as MadGraph 5) is written in terms of successive calls to a helicity amplitude func-

tion library (originally the HELAS library, in MadGraph 5 either HELAS or helicity

amplitude functions automatically generated by ALOHA [54]). A helicity wavefunction

is generated for each external leg in a diagram, and these wavefunctions are combined

into new wavefunctions corresponding to the propagators in the diagram by successive he-

licity wavefunction calls. The final vertex corresponds to a helicity amplitude call which

returns the value of the amplitude corresponding to this diagram. In this procedure, wave-

functions corresponding to identical subdiagrams contributing to different diagrams can

be reused between the diagrams, leading to a considerable optimization, effectively giving

up to a factor hundred fewer wavefunction calls than naively expected by the number of

Feynman diagrams.

In the presence of Majorana particles or fermion number violating vertices, special care

is needed to allow for all possible contractions of fermions. MadGraph 5, like its prede-

cessors [6, 57], uses the 4-spinor Feynman rules for fermion number violation developed

in [58]. In this formulation, a fermion flow is defined for each fermion line in a diagram,

and fermion number violation (due to fermion flow clashes) is taken into account using

special charge conjugate versions of the Γµ matrices. With this modification, the fermion

lines meeting at the vertex should be treated as if they had a single fermion flow. The flow

therefore needs to be inverted along one of the lines, resulting in a continuous fermion flow.

In earlier versions of MadGraph, this fermion flow was implemented by creating a

charge-conjugate particle for each fermion in the model. In order to check for diagrams

with clashing arrows it was necessary to check each topology with both the regular fermion,

and its charge conjugate. This would increase the time for generating code by a factor

of 2Nfermions−1.

In MadGraph 5, the diagrams resulting from the diagram generation are independent

of the fermion flow, and the definition of the flow is postponed to the time of helicity

amplitude call generation.

Fermions with positive PDG code (“particles”) are tentatively assigned to be incoming

(outgoing) if they are in the initial (final) state, and vice versa for fermions with negative

PDG code (“antiparticles”). If a fermion flow clash is detected at the meeting of two fermion

lines (i.e., the two fermions have the same “incoming/outgoing” status), the fermion flow

direction of one of the lines has to be inverted, and charge conjugate vertices have to be

introduced starting from the position of the vertex or Majorana particle line responsible

for the fermion flow clash.

The procedure is the following: Fermion lines involved in the clash are traversed,

looking for Majorana particles. If a Majorana particle is found along one of the lines,

the “incoming/outgoing” status and particle/antiparticle id is reversed for all particles up

to (and including) the last Majorana particle along the line. For particles beyond the

Majorana particle along the same fermion flow line, a flag fermionflow is set to -1. The

other line is left unchanged. If no Majorana particle is found along either of the lines

– 7 –



J
H
E
P
0
6
(
2
0
1
1
)
1
2
8

u

1

~u

3

~g

d

2
~d

4

Figure 2. Diagram for the fermion flow violating process ud → ũd̃.

(which is the case when the clash is due to a fermion flow violating vertex), all fermions

along the first leg have their fermionflow flag is set to -1.

A helicity amplitude or wavefunction with any fermion with negative fermionflow

flag is required to use the charge conjugate version of the amplitude of wavefunction, in

accordance to the Feynman rules in [58]. For an external leg, the incoming/outgoing status

is reversed.

For multifermion vertices, the fermions are grouped in pairs, each constituting a

fermion line (see section 6.2). Each fermion line then has its own charge conjugate, which

can lead to multiple charge conjugate flags for a single helicity amplitude or wavefunction.

As an explicit example of both helicity amplitude call generation and the treatment

of fermion flow violation, we take the fermion number violating process ud → ũd̃ with t-

channel exchange of a Majorana gluino (see figure 2). The diagram is represented internally

(with tentative incoming/outgoing fermion state given in parentheses) as

(u(in), ũ → g̃(in)), (g̃(in), d(in), d̃)

The uũ → g̃ vertex would result in an incoming spin 1
2 helicity wavefunction with incoming

flow, and the g̃dd̃ vertex correspond to a helicity amplitude call. However, a fermion flow

clash is detected in the last vertex, since there are two incoming fermions. The two fermion

lines coming from this vertex (initiated by the g̃ and d respectively) are now traversed,

starting with the gluino. Since the gluino is a Majorana particle (and there are no other

Majorana particles along the line), its flow is reversed to “outgoing”. The u, which is

beyond the gluino along the line, gets the flag fermionflow set to -1. This indicates that

the u wavefunction should be that of an outgoing external spin 1
2 particle, and the uũ → g̃

wavefunction should be conjugated (since one of the particles in this wavefunction has

fermionflow flag -1). The g̃dd̃ helicity amplitude does not use the conjugated version,

since none of the involved wavefunctions have negative fermionflow flag.

2.3 Colour algebra

In this section we discuss how the computation of colour coefficients in scattering am-

plitudes of states which are charged under SU(3)C is performed. There are two main

motivations to dedicate special attention to this aspect.

– 8 –



J
H
E
P
0
6
(
2
0
1
1
)
1
2
8

First, multiparton amplitudes, i.e., amplitudes with many external quarks and gluons,

are phenomenologically very important as they correspond to the leading order approx-

imation of multi-jet production (by themselves or in association with other particles) in

high energy collisions and especially at hadron colliders. These processes are the major

backgrounds to many new-physics signals, so an accurate description of these final states

is essential. In this case, not only the complexity of colour computation grows factorially

but also the amount of information to be stored grows at the same rate. Efficiency and

improved algorithms are therefore necessary.

Second, new-physics models possibly feature states in exotic colour representations

or non-standard colour structures in interaction vertices, which need to be taken into

account. A generic interaction vertex may also have a complicated structure with several

colour factors in front of different Lorentz structures.

The needs above require both flexibility and efficiency of the colour algebra module, a

challenge that is not easy to meet.

Prior versions of MadGraph hard-coded three colour structures δij , T a
ij and fabc as

well as identities for summing over the colour indices. The number of colours was explic-

itly set to 3 in these identities. Numeric values for the colour matrix where computed

by summing over the colour indices using integer operations on the numerator and de-

nominator separately. The resulting colour matrix was exact, but lacked flexibility. The

colour structure of the interaction was inferred based on the colour of the participating

particles. Models that had new colour interactions required the user to explicitly code new

colour structures, which required detailed knowledge of the MadGraph code, significantly

restricting the types of new interactions that could be implemented.

The solution adopted in MadGraph 5 is to have all the colour objects and their

algebra coded in a symbolic way. This approach has many advantages, the most important

one being complete flexibility.

For example, one important aspect in having efficient colour computations is that of the

choice of the colour basis. Several possibilities have been proposed in the literature [59–61]

with the aim to make the computation of colour symbolically and/or numerically efficient

at the amplitude level. All these choices can be easily adopted in our implementation as

the colour algebra is dealt with symbolically and several different basis and representations

can be present at the same time and used as needed. The colour algebra is realized

through objects, such as the Gell-Mann matrices or structure functions, whose products

and combinations can be easily simplified by algebraic reduction rules, among which

(T a)ij(T
a)kl =

1

2

(

δi
lδ

k
j −

1

Nc
δi
jδ

k
k

)

(2.1)

plays a central role. Other objects, such as, δab, fabc and dabc are defined in terms of

linear combinations of traces of Gell-Mann matrices, and any colour factor can be easily

simplified in a recursive way.

