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Abstract. The three aims of this paper are to obtain the proof by Dress of the completeness
of the enumeration of the Gr¨unbaum–Dress polyhedra (that is, the regular apeirohedra, or
apeirotopes of rank 3) in ordinary spaceE3 in a quicker and more perspicuous way, to
give presentations of those of their symmetry groups which are affinely irreducible, and to
describe all the discrete regular apeirotopes of rank 4 inE3. The paper gives a complete
classification of the discrete regular polytopes in ordinary space.

1. Introduction

The theory of regular polytopes has undergone a number of changes since its origins in the
classification by the Greeks of the five regular (“Platonic”) solids, but most particularly
during this century. At the forefront of this development is Coxeter, whose bookRegular
Polytopes[3] covers what might be called the classical theory. However, already in
Coxeter’s work a more abstract approach begins to be manifested. One generalization of
regular polyhedron is that of aregular map(see, for example, [4]).

The starting point of the present paper is 1926, when Petrie found the two dual regular
apeirohedra (infinite polyhedra){4, 6|4} and {6, 4|4} in E3, which have planar faces
but skew vertex-figures (these technical terms are defined in Section 2). Immediately
afterwards, Coxeter discovered a third such example:{6, 6|3} (see [2]). Around 1975
Grünbaum (see [8]) restored the symmetry by allowing skew faces as well (although
implicitly these were permitted by Coxeter also in using the Petrie operation); he found

∗ The second author was partially supported by NSA Grant MDA904-96-1-0027 and Northeastern Uni-
versity’s RDS Fund.



450 P. McMullen and E. Schulte

20 more regular apeirohedra inE3. A final instance was discovered by Dress around
1980 (see [5] and [6]), who also proved the completeness of the enumeration.

Our aims here are threefold. First, we describe a far quicker method of arriving at
Dress’s characterization result. The key to this method is a “trick” employed in the proofs
of Theorems 4.5 and 6.2, the essence of which is to replace a reflexion whose mirror is
a line by one whose mirror is a perpendicular plane. This idea also leads to new pairings
between the finite regular polyhedra. Second, we give presentations of the symmetry
groups of those discrete regular apeirohedra inE3 whose groups are affinely irreducible;
an important ingredient here is Theorem 2.5, which says that such a presentation arises
solely from the vertex-figure and the edge-circuits. Third, we describe seven new discrete
regular apeirotopes of rank 4 inE3, to add to the familiar honeycomb{4, 3, 4} of cubes,
and prove that there are no others. Thus the paper contains a complete classification of
the discrete regular polytopes in ordinary space.

2. Abstract Regular Polytopes

Since we discuss regular polytopes on the abstract as well as the geometric level, we begin
with a brief introduction to the underlying general theory (see, for example, [12] and
[13]). An (abstract) polytope of rank n, or simply ann-polytope, satisfies the following
properties. It is a partially ordered setP with a strictly monotonerank function whose
range is{−1, 0, . . . ,n}. The elements of rankj are called thej -facesofP, and the family
of such j -faces is denotedPj . For j = 0, 1,n−2, orn−1, we also callj -facesvertices,
edges, ridges, andfacets, respectively. Theflags (maximal totally ordered subsets) of
P each contain exactlyn+ 2 faces, including the unique minimal faceF−1 and unique
maximal faceFn of P. Further,P is strongly flag-connected, meaning that any two flags
8 and9 of P can be joined by a sequence of flags8 = 80,81, . . . , 8k = 9, where
8i−1 and8i areadjacent(differ by one face), and8 ∩ 9 ⊆ 8i for eachi . Finally, if
F andG are a( j − 1)-face and a( j + 1)-face withF < G, then there are exactlytwo
j -facesH such thatF < H < G.

When F andG are two faces of a polytopeP with F ≤ G, we callG/F := {H |
F ≤ H ≤ G} a sectionof P. We may usually safely identify a faceF with the section
F/F−1. For a faceF the sectionFn/F is called theco-face ofP at F, or thevertex-figure
at F if F is a vertex.

An n-polytopeP is regular if its (automorphism) group 0(P) is transitive on its
flags. Let8 := {F−1, F0, . . . , Fn−1, Fn} be a fixed orbaseflag ofP. The group0(P)
of a regularn-polytopeP is generated bydistinguished generatorsρ0, . . . , ρn−1 (with
respect to8), whereρj is the unique automorphism which keeps all but thej -face of8
fixed. These generators satisfy relations

(ρiρj )
pi j = ε (i, j = 0, . . . ,n− 1),(2.1)

with

pii = 1, pi j = pji ≥ 2 (i 6= j ),(2.2)

and

pi j = 2 if |i − j | ≥ 2.(2.3)
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The numberspj := pj−1, j ( j = 1, . . . ,n−1) determine the (Schl̈afli) type{p1, . . . , pn−1}
of P. Further,0(P) has theintersection property(with respect to the distinguished gen-
erators), namely,

〈ρi | i ∈ I 〉∩〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉 for all I , J ⊂ {0, . . . ,n−1}.(2.4)

Observe that, in a natural way, the group of the facet ofP is 〈ρ0, . . . , ρn−2〉, while
that of the vertex-figure is〈ρ1, . . . , ρn−1〉.

By a C-group, we mean a group which is generated by involutions such that (2.1),
(2.2), and (2.4) hold. If, in addition, (2.3) holds, then the group is called astring C-group.
The group of a regular polytope is a string C-group. Conversely, given a string C-group,
there is an associated regular polytope of which it is the automorphism group [12]. In
verifying that a given group is a C-group, it is usually only the intersection property
which causes difficulty. Note that Coxeter groups are examples of C-groups (see [12]
and [21]).

Given regularn-polytopesP1 andP2 such that the vertex-figures ofP1 are isomorphic
to the facets ofP2, we denote by〈P1,P2〉 theclassof all regular(n+ 1)-polytopesP
with facets isomorphic toP1 and vertex-figures isomorphic toP2. If 〈P1,P2〉 6= ∅, then
any suchP is a quotient of a universal member of〈P1,P2〉; this universal polytopeis
denoted by{P1,P2} (see [12], [17], and [20]).

We end the general discussion of regular polytopes and their groups with a useful
remark. Let0 = 〈ρ0, . . . , ρn−1〉 be the group of a regularn-polytopeP, and suppose
thatγ ∈ 0. Then we can expressγ in the form

γ = α0ρ0α1ρ0 · · ·αk−1ρ0αk,

with αi ∈ 00 := 〈ρ1, . . . , ρn−1〉, the group of the vertex-figure ofP at its base vertex
v := F0, for i = 0, . . . , k. Withγ , we can associate a path inP with k edges leading from
v to vγ . If k = 0, the path consists ofv (= vα0) alone. Fork > 0, let (E′1, . . . , E′k−1)

be an edge-path associated withα0ρ0α1ρ0 · · ·αk−1. With γ is then associated the path
(E1, . . . , Ek), given by

E1 := Eαk (= Eρ0αk),

Ei := E′i−1ρ0αk for i = 2, . . . , k,

whereE := F1 is the base edge ofP. Of course, this path will not generally be unique,
since it depends on the particular expression forγ .

Conversely, an edge-path(E1, . . . , Ek) fromv corresponds to such an elementγ ∈ 0,
in whichρ0 occursk times. Ifk > 0, then there is anαk ∈ 00 such thatE1 = Eαk. The
shorter path(E′1, . . . , E′k−1), given by

E′i := Ei+1α
−1
k ρ0

for i = 1, . . . , k− 1, also starts atv, and we can repeat to obtainγ as above, with a free
choice ofα0.
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In the context of group presentations, we deduce:

(2.5) Theorem. Let P be a regular polytope. Then the group0 = 0(P) of P is
determined by the group of its vertex-figure, and the relations on the distinguished
generators of0 induced by the edge-circuits ofP which contain the initial vertex.

Proof. A relation on0 can be written in the form

α0ρ0α1ρ0 · · ·αk−1ρ0 = ε,

with αi ∈ 00 for i = 0, . . . , k − 1, which corresponds to an edge-circuit starting and
ending atv. Conversely, such an edge-circuit is equivalent under00 to one beginning
with E, and this gives rise to a relation as above (now the elementα0 will be determined
by the circuit). This is the result.

We now come to the geometric aspects of the theory. Following [10] and [11], a
realizationof a regular polytopeP is a mappingβ: P0 → E of the vertex-setP0 into
some euclidean spaceE, such that each automorphism ofP induces an isometry of
V := P0β; such an isometry extends to one of all ofE, uniquely if we make the natural
assumption thatE = aff V , the affine hull ofV . In this latter case, we call dimE the
dimensionof β also. Thus associated with a realizationβ of P is a representation of
0 := 0(P) as a group of isometries, which we may also denote byβ; we writeG := 0β.

Let β be a realization ofP. For j = 0, . . . ,n− 1, we define

Rj := ρjβ ∈ G.

If Rj is not the identity mapping, then it is an involutory isometry orreflexionof E,
which whenever convenient we identify with itsmirror of fixed points

{x ∈ E | x Rj = x}.

Of course, we haveG = 〈R0, . . . , Rn−1〉. We then obtain the points inV , which we also
refer to asvertices, by means ofWythoff ’s construction: if v := F0β is the image of the
vertex ofP in the base flag, thenV = vG. Now certainlyv ∈ R1∩ · · ·∩ Rn−1; if v ∈ R0

as well, thenβ is trivial , in thatV reduces to a single point. Thus forβ to be non-trivial,
we must havev ∈ (R1 ∩ · · · ∩ Rn−1)\R0.

The realizationβ induces one of each section ofP as follows. The facetPn−1 in the
base flag is realized by

v〈R0, . . . , Rn−2〉,
with v as before the initial vertex, while ifw := vR0 is the other vertex of the initial
edge, then the vertex-figure is realized by

w〈R1, . . . , Rn−1〉.

