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Abstract. The three aims of this paper are to obtain the proof by Dress of the completeness
of the enumeration of the @nbaum-Dress polyhedra (that is, the regular apeirohedra, or
apeirotopes of rank 3) in ordinary spaEe in a quicker and more perspicuous way, to
give presentations of those of their symmetry groups which are affinely irreducible, and to
describe all the discrete regular apeirotopes of rank B%inThe paper gives a complete
classification of the discrete regular polytopes in ordinary space.

1. Introduction

The theory of regular polytopes has undergone a number of changes since its origins in the
classification by the Greeks of the five regular (“Platonic”) solids, but most particularly
during this century. At the forefront of this development is Coxeter, whose Begklar
Polytopes[3] covers what might be called the classical theory. However, already in
Coxeter’s work a more abstract approach begins to be manifested. One generalization of
regular polyhedron is that ofr@agular map(see, for example, [4]).

The starting point of the present paper is 1926, when Petrie found the two dual regular
apeirohedra (infinite polyhedrd), 6|4} and {6, 4|4} in E3, which have planar faces
but skew vertex-figures (these technical terms are defined in Section 2). Immediately
afterwards, Coxeter discovered a third such exam@es|3} (see [2]). Around 1975
Griinbaum (see [8]) restored the symmetry by allowing skew faces as well (although
implicitly these were permitted by Coxeter also in using the Petrie operation); he found
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20 more regular apeirohedra It?. A final instance was discovered by Dress around
1980 (see [5] and [6]), who also proved the completeness of the enumeration.

Our aims here are threefold. First, we describe a far quicker method of arriving at
Dress's characterization result. The key to this method is a “trick” employed in the proofs
of Theorems 4.5 and 6.2, the essence of which is to replace a reflexion whose mirror is
a line by one whose mirror is a perpendicular plane. This idea also leads to new pairings
between the finite regular polyhedra. Second, we give presentations of the symmetry
groups of those discrete regular apeirohedi@iwhose groups are affinely irreducible;
an important ingredient here is Theorem 2.5, which says that such a presentation arises
solely from the vertex-figure and the edge-circuits. Third, we describe seven new discrete
regular apeirotopes of rank 4 i£?, to add to the familiar honeyconid, 3, 4} of cubes,
and prove that there are no others. Thus the paper contains a complete classification of
the discrete regular polytopes in ordinary space.

2. Abstract Regular Polytopes

Since we discuss regular polytopes on the abstract as well as the geometric level, we begin
with a brief introduction to the underlying general theory (see, for example, [12] and
[13]). An (abstrac) polytope of rank nor simply ann-polytope satisfies the following
properties. It is a partially ordered setwith a strictly monotoneank function whose
rangei§—1, 0, ..., n}. The elements of rankare called thg-facesof P, and the family
of suchj-faces is denote®;. Forj = 0, 1,n—2, orn— 1, we also callj-facesvertices
edgesridges andfacets respectively. Thdlags(maximal totally ordered subsets) of
‘P each contain exactly + 2 faces, including the unique minimal faEe; and unique
maximal faceF, of P. Further,P is strongly flag-connectedneaning that any two flags
® and V¥ of P can be joined by a sequence of flaBs= &g, ¢4, ..., ®x = ¥, where
®;_; and®; areadjacent(differ by one face), and> N & C @; for eachi. Finally, if
F andG are a(j — 1)-face and & ] + 1)-face withF < G, then there are exacttyo
j-facesH such that- < H < G.

WhenF andG are two faces of a polytopP with F < G, we callG/F := {H |
F < H < G} asectionof P. We may usually safely identify a fade with the section
F/F_,. For afacd the sectior,/F is called theco-face ofP at F, or thevertex-figure
at F if F is a vertex.

An n-polytope P is regular if its (automorphisrpgroup I'(P) is transitive on its
flags. Letd := {F_4, Fo, ..., Fn_1, Fn} be a fixed obaseflag of P. The groupl’(P)
of a regulam-polytopeP is generated bdistinguished generatorsy, . . ., pn_1 (with
respect tob), wherep; is the unique automorphism which keeps all but jHace of®
fixed. These generators satisfy relations

(2.1) (pppP =e  (,j=0,....,n=1),
with
(2.2) pi =1, pj =pi =2 (i #]),
and
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Thenumberg; := pj—1j (j =1, ..., n—1)determine the§ch&fli) type{ps, ..., Pn-1}
of P. Further,I' (P) has thentersection propertywith respect to the distinguished gen-
erators), namely,

@4 (o liehnpliedy=(plielnd)y forall I,Jc{0,...,n—1}.

Observe that, in a natural way, the group of the facePa$ (oo, ..., pn_2), While
that of the vertex-figure igos, ..., pn_1).

By a C-group we mean a group which is generated by involutions such that (2.1),
(2.2), and (2.4) hold. If, in addition, (2.3) holds, then the group is calkdrg C-group
The group of a regular polytope is a string C-group. Conversely, given a string C-group,
there is an associated regular polytope of which it is the automorphism group [12]. In
verifying that a given group is a C-group, it is usually only the intersection property
which causes difficulty. Note that Coxeter groups are examples of C-groups (see [12]
and [21]).

Given regulan-polytopesP; andP, such that the vertex-figures Bf are isomorphic
to the facets of?,, we denote byPi, P,) theclassof all regular(n + 1)-polytopesP
with facets isomorphic t@; and vertex-figures isomorphic 1. If (P, P») # @, then
any suchpP is a quotient of a universal member (9,1, P»); this universal polytopés
denoted by{P1, P,} (see [12], [17], and [20]).

We end the general discussion of regular polytopes and their groups with a useful
remark. Letl’ = (pq, ..., pn_1) be the group of a regular-polytopeP, and suppose
thaty € I'. Then we can expressin the form

Y = QoPoX100 * * - Ck—1000k,

with o € T := (p1, ..., pn_1), the group of the vertex-figure @ at its base vertex
v:= Fo,fori =0, ..., k. Withy, we can associate a pathfrwith k edges leading from
vtovy. If k = 0, the path consists af (= vag) alone. Fokk > 0, let(E;, ..., E;_;)
be an edge-path associated wit§poa1 09 - - - ax_1. With y is then associated the path
(Es, ..., Ex), given by

E1 = Eox (= Epoat),
Ei Ei/_lpo(xk for i = 2, ey k,

whereE := F; is the base edge @. Of course, this path will not generally be unique,
since it depends on the particular expression/for

Conversely, an edge-patky, . . ., Ex) fromv corresponds to such an element T,
in which pg occursk times. Ifk > 0, then there is aak € I'g such thate; = Eak. The
shorter pati(Eg, ..., E;_,), given by

E/ = Eit100 "po

fori =1,...,k—1, also starts at, and we can repeat to obtginas above, with a free
choice ofag.
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In the context of group presentations, we deduce:

(2.5) Theorem. Let P be a regular polytopeThen the groug” = '(P) of P is
determined by the group of its vertex-figuend the relations on the distinguished
generators of” induced by the edge-circuits &f which contain the initial vertex

Proof. A relation onI" can be written in the form

C0PO100 - -+ Ak—100 = &,

with oj € Tgfori = 0,...,k — 1, which corresponds to an edge-circuit starting and
ending atv. Conversely, such an edge-circuit is equivalent uridgeto one beginning
with E, and this gives rise to a relation as above (now the elemgntll be determined

by the circuit). This is the result. O

We now come to the geometric aspects of the theory. Following [10] and [11], a
realizationof a regular polytopéP is a mapping3: Py — E of the vertex-seP;, into
some euclidean spade, such that each automorphism Bfinduces an isometry of
V = PppB; such an isometry extends to one of all&funiquely if we make the natural
assumption thakE = affV, the affine hull ofV. In this latter case, we call difg the
dimensionof 8 also. Thus associated with a realizatirof P is a representation of
I := I'(P) as agroup of isometries, which we may also denotg;hye writeG := I'S.

Let 8 be arealization oP. Forj =0,...,n— 1, we define

R =p;B eC.

If R; is not the identity mapping, then it is an involutory isometryreilexionof E,
which whenever convenient we identify with i@rror of fixed points

{x e E| xR =x}.

Of course, we have = (Rq, ..., R,_1). We then obtain the points i, which we also
refer to asvertices by means ofMythoff’s constructionif v := Fyp is the image of the
vertex of P in the base flag, the¥f = vG. Now certainlyv € RyN---NRy_1;if v € Ry
as well, therg istrivial, in thatV reduces to a single point. Thus fetto be non-trivial,
we musthave € (RiN--- N R_1)\Ro.

The realizatiorg induces one of each sectionBfas follows. The faceP,_; in the
base flag is realized by

v(Ro, ..., Ra-2),

with v as before the initial vertex, while ib := vRy is the other vertex of the initial
edge, then the vertex-figure is realized by

w(Rl, ey Rn—l)-

Any other section is obtained by iteration of taking facets or vertex-figures, and so the
general case is clear.
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If B is a realization ofP, then we often writeP := Pg for a geometricregular
polytope, with the understanding thBtinherits the implied partial ordering induced
by the basic faces and their images un@eif P is isomorphic taP under this partial
ordering, then we cal$ faithful. Observe that a faithful realization & yields a faithful
realization of each of its sections.