Our default algorithm goes as follows. The colour factor corresponding to each diagram

is linearly decomposed over a complete and orthogonal (in the large Nc limit) basis which is

constructed at the same time. This allows the automatic organization of the full amplitude

– 9 –
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into gauge invariant subamplitudes Ai (normally called dual or colour-ordered amplitudes),

each de facto corresponding to a given colour flow i, so that

M =
∑

i

CiAi . (2.2)

The form above is the basis for further manipulations, as it can be now used in different

ways depending on the complexity of the calculation itself. In the case of a limited number

of partons in the amplitude, it is squared by analytically computing the colour matrix

Cij =
∑

colours CiC
∗

j , which is then stored in memory and written in the output file. This

is the default approach followed in this version of MadGraph 5 where all diagrams are

computed and the colour ordered amplitudes obtained. At this point we note that in

the presence of identical external particles, typically gluons, many of the entries of the

colour matrix are equal due to simple symmetry properties. Such symmetries are efficiently

exploited to reduce the effective number of computations needed to determine the full Cij .

This allows MadGraph to calculate amplitudes with up to 7 gluons. Beyond 7 gluons,

explicitly calculating the amplitude associated with each Feynman diagram is not viable

and recursive relations need to be employed [62, 63]. These allow one to calculate the Ai

directly and prove that their complexity is only polynomial. The problem of the factorial

growth therefore remains only for the colour sum. Several techniques have been proposed,

the most commonly employed is the idea of recursively computing M at fixed colour for

the external states and then randomly choose colour configurations [10, 14, 15]. Another

possibility, which is born out of eq. 2.2, is to organize the calculation as an expansion in

1/Nc. This is the approach that is currently under investigation to calculate multiparton

amplitudes at the tree and loop level and also to combine real and virtual corrections in

NLO computations, following the approach of ref. [64].

The other main advantage of treating the colour algebra symbolically is a straightfor-

ward implementation of new colour structures. As an example, we here give a detailed

description of the necessary algebra for colour sextets and colour triplet ǫ tensors. Higher

dimensionality colour representations can be implemented in a similar way.

The ǫijk(ǭijk) object is the totally antisymmetric tensor of three colour triplet (an-

titriplet) indices. The algebraic relations needed for ǫ and ǭ are:

ǫijkǭilm = δj
l δ

k
m − δj

mδk
l

where (ǫijk)∗ = ǭijk. For colour sextets, we need three new colour objects (K6)
A
ij , (K6)

ij
A

and the sextet representation (T a
6 )AB . K6 (K6) is the symmetric tensor contracting a colour

sextet (antisextet) index and two colour antitriplet (triplet) indices (i.e., the Clebsch-

Gordan coefficient), while the T6 describes the interaction of a gluon with a sextet. As in

the colour triplet implementation described above, the sextet delta function is denoted as

a two-index δm
n . The complete set of needed algebraic relations for these objects can be

found in the appendix of ref. [65]. They can be easily reproduced by starting from

(K6)
A
ij(K6)

kl
A =

1

2
(δl

iδ
k
j + δk

i δl
j).
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Together with fundamental anti-commutation relation, the colour matrix and colour flows

of any diagram involving colour sextet particles can be calculated.

As a final remark, we note that a small technical complication arises if the parton

level events are passed to a parton shower. In this case the writing of the event in the Les

Houches Accord (LHA) at leading-NC colour strings is needed. The ǫ tensor can be handled

by inserting new colour labels in the event and even though an apparent violation of the

colour flow arises, this can be interpreted correctly by the parton-shower (see ref. [66]). For

colour sextets no convention has been established. A simple solution is to note that in the

planar “double line” colour flow notation, a colour sextet is contracted with a K6, to give

the equivalent pair of triplet lines. This can then be written into the LHA event, by using

a negative antitriplet label for the second triplet, and vice versa for a second antitriplet.

A parton shower program reading the event must then treat the continued colour flow,

keeping track of colour sextets and antisextets appropriately.

2.4 Decay chains

Whereas decay chains in MadGraph 4 were generated in the same way as regular pro-

cess generation (by dressing topologies with particle and interaction information to create

diagrams), decay chains in MadGraph 5 are defined using successive chains of processes.

The core process can have a number of decay processes defined, and each decay process

can again have a number of decay processes defined, and so on. This treatment allows for

quick and efficient generation of decay chains of virtually unlimited length.

The helicity amplitude calls for the individual processes (core process and each de-

cay process) are generated separately, which allows for very efficient treatment of mul-

tiprocesses, where multiple processes have the same decaying final state. As a simple

example consider pp → W+ with W+ → l+νl, which gives the core processes ud̄ → W+,

d̄u → W+, cs̄ → W+ and s̄c → W+, and the decay processes W+ → e+νe, W+ → µ+νµ

and W+ → τ+ντ . The total number of subprocesses is obtained by combining the four

core processes with the three decay processes. With the helicity amplitudes for each of the

core processes and each of the decay processes already generated, creating the subprocesses

only amounts to replacing the final state wavefunction corresponding to the W+ by the

wavefunctions corresponding to the decays into e+νe, µ+νµ and τ+ντ respectively.

The procedure gets slightly more complicated when decay processes have multiple

diagrams- in this case, the diagrams for the core process need to be multiplied together

with the diagrams for the decay.

The resulting matrix elements contain full spin correlations and Breit-Wigner effects,

but are not valid far from the mass peak, where non-resonant diagrams might give sig-

nificant interference effects. The tails of the Breit-Wigner distributions for the specified

decaying particles are therefore cut off in MadEvent, using the run parameter bwcutoff,

at M ± Γ∗bwcutoff (by default set to 15).

Process generation, as well as event generation with MadEvent, has been successfully

tested up to 14 final state particles at the time of writing this paper.
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3 Outputs

Previous versions of MadGraph could only output matrix elements in Fortran 77. The

modularized design of MadGraph 5 allows easy implementation of outputs in any language

or user desired format. The UFO output and ALOHA implementations allow for the same

flexibility in the output of models and helicity amplitude routines.

At present, matrix element output is available in Fortran 77, C++ and Python. The

Fortran 77 output is in the form of MadEvent directory output (see section 3.1), or stan-

dalone matrix element evaluation in the form of MadGraph standalone directory output.

For C++, presently available output formats are standalone matrix element evaluation

output, and dedicated output for Pythia 8 (see section 3.2). The Python matrix element

code output is currently used internally in MadGraph 5 to perform model consistency

checks during process generation as described in section 4.3 below. Implementation of

other output formats, either in any of the currently supported languages or different ones,

can be easily done based on the existing output format implementations.

Finally, one of most useful outputs of MadGraph has always been the drawings of the

Feynman diagrams. Current new features (e.g., generation of processes with long decay

chains) as well as planned ones (e.g., generation of loop diagrams) required a new algorithm

to be implemented. This is described in the last subsection.

3.1 Multiprocess generation and MadEvent event generation

Simultaneous generation of multiple processes (e.g. pp → jj, using multiparticle labels

such as p/j = g/d/u/s/c/̄d/ū/s̄/c̄) has been considerably optimized in MadGraph 5,

using improved algorithms both for process generation and for event generation.

On the process generation side, the time spent attempting to generate processes which

have no diagrams (such as ud̄ → gg) is minimized on one hand by checking any conserved

quantum numbers, such as electrical charge, provided by the model, and on the other hand

in a model-independent manner by keeping a memory of failed processes, and ignoring

any process which corresponds to a crossing of such a failed process. This is done before

applying crossing symmetry breaking conditions such as required or forbidden s-channel

propagators. Furthermore, processes with mirrored initial state (such as gu → γu and ug →

γu) are automatically recognized and combined into a single process. To further speed up

the generation, diagrams from crossed processes are reused in the diagram generation (so

that the diagrams for, e.g., gg → uū, ug → ug and uū → gg are generated only once, and

then reused with leg numbers replaced as needed).