Any other section is obtained by iteration of taking facets or vertex-figures, and so the
general case is clear.
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If β is a realization ofP, then we often writeP := Pβ for a geometricregular
polytope, with the understanding thatP inherits the implied partial ordering induced
by the basic faces and their images underG. If P is isomorphic toP under this partial
ordering, then we callβ faithful. Observe that a faithful realization ofP yields a faithful
realization of each of its sections.

The realizationβ is blendedif there are proper orthogonal complementary subspaces
L andM of E, such that the representation0β permutes the family of translates ofL
(and hence ofM also). In this case we refer to0β as beingaffinely reducible, or just
reducibleif the context prevents confusion with the usual (linear) reducibility. A vertex
x of P is thus expressed asx = (y, z), with y ∈ L and z ∈ M , and there are then
induced realizations ofP in L andM . Conversely, such realizationsP1 in L andP2 in M
may beblendedby pairing up corresponding vertices asx = (y, z) ∈ E = L × M ; we
then writeP := P1 # P2 for theblendof P1 andP2. In a blend, a mirror of a generating
reflexion inE decomposes asRj = Sj × Tj , with Sj ⊆ L andTj ⊆ M ; it may happen
thatSj = L or Tj = M . If P is not blended in a non-trivial way, then we callP pure.

A 0-polytope can only be realized as a point, and a 1-polytope only non-trivially as
a (line) segment{ }.

In E3, a (faithfully realized) finite regular polygonP can only be either planar, and
thus a pure polygon{p}, or skew, being the blend{p} # { } of a planar polygon and a
segment; the latter are three-dimensional. Our notation is rather sloppy in this latter case
(and similarly elsewhere); strictly speaking, what we mean is that the projections ofP
on the two orthogonal subspaces in the decomposition of the blend are coverings of{p}
and{ } by P, where in generalp > 2 is a fraction. Ifp ≥ 3 is an integer, then the vertices
of a skew polygon{p} # { } are among those of ap-gonal prism; they will form all the
vertices if p is odd, in which case the blend is a 2p-gon, and half of them ifp is even;
in each case, they will lie alternately on the twop-gonal faces of the prism.

Similarly, an apeirogon (infinite regular polygon) inE3 is a linear one{∞}, a (planar)
skew one, which is the blend{∞} # { } with a segment, or ahelix, which is the blend of
{∞} with a bounded regular polygon. Note that the bounded regular polygon in the last
type need not itself be finite, although it will always be so in this paper.

We end the section with two useful remarks.

(2.6) Theorem. A faithful realization of a finite regular n-polytopeP has dimension
at least n.

Proof. The result clearly holds ifn ≤ 1, so suppose thatn ≥ 2, and make the obvious
inductive assumption. The vertex-figure ofP is also realized faithfully, and so has
dimension at leastn − 1. The vertices of the realization lie on a sphere, and hence
no vertexv can lie in the affine hull of the vertex-figure atv. Thus the realization must
have dimension at leastn, completing the inductive step.

(2.7) Corollary. A discrete faithful realization of a regular n-apeirotope has dimension
at least n− 1.

Proof. The vertex-figure of such a realization is a faithfully realized finite regular
(n− 1)-polytope, and so the corollary follows at once from Theorem 2.6.
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3. Mixing Operations

The idea of a mixing operation is very general. Let1be a group generated by involutions,
say1 = 〈σ0, . . . , σn−1〉; usually, but not necessarily,1 will be a C-group. Amixing
operationthen derives a new group0 from1 by taking as generatorsρ0, . . . , ρm−1 for
0 certain suitably chosen (involutory) products of theσi . Then0 is a subgroup of1,
and the mixing operation is denoted by

(σ0, . . . , σn−1) 7→ (ρ0, . . . , ρm−1).

In this section we largely follow [12], to which we refer for further details.
Mixing operations are particularly powerful when applied to a polyhedron (3-polytope)

Q, which we may also think of as a (finite or infinite) regular map. The underlying sur-
face for such a map is, of course, the order complexC(Q) of Q, or, more exactly, its
underlying (topological) polyhedron. Recall that a triangleT(9) of C(Q) is associated
with each flag9 of Q, with each vertex ofT(9) associated with a face of9, and two
triangles share an edge precisely when the corresponding flags are adjacent. Many of the
operations have direct geometric interpretations in this context.

The effect of a mixing operation on a polyhedronQ can often be pictured geo-
metrically by applying Wythoff’s construction (or, rather, its abstract analogue) in the
underlying surfaceC(Q). However, observe that the new faces (that is, 2-faces) which
are obtained, regarded as circuits of vertices and edges, will not usually bound discs in
C(Q).

We thus take our regular polyhedronQ to have0(Q) = 1 = 〈σ0, σ1, σ2〉, and we
suppose thatQ is of Schläfli type{p,q}. Each operationµ will lead to a new group0,
and a new polyhedronP := Qµ with 0(P) = 0.

Duality
Our first mixing operation is not commonly thought of as such. This isduality, denoted
here byδ, and given by

δ: (σ0, σ1, σ2) 7→ (σ2, σ1, σ0) =: (ρ0, ρ1, ρ2).(3.1)

The dual ofQ is thus denotedQδ, rather thanQ∗ as is more common in other contexts.

The Petrie Operation
Next, we have thePetrie operationπ , defined by

π : (σ0, σ1, σ2) 7→ (σ0σ2, σ1, σ2) =: (ρ0, ρ1, ρ2).(3.2)

The resulting polyhedronQπ is often called thePetrie dualor, more briefly, thePetrial
ofQ. It has the same vertices and edges asQ; however, its faces are thePetrie polygons
ofQ, whose defining property is that two successive edges, but not three, are edges of a
face ofQ. Thus the faces ofQπ arezigzags, leaving a face ofQ after traversing two of
its edges.

It is clear that the Petrie operationπ is involutory, so thatπ−1 = π , and(Qπ )π = Q.
If Qπ is isomorphic toQ, then we callQ self-Petrie; it should, however, be observed that
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a self-Petrie polyhedron and its Petrial do not coincide, since while they share the same
vertices and edges, their faces are different. An example of a self-Petrie polyhedron
is thehemi-dodecahedron{5, 3}5 = {5, 3}/2, obtained from the dodecahedron{5, 3}
by identifying its faces of each dimension under the central involutory symmetry. We
should recall that, in this context, a regular polyhedron of type{p,q} is denoted{p,q}r
if the lengthr of its Petrie polygons determines its combinatorial type; observe that
({p,q}r )π = {r,q}p. We shall meet further examples below. The rare instances in which
the Petrial of a polyhedron is not polytopal will not concern us here; in all cases under
discussion, the intersection property for the corresponding group is easy to verify directly,
since everything will be firmly geometric.

In general, then, the Petrial of a regular polyhedron will also be a regular polyhedron
(that is, it will also be polytopal). The polyhedra obtained from a given one by iterating
the Petrie operation and duality then form a family of six; that is, we have

(3.3) Lemma. (πδ)3 = ε, the identity operation on classes of polyhedra.

Proof. Indeed, considering the groups, we have

(σ0, σ1, σ2)
π7−→ (σ0σ2, σ1, σ2)

δ7−→ (σ2, σ1, σ0σ2)
π7−→ (σ0, σ1, σ0σ2)

δ7−→ (σ0σ2, σ1, σ0)
π7−→ (σ2, σ1, σ0)

δ7−→ (σ0, σ1, σ2),

as claimed.

In (5.5) and (5.6) below, the Petrie operation relates blended apeirohedra. This exhibits
a general phenomenon, whose proof is an easy consequence of the definition of a blend
in Section 2.

(3.4) Lemma. The Petrial of the blend of two polyhedra is the blend of their Petrials.

In the application in Section 5, the second component of the blend will be a segment
or apeirogon; the Petrie operation will not affect this, as the corresponding reflexionT2

(in the notation of Section 2) is absent.

Facetting
We now have an operation which replacesσ1 by some other reflexion (conjugate ofσ1 or
σ2) in 〈σ1, σ2〉. More specifically, thekth facetting operationϕk is given by the operation

ϕk: (σ0, σ1, σ2) 7→ (σ0, σ1(σ2σ1)
k−1, σ2) =: (ρ0, ρ1, ρ2).(3.5)

We suppose that 2≤ k < 1
2q, sinceϕq−k has the same effect asϕk up to isomorphism

(actually, conjugation of the whole group byσ2), and the casek = 1
2q can only yield
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a polyhedron{r, 2} for somer . (In this last case, the numberr may be of independent
interest, but it is not in the present context. In some special circumstances, we also find it
convenient to allow the casek = 1 as well, whereϕ1 is just the identity mixing operation
ε.) When the highest common factor(k,q) = 1, thenρ1ρ2 has the same periodq asσ1σ2;
indeed, the groups are the same, andϕk is inverted byϕk′ , wherekk′ ≡ ±1 (modq).
In fact, we have

(3.6) Lemma. ϕkϕm = ϕkm, where the suffix is to be read as that number between0
and 1

2q which is congruent to±km modulo q.

Proof. We applyϕk andϕm in succession to the group. Noting that onlyσ1 changes,
and writingρ1 = σ1(σ2σ1)

k−1 = (σ1σ2)
kσ2, it becomes

((σ1σ2)
kσ 2

2 )
mσ2 = (σ1σ2)

kmσ2,

as required.

This lemma covers all possiblek and m. Generally speaking, we are rather less
interested in the case(k,q) > 1, although it will occasionally be useful. In particular,
we employϕ2 with q even (actually,q = 6) in Section 6 below.

Geometrically,ϕk has the following effect when(k,q) = 1. The new polyhedron
P := Qϕk has the same vertices and edges asQ. However, a typical face ofP is ak-hole
of Q, which is formed by the edge-path which leaves a vertex by thekth edge from
which it entered, in the same sense (that is, keeping always to the left, say, in some local
orientation ofC(Q)). The faces ofP then comprise all thek-holes ofQ. Hence, if such
ak-hole is anr -gon, so thatr is the period of

ρ0ρ1 = σ0 · (σ1σ2)
k−1σ1,

thenQϕk is of type{r,q}. If Q is infinite, then it is possible thatr = ∞, even if p is
finite. Of course, the 1-holes ofP are just its faces.