The realizatiorg is blendedf there are proper orthogonal complementary subspaces
L andM of E, such that the representatidy permutes the family of translates bf
(and hence oM also). In this case we refer 108 as beingaffinely reducibleor just
reducibleif the context prevents confusion with the usual (linear) reducibility. A vertex
x of P is thus expressed as= (y,z), withy € L andz € M, and there are then
induced realizations @? in L andM. Conversely, such realizatiofs in L andP, in M
may beblendedby pairing up corresponding vertices»xas= (y,z) € E =L x M; we
then writeP := P, # P, for theblendof P, andP,. In a blend, a mirror of a generating
reflexion inE decomposes aR; = § x Tj, with § € L andT; € M; it may happen
that§ = L or T; = M. If P is not blended in a non-trivial way, then we c&lpure

A O-polytope can only be realized as a point, and a 1-polytope only non-trivially as
a (line) segment }.

In E3, a (faithfully realized) finite regular polygoR can only be either planar, and
thus a pure polygoiip}, or skew, being the blenfdp} # { } of a planar polygon and a
segment; the latter are three-dimensional. Our notation is rather sloppy in this latter case
(and similarly elsewhere); strictly speaking, what we mean is that the projectidds of
on the two orthogonal subspaces in the decomposition of the blend are coverjpgs of
and{ } by P, where in genergb > 2 is afraction. Ifp > 3is an integer, then the vertices
of a skew polygor{p} #{ } are among those of p-gonal prism; they will form all the
vertices ifp is odd, in which case the blend is @-gon, and half of them ip is even;
in each case, they will lie alternately on the twegonal faces of the prism.

Similarly, an apeirogon (infinite regular polygon)lif is a linear ongoc}, a (planar)
skew one, which is the blerdo} #{ } with a segment, or khelix, which is the blend of
{oo} with a bounded regular polygon. Note that the bounded regular polygon in the last
type need not itself be finite, although it will always be so in this paper.

We end the section with two useful remarks.

(2.6) Theorem. A faithful realization of a finite regular n-polytoge has dimension
atleastn

Proof. The result clearly holds i < 1, so suppose that> 2, and make the obvious
inductive assumption. The vertex-figure Bfis also realized faithfully, and so has
dimension at leash — 1. The vertices of the realization lie on a sphere, and hence
no vertexv can lie in the affine hull of the vertex-figure at Thus the realization must
have dimension at least completing the inductive step. O

(2.7) Corollary. A discrete faithful realization of a regular n-apeirotope has dimension
at least n— 1.

Proof. The vertex-figure of such a realization is a faithfully realized finite regular
(n — 1)-polytope, and so the corollary follows at once from Theorem 2.6. O
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3. Mixing Operations

The idea of a mixing operation is very general. hdbe a group generated by involutions,
sayA = (oo, ..., on_1); usually, but not necessarilyy will be a C-group. Amixing
operationthen derives a new group from A by taking as generatogs, . . ., pom_1 for

I certain suitably chosen (involutory) products of the ThenT is a subgroup of\,
and the mixing operation is denoted by

(00, ..., 0n-1) = (00, ..., Pm-1).

In this section we largely follow [12], to which we refer for further details.

Mixing operations are particularly powerful when applied to a polyhedron (3-polytope)
Q, which we may also think of as a (finite or infinite) regular map. The underlying sur-
face for such a map is, of course, the order comgleé®) of Q, or, more exactly, its
underlying (topological) polyhedron. Recall that a trianglel) of C(Q) is associated
with each flag¥ of Q, with each vertex off (V) associated with a face df, and two
triangles share an edge precisely when the corresponding flags are adjacent. Many of the
operations have direct geometric interpretations in this context.

The effect of a mixing operation on a polyhedrghcan often be pictured geo-
metrically by applying Wythoff's construction (or, rather, its abstract analogue) in the
underlying surfac€(Q). However, observe that the new faces (that is, 2-faces) which
are obtained, regarded as circuits of vertices and edges, will not usually bound discs in
C(Q).

We thus take our regular polyhedr@ghto havel’(Q) = A = (o9, 01, 02), and we
suppose tha@® is of Schéfli type{p, q}. Each operatiom will lead to a new groug’,
and a new polyhedroR := Q* with'(P) =T.

Duality
Our first mixing operation is not commonly thought of as such. Thikiality, denoted
here bys, and given by

(3.1) 8: (00, 01, 02) = (02, 01, 00) =: (po, P1, P2)-

The dual ofQ is thus denoted?, rather tharQ* as is more common in other contexts.

The Petrie Operation
Next, we have th®etrie operationt, defined by

(3.2) 7. (00, 01, 02) > (0002, 01, 02) = (p0, P1, P2)-

The resulting polyhedro@™ is often called théetrie dualor, more briefly, théPetrial
of Q. It has the same vertices and edge®abowever, its faces are thetrie polygons
of @, whose defining property is that two successive edges, but not three, are edges of a
face of Q. Thus the faces of™ arezigzagsleaving a face of) after traversing two of
its edges.
Itis clear that the Petrie operatianis involutory, so thatr = = 7, and(Q™)™ = Q.
If Q" isisomorphic taQ, then we calQ self-Petrie it should, however, be observed that
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a self-Petrie polyhedron and its Petrial do not coincide, since while they share the same
vertices and edges, their faces are different. An example of a self-Petrie polyhedron
is the hemi-dodecahedrofb, 3}s = {5, 3}/2, obtained from the dodecahedr{® 3}
by identifying its faces of each dimension under the central involutory symmetry. We
should recall that, in this context, a regular polyhedron of fymey} is denoted p, q};
if the lengthr of its Petrie polygons determines its combinatorial type; observe that
({p, a})™ = {r, q}p. We shall meet further examples below. The rare instances in which
the Petrial of a polyhedron is not polytopal will not concern us here; in all cases under
discussion, the intersection property for the corresponding group is easy to verify directly,
since everything will be firmly geometric.

In general, then, the Petrial of a regular polyhedron will also be a regular polyhedron
(that is, it will also be polytopal). The polyhedra obtained from a given one by iterating
the Petrie operation and duality then form a family of six; that is, we have

(3.3) Lemma. (78)% = ¢, the identity operation on classes of polyhedra

Proof. Indeed, considering the groups, we have

T
(00, 01, 02) —> (0002, 01, 02)
5
> (02, 01, 0002)
T
> (00, 01, 0002)
5
> (0002, 01, 00)
b
> (02, 01, 00)
5
> (00, 01, 02),

as claimed. O

In (5.5) and (5.6) below, the Petrie operation relates blended apeirohedra. This exhibits
a general phenomenon, whose proof is an easy consequence of the definition of a blend
in Section 2.

(3.4) Lemma. The Petrial of the blend of two polyhedra is the blend of their Petrials

In the application in Section 5, the second component of the blend will be a segment
or apeirogon; the Petrie operation will not affect this, as the corresponding reflexion
(in the notation of Section 2) is absent.

Facetting
We now have an operation which replaegdy some other reflexion (conjugateafor
02) in {01, 02). More specifically, théth facetting operatioryy is given by the operation

(3.5) ok (00, 01, 02) > (00, 01(0201)* L, 02) =: (po, p1, P2).

We suppose that 2 k < %q, sincegq_x has the same effect @& up to isomorphism
(actually, conjugation of the whole group by), and the cask = %q can only yield
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a polyhedronr, 2} for somer. (In this last case, the numbemay be of independent
interest, but it is notin the present context. In some special circumstances, we also find it
convenient to allow the case= 1 as well, where; is just the identity mixing operation

£.) When the highest common factde, ) = 1, thenp; o, has the same periapaso;os;
indeed, the groups are the same, aRds inverted bygy, wherekk = +1 (modq).

In fact, we have

(3.6) Lemma. oxem = okm, Where the suffix is to be read as that number betwieen
and %q which is congruent teckkm modulo g

Proof. We applygx andgm in succession to the group. Noting that oalychanges,
and writing o, = o1(0201)K 1 = (0102)%0», it becomes

k_2 K
((0102) 05) o2 = (0102) o2,

as required. O

This lemma covers all possible and m. Generally speaking, we are rather less
interested in the cas, q) > 1, although it will occasionally be useful. In particular,
we employg, with g even (actuallyg = 6) in Section 6 below.

Geometrically,px has the following effect whexk, q) = 1. The new polyhedron
P .= 9% has the same vertices and edge®ablowever, a typical face ¢? is ak-hole
of Q, which is formed by the edge-path which leaves a vertex byktheedge from
which it entered, in the same sense (that is, keeping always to the left, say, in some local
orientation ofC(Q)). The faces of° then comprise all thi-holes of Q. Hence, if such
ak-hole is arr-gon, so that is the period of

k—1
pop1 = 09 - (0102)" 01,

then Q% is of type{r, q}. If Q is infinite, then it is possible that = oo, even if p is
finite. Of course, the 1-holes @t are just its faces.