The organization of subprocess directories for multiprocess event generation in MadE-

vent has been revamped. While MadEvent 4 was already combining processes with

identical matrix elements (such as gg → uū and gg → dd̄), MadGraph 5 combines all

processes with the same spin, colour and mass of external particles into a single subpro-

cess directory. The diagrams of these subprocesses are matched to combined integration

channels, so that a single integration channel will perform single diagram enhanced phase

space integration [5] for all subprocesses with the corresponding diagram. Diagrams whose

pole structure differ only by permutations of the final state momenta are also combined,
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Process
Subproc. dirs. Channels Directory size Event gen. time

MG 4 MG 5 MG 4 MG 5 MG 4 MG 5 MG 4 MG 5

pp → W+j 6 2 12 4 79 MB 35 MB 3:15 min 1:55 min

pp → W+jj 41 4 138 24 438 MB 64 MB 9:15 min 4:19 min

pp → W+jjj 73 5 1164 120 842 MB 110 MB 21:41 min* 8:14 min*

pp → W+jjjj 296 7 15029 609 3.8 GB 352 MB 2:54 h* 46:50 min*

pp → W+jjjjj - 8 - 2976 - 1.5 GB - 11:39 h*

pp → l+l−j 12 2 48 8 149 MB 44 MB 21:46 min 3:00 min

pp → l+l−jj 54 4 586 48 612 MB 83 MB 2:40 h 11:52 min

pp → l+l−jjj 86 5 5408 240 1.2 GB 151 MB 49:18 min* 16:38 min*

pp → l+l−jjjj 235 7 65472 1218 5.3 GB 662 MB 7:16 h* 2:45 h*

pp → tt̄ 3 2 5 3 49 MB 39 MB 2:39 min 1:55 min

pp → tt̄j 7 3 45 17 97 MB 56 MB 10:24 min 3:52 min

pp → tt̄jj 22 5 417 103 274 MB 98 MB 1:50 h 32:37 min

pp → tt̄jjj 34 6 3816 545 620 MB 209 MB 2:45 h* 23:15 min*

Table 2. Number of subprocess directories, number of integration channels for the initial run

(“survey”) of the event generation, size of the directory after one run generating 10,000 events, and

run times for generating 10,000 events, comparing MadGraph/MadEvent 4 output (“MG 4”)

with grouped subprocess output (“MG 5”). For all processes, p = j = g/u/ū/c/c̄/d/d̄/s/s̄, l± =

e±/µ±. The run times for 0-, 1- and 2-jet processes are for a Sony VAIO TZ laptop with 1.06

GHz Intel Core Duo CPU running Ubuntu 9.04, gFortran 4.3 and Python 2.6, while the 3-, 4- and

5-jet run times (marked by *) are for a 128-core computer cluster with Intel Xeon 2.50GHz CPUs.

pp → W+ + 5j is not possible to run with MadGraph/MadEvent 4.

to further minimize the number of integration channels. This means that for a process like

pp → l+l−+3j, there will be only 5 subprocess directories, corresponding to the subprocess

groups gg → l+l−gqq, gq → l+l−ggq, gq → l+l−qqq, qq → l+l−ggg, and qq → l+l−gqq, as

compared to 86 directories in MadGraph 4 (see table 2).

Taken together with the identification of initial state mirror processes, the number of

integration channels for the initial cross section determination run (“survey”) is significantly

reduced, see table 2. Also for the subsequent event generation run (“refine”), the number

of integration channels is usually reduced. The required disk space is reduced by a factor

corresponding to the reduction in number of integration channels.

To further improve parallel running of the resulting configurations, we have imple-

mented the ability to split up channels with large contribution to the cross section into

multiple sub-channels, each generating a fraction of the events for the channel in question.

This results in shorter generation times and more equal work load for jobs submitted to

a cluster, as well as considerably more stable unweighting efficiency for the integration.

Many further measures to speed up and improve the stability of the generation have also

been taken, including a new initial guess for the shapes of the integration variables, leading

to considerably better stability of the results. The resulting reduction in run times for a

few sample processes are also given in table 2.
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3.2 Matrix element libraries for Pythia 8

Pythia is one of the most widely used multipurpose event generators, which includes ma-

trix element evaluation, parton showering, hadronization, particle decays and underlying

events in a single framework. Matrix elements for Pythia have historically been imple-

mented by hand. The most recent implementation of Pythia, the C++ version Pythia 8,

allows matrix elements for 2 → 1, 2 → 2 and 2 → 3 processes to be provided by external

programs. The flexibility in output formats in MadGraph 5 has allowed us to implement

dedicated matrix element output for Pythia 8, thereby effectively removing the need for

implementation of any matrix elements for Pythia by hand.

Let us now describe the main features of this new implementation for the readers

interested in more technical details.

The new matrix elements are given in the form of classes inheriting from the internal

base class SigmaProcess. Such process classes need to implement a number of member

functions, providing Pythia with information about the process (initial states, external

particle masses, s-channel resonances, etc.), as well as functions to evaluate the matrix

elements for all included subprocesses and select final-state particle id’s and colour flow

for each event. During event generation, Pythia 8 calls the matrix element classes with

given momenta for the external particles. Starting from v.8.150, Pythia also makes model

parameters for new models (read in using the Les Houches interface for BSM model pa-

rameters [67]) available to the resulting process class through an instance of the class

SusyLesHouches, allowing for the implementation and simulation of processes in any new

physics model.

The resulting matrix elements are treated by Pythia in exactly the same way as

the processes available in the Pythia core code. MadGraph 5 also provides classes for

evaluation of all model parameters needed for the matrix element evaluation as well as the

helicity amplitudes used by the matrix elements. Standard model parameters are extracted

from internal Pythia parameters, while new physics parameters are read in from BSM-

LHA files. Just as in the regular MadEvent output, any model parameters based on the

strong coupling constant are recalculated event by event to use the running value of αs (as

provided by Pythia), while fixed model parameters are initialized at the time of process

initialization.

The Pythia 8 output of MadGraph 5 is a library called Processes model name,

which is automatically created in a new directory under the Pythia 8 base directory. This

library contains source code files for all generated processes, model parameters, and helicity

amplitudes, as well as a makefile to compile the library and place it in the lib directory of

Pythia. As an extra help to the inexperienced user, an example main program file is also

created in the examples directory together with a dedicated makefile, which shows how to

generate events from the implemented processes. These main program files can be edited,

compiled, and run directly from the MadGraph 5 command line by running the launch

command, or compiled and run externally.

If multiple processes are generated in MadGraph 5, those processes will automatically

be arranged in different process classes according to the initial and final states. This
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ordering uses the same machinery as the new organization of MadEvent subdirectories

described in section 3.1 above. In order for Pythia to perform event generation, it needs all

subprocesses inside a given process to have the same spin and mass of external particles.

This combination of subprocesses into single classes allows for further optimization of

the matrix element calculation, in that the helicity wavefunctions and amplitudes can be

calculated once and for all, and then be reused between all the different subprocesses in a

process class.

As a cross check, we have compared the cross section results for the automatically

generated processes with internal Pythia processes for a large variety of processes in the

Standard Model and the MSSM, with perfect agreement.

3.3 Diagram drawing

In MadGraph 4 the amplitude generation and diagram drawing is limited to handling

three and four point vertices. In addition, the diagram drawing is based on a length min-

imization procedure, whose convergence is not a priori guaranteed and sometimes creates

lines with zero length. To overcome these limitations, a completely new algorithm has been

implemented in MadGraph 5. The basic idea is to associate to each vertex a level (i.e.,

to organise the verteces in classes each one characterized by a “distance” from the left end

of the diagram) defined by the following simple rules:

• The vertices associate to initial particles are always at level one.