Naturally, we must not forget to verify the intersection property, but in this case it is
much easier to do this “geometrically”, thinking ofP = Qϕk as embedded in a surface.
Generally, this will not be the same as the original surfaceC(Q) underlyingQ, although
in practice we are able to work withC(Q) instead of the new surfaceC(P), and employ
Wythoff’s construction, as we said earlier. In any event, we may use even more directly
geometric arguments in our context.

When(k,q) > 1, the situation is similar, except that now in general a compound
of several polyhedra of type{r,q/(k,q)} will be formed. However, ifQϕk remains
connected, it will fail to be polytopal, since the vertex-figure at a vertex will no longer
be connected.

The Petrie operation and facetting are related as follows.

(3.7) Lemma. The Petrie operationπ and the facetting operationϕk commute.

Proof. This is easily verified algebraically, but it is even more instructive to look at
the geometry. Whether we applyπ or ϕk first, the result will be (assuming that it exists)
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a polyhedronP whose vertices and edges are those ofQ, but whose typical face is a
k-zigzag, given by an edge-path which (as forϕk) leaves a vertex at thekth edge from
the one by which it entered, but in the oppositely oriented sense at alternate vertices. The
Petrie polygons themselves are thus 1-zigzags.

At this point, it is appropriate to introduce some general notation. We denote by
{p,q|h} a regular polyhedron of type{p,q}, whose combinatorial type is determined
by the fact that its (2-)holes areh-gons. Analogously, if a regular polyhedronP of
type {p,q} is determined by the lengthshj of its j -holes for certainj in the range
2≤ j ≤ k := b 1

2qc, then we denote it by

P := {p,q|h2, . . . , hk};(3.8)

any unnecessaryhj (that is, one which is not needed for the specification) is replaced
by “·”, with those at the end of the sequence omitted. An example where all thehj are
required for the specification is provided by Coxeter’s polyhedron{4, n|4bn/2−1c} (see
[2]; in [14]–[16] embeddings inE3 are found of this polyhedron, but of course without
full symmetry).

Similarly, the notation{p,q}r for a regular polyhedronP of type{p,q} determined
by the lengthr of its Petrie polygons is generalized to

P := {p,q}r1,...,rk ,(3.9)

with P now determined by the lengthsr j of its j -zigzags for j = 1, . . . , k with k as
before. The same conventions for unnecessaryr j apply.

These notations can be combined, to give regular polyhedra

{p,q|h2, . . . , hk}r1,...,rk(3.10)

of type{p,q}, determined by certain of its holes and zigzags. The notation is not sym-
metric between holes and zigzags; the 1-holes are, of course, just the faces{p}.

The corresponding defining relations for the groups of such regular polyhedra are
easily obtained from the discussion above. ThusP is forced to havej -holes of length
hj by imposing the relation

(ρ0ρ1(ρ2ρ1)
j−1)hj = ε(3.11)

on the group0(P) = 〈ρ0, ρ1, ρ2〉, whileP is forced to havej -zigzags of lengthr j by
imposing the relation

(ρ0(ρ1ρ2)
j )r j = ε.(3.12)

Of course, it is a consequence of Lemma 3.7 that the Petrie operation interchanges
j -holes andj -zigzags.

Halving
Thehalving operationη applies only to a regular polyhedronQ of type{4,q} for some
q ≥ 3, and turns it into a self-dual polyhedronP := Qη of type{q,q}. We defineη by

η: (σ0, σ1, σ2) 7→ (σ0σ1σ0, σ2, σ1) =: (ρ0, ρ1, ρ2).(3.13)
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The intersection property is easily checked for0 := 〈ρ0, ρ1, ρ2〉; it will become clear
from the discussion below. When we think of1 = 0(Q) acting on the surfaceC(Q),
the triangleT = T(8) associated with the base flag8 ofQ is a fundamental region for
1, andσ0, σ1, andσ2 act as reflexions in the sides ofT . Now let T ′ := T ∪ Tσ0. Then
T ′ is the fundamental region for0, and0 is similarly generated by the reflexions in the
sides ofT ′.

If we now apply Wythoff’s construction (or, rather, its abstract analogue, in the un-
derlying surfaceC(Q)), then we see that there are two possibilities.

First, suppose that the (edge-)graph ofQ is bipartite, so that all the edge-circuits of
Q have even length. ThenP will be a map on the same surfaceC(Q). It will have half as
many vertices asQ, namely, those in the same partition of the vertex-setQ0 ofQ as the
initial vertex in the base flag8. Further,0 will have index 2 in1. As we asserted above,
P will be self-dual, sinceσ0 ∈ 1 acts as an automorphism of0, which interchangesρ0

andρ2 and leavesρ1 fixed. The vertices of the dualPδ will then be those in the other
partition ofQ0.

In the other case, the graph ofQ is not bipartite. Unlessq = 4 also,P will be a map
on a different surface fromC(Q). In actual fact,C(P) will be a double cover ofC(Q)
in every case; we must be careful to note thatQ itself does not coverP in general. We
now have0 = 1, andP will have the same vertex-setQ0 asQ. Finally,P will still be
self-dual, although now the conjugating elementσ0 is in 0.

In either case, we have

ρ0ρ1ρ2ρ1 = σ0σ1σ0σ2σ1σ2 = (σ0σ1σ2)
2.

This shows that if the original polyhedronQ has Petrie polygons of lengthh, then the
new polyhedronP will have 2-holes of lengthh or h/2 according to whetherh is odd or
even. Note that the latter will be the case when the graph ofQ is bipartite (but possibly
in other cases also); then [1 : 0] = 2.

In this spirit, in certain cases the combinatorial type of a polyhedronP = Qη is easily
determined from that ofQ.

(3.14) Theorem. Let q≥ 4 and s≥ 2. Then

(a) {4,q|2s}η = {q,q}2s;
(b) ({4,q}2s)

η = {q,q|s}.

Proof. The graphs of the two polyhedra{4,q|2s} and{4,q}2s are bipartite, since their
defining circuits are faces and holes or zigzags, of lengths 4 and 2s, respectively. The
operationQ 7→ Qη =: P is given by

η: (σ0, σ1, σ2) 7→ (σ0σ1σ0, σ2, σ1) =: (ρ0, ρ1, ρ2).

In case (a), we therefore have

ε = (σ0σ1σ2σ1)
2s

= (σ0σ1σ2σ1σ0σ1σ2σ1)
s

= (σ0σ1σ2 · σ0σ1σ0σ1σ0 · σ2σ1)
s
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∼ (σ1σ2 · σ0σ1σ0 · σ1σ2 · σ0σ1σ0)
s

= (σ1σ2 · σ0σ1σ0)
2s

= (ρ2ρ1ρ0)
2s

∼ (ρ0ρ1ρ2)
2s.

Similarly, in case (b), we have

ε = (σ0σ1σ2)
2s

= (σ0σ1σ2σ0σ1σ2)
s

= (σ0σ1σ0 · σ2σ1σ2)
s

= (ρ0ρ1ρ2ρ1)
s.

In each case, the defining relation of the original polyhedronQ is equivalent to the
corresponding defining relation for the new polyhedronP.

Skewing
Finally we have theskewingoperationσ , or, as it would perhaps be better named,skew
halving. It applies to a regular polyhedronQ of type{p, 4}, and is defined by

σ : (σ0, σ1, σ2) 7→ (σ1, σ0σ2, (σ1σ2)
2) =: (ρ0, ρ1, ρ2).(3.15)

It is remotely related to halving; in fact

σ = πδηπδ,

since, because(σ1σ2)
4 = ε, we have

(σ0, σ1, σ2)
π7−→ (σ0σ2, σ1, σ2)

δ7−→ (σ2, σ1, σ0σ2)
η7−→ (σ2σ1σ2, σ0σ2, σ1)
π7−→ ((σ1σ2)

2, σ0σ2, σ1)

δ7−→ (σ1, σ0σ2, (σ1σ2)
2),

as claimed. This also indicates thatσ halves the order of the group just whenη does,
modulo the double application ofπδ, that is, when the graph ofQπδ is bipartite. If this
is the case, thenσ2 /∈ 0 := 0(Qσ ) = 〈ρ0, ρ1, ρ2〉, but acts on it as an automorphism.
In any event,P := Qσ is self-Petrie; the isomorphism betweenP andPπ is given by
conjugation of0(P) by σ2, since

σ2σ1σ2 = σ1 · (σ1σ2)
2.

The type{s, t} of P = Qσ is determined by the periods of

ρ0ρ1 = σ1 · σ0σ2 ∼ σ0σ1σ2
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and

ρ1ρ2 = σ0σ2 · (σ1σ2)
2 = σ0σ1σ2σ1.

Hences is the length of the Petrie polygons ofQ, while t is the length of its 2-holes.
We illustrate these techniques with a few examples. In particular, we see how they

apply to the Platonic polyhedra. In this section we treat them combinatorially; in later
sections, where we give further examples and complete classifications inE3, we look at
them more geometrically.

With the regular tetrahedron{3, 3}, only one of the above operations yields anything
new, namely, the Petrie operationπ . The new polyhedron{3, 3}π is {4, 3}3; it can also
be obtained from the cube{4, 3} by identifying its antipodal faces of each rank, so that
an alternative notation for it is{4, 3}/2. Observe that the facets of{4, 3}3 are skew (non-
planar) polygons{4}#{ }. For this reason, while the dual{3, 4}3 of this polyhedron exists
in a combinatorial sense, it is not faithfully realizable inE3 (or, indeed, in any space).

With the cube, again only the Petrie operation leads to a new polyhedron (we leave
aside duality for the moment); we have{4, 3}π = {6, 3}4 = {6, 3}(2,0), a toroidal poly-
hedron. Similarly, for the octahedron,{3, 4}π = {6, 4}3. Duality completes the family;
the cube and octahedron are dual, and the duals of the two Petrials, namely,{3, 6}4 and
{4, 6}3, are each the Petrial of the other, but are again not realizable faithfully. Note that
the operationϕ2 can be applied to the octahedron, but will only yield the degenerate
polyhedron{4, 2}.

