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Abstract. The traversal of a self-crossing closed plane curve, with points of multiplicity

at most two, defines a double occurrence sequence, the Gauss code of the curve. Using the
D-switch operation, we give a new simple characterization of these sequences and deduce
a simple self-contained proof of Rosenstiehl’s characterization.

1. Introduction

The traversal of a self-crossing closed plane curve, with points of multiplicity at most two,
defines adouble occurrence sequence, which we call the Gauss code ofthe curve, asitwas
first defined by Gauss [7]. While enumerating all possible codes corresponding to curves
having up to five crossing points, Gauss remarked that between the two occurrences of
any point there were an even number of points. This property has been formally proved
by Nagy [11]. Gauss also noticed that this condition is not sufficient to characterize
Gauss codes.

Lovasz and Marx introduced another necessary condition [9] and eventually Rosen-
stiehl gave a complete combinatorial characterization [12], [16].

In the meantime, Dehn proved that the successive switching of all the points of a cross
curve gives rise to a touch curve [4]. He also proved that the successive switching of all
the points of a Gauss code gives rise to a double occurrence sequence having a specific
bicoloration property. Unfortunately, this property is not sufficient to characterize Gauss
codes. Using the D-switch, a slight modification of the switch operation, we obtain
a new characterization of Gauss codes which leads to a short self-contained proof of
Rosenstiehl’s characterization.

For further works on Gauss codes, we refer the reader to the Bibliography.

* This work was partially supported by the Esprit LTR Project No. 20244-ALCOM IT.
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2. Definitions and Notations
2.1. Curves and Sequences

We first recall and introduce some definitions and notations concerning topological
properties of closed plane curves.
A parametrized curve @ a continuous mappin@: [0, 1] — R?, such thaC(0) =
C(1) and for which theunderlying curve 0, 1]) is piecewise smooth and has a finite
number of multiple points, all of which have multiplicity two. LB{C) denote the set of
the points of multiplicity two. To any poinp € P(C), we associate the two parameter
valuest, andtg, such that, < t7 andC(t,) = C(t;) = p. Apointp € P(C) is
a crossing pointif any local deformation ofC in a neighborhood of;, preserves the
existence of a double point. Otherwige,s atouching point A touch curve(resp. a
Cross curvis a parametrized curve with only touching points (resp. crossing points).
There are two different types of touching points, depending on the local behavior of
the parametrized curve:

Type 1 Type 2

Remark. Allthe touch points of atouch curve are of type 1. By a local deformation we
may suppress all the touch points but any given one, which then is (and was) of type 1.

The sequence of the points B{C) encountered as the paramdtgoes from 0to 1
(excluded) is theraversal sequencef C and is denoted b$(C).

In the following, sequenceare understood to have two occurrences of each symbol
and to be defined up to reversal and cyclic permutation. Given a seq8gmeesymbols
p, q areinterlacedin S if exactly one occurrence af appears inS between the two
occurrences op (and thus exactly one occurrence pippears irS between the two
occurrences off). We denote byA (S) the interlacement graplof S defined by the
interlacement relation is.

A sequenceis realizedby a parametrized cune@ if Sis the traversal sequence of
C. A sequence imouch realizablgresp.cross realizablgif it can be realized by a touch
curve (resp. a cross curve). So, saying that a sequence is cross realizable means that it is
a Gauss code of some self-intersecting closed curve.

2.2. Switches and D-Switches

We recall theswitchoperation [4], [8]: Given a poinp of P(C), the curveC’' =Co p
is defined by

C(t) ittty tl,

co= {C(t{)+t6 -0 it telt, . .
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This curve has the same touching and crossing poin®s asth the possible exception
of p. The traversal sequence®©fis obtained from the one & by inverting the order of
the points encountered between the two occurrencps\We say that the points that are
interlaced withp have beeimverted The switch operation o8will be denoted bySo p,

so thatS(C o p) = S(C) o p. We remark that these switch operations are involutions:
Copop=CandSopop=S

Remark. A switch at a pointp transformsp in the following way:

— touching point of type %> crossing point,
— touching point of type 2> touching point of type 2.

X X
X X

Remark. A touching pointg of a parametrized curv€ is a touching point o o p
(p # q) which has a different type i€ andC o p if and only if p andq are interlaced
in S(C) (that is, ifg has been inverted by the switcht

Definition 1. Thelocal complementf a graphG at a vertex is the graphG o v with
the same vertex set & and the same edges @sexcept that the neighborhood ofn
G is complemented. Note that this is called tbeal complementationf G in [3].