• All vertices attached to a t-channel propagator are set at level one.

• The difference of level between the endpoints of an s-channel propagator equals one.

As a boundary condition, all external lines are associated to a level at the start of the

procedure: initial state particles are set to level zero, while all final state particle’s levels

are set to the maximal possible one plus unity.1

The position of the vertices are then computed such that all vertices at a given level

lie equally spaced on the same vertical line.

The main challenge of this method consists in avoiding line crossing between propa-

gators/final state particles. In most situations, a simple re-ordering of the vertices at each

level is enough to avoid line crossings. The order should be such as vertices connected to

the first vertex of the previous level comes first, then the ones linked to the second one and

so on. If a line connects two non-adjacent levels, which happens for final state particles,

this methods needs an additional trick. Then, the intermediate level needs a special con-

figuration — i.e., not equally spaced — in order to avoid any possible line crossing. This is

dealt with by adding a fake vertex (which is not drawn) to the intermediate level. Since we

keep the “equally spaced” rule with the fake vertex, this creates the appropriate gap. The

resulting algorithm is very fast and efficiently generates clean diagrams with any number

of external particles.

1Options are available that allow to modify the level of the external partons edges, resulting in different-

looking graphs.
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Model Class Model name Description/Comments In MG5

Standard Model
sm Several restrictions/simplifications available X

heft Top and W loops for the Higgs through dim-5 operators X

SM extensions

4Gen Fourth Generation model with full CKM4 X

SMScalars Extra O(n) scalar sector X

Hidden Hidden Abelian Higgs Model

Hill Hill Model

2HDM The general Two Higgs-Doublet Model X

TripletDiquarks SM plus triplet diquarks X
∗

SextetDiquarks SM plus sextet diquarks X
∗

SUSY models

mssm Minimal Supersymmetric extension of the SM X

nmssm Next-to-Minimal MSSM X

rmssm R-symmetric MSSM

rpvmssm R parity violating MSSM

Extra-Dim models

3-site Minimal Higgless Model (3-site Model)

MUED Minimal UED

LED Large Extra Dimensions

RS Randall-Sundrum X

HEIDI Compact HEIDI

EFT’s

ChiPT Chiral perturbation theory

SILH Strongly Interacting Light Higgs

MWT Technicolor

Table 3. Selection of models that are currently available in FeynRules and can be used in

MadGraph 5. The last column indicate model which are present by default in the current release

of MadGraph 5. An asterisk (∗) indicates that the model in the MadGraph 5 library is a

simplified version of the complete model.

4 Models

The MadGraph 5 library of models is built upon that of FeynRules [17] and written in

the UFO format [20]. Backward compatibility with the current models of MadGraph 4

is supported as long as no particles with spin 3/2 or higher are present in the model.

The set of currently publicly available models from the FeynRules wiki page is shown

in the table 3. Several models are currently available in the MadGraph 5 release - these

are marked with a “X” in the table. Besides the models in the table, also some additional

models used for examples in this paper are included in the release, e.g., the four-fermion

interaction models used in section 6.2.

4.1 Inheriting models from FeynRules: UFO and ALOHA

Any local quantum field theory can be identified by:

• A set of particles and their quantum numbers (spin, charges, etc.).

• A set of parameters (masses, coupling constants, etc.).

• A set of interactions among the different particles.

The most efficient, reliable and compact way to encode that information is by directly

writing a Lagrangian with (matter and interaction) fields carrying the desired quantum
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numbers and by using well-known text-book rules to extract the Feynman vertices. This

is what FeynRules does in a fully automatic way. Once the vertices are obtained, the

issue of passing this information to a matrix element generator like MadGraph arises.

For example, for MadGraph 4, FeynRules writes the output files exactly in the format

needed by the code. This procedure, however, in addition to being very heavy to main-

tain for FeynRules developers, has the drawback that it suffers from the same intrinsic

limitations of the MadGraph 4 model format itself.

The purpose of the Universal FeynRules Output (UFO) [20] is to overcome possible

limitations due to specific matrix element generators and translate all the information

about a given particle physics model into a Python module that can easily be linked to any

existing code. This output is complete and independent of the matrix element generator,

allowing full flexibility and improvements. It saves the model information in an abstract

(generator-independent) way in terms of Python objects and classes, which in case of

MadGraph 5 can be directly linked to the code.

Once the information of a model is available in the UFO, it can be used by ALOHA

to automatically write the HELAS library corresponding to the corresponding Feynman

rules. ALOHA, which is written in Python, produces the complete set of routines (wave-

functions and amplitudes) that are needed for the computation of Feynman diagrams at

leading as well as at higher orders. The representation is language independent and outputs

in Fortran, C++, Python are currently available.

In so doing all the intrinsic limitations regarding the possibility of generating arbitrary

new physics model process of MadGraph 4 are overcome. As already explained above,

MadGraph 4 is based on the HELAS library that encodes a limited set of Lorentz struc-

tures. While extensions are possible and have been done for several important cases (such

as spin-2 [68] and spin-3/2 [69] particles), they entail a tedious work of writing and testing

all new routines by hand. ALOHA via the UFO fully automates this procedure. In addi-

tion, complicated interactions that feature non-factorizable colour and Lorentz structures,

such as those showing up in the counterterms and R2 vertices at NLO [70], which cannot

be handled by MadGraph 4, are now fully supported.

4.2 Model restriction files

In phenomenology applications, it is often convenient to fix some parameters at some given

values (e.g., masses / CKM parameters / couplings, etc.). Such restrictions might allow

important gains both in terms of speed and also in size of the generated matrix element

code. MadGraph 5 allows to restrict a given UFO model based on a numerical evaluation

of all couplings with parameters from a BSM-LHA file [67] (note that analytical model

restrictions can also be performed directly inside FeynRules).

From a given BSM-LHA file (that we call a restriction file), MadGraph can evaluate

the value of the internal parameters and of the couplings. The model is then modified

according to the following rules:

• All vanishing parameters are removed from the model, and all parameters with value

equal to unity are fixed to this value.
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• All parameters belonging to the same LHA block with identical values are represented

by a single parameter.

• All couplings with identical values are represented by a single coupling.

• All interactions linked to a vanishing coupling are removed from the list

of interactions.

These steps allow MadGraph 5 to optimise the matrix element output, and the output

of multi-process generation (see section 3.1).

In order to avoid the user setting the parameters of the model in a way which is

inconsistent with the restricted model, we also modify the param card associated with the

model, removing all parameters that have been fixed by the restriction. The default value

for all remaining parameters is set to that given in the restriction file. Note that care is

needed when the user designs the restriction file, to ensure that the result corresponds to

what it is expected, and that the resulting param card includes all desidered parameters.

Model restrictions are used for several models present in MadGraph 5, including

SM and MSSM. By default when a model is loaded, MadGraph 5 applies the restriction

defined in the file restrict default.txt in the corresponding model directory. For the

Standard Model, the default restriction sets the CKM matrix to be diagonal and sets the

mass of the first and second generation fermions to zero. The user can bypass the default

restriction by adding “-full” to the model name when importing the model, or apply a

different restriction file by adding “-restriction” to the model name, corresponding to a

restriction file restrict restriction.dat.