The icosahedron{3, 5} and dual dodecahedron{5, 3} give rise to a rich family.
Since its realizable members are listed in (4.3), we confine ourselves here to some
combinatorial remarks. The Petrial of{3, 5} is {10, 5}3, and that of{5, 3} is {10, 3}5,
both with skew decagonal faces. Applying the facetting operationϕ2 to {3, 5} yields
{3, 5}ϕ2 = {5, 5

2} ∼= {5, 5|3} (see [2]). Its Petrial is{3, 5}πϕ2 ∼= {6, 5}5,3; in fact, abstractly
this polyhedron is actually{6, 5}·,3, and geometrically it is{6, 5

2}·,3, with vertex-figures
which are pentagrams. Combinatorially, of course,{5, 5

2} is self-dual, but geometrically
(in E3) its dual{ 52, 5} is distinct; therefore reversing these mixing operations yields the
other half of the symmetric table (4.3), with the interchange of 5 and5

2, and 10 and10
3 .

No mixing operations other than those in (4.3) yield polyhedra faithfully realizable in
E3, but we observe that

({10, 3}5)δϕ3δ = { 10
3 , 3}5/2.

4. Finite Regular Polyhedra

We now employ the techniques above to describe the possible three-dimensional re-
alizations of abstract regular polytopes, which are both discrete and faithful. These
restrictions are the natural geometric ones; they are assumed to hold henceforth, and
will not be repeated. We then prove by direct methods that the enumeration is complete.
In this section we treat the finite regular polyhedra; subsequent ones are devoted to the
(infinite) apeirohedra, and to the apeirotopes of rank 4.

Before we embark on the classification problem, we briefly describe the key idea
behind our approach. This is the following simple “trick”:each generating reflexion
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whose mirror is a line is replaced by one whose mirror is a suitable perpendicular
plane. The problem thus reduces to one involving groups generated by plane reflexions,
and these are well known.

We begin by classifying the finite cases. We do this to illustrate the various mixing
operations we have described in Section 3 on examples which should be more familiar.
Theorem 2.6 says that a faithfully realized finite regular polytope inE3 can have rank at
most 3, and then its vertex-figure must be planar. So we begin by listing the finite regular
3-polytopes inE3, with the relationships between them. These polytopes will have the
same symmetry groups as the tetrahedron, octahedron, or icosahedron. In our lists we
do not repeat self-dual polytopes, for example. We should emphasize again that we are
really considering realizations of polytopes; thus a polytope may be realizable, while its
dual is not (at least, not faithfully).

The three groupings are then:

Tetrahedral Symmetry

{3, 3} π←→ {4, 3}3.(4.1)

Octahedral Symmetry

{6, 4}3 π←→ {3, 4} δ←→ {4, 3} π←→ {6, 3}4.(4.2)

Icosahedral Symmetry

{10, 5} π←→ {3, 5} δ←→ {5, 3} π←→ {10, 3}xyϕ2

xyϕ2

{6, 5
2}

π←→ {5, 5
2}

δ←→ { 52, 5}
π←→ {6, 5}xyϕ2

xyϕ2

{ 10
3 , 3}

π←→ { 52, 3}
δ←→ {3, 5

2}
π←→ { 10

3 ,
5
2}.

(4.3)

We should say a few things about the last display. First, we have suppressed the
exact description of most of the polyhedra. Instead, we have given symbols more akin
to those used by Coxeter in [3]. In fact, the polyhedra occur in isomorphic pairs, given
by symmetry of the display about its centre, or by interchanging 5 with5

2 and 10 with
10
3 . The remaining details are:

{10, 5} ∼= {10, 5}3,

{10, 3} ∼= {10, 3}5,

{ 52, 5} ∼= {5, 5|3},
{6, 5} ∼= {6, 5}·,3.

(4.4)

For the last of these, recall from Section 3 that the subscripts denote the lengths of the
1- and 2-zigzags of the polyhedron.

(4.5) Theorem. The list of18 finite regular polyhedra in(4.1), (4.2),and (4.3) is
complete.
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Proof. The enumeration is performed by a systematic investigation of the various pos-
sibilities. A main reason for treating this familiar problem is to introduce the techniques
employed. LetP be a regular polyhedronP in E3, and letG(P) = 〈R0, R1, R2〉 be its
symmetry group. We may suppose thatG(P) is an orthogonal group, so thatP has centre
o. Further, we adopt our usual convention of identifying a reflexion with its mirror.

Our first observation is thatR1 andR2 must be planes. The simplest way to see this
is that the initial vertexv of P satisfiesv ∈ (R1 ∩ R2)\{o}. Thus R1 ∩ R2 contains a
line. However,R1 and R2 must also be distinct and non-commuting, and the desired
conclusion follows. NextR0 is also either a line or a plane. Indeed, it clearly cannot be
the point-set{o}, which gives the only other kind of involution in an orthogonal group
in E3, because thenR0 would be central, and so would commute withR1.

We now employ our trick. IfR0 is a line, we replace it by the orthogonal plane
S0 := R⊥0 . As an orthogonal mapping,S0 = −R0, that is, the product ofR0 with the
central reflexion. We note thatS0 still commutes withR2, but does not withR1. If R0

is a plane, we setS0 := R0. Further, we setSj := Rj for j = 1, 2 in each case. Define
H := 〈S0, S1, S2〉. ThenH is a finite (plane) reflexion group inE3, which is, as is well
known (see [3]), the symmetry group of some classical regular polyhedronQ.

We may clearly reverse the argument. If we take the groupH = 〈S0, S1, S2〉 of one of
the nine classical regular polyhedraQ (again, see [3], or for a different approach to the
classification, [9]), we may replaceS0 by−S0, to obtain a new finite orthogonal group in
E3 generated by involutions. This then adds another nine regular polyhedra to the nine
classical ones, and thus we arrive at the 18 polyhedra listed above.

We make a remark about this pairing of polyhedra. When the group is [3, 5], a line
which is the axis of a twofold rotation is perpendicular to a reflexion plane; thus the two
groupsG(P) andH are the same. But when the group ofP is [3, 3] or [3, 4], something
strange can happen, in that the two groups may be interchanged by the procedure of
replacingS0 by −S0. However, it is clear that applying this procedure to Petrie duals
will yield Petrie duals. The resulting pairings among the 18 polyhedra are

{3, 3} ←→ {6, 3}4,

{3, 4} ←→ {6, 4}3,

{4, 3} ←→ {4, 3}3,

{5, 3} ←→ { 10
3 , 3},

{3, 5} ←→ {6, 5},
{5, 5

2} ←→ { 10
3 ,

5
2},

{ 52, 5} ←→ {10, 5},
{3, 5

2} ←→ {6, 5
2},

{ 52, 3} ←→ {10, 3}.

(4.6)

For the polyhedra with symmetry group [3, 5], we have adopted the same abbreviated
notation as above.
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5. Blended Regular Apeirohedra

We now move on to the regular apeirohedra, or infinite polyhedra, inE3. We repeat our
blanket assumptions of discreteness and faithfulness.

A key tool in our investigations is a refinement of Bieberbach’s theorem [1], [7]. We
say that a subgroupG of the whole groupIn of isometries ofEn dispersesif, whenever
v ∈ En is any point, thenEn = conv(vG), the convex hull of the images ofv under
G. WhenG is also discrete, this implies that the topological quotient spaceEn/G is
compact.

(5.1) Lemma. A discrete infinite group G of isometries which disperses onE2 or E3

does not contain rotations of periods other than2, 3, 4,or 6.

Proof. Let G be such a subgroup of the whole groupIn of isometries ofEn. ThenG
cannot have any non-trivial invariant (linear or affine) subspaces. Bieberbach’s theorem
then tells us thatG contains a full subgroupT of the groupTn of translations ofEn, and
that the quotientG/T is finite; in effect,T can be thought of as a lattice of rankn in
En. If x 7→ xϕ + t is a general element ofG, with ϕ ∈ On, the orthogonal group, and
t ∈ En a translation vector (we may thus think oft ∈ Tn), then the mappingsϕ clearly
form a subgroupG0 of On, called thespecial groupof G. ThusG0 is the image ofG
under the homomorphism onIn, whose kernel isTn (the image ofIn is, of course,On).
In other words,

G0 = GTn/Tn
∼= G/(G ∩ Tn) = G/T.

There is no loss of generality in assuming thatG0 contains the central inversion
−I ; if it does not, then we adjoin it. Suppose now thatn = 2 or 3, and thatG0 does
contain a rotation with periodk 6= 2, 3, 4, 6; then it contains such a rotationϕ through
an angle 2π/k. We first consider the planar casen = 2. Since−I ∈ G0, we may
suppose thatk ≥ 8 is even. There is a minimal lengthδ among the translations ofT . If
t ∈ T has‖t‖ = δ, then the distance betweent andtϕ is 2δ sin(π/k) < δ, an obvious
contradiction. In the casen = 3 of ordinary space, we argue similarly, except that we
consider the minimal distance between parallel axes ofk-fold symmetry.

When we consider discrete regular polytopes inE3 of higher rank, we note that
the three regular tessellations{3, 6}, {4, 4}, and{6, 3} are planar, as are their Petrials.
However, we can treat these cases with the others, all of which are genuinely three-
dimensional. We thus obtain the two families of planar apeirohedra

{4, 4} π←→ {∞, 4}4(5.2)

and

{∞, 6}3 π←→ {3, 6} δ←→ {6, 3} π←→ {∞, 3}6.(5.3)

The other operations we have described in Section 3 lead to no new polyhedra, even when
they are applicable. In fact, we have{4, 4}η = {4, 4} (actually, another copy, whose edges
are diagonals of the original squares) and{3, 6}ϕ2 = {6, 3} (a different copy from the
geometric dual).
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(5.4) Theorem. The list of six planar regular apeirohedra in(5.2)and(5.3)is complete.