Naturally, we must not forget to verify the intersection property, but in this case it is
much easier to do this “geometrically”, thinking Bf= Q% as embedded in a surface.
Generally, this will not be the same as the original surta@@) underlyingQ, although
in practice we are able to work with(Q) instead of the new surfackP), and employ
Wythoff's construction, as we said earlier. In any event, we may use even more directly
geometric arguments in our context.

When (k, q) > 1, the situation is similar, except that now in general a compound
of several polyhedra of typé&, q/(k, q)} will be formed. However, ifQ% remains
connected, it will fail to be polytopal, since the vertex-figure at a vertex will no longer
be connected.

The Petrie operation and facetting are related as follows.

(3.7) Lemma. The Petrie operatiomr and the facetting operatiop, commute

Proof. This is easily verified algebraically, but it is even more instructive to look at
the geometry. Whether we apptyor ¢ first, the result will be (assuming that it exists)
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a polyhedrorP? whose vertices and edges are thos&@pbut whose typical face is a
k-zigzag given by an edge-path which (as f@y) leaves a vertex at theh edge from

the one by which it entered, but in the oppositely oriented sense at alternate vertices. The
Petrie polygons themselves are thus 1-zigzags. O

At this point, it is appropriate to introduce some general notation. We denote by
{p, qlh} a regular polyhedron of typgp, q}, whose combinatorial type is determined
by the fact that its (2-)holes ate-gons. Analogously, if a regular polyhedrd of
type {p, q} is determined by the lengthy of its j-holes for certainj in the range
2 < j <k:=|3q], then we denote it by

(3.8) P :={p.qlha, ..., h}:

any unnecessatly; (that is, one which is not needed for the specification) is replaced
by “.”, with those at the end of the sequence omitted. An example where di| thie
required for the specification is provided by Coxeter’s polyhedym|4"/?~1} (see
[2]; in [14]-[16] embeddings if® are found of this polyhedron, but of course without
full symmetry).

Similarly, the notatior{ p, q}; for a regular polyhedro® of type{p, q} determined
by the lengthr of its Petrie polygons is generalized to

(3.9) P ={p. Ao

with P now determined by the lengthg of its j-zigzags forj = 1,...,k with k as
before. The same conventions for unnecessaapply.
These notations can be combined, to give regular polyhedra

(310) {pv Q|h27 R hk}l’]_ ..... 'k

of type{p, q}, determined by certain of its holes and zigzags. The notation is not sym-
metric between holes and zigzags; the 1-holes are, of course, just thé¢ ffaces

The corresponding defining relations for the groups of such regular polyhedra are
easily obtained from the discussion above. Thuss forced to have -holes of length
h;j by imposing the relation

(3.11) (pop1(p2p)) ™ HN =&

on the groud™(P) = (po, p1, p2), While P is forced to havej-zigzags of length; by
imposing the relation

(3.12) (po(p1p2))" = e.
Of course, it is a consequence of Lemma 3.7 that the Petrie operation interchanges
j-holes andj-zigzags.

Halving
Thehalving operation; applies only to a regular polyhedr@hof type {4, g} for some
g > 3, and turns it into a self-dual polyhedréh:= Q" of type{q, q}. We definey by

(3.13) n: (00, 01, 02) = (000100, 02, 01) =: (Po, P1, P2)-
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The intersection property is easily checked for= (pg, p1, p2); it will become clear
from the discussion below. When we think af = I'(Q) acting on the surfacé(Q),
the triangleT = T (®) associated with the base fldgof Q is a fundamental region for
A, andoy, o1, ando>, act as reflexions in the sides ®f Now let T’ := T U Tog. Then
T’ is the fundamental region far, andr" is similarly generated by the reflexions in the
sides ofT".

If we now apply Wythoff’s construction (or, rather, its abstract analogue, in the un-
derlying surfac& (Q)), then we see that there are two possibilities.

First, suppose that the (edge-)graph@fs bipartite, so that all the edge-circuits of
Q have even length. The® will be a map on the same surfa€eQ). It will have half as
many vertices ag), namely, those in the same partition of the vertex&gof O as the
initial vertex in the base flag. Further," will have index 2 inA. As we asserted above,
‘P will be self-dual, sincerp € A acts as an automorphism Bf which interchangegg
and p, and leaves; fixed. The vertices of the du&? will then be those in the other
partition of Qg.

In the other case, the graph @fis not bipartite. Unlesg = 4 also,P will be a map
on a different surface fror@(Q). In actual factC(P) will be a double cover of (Q)
in every case; we must be careful to note t@atself does not coveP in general. We
now havel' = A, andP will have the same vertex-s€ly as Q. Finally, P will still be
self-dual, although now the conjugating elemepis in T".

In either case, we have

2
00010201 = 000100020102 = (000102)°.

This shows that if the original polyhedra® has Petrie polygons of length then the
new polyhedror® will have 2-holes of length or h/2 according to whethéris odd or
even. Note that the latter will be the case when the grapd isfbipartite (but possibly
in other cases also); thea[: T'] = 2.

In this spirit, in certain cases the combinatorial type of a polyhe@ren Q" is easily
determined from that of.

(3.14) Theorem. Letq> 4and s> 2.Then

(@) {4,912s}" = {d, q}zs;
(b) ({4, a}2s)" = {q, qls}.

Proof. The graphs of the two polyhedf4, q|2s} and{4, q},s are bipartite, since their
defining circuits are faces and holes or zigzags, of lengths 4 sn@&pectively. The
operationQ — Q" =: P is given by

n: (oo, 01, 02) = (000100, 02, 01) =: (00, P1, P2)-
In case (a), we therefore have

e = (00010201)%

(0001020100010201)°

S
= (000107 - 0001000100 - 0201)
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~ (0102 - 600100 - 0102 - 000100)°
= (0102 - 000100)>°
= (p2p190)*®
~ (pop1p2)>.

Similarly, in case (b), we have

€ (000102)%

S
(000102000102)

(000100 - 020102)°

= (pop1p201)°.
In each case, the defining relation of the original polyhedgbis equivalent to the
corresponding defining relation for the new polyhedfan O
Skewing

Finally we have theskewingoperations, or, as it would perhaps be better namsicew
halving It applies to a regular polyhedrad of type {p, 4}, and is defined by

(3.15) o (00, 01, 02) > (01, 0002, (6102)%) = (o, p1, P2)-
It is remotely related to halving; in fact

o =ménmd,
since, becaus@r0,)* = ¢, we have

T
(00, 01, 02) —> (0002, 01, 02)

§
—> (02, 01, 0002)

n
> (020102, 0002, 01)

™ 2
> ((0102), 0002, 01)

s 2
> (01, 0002, (0102)°),

as claimed. This also indicates thathalves the order of the group just wherdoes,
modulo the double application afs, that is, when the graph @7° is bipartite. If this

is the case, thea, ¢ T := I'(Q°%) = (po, p1, p2), but acts on it as an automorphism.
In any eventP := Q° is self-Petrie; the isomorphism betwePrandP” is given by
conjugation ofl" (P) by o7, since

020102 = 01 - (0102)°.
The type{s, t} of P = Q° is determined by the periods of

£opP1 = 01 - 0002 ~ 000102
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and

2
p1p2 = 00072 - (0102)° = 00010207.

Hences is the length of the Petrie polygons @f whilet is the length of its 2-holes.

We illustrate these techniques with a few examples. In particular, we see how they
apply to the Platonic polyhedra. In this section we treat them combinatorially; in later
sections, where we give further examples and complete classificatiiiswre look at
them more geometrically.

With the regular tetrahedrd3, 3}, only one of the above operations yields anything
new, namely, the Petrie operatian The new polyhedrof3, 3}" is {4, 3}3; it can also
be obtained from the cubd, 3} by identifying its antipodal faces of each rank, so that
an alternative notation for it igl, 3}/2. Observe that the facets @f, 3}3 are skew (non-
planar) polygon$4}#{ }. For this reason, while the dug, 4}3 of this polyhedron exists
in a combinatorial sense, it is not faithfully realizablefif (or, indeed, in any space).

With the cube, again only the Petrie operation leads to a new polyhedron (we leave
aside duality for the moment); we ha{# 3} = {6, 3}, = {6, 3}2,0), a toroidal poly-
hedron. Similarly, for the octahedrof8, 4} = {6, 4}3. Duality completes the family;
the cube and octahedron are dual, and the duals of the two Petrials, nggnély,and
{4, 6}3, are each the Petrial of the other, but are again not realizable faithfully. Note that
the operationp, can be applied to the octahedron, but will only yield the degenerate
polyhedron{4, 2}.