4.3 Consistency checks for processes and models

For new model implementations, either from FeynRules [17] or by directly providing the

UFO model format used in MadGraph 5, it is crucial to be able to check the consistency

of the new models. To this end, MadGraph 5 features a series of consistency checks

for processes:

1. Helicity amplitude calls and the helicity amplitude implementations are checked by

calculating the specified processes with multiple permutations of the external particles

in the diagram generation in a given phase space point, checking that the value

of the matrix element is identical for the different permutations. This efficiently

checks several aspects of the model implementation: the relation between the Lorentz

and colour structures, the implementation of the related helicity amplitudes with

different wavefunction decomposition, and the effects of fermion flow violation and

charge conjugation.

2. Gauge invariance is checked by calculating the matrix element in a random phase

space point with the wavefunction of an external massless vector boson replaced by its

momentum (for processes with external massless vector bosons). If gauge invariance

is satisfied, the resulting matrix element is zero (within numerical precision).
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3. Invariance of the matrix element by Lorentz transformations is checked by comparing

the matrix element value before and after a series of Lorentz boosts.

We have found that altogether, these checks provide a powerful way to validate model

implementations in MadGraph 5.

5 Validation and speed benchmarks

5.1 Validation

Once the checks based on symmetries, gauge invariance, and Lorentz invariance described

above are satisfied, one can perform the “physics” validation by comparing results for the

evaluation of the matrix element in given points of the phase space and/or integrated cross

sections with other generators or analytical calculations. To validate both MadGraph 5

and the models provided with it, we have extensively compared squared matrix elements

computed point-by-point in the phase-space with those obtained in MadGraph 4.

Since MadGraph 5 supports different input model formats (the MadGraph 4 format

models and the new UFO models) and is able to create output in different languages

(Fortran 77, C++), we have compared the MadGraph 4 results with MadGraph 5 in

the following three configurations:

• Using the UFO model as input and choosing to export the matrix element in Fortran

77. (In this context the helicity amplitude routines are created by ALOHA).

• Using the UFO model as input and choosing to export the matrix element in C++.

(In this context the helicity amplitude routines are created by ALOHA).

• Using the MadGraph 4 model as input (therefore the only output available is Fortran

77 and we use the HELAS package).

A summary of the checks performed is presented in table 4. Those processes (more

than three thousand in total) are all in perfect agreement between all three configurations

and the MadGraph 4 value.

In addition to the squared matrix element tests, we have also performed a systematic

comparison at the cross-section level for 2 → 2 and 2 → 3 both in the SM and in the

MSSM. This comparison was done with the Feynrules web validation interface [71] with

respect to MadGraph 4, CompHEP/CalcHEP, and Whizard.

5.2 Speed benchmarks — Process generation

It can be interesting to compare the time required for the generation of complete MadE-

vent directories for different processes in MadGraph 4 and MadGraph 5. Note that

this is the time for the generation of the matrix element output code and additional files

needed for phase space integration and event generation, not the time for evaluating the

matrix element values using the generated code. A time comparison for evaluation the

generated matrix element is given in the next section.
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model process class information number of processes

SM AA → AA Only first generation for fermions 249

SM AA → AA No first generation of fermions 589

SM BB → BBB 86

SM BB → BF1,2F1,2 46

SM F1,2F1,2 → BF1,2F1,2 40

SM F1,2F1,2 → BF1,2F1,2 216

SM BB → BBBB 55

MSSM PP → χ0χ0 50

MSSM PP → χ+χ−/g̃g̃ 26

MSSM PP → L̃L̃ 55

MSSM PP → Q̃1,2Q̃1,2 188

MSSM PP → Q̃3Q̃3 71

MSSM Q̃1,2Q̃1,2 → L̃L̃ 208

MSSM Q̃1,2Q̃1,2 → Q̃1,2Q̃1,2 285

MSSM PP → Q̃1,2Q̃1,2V only SM vector bosons included 564

MSSM V V → V χ+χ− 71

MSSM PP → L+L−χ0χ0 200

MSSM V V → V V χ+χ− 177

HEFT BB → BB including the CP-odd Higgs 62

HEFT gg → H + ng n = 1, 2, 3, 4 4

RS AA → AA Only first generation for fermions 362

RS F3F3 → AA 248

RS F1,3F1,3 → F1,3F1,3B 452

Table 4. Classes of processes used to compare the output of MadGraph 5 with MadGraph 4.

The different letters designate classes of particles: A contains all the particles of the model; Fi

contains the ith generation of fermions of the model (No indices means all generations allowed); L±

contains all the leptons of the model; V contains all the vector bosons of the model; B contains all

the bosons of the model (i.e., the vector and the scalar particles); χ0 contains all the neutralinos;

χ± contains all the charginos; Q̃i contains the ith generation of squarks; L̃ contains the full set

of sleptons.

Table 5 shows the time needed for a number of example processes, including multi-

processes, high-multiplicity final state processes, and decay chain processes. As can be

seen from the table, the main gains in speed are in complicated processes: processes with

a large number of subprocesses due to large multiplicities of multiparticle labels (such as

pp → jjje+e−), processes with many external particles (such as gg → 5g or e+e− → 6e),

and in decay chain processes, where the speedup can be several orders of magnitude with

respect to previous versions of MadGraph.

5.3 Speed benchmarks — Matrix element evaluation

MadGraph 5 is not only faster than its predecessors in generating code for complicated

processes, the produced matrix element code is also faster and more compact. This is
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Process MadGraph 4 MadGraph 5 Subprocesses Diagrams

pp → jjj 29.0 s 25.8 s 34 307

pp → jjl+l− 341 s 103 s 108 1216

pp → jjje+e− 1150 s 134 s 141 9012

uū → e+e−e+e−e+e− 772 s 242 s 1 3474

gg → ggggg 2788 s 1050 s 1 7245

pp → jj(W+ → l+νl) 146 s 25.7 s 82 304

pp → tt̄+full decays 5640 s 15.7 s 27 45

pp → q̃/g̃ q̃/g̃ 222 s 107 s 313 475

7 particle decay chain 383 s 13.9 s 1 6

gg → (g̃ → uūχ̃0
1)(g̃ → uūχ̃0

1) 70 s 13.9 s 1 48

pp → (g̃ → jjχ̃0
1)(g̃ → jjχ̃0

1) — 251 s 144 11008

Table 5. Time for generation of complete MadEvent directories (with the exception of gg → 5g,

for which a Fortran standalone directory was generated) for a selection of processes, for Mad-

Graph 4 and MadGraph 5. All processes have p = j = g/u/ū/c/c̄/d/d̄/s/s̄, l± = e±/µ±/τ±,

νl = νe/νµ/ντ and ν̄l = ν̄e/ν̄µ/ν̄τ . q̃/g̃ in the table corresponds to d̃
(∗)
l/r/ũ

(∗)
l/r/s̃

(∗)
l/r/c̃

(∗)
l/r/g̃. For tt̄+full

decays (meaning pp → (t → b q/l+ q̄/νl)(t̄ → b̄ q/l− q̄/ν̄l)), the MadGraph 4 process generation

was split up in 12 different process definitions to reduce the number of failed process attempts. The

“seven particle decay chain” was gg → (g̃ → u(¯̃ul → ū(χ̃0
2 → Zχ̃0

1)))(g̃ → ud̃χ̃−

1 ). The number

of subprocesses and diagrams are quoted after combination of subprocesses with identical matrix

elements. All processes are generated with maximal number of QCD vertices. All numbers are for

a Sony VAIO TZ laptop with 1.06 GHz Intel Core Duo CPU running Ubuntu 9.04, gFortran 4.3

and Python 2.6.

thanks to the new diagram generation algorithm, which allows for improved recycling of

subdiagram wavefunctions between different diagrams, reducing the number of helicity

wavefunction calls (as discussed in sections 2.1 and 2.2). Table 6 shows a comparison of

the number of function calls and run time for matrix element evaluation using HELAS and

ALOHA routines, relative to MadGraph 4.

