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Global Dispersive Solutions for the
Gross—Pitaevskii Equation in Two and Three
Dimensions

Stephen Gustafson, Kenji Nakanishi, and Tai-Peng Tsai

Abstract. We study asymptotic behaviour at time infinity of solutions close
to the non-zero constant equilibrium for the Gross—Pitaevskii equation in two
and three spatial dimensions. We construct a class of global solutions with
prescribed dispersive asymptotic behavior, which is given in terms of the
linearized evolution.

1. Introduction

We consider the Gross-Pitaevskii equation for 1 : R1T¢ — C
i0pp = —Ay + ([* — 1)y, (1.1)
with the boundary condition
[¥(t,x)] —1 as |z|] — oco. (1.2)

This equation is a dynamical model for superfluids and Bose-FEinstein condensates,
and has been extensively studied, especially concerning traveling wave solutions
of the form ¢ = p(x — ct), and dynamics of vortices (zeros of ¥). See [1-10,12-16,
20-25,27,29] and references therein. However we know very little about long-time
dynamics of general solutions, for example about stability of vortices and traveling
waves, or even of the constant solution ¥ = 1. Heuristically, the main difficulty is
that small perturbations can continue to interact with the non-zero background 1,
and so do not easily disperse and decay.

Thus we started in [16] an investigation of large-time behavior of solutions
1 = 1+“small” as a first step toward understanding dispersive processes in this
equation. The perturbation u = 1 — 1 from the equilibrium satisfies the equation

10w+ Au—2Reu = F(u), F(u):=u®+2ul*+ |ul*u. (1.3)
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The conserved energy and charge are written respectively

2 2
/ |Vu|? + (lul —|—22Reu) dz, / |u|?> +2Rew dz. (1.4)
RY R

For d = 2 and 3, unique global existence for the Cauchy problem has been proved
first in [2] for u € H!, and later in [10] for any finite energy solution.

In order to investigate dispersive properties of small solutions wu, it is natural
to linearize the equation around 0. The left hand side of (1.3) can be made complex
linear by the following change of variable:

w—v:=V u:=U'Reu+ilmu, U:=/-A@2-A)"1, (1.5)
Then the new function v satisfies the equation
i — Ho=—iV NF(Vo), H:=+\/-A(2-A). (1.6)

The linear evolution v = e~y (0) is expected to approximate small perturbations
from the equilibrium. We have proved in the previous paper [16] that this is indeed
the case if d = 4 for small solutions v € H!.

In this paper we turn to the physical dimensions d = 2,3, where the dis-
persion becomes much weaker. Actually there exist traveling wave solutions with
arbitrarily small energy for d = 2 [3], so it seems unlikely that the same result
holds as in d = 4. However, it is still possible that small solutions u disperse in
general if they are well localized in space at some time, since those traveling waves
are spatially spread-out and do not belong to L? [14]. Our Theorems 1.1, 1.2 show
that at least there exist plenty of global dispersive solutions even for d = 2, 3.

Since (1.6) is rather complicated, it seems natural to compare it with a simpler
nonlinear Schrédinger equation (NLS) with the same nonlinearity:

10w+ Av = F(v). (1.7)

The scaling argument suggests that the quadratic nonlinear terms can be treated
as a perturbation in L°(L2) only if d > 4. Hence we are led to work in weighted
spaces, which provides more decay in time. Even with the optimal decay rate of
the free evolution, the quadratic terms exhibit in general the critical decay order
1/tin L2 if d = 2. For d = 3, we can generally expect asymptotically free behavior
for dispersive solutions.

Coming back to our equation, the operator H has a singularity at 0 fre-
quency & = 0 similar to the wave equation, which is worse for time decay than
the Schrodinger equation. In addition, (1.6) apparently contains a singularity due
to V! in the nonlinearity. Nevertheless, it turns out that our equation is better
than the NLS (1.7), and in fact our argument for d = 2 does not apply to the
latter, which appears simpler at first glance. This is because (1.6) has a special
structure and thereby we can transform it to another equation with a derivative
nonlinearity, in effect. We give the details of the transform in Section 1.1.
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Before stating our results, we review the known results on the NLS for com-
parison. Dispersive global solutions have been constructed for the quadratic NLS
in d = 2 only in the following two cases:

(a) F(u) = Aofulu+ Au? + /\2u27 ()‘j €C), [11718]
(b) F(u) = [Re(Mu)]?, (A € C), [17]

In the first case, the asymptotic profile is modified from the free evolution by a
phase factor which depends only on Ag|u|u, while in the second case it is modified
by the addition of a term with L? scaling concentration at £ = 0. Each argument
depends essentially on the form of the modification, and so it seems difficult to
combine these results to cover our F(u). For example when F(u) = |u|?, it is only
known that there are no asymptotically free solutions in the L? sense with the
natural decay property [28].

For d = 3, it is known [19] that small initial data in certain weighted spaces
lead to asymptotically free solutions in the above case 1. The final data problem
(or construction of the wave operators) is easier and arbitrary quadratic terms can
be treated in the same way as in Section 2.

Now we state the main results in this paper. H, and H; denote the inhomo-
geneous and homogeneous Sobolev spaces respectively (cf. [1]), and we omit the
subscript when p = 2. Denote by B;q the homogeneous Besov spaces. In three
dimensions, we have wave operators without size restriction.