Proof. The argument is similar to that for the finite regular polyhedra, but a little easier.
Let P be a planar regular apeirohedron, with groupG(P) = 〈R0, R1, R2〉. The initial
vertexv satisfiesv ∈ R1 ∩ R2, and R1 and R2 are non-commuting involutions inE2;
henceR1 and R2 must be intersecting lines. In view of Lemma 5.1, the angle between
R1 andR2 can only beπ/3,π/4 orπ/6. R0 may be a line or a point. In the former case
G(P) must be one of [4, 4] or [3, 6], yielding the three ordinary planar tessellations. In
the latter case, sinceR0 commutes withR2, the point must lie inR2, and we obtain the
three Petrials of the planar tessellations (observe thatR0R2 will be the reflexion in a line
perpendicular toR2).

We now consider the three-dimensional discrete regular apeirohedra inE3. We shall
see that they fall into two families of 12 each. The first comprises those which are blends
in a non-trivial way, while the second consists of the pure apeirohedra; we deal with the
latter in Section 6.

The non-pure three-dimensional apeirohedra are derived from the six planar regular
apeirohedra by blending with either a segment{ } or the linear apeirogon{∞}. The
apeirohedra in each of these two families form one-dimensional classes under similarity;
the parameter is the ratio between the edge-length of the planar apeirohedron and either
the length of the segment or the edge-length of the apeirogon. These apeirohedra are
thus listed as follows. First, we have the blends with segments:

{4, 4} # { } π←→ {∞, 4}4 # { },
{3, 6} # { } π←→ {∞, 6}3 # { },
{6, 3} # { } π←→ {∞, 3}6 # { }.

(5.5)

Then we have the blends with apeirogons:

{4, 4} # {∞} π←→ {∞, 4}4 # {∞},
{3, 6} # {∞} π←→ {∞, 6}3 # {∞},
{6, 3} # {∞} π←→ {∞, 3}6 # {∞}.

(5.6)

The Petrie relationships are given by Lemma 3.4.
If p is finite, the facets of a blend{p,q} # { } are skew polygons{p} # { }, and their

vertex-figures are flat polygons{q}, parallel to the plane of the tessellation{p,q}. Note
as in Section 2 that{3} # { } is actually a skew hexagon. For a blend{∞,q}p # { }, the
facets are (planar) zigzag apeirogons{∞} # { }, since we have

({∞} # { }) # { } = {∞} # { },
if we ignore the implicit parameter giving the relative sizes of the components of the
blend. The vertex-figures are again flat polygons{q}, since the Petrie operation preserves
vertex-figures.

Similarly, the facets of a blend{p,q} # {∞} with p finite are helical apeirogons
{p} # {∞} (spiralling around a cylinder with ap-gonal base), and the vertex-figures are
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skew polygons{q}#{ }. The facets of a blend{∞,q}p #{∞} are now zigzag apeirogons,
since

({∞} # { }) # {∞} = {∞} # { },
again ignoring the implicit parameter. The vertex-figures are still skew polygons{q}#{ }.

(5.7) Theorem. The list of12blended apeirohedra in(5.5)and(5.6) is complete.

Proof. Again, there is little to say here. A regular apeirohedronP in E3 which is
a non-trivial blend must have components of dimensions 2 and 1. Moreover, the two-
dimensional component must be one of the six planar apeirohedra listed above. Lemma 5.1
eliminates any other possibilities; in particular, the projection ofP on the corresponding
plane must be discrete. The required classification is then immediate.

6. Pure Regular Apeirohedra

We finally come to the pure three-dimensional apeirohedra. We begin by listing them,
with the various relationships between them (these are elucidated in Section 7). We
see that, in a sense, they fall into a single family, derived from the regular honeycomb
{4, 3, 4}.

{∞, 4}6,4 π←→ {6, 4|4} δ←→ {4, 6|4} π←→ {∞, 6}4,4yσ yη
{∞, 4}·,∗3 {6, 6}4 ϕ2−→ {∞, 3}(a)xyπ xyπ
{6, 4}6 δ←→ {4, 6}6 ϕ2−→ {∞, 3}(b)yσδ yη
{∞, 6}6,3 π←→ {6, 6|3}.

(6.1)

The notation for one of the second suffixes has the following meaning; we prefix a∗ to
a number denoting ak-hole fork ≥ 3, or ak-zigzag fork ≥ 2, to mean that this is the
size of the corresponding hole or zigzag of the dual polyhedron. Thus the∗ prefix here
indicates the 2-zigzag of the dual.

The two apeirohedra of type{∞, 3} are described in terms of their groups in Section 7.
In addition to the relationships given in the diagram, the two apeirohedra of type{6, 6}
are of course self-dual, since they are obtained from other apeirohedra by the halving
operationη. Further,{6, 4}6 is self-Petrie as the notation indicates, as is{∞, 4}·,∗3 since
it is obtained by means of the skewing operationσ from another apeirohedron. Finally,
chasing through the above diagram and usingσ = πδηπδ, we also have

({∞, 4}6,4)σ = {6, 4}6.
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There are no other new apeirohedra which can be derived from any of these. For
example, further applications ofϕ2 give

{4, 6|4}ϕ2 = {4, 3},
{6, 6|3}ϕ2 = {3, 3},

both finite polyhedra.

(6.2) Theorem. The list of12 discrete pure three-dimensional apeirohedra in(6.1) is
complete.

Proof. Let P be a pure three-dimensional apeirohedron inE3, with symmetry group
G(P) = 〈R0, R1, R2〉. ThusR0, R1, andR2 are involutory isometries ofE3 such thatR0

and R2 commute, whileR1 does not commute withR0 or R2. As usual, we identify a
reflexion with its mirror.

We first show that each ofR0, R1, andR2 must be a line or a plane; in other words,
generating reflexions in points are excluded. Without loss of generality, we may take the
initial vertex ofP to beo. We then haveo ∈ R1∩ R2, and so this latter intersection must
be non-empty and strictly contained in both. Hence dimRj ≥ 1 for j = 1, 2. For these
j , we write Sj = Rj or−Rj as Rj is a plane or line (as before,−Rj is the orthogonal
complement ofRj ), andL for the plane througho perpendicular toS1 andS2. Further,
o /∈ R0. If dim R0 = 0, then it easily follows thatG(P) is reducible, since eachRj

permutes the planes parallel toL, which is contrary to the assumption thatP is pure.
Indeed, we would haveR0 ⊂ R2, since these reflexions commute. Thus dimR0 ≥ 1
also.

We next exclude the possibility that dimRj = 2 for eachj = 1, 2. In this caseR1 and
R2 would be planes througho, with some acute angle between them. ThenR0 is a line or
plane, whose reflexion commutes withR2, but not withR1. If R0 is a plane, then since
G(P) is irreducible it will follow thatR0∩ R1∩ R2 6= ∅; henceG(P) will be a discrete
orthogonal group, and so finite. Similarly, ifR0 is a line, there are two possibilities. First,
R0 may lie inR2, giving R0∩R1∩R2 6= ∅ sinceG(P) is irreducible, and as beforeG(P)
is finite. Second,R0 may be perpendicular toR2; this makes the groupG(P) reducible,
which again is not permitted.

There is now a further case to be excluded; we cannot have dimR0 = 2 and dimR2 =
1. If this were so, the lineR2 would have to be perpendicular to the planeR0 (since
o /∈ R0, the possibilityR2 ⊂ R0 is forbidden). As in the previous case, the groupG(P)
would then be reducible, which we do not allow.

In conclusion, then, thedimension vector(dim R0, dim R1, dim R2) for the mirrors
can take only four values, namely,(2, 1, 2), (1, 1, 2), (1, 2, 1), and(1, 1, 1).

We have already introduced the planar reflexionsS1 andS2. We now define a third
reflexionS0, whose mirror is also a plane, as follows. We letR′0 be the translate ofR0

which contains the origino, and then setS0 := R′0 or−R′0 asR0 is a plane or a line. In
other words, we are employing the same trick as in the proof of Theorem 4.5. We write
G′ := 〈R′0, R1, R2〉, which is the special group ofG(P) (see the proof of Lemma 5.1),
and setH := 〈S0, S1, S2〉. ThenH is a finite irreducible (plane) reflexion group, namely,
one of [3, 3], [3, 4], or [3, 5], andG′ is either again one of these reflexion groups, or its
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rotation subgroup (this can happen only when dimRj = 1 for eachj ). SinceG(P) has
to be discrete, Lemma 5.1 excludes fivefold rotations, and henceG′ cannot be [3, 5] or
its rotation subgroup. In other words,H must be [3, 3] or [3, 4].

With four possibilities for the vector(dim R0, dim R1, dim R2), and three for the group
H (which can also be taken as [4, 3], of course), we see that we have just 12 possibilities.
These 12 all occur; we may reverse the method of the proof, and observe that different
positions ofR0 not containingo, but meetingR2, lead to similar apeirohedra.

We may now list these 12 apeirohedra, according to the different scheme given by
the proof of Theorem 6.2.

{3, 3} {3, 4} {4, 3}
(2, 1, 2) {6, 6|3} {6, 4|4} {4, 6|4}
(1, 1, 2) {∞, 6}4,4 {∞, 4}6,4 {∞, 6}6,3
(1, 2, 1) {6, 6}4 {6, 4}6 {4, 6}6
(1, 1, 1) {∞, 3}(a) {∞, 4}·,∗3 {∞, 3}(b)

In this table the entries on the left are the dimension vectors(dim R0, dim R1, dim R2).
The columns are indexed by the finite regular polyhedra to which the respective apeiro-
hedra correspond.

It is appropriate to make one further comment here. The symmetry groups of the
three apeirohedra associated with the dimension vector(1, 1, 1) are generated by ro-
tations (half-turns) inE3; thus the whole groups contain only direct isometries. This
implies that the three apeirohedra occur in enantiomorphic (mirror-image) pairs, with
their facets consisting of either all left-hand helices or all right-hand helices. The other
six apeirohedra with helical facets (three blended and three pure) contain both left- and
right-handed helices, since there is a plane or point reflexion among the generators of
each of their symmetry groups.