From the table, we see how the improved wavefunction call optimisation translates to

considerably improved run times, especially for complicated processes.

6 BSM example applications

6.1 Non-standard colour structures: ǫijk and colour sextets

The phenomenology of diquark resonances has recently become popular, since these parti-

cles could be among the first new physics particles to be observed at the proton on proton

collider LHC [65]. Such diquarks have the quantum numbers of two valence quarks, and

must therefore be either colour sextets or colour anti-triplets. In the latter case, the cou-

pling to quarks is through a completely antisymmetric colour triplet ǫ tensor, which is the

only way to contract three colour triplet indices. The triplet ǫ tensor is also important

in the formulation of R-parity violation supersymmetric models, where e.g. a scalar quark

can decay into a pair of Standard Model antiquarks. As discussed in section 2.3, both the

sextet colour algebra and the ǫ tensor have been implemented in MadGraph 5.
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Process
Function calls Run time relative to MG 4

MG 4 MG 5 MG 5+HELAS MG 5+ALOHA

uū → e+e− 8 8 1.0 1.1

uū → e+e−e+e− 110 80 0.52 1.4

uū → e+e−e+e−e+e− 6668 3775 0.33 0.57

gg → gg 13 13 0.90 0.81

gg → ggg 86 78 0.94 0.94

gg → gggg 811 621 0.99 0.66

uū → dd̄ 6 6 1.0 1.0

uū → dd̄g 16 16 1.0 1.2

uū → dd̄gg 85 67 0.74 0.86

uū → dd̄ggg 748 515 0.68 0.52

uū → uūgg 160 116 0.67 0.70

uū → uūggg 1468 960 0.48 0.36

uū → dd̄dd̄ 42 33 0.99 1.2

uū → dd̄dd̄g 310 197 0.61 0.74

uū → dd̄dd̄gg 3372 1876 0.24 0.19

uū → dd̄dd̄dd̄ 1370 753 0.18 0.19

Table 6. Number of helicity function calls and run time ratio to MadGraph 4 for matrix element

evaluation of matrix element code produced by MadGraph 4 and MadGraph 5 using HELAS,

and MadGraph 5 using ALOHA routines. For MadGraph 4, the HELAS library has been used.

Note that in the uū → qq̄ + X process generations, only QCD interactions have been allowed

(QED=0). The number of function calls for MadGraph 5 does not depend on whether HELAS or

ALOHA is used.

As an example of phenomenology using these implementations, we show in figure 3a

the cross sections for different species of colour sextet and antitriplet scalar diquarks D at

LHC with 7 TeV c.m. energy. We have included colour sextet diquarks coupling to uu/cc/tt,

dd/ss/bb and ud/cs/tb, and colour antitriplet diquarks coupling to ud/cs/ tb. Note that

due to the antisymmetry of the ǫijk colour coupling of colour triplet diquarks to quarks,

colour triplet diquarks can only couple to off-diagonal flavour quark combinations. The

Dqq(′) Yukawa coupling constants have been set to 10−2 in the figure. Note the factor 2

between the pp → D production cross sections for sextet and triplet diquarks (for identical

Yukawa couplings), due to the different colour factors.

In figure 3b, we show the effect of jet matching between matrix elements and parton

showers for charge +4
3 sextet diquark production at 7 TeV LHC. pT distributions for the

radiated jets are compared between matched production with MadGraph (using the kT -

MLM matching scheme that is default in MadGraph, with matrix elements for pp →

D + 0, 1, 2 jets) and Pythia 6.4 with pT -ordered showers, and just using the leading order

process pp → D with pT -ordered Pythia default settings. The mass of the diquark is

500 GeV. It is clear that matching is necessary for a precise description of high-pT jet

radiation in association with diquark production.
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Figure 3. Upper: Cross sections for different types of diquark resonances at 7TeV LHC. See

text for details. Lower: Comparison of pT for radiated jets between single colour sextet diquark

production with jet matching (using MadGraph and Pythia) and without jet matching (using

Pythia parton showers for the leading order process pp → D only). See text for details.

6.2 4-fermion vertices: uu → tt

With the possibility of specifying vertices with arbitrary number of particles, a particular

difficulty arises when a vertex has more than two fermions, in which case it is necessary

to define the fermion flow in an unambiguous way. The convention chosen by the Mad-

Graph 5 and FeynRules authors is that the fermion flow is defined by the position of

the particle in the interaction, with the order being IOIO . . . where I stands for “incom-

ing” and O stands for “outgoing” fermion. Any number of bosons can be added after

the fermions.

This means that, from the MadGraph 5 point of view, the interactions ut̄ut̄ and

uut̄t̄ are treated in different ways - in the former case, the fermion flows go between u

and t̄, while in the latter case we have fermion number violating flows u → u and t̄ → t̄.

Such fermion number violating multi-fermion vertices are readily treated by the algorithm

described in section 2.2, by the use of conjugate Γ matrices for each fermion number

violating fermion line.

Of particular interest are four-fermion vertices, which are a common feature of effective

theory formulations for physics beyond the Standard Model, and have recently been studied
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Figure 4. Cross section for uu → tt as a function of (fixed) beam energy, comparing 4-fermion

implementations and the corresponding implementations with explicit propagators. Left: t-channel

scalar exchange. Right: s-channel scalar exchange. For both cases, the mass of the propagator is

set to 10TeV.

in the context of top-quark LHC phenomenology [72–74] We are here presenting two exam-

ples of four-fermion vertices leading to the process uu → tt [75], one which corresponds to

the exchange of a heavy s-channel propagator (in this case a scalar colour sextet diquark)

and one which corresponds to a heavy t-channel propagator (a neutral colour singlet flavour

changing scalar). In both cases, we use a mass of 10 TeV for the propagators, and represent

the four-fermion vertices by integrating out the appropriate scalar propagator.

In figure 4 we compare the full theories, including the explicit propagators, with the

4-fermion vertex versions of the theories. The figure shows uu → tt cross sections for the

two scenarios as a function of fixed center of mass energy, for some particular coupling

values; to compare with a particular collider, the cross sections need to be convoluted with

the uu parton luminosity. The sudden turn-on of the cross section is due to the kinematical

suppression from the final-state top quark mass.

As expected, the four fermion vertex formulation agrees with the explicit propagator

formulation up to a c.m. energy of about 1/10 of the propagator mass. The explicit t-

channel propagator makes the cross section level off as the energy gets close to the mass

and the exchange momentum term in the denominator of the propagator starts dominating

over the mass term, while the explicit s-channel propagator displays the usual Breit-Wigner

peak as the energy gets close to the mass. In this case, the width of s-channel propagator

is ΓS = 200 GeV.

6.3 n-particle vertices: H + 4g

MadGraph 5 allows vertices with any number of external particles. Such vertices fre-

quently appear in effective field theories, where non-renormalizable operators are included

with some appropriate scale suppression. One of the most phenomenologically important

effective field theories for high-energy physics is the addition to the Standard Model of

effective couplings between the Higgs boson and gluons through a top quark loop, with the

top mass taken much larger than the Higgs boson mass.
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Figure 5. 5-particle diagram by MadGraph 5. This is one of 38 diagrams from the process

gg → Hgg in the Standard Model with effective couplings of the Higgs boson to gluons through a

top loop.

While the simplest vertex we can write down in this theory is Hgg, the non-Abelian

nature of QCD require us to include two additional operators in the Lagrangian, Hggg and

Hgggg, coupling the Higgs directly to three and four gluons respectively. While previous

versions of MadGraph had to split up the five-particle Hgggg vertex using an auxiliary

non-propagating tensor particle, MadGraph 5, in conjunction with ALOHA, can directly

handle this vertex in exactly the same way that it handles vertices with lower multiplicity.