The icosahedrori3, 5} and dual dodecahedrof®, 3} give rise to a rich family.
Since its realizable members are listed in (4.3), we confine ourselves here to some
combinatorial remarks. The Petrial 3, 5} is {10, 5}3, and that of{5, 3} is {10, 3}s,
both with skew decagonal faces. Applying the facetting operatioto {3, 5} yields
{3,5}%2 = {5, g} = {5, 5|3} (see [2]). Its Petrial i§3, 5}7%2 = {6, 5}5 3; in fact, abstractly
this polyhedron is actuall{6, 5}. 3, and geometrically it i$6, g}.,g, with vertex-figures
which are pentagrams. Combinatorially, of cour{ﬁe,g} is self-dual, but geometrically
(in E3) its dual{g, 5} is distinct; therefore reversing these mixing operations yields the
other half of the symmetric table (4.3), with the interchange of ngahd 10 and13—°.

No mixing operations other than those in (4.3) yield polyhedra faithfully realizable in
[E2, but we observe that

({10, 3}5)*"* = {0, 3}52.

4. Finite Regular Polyhedra

We now employ the techniques above to describe the possible three-dimensional re-
alizations of abstract regular polytopes, which are both discrete and faithful. These
restrictions are the natural geometric ones; they are assumed to hold henceforth, and
will not be repeated. We then prove by direct methods that the enumeration is complete.
In this section we treat the finite regular polyhedra; subsequent ones are devoted to the
(infinite) apeirohedra, and to the apeirotopes of rank 4.

Before we embark on the classification problem, we briefly describe the key idea
behind our approach. This is the following simple “trick¥ach generating reflexion



Regular Polytopes in Ordinary Space 461

whose mirror is a line is replaced by one whose mirror is a suitable perpendicular
plane The problem thus reduces to one involving groups generated by plane reflexions,
and these are well known.

We begin by classifying the finite cases. We do this to illustrate the various mixing
operations we have described in Section 3 on examples which should be more familiar.
Theorem 2.6 says that a faithfully realized finite regular polytogé’inan have rank at
most 3, and then its vertex-figure must be planar. So we begin by listing the finite regular
3-polytopes irkE3, with the relationships between them. These polytopes will have the
same symmetry groups as the tetrahedron, octahedron, or icosahedron. In our lists we
do not repeat self-dual polytopes, for example. We should emphasize again that we are
really considering realizations of polytopes; thus a polytope may be realizable, while its
dual is not (at least, not faithfully).

The three groupings are then:

Tetrahedral Symmetry
(4.1) (3,3} < {4, 3}a.

Octahedral Symmetry

(4.2) (6, 4)3 <*> (3,4) <> (4,3} <> (6, 3)a.

Icosahedral Symmetry

(10,5} <% (3,5} <> (5,3) <> {10 3}

b

(4.3) (6,3) < (5,3} < (3,5 <> (6,5

w I

10 T 5 $ 5 T 10 5
73,3} < (3,3} < (3,3} «~— {3, 3}

We should say a few things about the last display. First, we have suppressed the
exact description of most of the polyhedra. Instead, we have given symbols more akin
to those used by Coxeter in [3]. In fact, the polyhedra occur in isomorphic pairs, given
by symmetry of the display about its centre, or by interchanging 5 gv'mlmd 10 with
1—30. The remaining details are:

{10, 5} = {10, 5}3,
{10, 3} = {10, 3},
{3.5) = (5,53},
{6,5} = {6,5}. 5.
For the last of these, recall from Section 3 that the subscripts denote the lengths of the
1- and 2-zigzags of the polyhedron.

(4.4)

[ 1e 1

(4.5) Theorem. The list of18 finite regular polyhedra in(4.1), (4.2),and (4.3) is
complete
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Proof. The enumeration is performed by a systematic investigation of the various pos-
sibilities. A main reason for treating this familiar problem is to introduce the techniques
employed. LetP be a regular polyhedroR in E2, and letG(P) = (R, Ry, Ry) be its
symmetry group. We may suppose t@atP) is an orthogonal group, so thethas centre

o. Further, we adopt our usual convention of identifying a reflexion with its mirror.

Our first observation is tha®; and R, must be planes. The simplest way to see this
is that the initial vertex of P satisfiesv € (R; N Ry)\{0}. ThusR; N R, contains a
line. However,R; and R, must also be distinct and non-commuting, and the desired
conclusion follows. NexRy is also either a line or a plane. Indeed, it clearly cannot be
the point-sefo}, which gives the only other kind of involution in an orthogonal group
in E2, because theR, would be central, and so would commute with.

We now employ our trick. IfRy is a line, we replace it by the orthogonal plane
S = Ry. As an orthogonal mappingy = —Ry, that is, the product oRy with the
central reflexion. We note th&, still commutes withR,, but does not withR;. If Ry
is a plane, we sefy := Ry. Further, we se§ := R; for j = 1, 2 in each case. Define
H:= (S, Si, ). ThenH is a finite (plane) reflexion group iR2, which is, as is well
known (see [3]), the symmetry group of some classical regular polyhe&@ron

We may clearly reverse the argument. If we take the gitdup (S, S, ) of one of
the nine classical regular polyhed@a(again, see [3], or for a different approach to the
classification, [9]), we may repla&® by — S, to obtain a new finite orthogonal group in
[E2 generated by involutions. This then adds another nine regular polyhedra to the nine
classical ones, and thus we arrive at the 18 polyhedra listed above. O

We make a remark about this pairing of polyhedra. When the group ,[2 line
which is the axis of a twofold rotation is perpendicular to a reflexion plane; thus the two
groupsG(P) andH are the same. But when the grouphfs [3, 3] or [3, 4], something
strange can happen, in that the two groups may be interchanged by the procedure of
replacingS by —S. However, it is clear that applying this procedure to Petrie duals
will yield Petrie duals. The resulting pairings among the 18 polyhedra are

(3,3} «— {6, 3}4,
(3,4} «— {6, 4},
{4,3} «— {4, 3}3,

{53} «— {R.3},
(4.6) (3,5} < (6,5},
{53} «— {£.3)
{3,5} <— (10,5},
(3,3} «— (6.3},
{3,3} < (10,3}

For the polyhedra with symmetry group, [, we have adopted the same abbreviated
notation as above.
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5. Blended Regular Apeirohedra

We now move on to the regular apeirohedra, or infinite polyhedi&3iiwe repeat our
blanket assumptions of discreteness and faithfulness.

A key tool in our investigations is a refinement of Bieberbach’s theorem [1], [7]. We
say that a subgrou@ of the whole groug,, of isometries off" dispersesf, whenever
v € E" is any point, therE" = conMvG), the convex hull of the images of under
G. WhenG is also discrete, this implies that the topological quotient s is
compact.

(5.1) Lemma. A discrete infinite group G of isometries which disperse&éwnr E3
does not contain rotations of periods other thHar83, 4,or 6.

Proof. LetG be such a subgroup of the whole grdijpof isometries ofE". ThenG
cannot have any non-trivial invariant (linear or affine) subspaces. Bieberbach’s theorem
then tells us tha® contains a full subgroup of the groupZ, of translations o&", and

that the quotienG/ T is finite; in effect, T can be thought of as a lattice of rankn

E". If X — Xg +t is a general element @&, with ¢ € O,, the orthogonal group, and

t € E" a translation vector (we may thus thinkto€ 7y), then the mappingg clearly

form a subgroups, of Oy, called thespecial groupof G. ThusGg is the image ofG

under the homomorphism df, whose kernel ig, (the image ofZ, is, of course(®,).

In other words,

Go=GTh/Ta =G/(GNTy) =G/T.

There is no loss of generality in assuming ti&t contains the central inversion
—1; if it does not, then we adjoin it. Suppose now that 2 or 3, and thatsy does
contain a rotation with periold # 2, 3, 4, 6; then it contains such a rotatignthrough
an angle Z/k. We first consider the planar cage= 2. Since—I € Gy, we may
suppose that > 8 is even. There is a minimal lengétamong the translations af. If
t € T has|t|| = §, then the distance betweémndty is 25 sin(x/k) < 8, an obvious
contradiction. In the case = 3 of ordinary space, we argue similarly, except that we
consider the minimal distance between parallel axdsfofd symmetry. O

When we consider discrete regular polytopesEmof higher rank, we note that
the three regular tessellatiof3, 6}, {4, 4}, and{6, 3} are planar, as are their Petrials.
However, we can treat these cases with the others, all of which are genuinely three-
dimensional. We thus obtain the two families of planar apeirohedra

(5.2) {4,4) < {00, 44
and
(5.3) (00, Bl3 <> (3,6} <> (6,3} < {00, 3.

The other operations we have described in Section 3 lead to no new polyhedra, even when
they are applicable. Infact, we hajve 4}" = {4, 4} (actually, another copy, whose edges

are diagonals of the original squares) d8d6}#2 = {6, 3} (a different copy from the
geometric dual).
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(5.4) Theorem. Thelistof six planar regular apeirohedra{f.2)and(5.3)is complete

Proof. The argument is similar to that for the finite regular polyhedra, but a little easier.
Let P be a planar regular apeirohedron, with grdapP) = (Ry, Ry, Ry). The initial
vertexv satisfiess € Ry N Ry, and R, and R, are non-commuting involutions &2;
henceR; and R, must be intersecting lines. In view of Lemma 5.1, the angle between
R; andR; can only ber/3, 7 /4 orn /6. Ry may be aline or a point. In the former case
G(P) must be one of [44] or [3, 6], yielding the three ordinary planar tessellations. In
the latter case, sindg, commutes withR,, the point must lie inR,, and we obtain the
three Petrials of the planar tessellations (observeRgR}: will be the reflexion in aline
perpendicular tdRy). O

We now consider the three-dimensional discrete regular apeiroheBfaWie shall
see that they fall into two families of 12 each. The first comprises those which are blends
in a non-trivial way, while the second consists of the pure apeirohedra; we deal with the
latter in Section 6.