7. Group Presentations

It remains for us to prove that ten of the apeirohedra do have the automorphism groups
that their notations signify, and to determine the groups of the remaining two. In doing
this, we also verify the relationships of (6.1). (We do not treat the blended apeirohedra
here, since they are described by their geometric structures.)

For the moment, we leave aside{4, 6|4} and its dual; we thus take their groups as
given. In Corollary 8.7 below, we demonstrate that their groups are as indicated by the
notation. (The same assumption could apply to{6, 6|3}, but we actually obtain its group
here, as it fits into our general scheme.) Since the Petrie operation interchangesk-holes
andk-zigzags, we see that

{4, 6|4} π7−→ {∞, 6}4,4,
{6, 4|4} π7−→ {∞, 4}6,4,

as claimed. (Strictly speaking, perhaps we ought to replace “∞” here by “·”!)
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We next appeal to Theorem 3.14, to obtain

{4, 6|4} η7−→ {6, 6}4.
The Petrie operation and duality then yield{4, 6}6 and{6, 4}6. Another appeal to Theo-
rem 3.14 then yields

{4, 6}6 η7−→ {6, 6|3}.
From this last, just as above we obtain

{6, 6|3} π7−→ {∞, 6}6,3.
We have three apeirohedra remaining, one obtained by an application ofσ (= πδηπδ),

and the other two by applications ofϕ2. The first we can do directly:

{6, 4|4} π7−→ {∞, 4}6,4
δ7−→ {4,∞}6,∗4
η7−→ {∞,∞|3}4
π7−→ {4,∞}∞,3
δ7−→ {∞, 4}·,∗3.

The∗ prefix to a suffix was explained in Section 6. We have replaced the∞ in the final
suffix by ·, to indicate that the corresponding value is unspecified. The only step left
unexplained is the third, namely, the application ofη to {4,∞}6,∗4. The operation is

η: (σ0, σ1, σ2) 7→ (σ0σ1σ0, σ2, σ1) =: (ρ0, ρ1, ρ2).

The first suffix 6 is dealt with by Theorem 3.14; observe that the graph of{4,∞}6,∗4 is
indeed bipartite. For the second suffix∗4, the relation gives the period of

σ2(σ1σ0)
2 = σ2σ1σ0σ1σ0 = ρ1ρ2ρ0 ∼ ρ0ρ1ρ2,

namely, that of the Petrie polygon of the second apeirohedron.
The last two apeirohedra, those of type{∞, 3}, must be characterized by direct meth-

ods. We work withP(b) := {∞, 3}(b) rather than withP(a) := {∞, 3}(a), because its
structure is a little easier to describe.

The symmetry group of{4, 6|4} is generated by the three involutions

S0: x 7→ (1− ξ1, ξ2, ξ3),

S1: x 7→ (ξ2, ξ1,−ξ3),

S2: x 7→ (ξ1, ξ3, ξ2),

in terms ofx = (ξ1, ξ2, ξ3), and the initial vertex iso. These are all symmetries of
the honeycomb{4, 3, 4} of unit cubes inE3, whose vertices are the points with integer
cartesian coordinates; hence all the groups which occur in the discussion are subgroups
of its symmetry group [4, 3, 4]. Indeed, we shall see in Section 8 that if [4, 3, 4] =
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〈T0, . . . , T3〉 in the natural way, thenS0 = T0, S1 = T1T3, andS2 = T2. These “standard”
generatorsTj are

T0: x 7→ (1− ξ1, ξ2, ξ3),

T1: x 7→ (ξ2, ξ1, ξ3),

T2: x 7→ (ξ1, ξ3, ξ2),

T3: x 7→ (ξ1, ξ2,−ξ3).

If we start from{4, 6|4} and trace through the three mixing operations which lead to
P(b) (namely,η, π , andϕ2), we find that the symmetry group of the latter has generators
(which are reflexions in lines)

R0 = (S0S1)
2: x 7→ (1− ξ1, 1− ξ2, ξ3),

R1 = S2S1S2: x 7→ (ξ3,−ξ2, ξ1),

R2 = S1: x 7→ (ξ2, ξ1,−ξ3).

We may pictureP(b) in the following way. As we have already remarked, its facets
are all helices with the same sense. The initial vertex is stillo, and hence all the vertices
are points ofE3 with integer cartesian coordinates. We easily see from the generators
that, in fact, the sum of the coordinates of each vertex is even.

The initial edge has verticeso = (0, 0, 0) andoR0 = (1, 1, 0), which is a diagonal
of a 2-face of{4, 3, 4}; hence all edges are such diagonals. Next,R1R0, which preserves
the initial facet and takeso into (1, 1, 0), is

R1R0: x 7→ (1− ξ3, 1+ ξ2, ξ1),

which is a translation by(0, 1, 0) together with a right-hand (or negative) twist ofπ/2
about the axis through( 1

2, 0,
1
2) in direction (0, 1, 0). Hence the facets are helices of

type {∞} # {4}. Finally, R1 takes(1, 1, 0) into (1, 1, 0)R1 = (0,−1, 1), andR2 takes
(0,−1, 1) into (0,−1, 1)R2 = (−1, 0,−1); indeed,R2R1: x 7→ (−ξ3,−ξ1, ξ2) is a
cyclic permutation of the signed basis vectorse1,−e2,−e3.

It follows from this that(R1R0)
4 is a translation, by(0, 4, 0). However, such transla-

tions in the directions of the three coordinate axes do not generate the whole translation
group. Instead, we observe that

x R2R1R0 = (1+ ξ3, 1+ ξ1, ξ2),

so that(R2R1R0)
3 is the translation by(2, 2, 2). Since the images of(2, 2, 2) underR1R2

and its inverse are(−2, 2,−2) and(−2,−2, 2), we see that the translation subgroup
is actually the lattice3 := 3(2,2,2), which is generated by(2, 2, 2) and its transforms
under changes of signs of the coordinates. Incidentally, sinceR2R1R0 is conjugate to the
“translation” R0R2 · R1 which takes one vertex of a facet of the PetrialP(a) of P(b) into
the next vertex, we see that these facets are of type{∞} # {3}; this time, they are helices
with a left-hand (positive) twist.

The axes of the helical facets ofP(b) are parallel to the three coordinate axes; as we
have seen, these three axes are permuted byR2R1. To visualize the way in which the
facets fit together, it is more convenient to concentrate on the vertical ones. The cubes
in {4, 3, 4} fall into vertical stacks or (infinite) towers. Just an eighth of these towers are
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Fig. 1. The apeirohedron{∞, 3}(b).

associated with facets; they are all the images of one fixed tower under the translation
lattice3. A typical facet winds upwards (or downwards) in a right-hand spiral around
the tower, crossing its square faces diagonally; we may envisage it as a staircase. (In
Fig. 1 we are looking at the vertical towers from above. As we go around a tower in the
clockwise direction, we rise by a floor each time we traverse an edge.)

The origino is a vertex of a vertical tower; we think of it as lying at ground level.
Ascending four flights of stairs brings us to(0, 0, 4) on the fourth floor, immediately
above our starting point. At each floor is a single horizontal bridge, leading away from
one tower to an “adjacent” tower, across the diagonal of a horizontal square of{4, 3, 4}. If
we ascend one flight to the first floor, cross the bridge, descend one flight in the adjacent
tower to the ground floor, and then cross the next bridge, we shall similarly have gone
four edges along a facet ofP(b) with a horizontal axis. Each bridge belongs to two such
horizontal facets, of course, according to whether it was reached by an ascending or
descending flight.

Theorem 2.5 shows that we can find a presentation of the automorphism group of
P(b) = {∞, 3}(b) by considering its edge-circuits (the vertex-figure is, of course, known).
A minimal or basiccircuit is constructed as follows. Ascend four floors of a tower by
the staircase, cross the bridge to the adjacent tower, descend four floors by its staircase,
and then cross back over the bridge to the starting point. The other basic circuits are
then the images of this one under the symmetry groupG(b) := G(P(b)) of P(b). A
typical basic circuit using horizontal towers is formed similarly, although the description
superficially appears different. From a starting vertex, cross a bridge and ascend one floor
of a staircase. Repeat this twice, then cross a final bridge and descend three floors. Of
course, we may interchange “ascend” and “descend” in this description. Such a circuit
uses four towers in a square formation; the circuit goes round the inside of three towers,
and the outside of the fourth. (In Fig. 1 such a horizontal basic circuit is indicated by
heavy lines.)

If C andD are two edge-circuits, then weconcatenatethem by taking their symmetric
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differenceC4D. (In taking the symmetric difference, we are of course only considering
the edges, not their vertices; isolated vertices obviously disappear.) Observe that(C 4
D) 4 D = C, so that concatenating twice with a fixed circuit has no effect. The key
result for categorizingG(b) is

(7.1) Lemma. An arbitrary edge-circuit in{∞, 3}(b) is a concatenation of basic cir-
cuits.

Proof. It is clear that, at any stage, we may confine our attention to a single connected
circuit C; if, after any concatenation, a circuit becomes disconnected, then we simply
consider the resulting components.

We now reduce the circuitC to a vertex by means of two kinds of operation. First, if
C uses two or more bridges between the same towers, we may concatenate with vertical
basic circuits to eliminate these bridges in pairs. Thus we may assume thatC contains
no more than one bridge between any two towers.

We now look down onC from a vertical direction, as in Fig. 1. Since the plane
is simply connected, we may contract the projection ofC to a single vertex. For this
purpose, we can safely identify the vertices ofC in any one tower, since there is now
no more than one bridge between any two towers. A contraction over a diamond formed
by four towers is achieved by concatenating with a horizontal basic circuit (like one of
those indicated in Fig. 1) which uses these four towers and shares one of the bridges
of C. Of course, further reductions of the first kind will then also generally be needed,
since horizontal bridges along the other three sides of the diamond may be introduced
(and some may disappear). It is clear that systematic application of these two kinds of
operation will eventually reduceC to a single vertex ofP(b). Hence, if we reverse the
successive concatenations, we shall recover the original circuit, as was claimed.