The corresponding diagram, from the process gg → Hgg, is found in figure 5.

Note that for consistency, only one effective Higgs-gluon coupling vertex can be present

in a given diagram. This is made possible by specifying a separate coupling order, HIG, for

these vertices. Any process generation in this model should therefore be specified with a

maximum order HIG=1.

The new formulation of Higgs boson couplings to gluons has been thoroughly checked

against the implementation in MadGraph 4, and is one of the models included in the

MadGraph 5 package.

The same issue happens for a graviton interacting with four gauge bosons. A full

validation of the MadGraph 5 implementation the FeynRules RS model against the

MadGraph 4 [68] implementation has been performed.

6.4 Chromo-magnetic operator

Recent measurements in top quark pair production performed both at Tevatron and LHC

offer an ideal ground to search for new physics effects [74]. If such new physics is at scales

higher than those explored at the current colliders it can be efficiently modeled by an

effective theory with a non-renormalizable operator suppressed by a energy-scale Λ. In

the case of the top quark, only one operator of dimension 6 exists that is not a 4-fermion

operator, the so called chromo-magnetic operator:

L =
(HQ̄)σµνTAtGA

µν

Λ2
+ h.c.,

where Λ represents the cutoff of the effective theory. Adding such a term to the Lagrangian

of the standard model leads to additional interactions, see figure 6. For consistency, any
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Figure 6. Interactions induced by the chromomagnetic operator.

matrix element should be computed up to order Λ−2 and therefore requiring one and only

one effective coupling to enter at the squared matrix element level. This can be obtained

by defining a third type of coupling (in addition to QED and QCD) associated with the

new interactions.

Again the automation of the HELAS routines and the possibility for MadGraph 5

to deal with vertices with arbitrary number of legs, allows a straightforward treatment of

such operators. The validation of this model has been performed by comparing the Mad-

Graph 5 results to those obtained in a private (and not fully automatic) implementation

of this model inside the MadGraph 4 framework. In addition to automatically providing

the matrix element for any process involving the new operators, the evaluation of the cross

sections are approximatively four times faster than the previous version.

7 Conclusions and outlook

The complete rewriting of the MadGraph matrix-element generator in Python has allowed

us to build on the twenty years of experience gained with the Fortran version and push the

code as well as its functionalities to a new level. The resulting code, modular in structure

and with embedded robustness and sanity checks, is naturally organised as a collaborative

platform. Any sufficiently skilled user can exploit, modify and extend the functionalities

of the current version. The code is available via a major open-source project development

hosting service using the Bazaar version control system.
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The new code structure and new functionalities open the way to developments in

three main directions: BSM, NLO, and merging with shower/hadronization codes. The

direct link to the FeynRules model database will allow quick and robust implementation

not only of new physics models but also of any type of 1-loop counterterms, essential

ingredients to achieve NLO automatic computations in the SM and beyond. Work in all

these directions is in progress.
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A Installation and online web version

MadGraph 5 can be either used directly online on the web or locally. The code can

be downloaded from the web page https://launchpad.net/madgraph5. In order to run

MadGraph 5 locally, Python 2.6 or higher (but not 3.x) must be installed. The package

does not require any compilation or configuration; after unpacking, simply launch the

main script:

tar -xzpvf MadGraph5_v1.x.x.tar.gz

cd MadGraph5_v1_x_x

./bin/mg5

To learn how to use MadGraph 5, enter tutorial in the command line interface. The

full list of presently available commands are described in appendix B.

MadGraph 5 can also be used on the web (after free registration). We currently have

three public clusters:

• http://madgraph.phys.ucl.ac.be/

• http://madgraph.hep.uiuc.edu/
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• http://madgraph.roma2.infn.it/

At this stage, MadEvent (Fortran) output can be generated online, and downloaded as a

standalone process directory. In the near future, also other output format will be available

online. Based on a user request, we also grant access to run event generation directly on

one of the clusters. In that case, the user can also choose to directly pass the events through

Pythia 6 for hadronization, and use a fast detector simulation, either Delphes [76] or

PGS [77].

B Command line user interface

The command line interface for MadGraph 5 is built on the Python module cmd. This

module allows for a flexible treatment of user input and support of features such as tab

completion, command history (accessed by the up key), help texts, and access to shell

commands from inside the command line interface. Using the command line interface, the

user can conveniently access the full functionality of MadGraph 5, including importing

models, generating processes, drawing Feynman diagrams, generating output in all avail-

able output formats (at present, MadEvent, Pythia 8 and standalone process and model

output in Fortran or C++), performing model checks, and launching event generation in

previously created process directories.

The command line interface is straightforward to extend, and more functionality is

continuously added based on user requests and code development.

The syntax for process generation in MadGraph 5 is very similar to that for Mad-

Graph 4, with a few exceptions reflecting the extended functionality of MadGraph 5

— most notably, spaces are needed between particle names, since there is no longer any

limit on particle name length, and the syntax for generating decay chains is modified to

accommodate the greater flexibility in decay chain generation. Some syntax examples are

given in table 7. However, the interface also has the ability to read process cards written

for MadGraph 4.

The user can start the command line interface by running bin/mg5 from the Mad-

Graph 5 directory. If the name of a file containing MadGraph 5 commands is given as

argument, then the commands in the file are performed. Such a file can be generated from

the series of commands used in a session by the history command, and is automatically

placed in the Cards/ directory when a MadEvent directory is created. Process generation

can also be done as in MadGraph 4, by running bin/newprocess mg5 in a copy of the

Template directory with an appropriate proc card.dat or proc card mg5.dat placed in

the Cards directory.

We list here the presently available commands in the command interface (in alphabet-

ical order).

• add process: Add and generate diagrams for a process, keeping previously generated

processes.
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Syntax Description

p p > l+ l- Generate the (valid) processes uū → e+e−, dd̄ →

µ+µ− etc.

p p > j j j (No specification of orders.) Only allow diagram with

maximal QCD/minimal QED order.

p p > j j j QED=2 Allow up to 2 QED vertices (and unlimited QCD ver-

tices) in diagrams.

p p > z > l+ l- j Include only diagrams with an s-channel Z.

l+ l- > z | a > l+ l- Include only diagrams with an s-channel Z or an s-

channel γ.

b b~ > t t~ / g Exclude any diagrams with a g as internal propagator.

p p > b w+ t~ $ t Exclude any diagrams with an s-channel t propagator.

p p > t t~, t > b w+, \

(t~ > b~ w-, w- > l- vl~)

Generate a decay chain with t, t̄ and W− required to

be near-onshell. Note the use of parentheses to specify

decays within a decay chain.

Table 7. Some examples of process generation syntax in the MadGraph 5 command line interface.

The main differences w.r.t. MadGraph 4 are that spaces are needed between particle names, that

by default minimal QED coupling order is assumed (if there are only QED and QCD couplings in the

model), and furthermore the decay chain syntax which now allows full specification of all decay

processes including coupling orders, required and excluded particles, etc.

• check: Run model consistency checks for specified processes. Available checks are:

process permutation checks, gauge invariance check, and Lorentz invariance check

(see section 4.3).

• define: Define a multiparticle label used for implicit summing over processes. Some

commonly used multiparticle labels (p, j, l+, l-, vl, vl~) are automatically defined

when a model is imported.

• display: Display particles, interactions, defined multiparticle labels, generated pro-

cesses, generated diagrams, or the results of process checks.

• generate: Generate diagrams for a process, replacing any previously generated pro-

cesses.