The non-pure three-dimensional apeirohedra are derived from the six planar regular
apeirohedra by blending with either a segmérntor the linear apeirogofico}. The
apeirohedrain each of these two families form one-dimensional classes under similarity;
the parameter is the ratio between the edge-length of the planar apeirohedron and either
the length of the segment or the edge-length of the apeirogon. These apeirohedra are
thus listed as follows. First, we have the blends with segments:

(4,4 #() < [oo,Ma#{),
(5.5) (3,6} #{} <> {00, 6Bla#{},
6,3} #{} <> {o0, 3} #{}.

Then we have the blends with apeirogons:

(4, 4} # {00} <> {00, 4} # {00},
(5.6) (3,6} #{oco} <> {00, 6}3# {00},

(6,3} # {00} < {00, 3} # {00}
The Petrie relationships are given by Lemma 3.4.

If pis finite, the facets of a blen, q} #{ } are skew polygonsép} #{ }, and their
vertex-figures are flat polygorig}, parallel to the plane of the tessellatiom q}. Note
as in Section 2 thg{3} #{ } is actually a skew hexagon. For a blefagb, g}, #{ }, the
facets are (planar) zigzag apeirogdns} #{ }, since we have

({oo} #{ D #{} = {o0} #{},

if we ignore the implicit parameter giving the relative sizes of the components of the
blend. The vertex-figures are again flat polygfmis since the Petrie operation preserves
vertex-figures.

Similarly, the facets of a blenflp, q} # {oo} with p finite are helical apeirogons
{p} # {0} (spiralling around a cylinder with p-gonal base), and the vertex-figures are
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skew polygongq}#{ }. The facets of a blenfbo, g}, #{oo} are now zigzag apeirogons,
since

({oo} #{ }) #{oo} = {oo} #{ ],

again ignoring the implicit parameter. The vertex-figures are still skew polyigg#s }.

(5.7) Theorem. The list of12 blended apeirohedra i(6.5)and(5.6)is complete

Proof. Again, there is little to say here. A regular apeirohedfrnn E2 which is

a non-trivial blend must have components of dimensions 2 and 1. Moreover, the two-
dimensional component mustbe one of the six planar apeirohedralisted above. Lemma5.1
eliminates any other possibilities; in particular, the projectioR @h the corresponding

plane must be discrete. The required classification is then immediate. O

6. Pure Regular Apeirohedra

We finally come to the pure three-dimensional apeirohedra. We begin by listing them,
with the various relationships between them (these are elucidated in Section 7). We
see that, in a sense, they fall into a single family, derived from the regular honeycomb
{4,3, 4}.

{00, 4l6q <> {6,414) <> {4,6/4) <> {00, 6)as

l" b

{00, 4} .3 (6,6} 2 {o0,3}@

(6.1) In In

(6.4} <> {4.6)¢ -2 {oc0,3}®

laé n

{00, Bl53 < {6,6/3}.

The notation for one of the second suffixes has the following meaning; we prefix a
a number denoting le-hole fork > 3, or ak-zigzag fork > 2, to mean that this is the
size of the corresponding hole or zigzag of the dual polyhedron. Thusphefix here
indicates the 2-zigzag of the dual.

The two apeirohedra of tygeo, 3} are described in terms of their groups in Section 7.
In addition to the relationships given in the diagram, the two apeirohedra of &ypg
are of course self-dual, since they are obtained from other apeirohedra by the halving
operatiory. Further,{6, 4}¢ is self-Petrie as the notation indicates, agis 4}. .3 since
it is obtained by means of the skewing operatiofrom another apeirohedron. Finally,
chasing through the above diagram and using 7 énx§, we also have

({00, 4}6,4)” = {6, 4le.
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There are no other new apeirohedra which can be derived from any of these. For
example, further applications @b give

{4,614} = {4.3},
{6,613} = {3, 3},

both finite polyhedra.

(6.2) Theorem. The list of12 discrete pure three-dimensional apeirohedrgnl)is
complete

Proof. Let P be a pure three-dimensional apeirohedrofifnwith symmetry group
G(P) = (Ry, Ry, Ry). ThusRy, Ry, andR; are involutory isometries @2 such thatRy
and R, commute, whileR; does not commute witly or R,. As usual, we identify a
reflexion with its mirror.

We first show that each d®y, Ry, and R, must be a line or a plane; in other words,

generating reflexions in points are excluded. Without loss of generality, we may take the
initial vertex of P to beo. We then have € R; N R,, and so this latter intersection must
be non-empty and strictly contained in both. Hence Bm> 1 for j = 1, 2. For these
j,wewrite§ = R, or —R; asR; is a plane or line (as before;R; is the orthogonal
complement ofy;), andL for the plane througl perpendicular t&, and ;. Further,
0 ¢ Ro. If dim Ry = 0, then it easily follows thaG(P) is reducible, since eacR;
permutes the planes parallel kg which is contrary to the assumption thatis pure.
Indeed, we would hav®y C Ry, since these reflexions commute. Thus égn> 1
also.

We next exclude the possibility that dify = 2 for eachj = 1, 2. In this casdr, and
R, would be planes through with some acute angle between them. TRgiis a line or
plane, whose reflexion commutes wia, but not withR;. If Ry is a plane, then since
G(P) is irreducible it will follow thatRy N Ry N R, # ¥; henceG(P) will be a discrete
orthogonal group, and so finite. Similarly R is a line, there are two possibilities. First,
Ro may lie inRy, giving RN RiN Ry # @ sinceG(P) is irreducible, and as befofe(P)
is finite. SecondR, may be perpendicular tB;; this makes the grou@ (P) reducible,
which again is not permitted.

There is now a further case to be excluded; we cannot hav&glin 2 and dimR, =
1. If this were so, the lindR, would have to be perpendicular to the plaRg (since
0 ¢ Ry, the possibilityR, C Ry is forbidden). As in the previous case, the gra@bi(P)
would then be reducible, which we do not allow.

In conclusion, then, thdimension vectofdim Ry, dim Ry, dim R) for the mirrors
can take only four values, namel, 1, 2), (1, 1, 2), (1, 2, 1), and(1, 1, 1).

We have already introduced the planar reflexi@snd S,. We now define a third
reflexionS, whose mirror is also a plane, as follows. We Ritbe the translate oRy
which contains the origin, and then se§ := R; or —Rj asRy is a plane or aline. In
other words, we are employing the same trick as in the proof of Theorem 4.5. We write
G’ := (R}, Ry, Ry), which is the special group @& (P) (see the proof of Lemma 5.1),
andseH = (), S, $). ThenH is afinite irreducible (plane) reflexion group, namely,
one of [3 3], [3, 4], or [3, 5], andG’ is either again one of these reflexion groups, or its
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rotation subgroup (this can happen only when &m= 1 for eachj). SinceG(P) has
to be discrete, Lemma 5.1 excludes fivefold rotations, and h&hcannot be [35] or
its rotation subgroup. In other wordd, must be [33] or [3, 4].

With four possibilities for the vectadim Ry, dim Ry, dim Ry), and three for the group
H (which can also be taken as [g], of course), we see that we have just 12 possibilities.
These 12 all occur; we may reverse the method of the proof, and observe that different
positions ofRy not containingp, but meetingR,, lead to similar apeirohedra. O

We may now list these 12 apeirohedra, according to the different scheme given by
the proof of Theorem 6.2.

(3,3} (3, 4} {4, 3}
2,1,2) {6, 6|3} (6, 4|4} {4, 6|4}
(1,1,2) | {o0,6}44 {00, 4}6.4 {00, 66,3
121 {6, 6}4 {6,4}6 {4, 6}6
(1L1L1D | {00,3/®  {00,4).,3 {00, 3}®

In this table the entries on the left are the dimension vedtlim Ry, dim Ry, dim Ry).
The columns are indexed by the finite regular polyhedra to which the respective apeiro-
hedra correspond.

It is appropriate to make one further comment here. The symmetry groups of the
three apeirohedra associated with the dimension veétdr, 1) are generated by ro-
tations (half-turns) ifE3; thus the whole groups contain only direct isometries. This
implies that the three apeirohedra occur in enantiomorphic (mirror-image) pairs, with
their facets consisting of either all left-hand helices or all right-hand helices. The other
six apeirohedra with helical facets (three blended and three pure) contain both left- and
right-handed helices, since there is a plane or point reflexion among the generators of
each of their symmetry groups.