By Theorem 2.5, a basic edge-circuit inP(b) corresponds to a relation inG(b) between
its distinguished generatorsR0, R1, andR2. We consider the following horizontal basic
circuit. It starts from the initial vertexo, and contains the first four successive edges of
the initial facetF2. This sequence of four edges is continued at each end by the two
edges (corresponding to bridges) joiningF2 to the facet in an adjacent (horizontal) stack
of cubes, and is completed by the four intermediate edges of that facet. The symmetry
group of this basic circuit has two generators. The first is the conjugateU1 := (R0R1)

3R0

of R1 by (R1R0)
2, which fixesF2 and interchanges the two bridging edges. The second

is the conjugateU2 := R2R1R0R1R2 of R0 by R1R2, which interchangesF2 and the
“adjacent” facet, and fixes the two bridging edges. The relation which imposes this basic
circuit is thenU1U2 = U2U1, or (U1U2)

2 = I3, the identity inE3. When expressed in
terms of the generatorsR0, R1, andR2, the relation(U1U2)

2 = I3 involvesR0 ten times,
in keeping with the fact that a basic circuit inP(b) has ten edges.

In order to state the main theorem, we provide an alternative interpretation of the
group relation given by this basic circuit. Define

S := (R0R1)
4,

T := (R0R1R2)
3.
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ThusS andT are the translations given by the facet ofP(b) and by its Petrie polygon
(the facet ofP(a)). Then we have

(U1U2)
2 = (R0R1)

3R0 · R2R1R0R1R2 · (R0R1)
3R0 · R2R1R0R1R2

= (R0R1)
4 · R1R2R1R0R1R2R0R1R0 · (R1R0)

4 · R0R1R0R1R2R1R0R1R2

= (R0R1)
4 · R2R1R2R0R1R0R2R1R0 · (R1R0)

4 · R0R1R0R2R1R2R0R1R2

= ST−1S−1T,

where we have freely usedR0R2 = R2R0 and R1R2R1 = R2R1R2, but not the fact
that S and T are actually translations, and hence commute. Rearranging, we see
that (U1U2)

2 = I3 and ST = T S are equivalent relations; it is the latter which we
employ.

(7.2) Theorem. The automorphism groups of the two non-planar pure apeirohedra of
type{∞, 3} in E3 are the Coxeter group[∞, 3] = 〈ρ0, ρ1, ρ2〉, with the imposition of
the single extra relation

στ = τσ,
whereσ := (ρ0ρ1)

3 and τ := (ρ0ρ1ρ2)
4 for {∞, 3}(a), or σ := (ρ0ρ1)

4 and τ :=
(ρ0ρ1ρ2)

3 for {∞, 3}(b).

Proof. The given relation forP(b) is equivalent to the one given above, sinceσ corre-
sponds toSandτ corresponds toT . By Theorem 2.5, any relation on the automorphism
group0(b) of P(b) corresponds to an edge-circuit, and we have shown in Lemma 7.1
that these are formed by concatenating basic circuits, each of which is obtained by
conjugating the extra relation. Thus the automorphism group ofP(b) is as claimed.

The corresponding relation forP(a) is obtained from that forP(b) by means of the
Petrie operation substitution ofρ0ρ2 for ρ0. Indeed, in terms of the generators of0(b),
and withσ andτ retaining (for the moment) their original definitions, we have

(ρ0ρ2ρ1)
3 = ρ2τρ2

(ρ0ρ2ρ1ρ2)
4 = ρ2σρ2.

Thus the relations between the newσ andτ are just the old ones (conjugated byρ2) with
σ andτ interchanged, again as asserted.

We make a further comment on this group. By definition,P(b) = ({4, 6}6)ϕ2, by
means of the operation

(σ0, σ1, σ2) 7→ (σ0, σ1σ2σ1, σ2) =: (ρ0, ρ1, ρ2)

on the (larger) automorphism group [4, 6]6 := 0({4, 6}6) = 〈σ0, σ1, σ2〉. If we substitute
for ρ0, ρ1, andρ2 in this way, it is easy to check that (as we must) we do obtain a valid
relation in [4, 6]6.

We end with a remark on the groups of the pure apeirohedra with finite faces. We
put them in a table, together with the pairs of finite regular polyhedra to which they
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correspond; as before, the entry in the first column of the table is the dimension vector
(dim R0, dim R1, dim R2).

(2, 2, 2) {3, 3} {3, 4} {4, 3}
(1, 2, 2) {6, 3}4 {6, 4}3 {4, 3}3
(2, 1, 2) {6, 6|3} {6, 4|4} {4, 6|4}
(1, 2, 1) {6, 6}4 {6, 4}6 {4, 6}6

A convex regular polyhedron of type{3,q} (or {q, 3}) has holes{h} with h = q, while
its Petrie polygon is anr -gon with

r = 2q + 10

7− q

(this is derived from 4.91 of [3], and is just one of many possible expressions; we write
r here for Coxeter’sh, for obvious reasons). Forp > 2, we definep′ by

1

p
+ 1

p′
= 1

2
.

The corresponding polyhedra in each column are then

{p,q}, {p′,q}r ′ , {p′,q′|h}, {p′,q′}r .
Of course, the fact that the holes or Petrie polygons of the derived polyhedra are those
given follows from the relationship between the generating reflexionsR0, R1, andR2 of
their groups, and the corresponding plane reflexionsS0, S1, andS2 which generate the
group of the convex polyhedron.

8. Regular 4-Apeirotopes

In view of Corollary 2.7, we may confine our attention to 4-apeirotopes in any discussion
of possible faithfully realized regular polytopes of rank at least 4 inE3. We treat these
largely geometrically.

So, letP be a discrete faithfully realized regular 4-apeirotope inE3, with symmetry
group〈R0, R1, R2, R3〉. Its facets are (finite or infinite) regular polyhedra. Furthermore,
its ridges (2-faces) must be planar regular polygons, again finite or infinite; they cannot be
three-dimensional, because this would force the stabilizing elementR3 of the base ridge
to be the identity, and no regular apeirohedron has linear apeirogons as facets, because
then the stabilizing elementR2 of the base edge would fix the whole line containing the
base facet, and hence all the vertices would lie on this line.

It follows that R3 must be the reflexion in the plane of the base ridge. Moreover, the
facets cannot be planar, because then all the vertices would lie in the plane of this base
ridge.

The vertex-figureP/v of P at its initial vertexv must be a finite regular polyhedron,
and hence one of the 18 in the list of (4.1), (4.2), and (4.3); see Theorem 4.5. However,
Bieberbach’s theorem and discreteness again exclude fivefold rotational symmetries; see
Lemma 5.1. The vertex-figures must therefore belong to the crystallographic family in
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(4.1) and (4.2), namely

{3, 3}, {4, 3}3; {3, 4}, {6, 4}3; {4, 3}, {6, 3}4.
We have listed Petrie duals together.

The only polyhedra which can be vertex-figures of a regular 4-apeirotopeP with finite
planar ridges are{3, 4} and{6, 4}3; the 2-faces are then squares{4}. (Note, incidentally,
that blended regular apeirohedra cannot have finite planar facets.) To see this, we may
use the same argument as that on p. 69 of [3]. Recall that the ratio of the edge-length
of the vertex-figure of a planar regular polygon{p} (joining the two vertices adjacent
to a given one) to the edge-length of{p} itself is 2 cos(π/p). Hence, ifP has 2-faces
{p} for some rational numberp, its vertex-figure must be a finite regular polyhedron
whose ratio of edge-length to circumradius is of the form 2 cos(π/p); the only instances
are the octahedron{3, 4} and its Petrial{6, 4}3, wherep = 4. We thus obtain the two
apeirohedra

{4, 3, 4} = {{4, 3}, {3, 4}}, {{4, 6|4}, {6, 4}3}.(8.1)

We justify the notation for the second apeirotope below; it is indeed the universal regular
polytope of its kind.

In our listing of the regular apeirohedra, we found that the only ones with planar
(zigzag) apeirogons as facets are

{∞, 6}3 # { }, {∞, 4}4 # { }, {∞, 3}6 # { };
{∞, 6}3 # {∞}, {∞, 4}4 # {∞}, {∞, 3}6 # {∞}.

In each case, the reflexionR0 is that in a point (obtained as the product of two such
reflexions, one for each component of the blend). It follows that the only other possibilities
for discrete regular 4-apeirotopes are obtained by takingR0 to be a point ofR2 ∩ R3,
sinceR0 must commute withR2 and R3. (Observe that the six possible vertex-figures
do haveR2 ∩ R3 as a line.) SinceR0 and R1 must not commute, we haveR0 /∈ R1. In
effect, this amounts to choosingR0 to be a vertexw of the vertex-figureP/v at v, or,
more strictly perhaps, half-way betweenv andw (this ensures thatw is the image ofv
underR0). Each possible choice will yield an apeirotope.

The resulting six apeirotopes are of type (in a general sense)

{{∞, 3}6 # { }, {3, 3}}, {{∞, 4}4 # {∞}, {4, 3}3};
{{∞, 3}6 # { }, {3, 4}}, {{∞, 6}3 # {∞}, {6, 4}3};
{{∞, 4}4 # { }, {4, 3}}, {{∞, 6}3 # {∞}, {6, 3}4}.

(8.2)

This notation suppresses the exact definitions of the apeirotopes, and should not be taken
to imply universality.

The identification of the apeirotopes in the list (8.2) is facilitated by the observation
that the vertex-figures of an apeirohedron{∞,q}s # { } are planar polygons{q}, while
those of{∞,q}s # {∞} are skew polygons{q} # { }. (The 2-faces of{4, 3}3 are skew
polygons{4} # { }, while those of{6, 4}3 and{6, 3}4 are skew polygons{6} # { }.)