Remark. According to the definition of a switch and the definition of a local comple-
ment, we have

A(Sop)=A(Sop.
This is the reason why we denote both operationsdiy “
Definition 2 (D-Switch and Twin). LetSbe a sequence,@-switchat p consists of a
switching atp and the addition of two occurrences of a new symiiokalled thetwin

of p, one just after the first occurrence pfand one just before the second occurrence
of p. The D-switch of a sequenc®at a pointp is denoted bySo p.

S= (apBpy) > So p= (appp1p py).

Definition 3 [3]. TheD-local complementfa graphG at a vertex is the graptG o v
obtained fromG o v by adding a new vertex' having the same neighbors as
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Remark. According to the definition of a D-switch and the definition of a D-local
complement, we have

A(So p) = A(S) o p.
This is the reason why we denote both operationsdsy “

Remark. The sequence obtained froB8w p @ p by deleting the two twins op is
equal toS.

2.3. Remarks on Switch Operations

We recall a result by Dehn [4] (which follows from the remarks of the previous section)
and mention the major difficulties encountered when trying to use it to characterize cross
realizable sequences.

Proposition 4[4]. Consider a cross curve C and any given ordpx, ..., pn) of the
points of C Then the parametrized curves(; o- - -o p, Obtained from C by successively
switching the pis a touch curve

The converse of this proposition is not true (e.g., the sequéaloab) is not cross
realizable).

Remarks. We denote bys— S the existence of an ordép, ..., p,) of the symbols
of S, suchthatS = So pyo---0o pp.

— Acrossrealizable sequence does not determine the cross curve itself up to a homeo-
morphism.

— One may find a cross realizable sequeBgea noncross realizable sequerge
and a touch realizable sequerie such thaS,—> Sr andS,—» Sr. Actually, S;
andS, may be proved to have different interlacement graphs.

— Two different cross realizable sequen&sand S, may have the same interlace-
ment graph (e.g., the sequenc¢abcaefdcbefdand(acbaefdbcefy. However, no
sequencé; satisfiesS,—> Sy andS,— Sy.

3. A New Characterization of Gauss Codes

We first state a lemma characterizing touch realizable sequences.

Lemma5. Asequence S istouch realizable if and only if its interlacement gra(8)
is bipartite

Proof. Figure 1 shows the bijection between a touch curve (1) and a bicolored chord
diagram (IV):

— From | to Il each touch point is split into two adjacent points with the same label,
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Fig. 1. Bijection between a touch curve (1) and a bicolored chord diagram (1V).

such that the traversal of the curve does not use the new edge. Conversely, Il is
obtained from | by contracting edges linking points with the same label.

— Il'and 1l are homeomorphic; the traversal of the original curve is now represented
by a circle.

— IV is obtained from Il by drawing all the chords inside the circle; the bicoloration
corresponds to the inside—outside patrtition in Ill. Then two chords of the same
color do not intersect. Conversely, 1l is obtained from IV by drawing the chords
of one color outside the circle; the obtained 3-regular graph is obviously plane.

IV is a chord diagram, which is the traditional representation of the interlacement of
the sequence induced by the traversal of the circle; the interlacement graph is then the
intersection graph of the chords of the circle.

This bijection maps a touch curve realizifgnto a bicolored chord diagram repre-
sentingA (S), which achieves the proofs. O

Theorem 6. Let S be a sequencand let(ps, ..., pn) be any order on its symbols
Then S is cross realizable if and only if the sequence-SSo p; @ - - - @ p, Obtained
by successively D-switching the s a bipartite interlacement graph

Proof. In the following, p{ denotes ir§ (j > i) the twin of the pointp; introduced by
the D-switch ofp;.
(=) AssumeSis realized by a cross cun@. As a D-switch of a crossing point of
a parametrized curve gives rise to two touching points (that will never become crossing
points again), the curv@ is iteratively transformed into a touch cur@g. The traversal
sequence, of C, has hence a bipartite interlacement graph, according to Lemma 5.
(<) Conversely, assume th&, has a bipartite interlacement graph. L&t =
So p;o@---o P denote the sequence obtained after theifistswitches.
We inductively construct backward (fogoing fromn to 0) the parametrized curves
Ci realizing§, such that the crossings Gf are thep;, with j > i.
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e Construction ofCp:
As A(S) is bipartite, there exists a touching cur@g whose traversal sequence
is S,.

e Construction ofC;_; from C; (i < n):
We prove thatp; is always of type 1irC;, that is thatp; has been inverted an even
number of times during the further D-switchesmat, ..., pn:

* The symbolp; and its twinp; are not interlaced ig,

* P and p are alternatively interlaced and not interlaced after each further
inversion,

« if the last inversion ofp; occurred during a switch gi;, thenp; and p; are
interlaced in§, and, similarly,p/ and p; are interlaced ir§5,. As A(§) is
bipartite,p; and p are not interlaced i&,: otherwisep;, p{, p; would define
atriangle ofA(S,)).