7. Group Presentations

It remains for us to prove that ten of the apeirohedra do have the automorphism groups
that their notations signify, and to determine the groups of the remaining two. In doing
this, we also verify the relationships of (6.1). (We do not treat the blended apeirohedra
here, since they are described by their geometric structures.)

For the moment, we leave asi@é 6|4} and its dual; we thus take their groups as
given. In Corollary 8.7 below, we demonstrate that their groups are as indicated by the
notation. (The same assumption could appl{edb|3}, but we actually obtain its group
here, as it fits into our general scheme.) Since the Petrie operation interchamges
andk-zigzags, we see that

{4,614} +> {00, 64,
{6,414} +> {00, M6,

as claimed. (Strictly speaking, perhaps we ought to replacthere by “)
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We next appeal to Theorem 3.14, to obtain
{4,6/4) — {6, 6}4.

The Petrie operation and duality then yi¢{d 6} and{6, 4}¢. Another appeal to Theo-
rem 3.14 then yields

{4, 6)g —> {6, 6/3}.

From this last, just as above we obtain
{6, 613} = {00, Bl 3.

We have three apeirohedra remaining, one obtained by an applicatide-0f 17 3),
and the other two by applications @3. The first we can do directly:

{6, 4|14} + {00, 464
> {4, 00}6 4
> {00, 00[3}4
— {4, 0}x.3

> {OO, 4}.,*3.

Thex prefix to a suffix was explained in Section 6. We have replacedkhie the final
suffix by -, to indicate that the corresponding value is unspecified. The only step left
unexplained is the third, namely, the application;dd {4, co}s .4. The operation is

n: (09, 01, 02) > (000100, 02, 01) =: (o, P1, P2).

The first suffix 6 is dealt with by Theorem 3.14; observe that the graph, @b}e .4 iS
indeed bipartite. For the second suffi, the relation gives the period of

2
02(0100)° = 0201000100 = 10200 ~ L0L102,

namely, that of the Petrie polygon of the second apeirohedron.

The last two apeirohedra, those of ty{pe, 3}, must be characterized by direct meth-
ods. We work withP® := {co, 3}® rather than withP® := {co, 3}®, because its
structure is a little easier to describe.

The symmetry group ofd, 6|4} is generated by the three involutions

X = (1-£81,5,83),
S X = (62,81, —&3),
S X = (61,83, 89),

in terms ofX = (&, &, £3), and the initial vertex i®. These are all symmetries of

the honeycomi§4, 3, 4} of unit cubes inE3, whose vertices are the points with integer
cartesian coordinates; hence all the groups which occur in the discussion are subgroups
of its symmetry group [43, 4]. Indeed, we shall see in Section 8 that if 344] =
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(To, ..., T3) inthe natural way, thefy = To, S = T1 T3, andS, = T,. These “standard”
generatord; are

Tor X = (1—£1, 82, &3),
TiiX = (82,81, &3),
Toi X = (81,83, &2),

T3 X = (&1, &2, —&3).

If we start from{4, 6|4} and trace through the three mixing operations which lead to
P® (namely,, 7, andg,), we find that the symmetry group of the latter has generators
(which are reflexions in lines)

Ro=(SS)% X > (1—&,1—&, &),
Ri=S5S: X = (&, =&, &),
Ro=S:X = (82,481, —&3).

We may pictureP® in the following way. As we have already remarked, its facets
are all helices with the same sense. The initial vertex isgtdhd hence all the vertices
are points ofE® with integer cartesian coordinates. We easily see from the generators
that, in fact, the sum of the coordinates of each vertex is even.

The initial edge has verticas= (0, 0, 0) andoRy, = (1, 1, 0), which is a diagonal
of a 2-face of{4, 3, 4}; hence all edges are such diagonals. NBxRy, which preserves
the initial facet and takesinto (1, 1, 0), is

RiRo: X = (1—&3,1+ &2, &),

which is a translation by0, 1, 0) together with a right-hand (or negative) twistof2
about the axis through%, 0, %) in direction (0, 1, 0). Hence the facets are helices of
type {oo} # {4}. Finally, R; takes(1, 1, 0) into (1,1,0)R; = (0, —1, 1), and R, takes
(0,-1,1) into (0,-1, )R, = (—1,0, —1); indeed,RRy: X — (—&3, —&1,&>) is a
cyclic permutation of the signed basis vectefs—e,, —es.

It follows from this that(R; Ry)* is a translation, by0, 4, 0). However, such transla-
tions in the directions of the three coordinate axes do not generate the whole translation
group. Instead, we observe that

XReR1Ry = (1+ &3, 1+ 41, &),

so that( R, Ry Rp)? is the translation by2, 2, 2). Since the images @2, 2, 2) underR; R,
and its inverse aré-2, 2, —2) and (-2, —2, 2), we see that the translation subgroup
is actually the latticeA := A 222, which is generated b§2, 2, 2) and its transforms
under changes of signs of the coordinates. Incidentally, &g R, is conjugate to the
“translation” RyR, - R; which takes one vertex of a facet of the PetR& of P® into
the next vertex, we see that these facets are of et {3}; this time, they are helices
with a left-hand (positive) twist.

The axes of the helical facets Bf® are parallel to the three coordinate axes; as we
have seen, these three axes are permuteR,R(. To visualize the way in which the
facets fit together, it is more convenient to concentrate on the vertical ones. The cubes
in {4, 3, 4} fall into vertical stacks or (infinite) towers. Just an eighth of these towers are



470 P. McMullen and E. Schulte

Fig. 1. The apeirohedrofwo, 3}®.

associated with facets; they are all the images of one fixed tower under the translation
lattice A. A typical facet winds upwards (or downwards) in a right-hand spiral around
the tower, crossing its square faces diagonally; we may envisage it as a staircase. (In
Fig. 1 we are looking at the vertical towers from above. As we go around a tower in the
clockwise direction, we rise by a floor each time we traverse an edge.)

The origino is a vertex of a vertical tower; we think of it as lying at ground level.
Ascending four flights of stairs brings us ¢, 0, 4) on the fourth floor, immediately
above our starting point. At each floor is a single horizontal bridge, leading away from
one tower to an “adjacent” tower, across the diagonal of a horizontal squreSo#}. If
we ascend one flight to the first floor, cross the bridge, descend one flight in the adjacent
tower to the ground floor, and then cross the next bridge, we shall similarly have gone
four edges along a facet &® with a horizontal axis. Each bridge belongs to two such
horizontal facets, of course, according to whether it was reached by an ascending or
descending flight.

Theorem 2.5 shows that we can find a presentation of the automorphism group of
P® = {00, 3} by considering its edge-circuits (the vertex-figure is, of course, known).

A minimal or basiccircuit is constructed as follows. Ascend four floors of a tower by

the staircase, cross the bridge to the adjacent tower, descend four floors by its staircase,
and then cross back over the bridge to the starting point. The other basic circuits are
then the images of this one under the symmetry gréfp := G(P®) of P®. A

typical basic circuit using horizontal towers is formed similarly, although the description
superficially appears different. From a starting vertex, cross a bridge and ascend one floor
of a staircase. Repeat this twice, then cross a final bridge and descend three floors. Of
course, we may interchange “ascend” and “descend” in this description. Such a circuit
uses four towers in a square formation; the circuit goes round the inside of three towers,
and the outside of the fourth. (In Fig. 1 such a horizontal basic circuit is indicated by
heavy lines.)

If C andD are two edge-circuits, then veencatenatéhem by taking their symmetric
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differenceC A D. (In taking the symmetric difference, we are of course only considering
the edges, not their vertices; isolated vertices obviously disappear.) Obser¢€ that

D) A D = C, so that concatenating twice with a fixed circuit has no effect. The key
result for categorizing® is

(7.1) Lemma. An arbitrary edge-circuit infoo, 3}® is a concatenation of basic cir-
cuits

Proof. Itis clear that, at any stage, we may confine our attention to a single connected
circuit C; if, after any concatenation, a circuit becomes disconnected, then we simply
consider the resulting components.

We now reduce the circu to a vertex by means of two kinds of operation. First, if
C uses two or more bridges between the same towers, we may concatenate with vertical
basic circuits to eliminate these bridges in pairs. Thus we may assunté tioaitains
no more than one bridge between any two towers.

We now look down orC from a vertical direction, as in Fig. 1. Since the plane
is simply connected, we may contract the projectiorCatfo a single vertex. For this
purpose, we can safely identify the vertices®fn any one tower, since there is now
no more than one bridge between any two towers. A contraction over a diamond formed
by four towers is achieved by concatenating with a horizontal basic circuit (like one of
those indicated in Fig. 1) which uses these four towers and shares one of the bridges
of C. Of course, further reductions of the first kind will then also generally be needed,
since horizontal bridges along the other three sides of the diamond may be introduced
(and some may disappear). It is clear that systematic application of these two kinds of
operation will eventually reducg to a single vertex oP® . Hence, if we reverse the
successive concatenations, we shall recover the original circuit, as was claimed.