To summarize, we thus have

(8.3) Theorem. The list of eight discrete regular4-apeirotopes inE3 in (8.1)and(8.2)
is complete.
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Before we go on to describe the groups of these eight apeirotopes (although we only
find presentations for the first two), we make some remarks. The two lists (8.1) and
(8.2) group the apeirotopes in pairs; their vertex-figures are Petrie duals, and so their
automorphism (or symmetry) groups are related by the involutory mixing operation

(σ0, σ1, σ2, σ3) 7→ (σ0, σ1σ3, σ2, σ3) =: (ρ0, ρ1, ρ2, ρ3).

This may also be seen to induce the appropriate changes of kind in the facets in (8.2),
namely, that between blends with the segment{ } and the apeirogon{∞}. Geometrically,
when the vertex-figure is a convex regular polyhedron{q, r }, with symmetry group
〈R1, R2, R3〉 generated by plane reflexions, thenR0 is a point of the lineR2 ∩ R3,
showing that a 2-face, with group〈R0, R1〉, is a zigzag (planar) apeirogon. If we replace
R1 by R1R3 = R1 ∩ R3, the reflexion in a line, we see that the new 2-face is the same
zigzag apeirogon, since that is fixed byR3. However, under this change of generators,
the vertex-figure of the facet{∞,q}s#{ } is changed from a planar polygon{q} to a skew
polygon{t}#{ }, namely, the Petrie polygon of the original vertex-figure{q, r }. The new
facet must then be an apeirohedron of the form{∞, t}#{∞}. This explains the pairing of
the apeirotopes in (8.2). Further, if we have a presentation for the automorphism group
of one of the pair, then we have it for the other, just by making the substitution ofρ1ρ3

for ρ1 wherever it occurs.
Now we already know that{4, 3, 4} = {{4, 3}, {3, 4}} is the universal regular polytope

of its Schläfli type. When we replace its vertex-figure{3, 4} by its Petrial{6, 4}3, we
obtain the following presentation for the automorphism group ofP := {{4, 6|4}, {6, 4}3}:

ρ2
0 = (ρ1ρ3)

2 = ρ2
2 = ρ2

3

= (ρ0ρ1ρ3)
4 = (ρ0ρ2)

2 = (ρ0ρ3)
2

= (ρ1ρ3ρ2)
3 = (ρ1ρ

2
3)

2 = (ρ2ρ3)
4 = ε.

Simplifying these relations and reordering them, we obtain

ρ2
0 = ρ2

1 = ρ2
2 = ρ2

3(8.4)

= (ρ0ρ1)
4 = (ρ0ρ2)

2 = (ρ0ρ3)
2 = (ρ1ρ3)

2 = (ρ2ρ3)
4

= (ρ1ρ2ρ3)
3 = ε.

The relations involvingρ1, ρ2, andρ3 certainly specify the group of{6, 4}3, which
must therefore be the vertex-figure. The relation(ρ1ρ2)

6 = ε is implied by the other
relations, and it is only conventional to insert the number “6” in{·, 4}3, as its omission
looks a little strange.

The relations involvingρ0, ρ1, andρ2, on the other hand, are clearly inadequate as
they stand to specify the facet{4, 6|4}. It is curious, therefore, that the relations of (8.4)
must serve to specify the group ofP itself. In this context, we show in Corollary 8.7 that
the mixing operation

(σ0, σ1, σ2, σ3) 7→ (σ0, σ1σ3, σ2) =: (ρ0, ρ1, ρ2)

applied to [4, 3, 4] indeed yields the group of{4, 6|4}. Here, it is appropriate to demon-
strate:
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(8.5) Theorem. An abstract regular4-polytope of type{4, 6, 4} with vertex-figure of
type{6, 4}3 is a quotient of{{4, 6|4}, {6, 4}3}.

Proof. In fact, we could really describe the type of the polytope as{4, ·, 4}. Under the
given conditions, the group of such a polytopeQ, say, satisfies the relations (8.4); we
have observed that the vertex-figure then must be of type{6, 4}3. We now reverse the
Petrie operation on the vertex-figure, whereby we recover the relations for the Coxeter
group [4, 3, 4].

It remains to show that we come to the same conclusion, even if we impose the extra
relations which specify the facet{4, 6|4}. We may certainly set(ρ1ρ2)

6 = ε, if this is
not already given to us. Under the (reverse) mixing operation,

ρ0ρ1ρ2ρ1 = σ0σ1σ3σ2σ1σ3

∼ σ0σ1σ2σ1

= σ0σ2σ1σ2

∼ σ0σ1,

so that(ρ0ρ1ρ2ρ1)
4 = ε is compatible with the presentation of [4, 3, 4].

There are two immediate consequences of this argument.

(8.6) Corollary. The apeirotope of type{{4, 6|4}, {6, 4}3} in E3 is universal.

(8.7) Corollary. The mixing operation

(σ0, σ1, σ2, σ3) 7→ (σ0, σ1σ3, σ2) =: (ρ1, ρ1, ρ2)

applied to[4, 3, 4] yields the group of{4, 6|4}.

For the other six apeirotopes, on the face of it the procedure appears very simple. To
the group〈ρ1, ρ2, ρ3〉 of the vertex-figure, we adjoin a new generatorρ0 such that

ρ2
0 = (ρ0ρ2)

2 = (ρ0ρ3)
2 = ε.

This is just the dual procedure to the construction of the free extension in [18] and [19].
However, in general we do not actually obtain the free extension, because the translation
subgroup of the apeirotope imposes extra relations on the group.

In fact, we confine ourselves to some brief remarks. When the vertex-figure is{3, 3}
or its Petrie dual{4, 3}3, the translation subgroupT is generated by products of pairs of
conjugates ofρ0; that is,

T = 〈αρ0βρ0γ | α, β, γ ∈ 〈ρ1, ρ2, ρ3〉 andαβγ = ε〉.

(General products of pairs of conjugates ofρ0 can be expressed as products of these.)
The imposed extra conditions on the group have to say thatT is abelian.

For the remaining cases, the product of a conjugate ofρ0 by an element of〈ρ1, ρ2, ρ3〉



Regular Polytopes in Ordinary Space 477

with the central reflexion in the vertex-figure, namely,(ρ1ρ2ρ3)
3 for {3, 4} and{4, 3} or

(ρ1ρ2)
3 for their Petrie duals, will also belong toT . Again, conditions must be imposed

which forceT to be abelian. In fact, these are precisely the conditions which arise from
applying Theorem 2.5, though we do not give any details. However, it is worth noting
one curiosity. We observe that

{∞,q}s # { } ∼= {∞,q}s

for the pairs(q, s) = (3, 6) or (4, 4), since all edge-circuits of the planar apeirohedra
have even lengths. It turns out that two of the three apeirotopes with facets of type
{∞,q}s # { } are universal:

{{∞, 3}6 # { }, {3, 3}} ∼= {{∞, 3}6, {3, 3}}(8.8)

and

{{∞, 4}4 # { }, {3, 3}} ∼= {{∞, 4}4, {4, 3}};(8.9)

that is, they have automorphism groups which the latter notation signifies.

References

1. L. Bieberbach,̈Uber die Bewegungsgruppen der euklidischen R¨aume: erste Abhandlungen.Math. Ann. 70
(1910), 297–336.

2. H.S.M. Coxeter, Regular skew polyhedra in 3 and 4 dimensions and their topological analogues.Proc.
London Math. Soc. (2) 43 (1937), 33–62. (Reprinted with amendments inTwelve Geometric Essays,
Southern Illinois University Press, Carbondale, IL, 1968, pp. 76–105.)

3. H.S.M. Coxeter,Regular Polytopes(3rd edition). Dover, New York, 1973.
4. H.S.M. Coxeter and W.O.J. Moser,Generators and Relations for Discrete Groups(4th edition). Springer-

Verlag, New York, 1980.
5. A.W.M. Dress, A combinatorial theory of Gr¨unbaum’s new regular polyhedra, Part I: Gr¨unbaum’s new

regular polyhedra and their automorphism group.Aequationes Math. 23 (1981), 252–265.
6. A.W.M. Dress, A combinatorial theory of Gr¨unbaum’s new regular polyhedra, Part II: Complete enumer-

ation.Aequationes Math. 29 (1985), 222–243.
7. P. Engel,Geometric Crystallography. Reidel, Dordrecht, 1986.
8. B. Grünbaum, Regular polyhedra—old and new.Aequationes Math. 16 (1977), 1–20.
9. P. McMullen, Regular star-polytopes, and a theorem of Hess.Proc. London Math. Soc. (3) 18 (1968),

577–596.
10. P. McMullen, Realizations of regular polytopes.Aequationes Math. 37 (1989), 38–56.
11. P. McMullen, Realizations of regular apeirotopes.Aequationes Math. 47 (1994), 223–239.
12. P. McMullen and E. Schulte, Constructions for regular polytopes.J. Combin. Theory Ser. A 53 (1990),

1–28.
13. P. McMullen and E. Schulte,Abstract Regular Polytopes(monograph in preparation).
14. P. McMullen, E. Schulte, and J.M. Wills, Infinite series of combinatorially regular maps in three-space.

Geom. Dedicata26 (1988), 299–307.
15. P. McMullen, Ch. Schulz, and J.M. Wills, Equivelar polyhedral manifolds inE3. Israel J. Math. 41(1982),

331–346.
16. P. McMullen, Ch. Schulz, and J.M. Wills, Polyhedral manifolds inE3 with unexpectedly large genus.

Israel J. Math. 46 (1983), 127–144.



478 P. McMullen and E. Schulte

17. E. Schulte, Regul¨are Inzidenzkomplexe, II.Geom. Dedicata14 (1983), 33–56.
18. E. Schulte, On arranging regular incidence-complexes as faces of higher-dimensional ones.European J.

Combin. 4 (1983), 375–384.
19. E. Schulte, Extensions of regular complexes.Finite Geometries, Lecture Notes in Pure and Applied Math-

ematics, Vol. 103. 1985, pp. 289–305.
20. E. Schulte, Amalgamations of regular incidence-polytopes.Proc. London Math. Soc. (3) 56 (1986), 303–

328.
21. J. Tits,Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics, Vol. 386. Springer-

Verlag, Berlin, 1974.

Received June6, 1996,and in revised form October28, 1996.