Hence, the symbop; has been inverted an even number of times gnds of
type 1inC;. Hence, the suppression pf and the switch ofy transformsp; into
a crossing point and gives rise to a parametrized cQGyve, havingp;, ..., pn as
crossing points an§, _; as a traversal sequence.

Then the parametrized cur@ is a cross curve realizing. O

Remark. A cross curve realizing the sequergeould be geometrically derived from
atouch curve realizing the sequer&ebtained froms, by suppressing all twined letters
by transforming each touching point into a crossing point.

4. Proof of Rosenstiehl’'s Characterization

In [12] and [16] Rosenstiehl gave the following characterization of Gauss codes. A
sequence&is a Gauss code if and only if:

— A(S) is Eulerian.

— For any nonedgfy, v} of A(S), uandv have an even number of common vertices.

— The set of the edges, v} of A(S) such thatu andv have an odd number of
common vertices is a cocycle af(S).

To prove this theorem, we need a preliminary definition and two lemmas.
Definition 7. A graphG together with a partitiogA, B) satisfiesthe proper®(G; A, B)

if any two vertices ofG have an odd number of common neighbors if and only if they
are different, adjacent, and belong to the same class of the partition.

Remark. As a particular case, if a graph together with a partitiofA, B) satisfies
the propertyP(G; A, B), thenG is Eulerian.

The vertex setv of a graphG defines the basis of a vector spacg, ith the
canonical scalar produ¢k, Y) : the addition corresponds to the symmetric difference
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and the scalar product to the parity of the intersection. In the followikkgu) denotes
the neighbor set of the vertexin the graphG.

Lemma 8. Let G be a graph with a vertex bipartition,/B and let p be a vertex of
G. Let G = Go p and let A, B’ be the vertex bipartition of Gdefined by A’ =
A+ N(p), B’ = B+ N(p) and assigning fto the class of pThen RG; A, B) implies
P(G’; A, B)).

Proof. According to the definition of a D-complement, we have (11):2

— No'(p) = Ne'(p) = Na(p),
— Ng'(U) = Ng(u), if uis not adjacent t (in G or equivalently inG’),
— Ng'(U) = Ng(u) + u+ Ng(p) + p/, if uis adjacent t.

Let u andv be two vertices of5’. We shall prove that the paiu, v) does not falsify
P(G’; A, B'). As p and p’ have the same neighbors, are not adjacent, and belong to
the same class i@, by consideringp instead ofp’, we may reduce to the case where
neitheru norv is equal top’. Then we have three exclusive cases to consider:

— The verticest andv are not adjacent or equal o
Then their neighborhoods, their class, and their number of common neighbors are
the same irG andG’. Thus, the paiu, v does not falsifyP(G’; A, B').

— The vertexu is adjacent tgp andv is not adjacent or equal tp.

(Ng(u) +u+ Ng(p) + p’, Ng(v))
(Ne(uw), Ng(v)) + 1.

(Ng'(u), Ng'(v))

As u andv belong to the same clas&'( B') if and only if they do not belong
to the same classA( B) and as they are adjacent, the pain does not falsify
P(G; A, B).

— The verticess andv are both adjacent tp.

(Ne'(u), No'(v)) = (Ng(u) +u+ Ng(p) + P, No(U) + v + Ng(p) + p’)
= (Ng(u), Ne(v)) + (N(), N(p)) + (N(v), N(p)) + 1.

Asuis adjacent tq, (N(u), N(p)) = 1if and only ifu and p belong to the same
class @, B). So,(N(u), N(p)) + (N(v), N(p)) + 1 = 1 if and only ifu andv
belong to the same clasa(B). As (Ng(u), Ng(v)) = 1if and only ifu andv are
adjacent inG and belong to the same class, B), (N (u), Ng'(v)) = 1 if and
only if u andv are not adjacent i6 and belong to the same class, (B), that is,
if and only if they are adjacent i@’ and belong to the same clast (B’). Thus,
the pairu, v does not falsifyP(G’; A, B). O

Lemma9. Let G be a graph with a vertex bipartition,/8 and let p be a vertex
of G. Let G = Go p and let A, B’ be the vertex bipartition of Gdefined by A=
A+ N(p), B' = B + N(p) and assigning pto the class of pThen RG’; A, B)
implies P(G; A, B).
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Proof. LetG” = G’ @ p and letA”, B” be the vertex bipartition o&5” defined by
A" = A"+ N(p), B = B' + N(p), and assigning” to the class op. By Lemma 8,
P(G’; A, B') implies P(G”; A”, G”). The deletion of the two twing’ and p” of p
ensures thaP (G; A, B) also holds. O

Theorem 10. A sequence S is a Gauss code if and only if

— A(S) is Eulerian

— for any nonedgép, p’) of A(S), IN(p) N N(p')| is even

— the set of the edgép, p’) of A(S) such thaiN(p) N N(p’)| is even is a cocycle
A(S).