By Theorem 2.5, a basic edge-circuit?® corresponds to a relation &® between
its distinguished generatoR, Ry, andR,. We consider the following horizontal basic
circuit. It starts from the initial vertem, and contains the first four successive edges of
the initial facetF,. This sequence of four edges is continued at each end by the two
edges (corresponding to bridges) joiniRgto the facet in an adjacent (horizontal) stack
of cubes, and is completed by the four intermediate edges of that facet. The symmetry
group of this basic circuit has two generators. The firstis the conjugate (RyR;)3Ry
of Ry by (RyRy)?, which fixesF, and interchanges the two bridging edges. The second
is the conjugaté), := R,RiRyR1 R, of Ry by Ry Ry, which interchange$§, and the
“adjacent” facet, and fixes the two bridging edges. The relation which imposes this basic
circuit is thenU,U, = UoU4, or (U1U»)? = |3, the identity inE2. When expressed in
terms of the generatoRy, Ry, andRy, the relationU;U,)? = |3 involvesR, ten times,
in keeping with the fact that a basic circuit Hf® has ten edges.

In order to state the main theorem, we provide an alternative interpretation of the
group relation given by this basic circuit. Define

S:
T:

(RoRp)%,
(RoR1R2)%.
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ThusSandT are the translations given by the facetRf and by its Petrie polygon
(the facet ofP®). Then we have

(U1U2)? = (RyR)3Ro - RRiRyR1R; - (RoR1)3Ro - R:RiRy R R,
= (RoR)* - RiIRR{RyRIRRoR1 Ry - (R1Ry)* - RyRiRoR1R:Ri RoR1 Ry
= (RoRD* ReRIR:RyR1 RoR2R1 Ry - (RiRp)* - RyRiRoR2R1 R RoR1 Ry
= ST !s'T,

where we have freely usegyR, = R:Ry and RiR;R; = RyRy Ry, but not the fact

that S and T are actually translations, and hence commute. Rearranging, we see
that (U;U»)? = I3 and ST = T Sare equivalent relations; it is the latter which we
employ.

(7.2) Theorem. The automorphism groups of the two non-planar pure apeirohedra of
type{oo, 3} in E2 are the Coxeter groufoo, 3] = (po, p1, p2), with the imposition of
the single extra relation

0T = 10,

whereo = (pop1)® and t := (pgp1p2)* for {oo, 3@, or o := (pop1)* and t :=
(pop1p2)® for {oo, 3}®).

Proof. The given relation foP® is equivalent to the one given above, simceorre-
sponds td&Sandz corresponds td . By Theorem 2.5, any relation on the automorphism
groupI"® of P® corresponds to an edge-circuit, and we have shown in Lemma 7.1
that these are formed by concatenating basic circuits, each of which is obtained by
conjugating the extra relation. Thus the automorphism group®fis as claimed.

The corresponding relation fd®@® is obtained from that foP® by means of the
Petrie operation substitution g, for po. Indeed, in terms of the generatorsigP,
and witho andz retaining (for the moment) their original definitions, we have

(pop2p1)® = patp2
(Pop2p102)* = p20p2.

Thus the relations between the nevandr are just the old ones (conjugated g») with
o andr interchanged, again as asserted. O

We make a further comment on this group. By definiti®? = ({4, 6}¢)*2, by
means of the operation

(00, 01, 02) > (00, 010201, 02) =: (Po, P1, P2)

on the (larger) automorphism group Bls := I'({4, 6}6) = (00, 01, 02). If we substitute
for po, p1, @andp, in this way, it is easy to check that (as we must) we do obtain a valid
relation in [4 6]e.

We end with a remark on the groups of the pure apeirohedra with finite faces. We
put them in a table, together with the pairs of finite regular polyhedra to which they



Regular Polytopes in Ordinary Space 473

correspond; as before, the entry in the first column of the table is the dimension vector
(dmRy, dimRy, dimRy).

2,22 | {33 {3.4) {4,3)

(1,2,2) | {634 {643 {433
(2,1,2) | (6,63} {6,414} {464
(1.21) | {66la {64 {46l

A convex regular polyhedron of typ&, q} (or {q, 3}) has holegh} with h = g, while
its Petrie polygon is an-gon with

f_ 20+ 10
=7
(this is derived from 4.91 of [3], and is just one of many possible expressions; we write
r here for Coxeter'd), for obvious reasons). Fqr > 2, we definep’ by

1 1 1

p p 2
The corresponding polyhedra in each column are then

{pv q}1 {p/7 q}r’» {p/v q/|h}ﬂ {p/v q/}r-

Of course, the fact that the holes or Petrie polygons of the derived polyhedra are those
given follows from the relationship between the generating reflexion®,;, andR; of

their groups, and the corresponding plane reflexigns, and S, which generate the
group of the convex polyhedron.

8. Regular 4-Apeirotopes

Inview of Corollary 2.7, we may confine our attention to 4-apeirotopes in any discussion
of possible faithfully realized regular polytopes of rank at least BinWe treat these
largely geometrically.

So, letP be a discrete faithfully realized regular 4-apeirotop&¥nwith symmetry
group(Ro, Ry, Ry, Rs). Its facets are (finite or infinite) regular polyhedra. Furthermore,
its ridges (2-faces) must be planar regular polygons, again finite or infinite; they cannot be
three-dimensional, because this would force the stabilizing eleRgritthe base ridge
to be the identity, and no regular apeirohedron has linear apeirogons as facets, because
then the stabilizing elemeiR, of the base edge would fix the whole line containing the
base facet, and hence all the vertices would lie on this line.

It follows that R must be the reflexion in the plane of the base ridge. Moreover, the
facets cannot be planar, because then all the vertices would lie in the plane of this base
ridge.

The vertex-figureP /v of P at its initial vertexv must be a finite regular polyhedron,
and hence one of the 18 in the list of (4.1), (4.2), and (4.3); see Theorem 4.5. However,
Bieberbach’s theorem and discreteness again exclude fivefold rotational symmetries; see
Lemma 5.1. The vertex-figures must therefore belong to the crystallographic family in



474 P. McMullen and E. Schulte

(4.1) and (4.2), namely
{3s 3}7 {41 3}3» {37 4}7 {6’ 4}31 {47 3}» {67 3}4

We have listed Petrie duals together.

The only polyhedra which can be vertex-figures of a regular 4-apeir®apth finite
planar ridges ar€3, 4} and{6, 4}3; the 2-faces are then squafd$. (Note, incidentally,
that blended regular apeirohedra cannot have finite planar facets.) To see this, we may
use the same argument as that on p. 69 of [3]. Recall that the ratio of the edge-length
of the vertex-figure of a planar regular polygpp} (joining the two vertices adjacent
to a given one) to the edge-length {qd} itself is 2 co$z/p). Hence, ifP has 2-faces
{p} for some rational numbep, its vertex-figure must be a finite regular polyhedron
whose ratio of edge-length to circumradius is of the form 2e¢g); the only instances
are the octahedrof8, 4} and its Petriak6, 4}3, wherep = 4. We thus obtain the two
apeirohedra

(8.1) {4,3,4) = {{4,3},{3,4}}, {{4,6/4},{6,4)3}.

We justify the notation for the second apeirotope below; it is indeed the universal regular
polytope of its kind.

In our listing of the regular apeirohedra, we found that the only ones with planar
(zigzag) apeirogons as facets are

{0, 6)3#{}, {oo,Ha#{}, {oo,3e#{}
{00, 6}3#{o0}, {00, 4Js#{oo}, {00, 3}e#{oo}.

In each case, the reflexidr, is that in a point (obtained as the product of two such
reflexions, one for each component of the blend). It follows that the only other possibilities
for discrete regular 4-apeirotopes are obtained by takftp be a point ofR; N R,
since Ry must commute witlR, and Rz. (Observe that the six possible vertex-figures
do haveR; N R3 as a line.) Sincd?y and R; must not commute, we havg ¢ R;. In
effect, this amounts to choosirig, to be a vertexw of the vertex-figureP /v at v, or,
more strictly perhaps, half-way betweemndw (this ensures thab is the image ob
underRy). Each possible choice will yield an apeirotope.

The resulting six apeirotopes are of type (in a general sense)

{{oo, 36 #{ }, {3, 3}}, {{oo, 4}4 #{o0}, {4, 3}3};
(8.2) {{oo, Ble #{ }, {3,4}}, {{oo, B}s# {00}, {6, 4}s};
{{oo, 4la#{},{4,3}}, {{oc, 6}3#{oo}, {6, 3}4}.

This notation suppresses the exact definitions of the apeirotopes, and should not be taken
to imply universality.

The identification of the apeirotopes in the list (8.2) is facilitated by the observation
that the vertex-figures of an apeirohedfen, q}s #{ } are planar polygongy}, while
those of{co, q}s # {oo} are skew polygongq} #{ }. (The 2-faces of4, 3}3 are skew
polygons{4} #{ }, while those of{6, 4}3 and{6, 3}, are skew polygon&} #{ }.)