• history: List the history of previous commands to the screen or to a file. The result-

ing file can be used to repeat a sequence of commands using the import command.

• import: Import a model (either in the UFO format or MadGraph 4 format) or a

process card (in MadGraph 5 or MadGraph 4 format).

• launch: Launch event generation or matrix element evaluation for created process

directories.

• load: Load a process or model previously saved to file using the save command.
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• output: Output process files for matrix element integration. Presently available out-

put formats are: MadEvent format (default), stand-alone Fortran format, Pythia 8

format, and stand-alone C++ format.

• save: Save a process or model to file, using the Python “pickle” format.

• set: Modify settings, including turning on/off subprocess grouping (see section 3.1).

• tutorial: Start a short tutorial showing how to use the most common commands.

Note that the help command gives the full list of available commands. Typing help

command gives information about each command. The built-in commands quit and exit

(or pressing control-D) quits MadGraph 5, and shell (or starting the line with a “!”)

allows to access any shell command.

Finally, the interactive interface has a tutorial mode which allows to quickly learn the

most common commands used in the interface.

C Process generation examples

This appendix presents examples of the series of commands required to generate the code

corresponding to the square matrix element of various process. Those command can be

either copied-pasted directly in the interactive interface (accessed by running ./bin/mg5) or

written in a text file executed by MadGraph 5 (executed by ./bin/mg5 command file ).

C.1 Top-quark pair production

The first example shows how to evaluate a cross-section (and how to generate partonic

events) for top-quark pair production in the Standard Model:

generate p p > t t~ QED=2 QCD=2

output MyOutputDir

launch

By default, MadGraph 5 imports the standard model. Therefore, no specific command

is needed for that. As stated above, the process definition syntax is slightly different from

the MadGraph 4 one. In MadGraph 5, spaces between particles names are mandatory.

As in MadGraph 4, it is possible to specify coupling orders. If the coupling orders

are not specified, then MadGraph 5 guesses which interactions to allow based on the

following rules:

• If the orders defined in the model are QED and QCD only: The strong coupling is

assumed to be dominant over the electroweak couplings, and the QED order is therefore

set to its minimal possible value, while putting QCD to its maximal possible value.

This provides the dominant contribution to the cross section, without the (negligible)

sub-leading diagrams with additional QED couplings.
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• If additional orders are present besides QED and QCD, then we allow any coupling order

for any coupling, (if given couplings are preferred, the user needs to supply maximum

orders in the process definition).

The computation of the cross-section and the generation of partonic events is done with

the command launch. Different options for cross section calculation and event generation

or matrix element evaluation can be found either with the help launch command or in

the file MyOutputDir/README.

C.2 Stop pair production

This example shows how to evaluate the value of the square matrix element for a given point

in phase-space. This is often used for testing the code and/or to interface MadGraph with

an external program.

import model mssm

generate p p > t1 t1~

add process p p > t2 t2~

output standalone

launch

First, the mssm model is imported. Then, the example shows how to create multiple

subprocesses. The generate command clears all previously generated processes, while the

add process keeps all previous processes and adds the new process to the set. If no output

directory is given to the output command, the output will be placed in an automatically

named directory PROC mssm 0.

C.3 Slepton pair production

In this example, we show how to generate all slepton pair production matrix elements for

use in Pythia 8 (See section 3.2). To generate the needed subprocesses, we could use the

add process command. However, given that the number of sub-processes is quite large,

this is not very convenient. A much more handy solution is to use a multi-particle label,

similar to p/j for proton/jet:

import model mssm

define sl- = el- mul- ta1- er- mur- ta2-

define sl+ = el+ mul+ ta1+ er+ mur+ ta2+

generate p p > sl+ sl-

output pythia8

launch

In order to run event generation from the process, you will need to have Pythia 8

installed on your computer. If the path to the Pythia 8 main directory is not given in the

output command, MadGraph 5 will look for it in the default location (./pythia8). The

default location can be modified by editing the file ./input/mg5 configuration.txt.
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C.4 W+jj production

In this simple example we show how to create eps files containing the Feynman diagrams

for a set of processes:

generate p p > W+ j j

display diagrams ./

The ’.eps’ files will be written in the output directory. Note that unless a coupling order

is specified, MadGraph 5 will minimize the number of allowed QED orders, as explained

in section C.1 above; here QED=1. If you want the full expansion in αem, you will need to

specify where to stop the expansion, i.e.,

generate p p > W+ j j QED=3

display diagrams ./

C.5 Graviton-jet production

In this example, we show how to evaluate the squared matrix element in C++ for a more

exotic model. We will use the specific case of the graviton production with one additional

jet in the Randall-Sundrum model [78, 79]. The list of command is the following:

import model RS

generate p p > y j

output standalone_cpp

launch

In the model implementation, the name for the graviton is y. In order to know the

name of all particles present in the model, you can use the command display particles

and in order to get more information about a specific particle you can enter display

particles y. In this examples they are three different coupling order labels QED / QCD /

QTD; the latter is linked to the graviton sector of the theory. Since they are three coupling

orders, MadGraph 5 is not able to guess a suitable hierarchy between those order and set

by default all orders to their maximal possible value.

C.6 Gluino decay

In this example we evaluate the partial decay width for gluino decay into uūχ0
1 through a

left-handed squark:

generate go > ul > u~ u n1

output madevent

launch

The particle(s) between the two > are requested to be present in all diagrams as s-

channel propagators. Note that this condition does not imply that the particle is strictly

on-shell. Also note that the result of the decay width calculation is given in GeV.
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C.7 Top-pair production with one leptonic decay

In MadGraph 5, it is possible to specify the decay of a (nearly) on-shell particle (see

section 2.4). The syntax follows the logic of first stating the core process and then indicating

the decay(s). If sub-decays are requested, they should be enclosed between parenthesis:

generate p p > t t~ QED=0, \

(t > W+ b, W+ > j j), \

(t~ > w- b\,, W- > l- vl~)

output madevent

launch

The full process can be written on one line, or using the line continuation symbol \ to

divide lines.

D The test suite

MadGraph 5 features a test suite that allows to test the installation as well as any further

development of the code. During code development, this test suite is extremely important

in order to avoid bugs, ensure the stability of the package and allow a robust multi-developer

approach. In this respect, it is considered mandatory that the implementation of any new

functionality is accompanied by related tests. General advice is that the test suite should be

as important and developed as the code itself and should be split into three different levels:

Unit tests:

Each part of the code (class or function) is tested by a series of dedicated tests. The

purpose is to fully check the behaviour of the routine / class, i.e., check the output

in some specific case, check the behavior of the code in case of wrong input, etc.

Currently MadGraph 5 includes more than 400 independent unittests.

Acceptance tests:

This part simulates the instructions entered by the user and checks that all modules

are correctly interfaced. This corresponds to check that a series of examples are

correctly running and provide the expected results.

Parallel tests:

These tests check that the output of MadGraph 5 are the same of those obtained

by MadGraph 4. These checks are made for different models (SM/ MSSM/ HEFT)

and using both UFO and version 4 models.

In order to efficiently run these tests, we have implement a script which automatically

detects all the tests available. The tests can be filtered by name or file, in order to run

only a subset of tests. A similar test module is now present by default in Python 2.7.

However, since MadGraph 5 is by design also compatible with Python 2.6, a dedicated

test code is included in the distribution. In order to run the different test suites, the user

can type (respectively for unittest / acceptance tests / parallel tests):

– 33 –



J
H
E
P
0
6
(
2
0
1
1
)
1
2
8

./tests/tests_manager.py

./tests/tests_manager.py -p A

./tests/tests_manager.py -p P

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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