Proof. The theorem may be restated as follows: a sequ&iigeross realizable if and
only if there exists a bipartitio, B of the vertex set o\ (S), such thatP (A (S); A, B)
holds.

(«) Assume there exists a bipartitiof, B of the vertex set ofA(S) such that
P(A(S); A, B) holds. Consider any sequenfe= So p; @ - - - ®© p, obtained by suc-
cessively D-switching the symbols 6f According to Lemma 8A(S') has a bipartition
A, B’ such thatP(A(S); A, B') holds. As all the symbols have been twined and as
p and its twin p’ have the same neighbors, any two verticesA@S8) have an even
number of common vertices. According to propelRyA (S); A, B’), the graphA(S)
is bipartite. Then, from Theorem G,is cross realizable.

(=) Conversely, ifSis cross realizable, then any sequence of D-switches gives rise
to a sequenc& having a bipartite interlacement graph; any bicoloration of it defines
a bipartition A, B such thatP(A(S); A, B) holds. The theorem then follows from
Lemma 9. O

5. Conclusion

Although the characterization of double and triple occurrences which are cross realizable
can be reduced to the characterization of Gauss codes [2], no characterization is known
for the general case where any letter may occur any number of times.

Acknowledgment

The authors would like to thank the editor and the referee for their constructive comments
and remarks.

Bibliography

1. A.Bouchet. Caraetisation des symboles cresde genre nuC. R Acad Sci Paris, 274:724—-727,1972.

2. H. de Fraysseix. Sur la reggéntation d’une suitetriples ela’ doubles occurrences par la suite des points
d'intersection d'une courbe fee’du plan. IrProblemes combinatoires etéhrie des graphevolume
260 of Colloques internationaux C.N.R.S., pages 161-165. C.N.R.S., Paris, 1976.



On a Characterization of Gauss Codes 295

w

. H. de Fraysseix. Local complementation and interlacement grBjgwete Math, 33:29-35, 1981.
. M. Dehn.Uber kombinatorische Topologi@cta Math, 67:123-168, 1936.
. H. Fleischner. Cycle decompositions, 2-coverings, removable cycles, and the four-color-#eegess
in Graph Theorypages 233-246, 1984.
6. G.K. Francis. Null genus realizability criterion for abstract intersection sequehd@smbin Theory
7:331-341, 1969.
7. C.F. Gausslerke pages 272 and 282-28. Teubner, Leipzig, 1900.
8. A. Kotzig. Eulerian lines in finite 4-valent graphs and their transformatiorBrdneedings of the Collo-
quium held at TihanyHungary, pages 219-230, 1969.
9. L. Lovasz and M.L. Marx. A forbidden subgraph characterization of gauss cBdisAmer Math. Soc,
82:121-122, 1976.
10. M.L. Marx. The gauss realizability problefroc. Amer Math. Soc, 22:610-613, 1969.
11. J.V.Sz. NagyUber ein topologisches Problem von Gaudsth. Z., 26:579-592, 1927.
12. R.C. Read and P. Rosenstigbh the Gauss Crossing Proble@olloguia Mathematica Societatiaribs
Bolyai, pages 843-875. North-Holland, Amsterdam, 1976.
13. R.C.Read and P. Rosenstiehl. Onthe principal edge tripartition of a gvapiRiscrete Math, 3:195-226,
1978.
14. P. Rosenstiehl. A new proof of the gauss interlace conjecture. (In preparation.)
15. P. Rosenstiehl. Les graphes d’entrelacement d'un grapHeroliiémes combinatoires etéhbrie des
graphesvolume 260 of Colloques internationaux C.N.R.S., pages 359-362. C.N.R.S., 1976.
16. P. Rosenstiehl. Solution algebrique du peoid de Gauss sur la permutation des points d’intersection
d’'une ou plusieurs courbes fee®s du planC. R. Acad Sci Paris, 283(A):551-553, 1976.
17. P. Rosenstiehl and R.E. Tarjan. Gauss codes, planar hamiltonian graphs, and stack-sortable permutations.
Algorithms 5:375-390, 1984.
18. H. Shank. The theory of left-right paths.@ombinatorial Mathematigs/olume 11l of Lecture Notes in
Mathematics, pages 42—-54. Springer-Verlag, Berlin, 1975.
19. L.B. Treybig. A characterization of the double point structure of a projection of a polygonal knot in regular
position.Trans Amer Math. Soc, 30:223-247, 1968.
20. W.T. Tutte. On unicursal paths in a network of degre&mer Math. Monthly, 4:233-237, 1941.

a A

Received Octobet3, 1997 and in revised form Marc@9, 1998.