To summarize, we thus have

(8.3) Theorem. The list of eight discrete regular-apeirotopes irE3 in (8.1)and(8.2)
is complete
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Before we go on to describe the groups of these eight apeirotopes (although we only
find presentations for the first two), we make some remarks. The two lists (8.1) and
(8.2) group the apeirotopes in pairs; their vertex-figures are Petrie duals, and so their
automorphism (or symmetry) groups are related by the involutory mixing operation

(00, 01, 02, 03) = (00, 0103, 02, 03) =: (Po, P1, P2, P3)-

This may also be seen to induce the appropriate changes of kind in the facets in (8.2),
namely, that between blends with the segrmigrand the apeirogofoo}. Geometrically,
when the vertex-figure is a convex regular polyhedfgnr}, with symmetry group
(R1, Rp, Rs) generated by plane reflexions, th& is a point of the lineR, N R,
showing that a 2-face, with grouRo, Ry), is a zigzag (planar) apeirogon. If we replace
Ry by RiR; = Ry N R, the reflexion in a line, we see that the new 2-face is the same
zigzag apeirogon, since that is fixed By. However, under this change of generators,
the vertex-figure of the facéto, q}s#{ } is changed from a planar polygém} to a skew
polygon{t}#{ }, namely, the Petrie polygon of the original vertex-fig{ger }. The new
facet must then be an apeirohedron of the f@sm t} #{oco}. This explains the pairing of
the apeirotopes in (8.2). Further, if we have a presentation for the automorphism group
of one of the pair, then we have it for the other, just by making the substitutipioef
for p1 wherever it occurs.

Now we already know thd#, 3, 4} = {{4, 3}, {3, 4}} isthe universal regular polytope
of its Schéfli type. When we replace its vertex-figuf& 4} by its Petrial{6, 4}3, we
obtain the following presentation for the automorphism group of {{4, 6|4}, {6, 4}3}:

pE = (p1p3)? = p3 = p3

= (pop1p3)* = (pop2)? = (pops)?
= (p1p302)® = (p103)? = (p203)* = e.

Simplifying these relations and reordering them, we obtain
(8.4) PG = pf=p;=p3

(PopD)* = (pop2)? = (pop3)? = (p1p3)? = (p2p3)*
= (p1p2p3)° = &.

The relations involvingos, p», and p3 certainly specify the group db, 4}3, which
must therefore be the vertex-figure. The relatipnp,)® = ¢ is implied by the other
relations, and it is only conventional to insert the number “6{-ifl}3, as its omission
looks a little strange.

The relations involvingsg, p1, and e, on the other hand, are clearly inadequate as
they stand to specify the facgt, 6/4}. It is curious, therefore, that the relations of (8.4)
must serve to specify the group Bfitself. In this context, we show in Corollary 8.7 that
the mixing operation

(00, 01, 02, 03) > (00, 0103, 02) =: (po, P1, P2)

applied to [4 3, 4] indeed yields the group ¢#, 6/4}. Here, it is appropriate to demon-
strate:
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(8.5) Theorem. An abstract reguladl-polytope of typd4, 6, 4} with vertex-figure of
type{6, 4}z is a quotient of {4, 6|4}, {6, 4}3}.

Proof. In fact, we could really describe the type of the polytopéas, 4}. Under the
given conditions, the group of such a polytoRe say, satisfies the relations (8.4); we
have observed that the vertex-figure then must be of {gpé}s. We now reverse the
Petrie operation on the vertex-figure, whereby we recover the relations for the Coxeter
group [4 3, 4].

It remains to show that we come to the same conclusion, even if we impose the extra
relations which specify the facé#, 6/4}. We may certainly setp;10,)® = &, if this is
not already given to us. Under the (reverse) mixing operation,

PopP1P2P1 = 000103020103
"~ 00010201
= 00020102

~ 0001,

so that(pgp10201)* = € is compatible with the presentation of & 4]. O

There are two immediate consequences of this argument.

(8.6) Corollary. The apeirotope of typg4, 64}, {6, 4}3} in E3 is universal

(8.7) Corollary. The mixing operation
(00, 01, 02, 03) > (00, 0103, 02) = (01, P1, P2)

applied to[4, 3, 4] yields the group of4, 6|4}.

For the other six apeirotopes, on the face of it the procedure appears very simple. To
the group(p1, p2, p3) Of the vertex-figure, we adjoin a new generatgisuch that

08 = (pop2)® = (pop3)? = e.

This is just the dual procedure to the construction of the free extension in [18] and [19].
However, in general we do not actually obtain the free extension, because the translation
subgroup of the apeirotope imposes extra relations on the group.

In fact, we confine ourselves to some brief remarks. When the vertex-fig{Be3s
or its Petrie duaj4, 3}3, the translation subgroup is generated by products of pairs of
conjugates opy; that is,

T = (apoBpoy | o, B, v € (p1, p2, p3) andafy = ¢).

(General products of pairs of conjugatespgfcan be expressed as products of these.)
The imposed extra conditions on the group have to sayTtha@abelian.
For the remaining cases, the product of a conjugagg by an element ofp1, p2, p3)
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with the central reflexion in the vertex-figure, namey, 0203)2 for {3, 4} and{4, 3} or
(p1p2)2 for their Petrie duals, will also belong . Again, conditions must be imposed
which forceT to be abelian. In fact, these are precisely the conditions which arise from
applying Theorem 2.5, though we do not give any details. However, it is worth noting
one curiosity. We observe that

{00, Q}s #{ } = {00, Qs

for the pairs(q, s) = (3, 6) or (4, 4), since all edge-circuits of the planar apeirohedra
have even lengths. It turns out that two of the three apeirotopes with facets of type
{c0, q}s #{ } are universal:

(8.8) {{oo, 36 #{ }, {3, 3}} = {{o0, 36, {3, 3}}
and
(8.9) {{oo, 44 #{ }, {3, 3}} = {{o0, 4}4, {4, 3}};

that is, they have automorphism groups which the latter notation signifies.

References

1. L. Bieberbach{Jber die Bewegungsgruppen der euklidischamiRé: erste Abhandlungedath. Ann 70
(1910), 297-336.

2. H.S.M. Coxeter, Regular skew polyhedra in 3 and 4 dimensions and their topological anaRmgaes.
London Math Soc (2) 43 (1937), 33-62. (Reprinted with amendmentsTimelve Geometric Essays
Southern lllinois University Press, Carbondale, IL, 1968, pp. 76—105.)

3. H.S.M. CoxeterRegular Polytopeg3rd edition). Dover, New York, 1973.

4. H.S.M. Coxeter and W.O.J. Mos&enerators and Relations for Discrete Groy@¢h edition). Springer-
Verlag, New York, 1980.

5. AW.M. Dress, A combinatorial theory of Gmbaum’s new regular polyhedra, Part l:uBbaum’s new
regular polyhedra and their automorphism grodequationes Matt23 (1981), 252—265.

6. A.W.M. Dress, A combinatorial theory of Gnbaum’s new regular polyhedra, Part II: Complete enumer-
ation.Aequationes Matt29 (1985), 222—243.

7. P. EngelGeometric CrystallographyReidel, Dordrecht, 1986.

. B. Grinbaum, Regular polyhedra—old and né&gquationes Mathl6 (1977), 1-20.

9. P. McMullen, Regular star-polytopes, and a theorem of Hesx:. London Math Soc (3) 18 (1968),
577-596.
10. P. McMullen, Realizations of regular polytopgequationes Matt87 (1989), 38-56.
11. P. McMullen, Realizations of regular apeirotop&squationes Math7 (1994), 223-239.
12. P. McMullen and E. Schulte, Constructions for regular polytofieSombin Theory SerA 53 (1990),
1-28.

13. P. McMullen and E. Schultébstract Regular Polytopgsnonograph in preparation).

14. P. McMullen, E. Schulte, and J.M. Wills, Infinite series of combinatorially regular maps in three-space.
Geom Dedicata26 (1988), 299-307.

15. P. McMullen, Ch. Schulz, and J.M. Wills, Equivelar polyhedral manifoldsinisrael 1 Math. 41 (1982),
331-346.

16. P. McMullen, Ch. Schulz, and J.M. Wills, Polyhedral manifold€Efhwith unexpectedly large genus.
Israel J Math. 46 (1983), 127-144.

[oe]



478 P. McMullen and E. Schulte

17. E. Schulte, Regaté Inzidenzkomplexe, [IGeom Dedicatal4 (1983), 33-56.

18. E. Schulte, On arranging regular incidence-complexes as faces of higher-dimensionBLoo@san J
Combin 4 (1983), 375-384.

19. E. Schulte, Extensions of regular compleX@site GeometriesLecture Notes in Pure and Applied Math-
ematics, Vol. 103. 1985, pp. 289-305.

20. E. Schulte, Amalgamations of regular incidence-polytopesc. London Math Soc (3) 56 (1986), 303—

328.
21. J.TitsBuildings of Spherical Type and Finite BN-Paitecture Notes in Mathematics, Vol. 386. Springer-

Verlag, Berlin, 1974.

Received Juné, 1996,and in revised form Octobex8, 1996.