Theorem 1.1. Let d = 3 and 0 < € be small (¢ < 3/68 is sufficient). For any
T > 1, we define a Banach space X5 by the following norm

[l x5, =;grg51/2786||U||Lf(s,oo;H;)a (1.8)

%

where 1/p = 10e and 1/q = 1/3 — . For any ¢ € H* satisfying ||e”
there exists a unique global solution ¥ =1+ u of (1.1) satisfying

ol xs < oo,

CR;HY) 5V lu=e 40, w9)
Hv/(t)”(L;’OH;mLfHé)(T)OO) < T_1/4_5, ||U/||X; < T-¢c/2 :

The above condition on ¢ is satisfied if ¢ € H* N Hl/(q_l), We have the same

q
result in the critical case € = 0 if He_ZHtcpHX? is small enough.

The threshold ¢ = 0 is related to the scaling property of the NLS with
quadratic nonlinearity in d = 3.

In two dimensions, we can construct asymptotically free solutions for small
final data.

Theorem 1.2. Let d =2 and p € H'. Assume that

(€)% le Mok F(e) € L N L2 (1.10)



1306 S. Gustafson et al. Ann. Henri Poincaré

for all multi-indices k > 0 with |k| = k1 + ko < 2, and that HWHB} | is sufficiently
small. Then there exists a unique global solution ¥ =1+ u for (1:1) satisfying

Viiu=2"—v42 +2" € CR;H N H?),

t
D =eHly = z/ e HENU2ds, v=(2—A)TTU 2, (1.11)

oo

12z + 12" e + Wl o S €5 112 e + IVl S 6772
for any € € (0,1) and t > 0, where the constants depend on €.

Remark 1.3. The correction term v is coming from the normal form (see Sec-
tion 1.1). It has a singularity at £ = 0, which can be worse than 1/|£|, because
we do not know whether our solution u belongs to L2. That is also the reason we
describe it in terms of u, not ¢.

The correction term 2’ is essentially the same as in [17] for the NLS with
(Rew)?, although we do not know whether it can be simplified as there, because
of the singularity of our H(¢) at £ = 0. It is probably not in L2 in general.

However, these correction terms have no essential effect in the nonlinearity,
and so they can be regarded as error terms if one does not require L? asymptotics
for v or us.

In the next subsections, we explain our basic tools, namely the normal form
and the LP decay estimate.

1.1. Normal form
To eliminate the singularity at zero frequency & = 0, we introduced in [16] the
following transformation of normal form type:
|uf®
2 3
where P was a Fourier multiplier cutting-off the higher frequency |£| = 1. The new
function w satisfies the following equation
i =—Aw +2Rew + G(u),
G(u) = (3 — Pyui + Qui + PAJul?/2 + [u*uy (1.13)
+i[2Q(uruz) + VP - (uoVur — u1 Vuz) + Q(Jul*uz)]
where u = uy + iug and @ = Id — P. It was crucial in [16] for d = 4 that Imn G is
essentially of derivative form. We also exploited the fact that the quadratic part
does not contain u3 in the low frequency.
Here we make a new observation that a special choice of P related to the

equation leads to even better and much simpler nonlinearity. Let Q = U? =
—~A/(2-A)and P=1-U?=2/(2— A). Then we have 2Q = —PA and

G(u) = 2u? + |ul?uy — 2iV - P(u;Vug) + iQ(|ul*uz) . (1.14)
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Hence the equation for z = V~"lw = U~ (u; + Plu|*/2) + iug is given by

t
z=2"+ / e tH(=9) [N?(u) + N3(u)]ds,

(1.15)
|U|2 0 —iHt
u=Vz—P 5 z'=e v,
where we denote
N2(u) := —2iu? —2PU 'V - (u1 Vus),
() 1 ( ) (1.16)

N3(u) == —i|u|*uy + U(|Juuz) .

The new nonlinearity is roughly of the form (Uz)? 4 U(2®). It is vital for our
analysis in d = 2 that the quadratic terms consist only of derivatives.

We will solve the above equation (1.15) for (z,u) and for ¢t > T > 1 by the
fixed point argument. Then solving (1.3) for u from ¢t = T by the result in [10] (or
by [2] for d = 3), and using local uniqueness of (z,u) satisfying

t
z=e HE=T) (1) + / et (t=s) [N?(u) + N3(u)]ds,
T (1.17)
Juf?
2 )
we can deduce that our solution ¢ := w + 1 satisfies the Gross—Pitaevskii equa-
tion (1.1) and extends globally in time.

u=Vz—P

1.2. LP decay estimate
We recall the linear decay estimate proved in [16]. We call the pair of exponents
(p, q) admissible if 2 < p, ¢ < 00, (p,q) # (2,00) and 2/p + d/q = d/2. We denote
by ¢’ = q/(¢ — 1) the Holder conjugate.

Lemma 1.4. Letd > 2. (i) Let 2 < g < o0 and 0 = 1/2—1/q. Then we have

—itH

—do
le™ ellgo, S t™llello, - (1.18)
(i) Let (p,q), (p1,q1) and (p2,q2) be admissible. Then we have
le™ ol g, < CO Lz,
(1.19)

t
H/ efi(tfs)Hf(S)ds

< C(pl)c(p2)||f||LPéBOI , )

P1 3O
L Btn,?

where C(p) is some positive continuous function of p, but diverges as p — 2 when
d=2.

The above estimates are exactly the same as for the Schrodinger evolu-
tion e®. We had in [16] some gain at ¢ = 0 for d = 3, but we ignore it in
this paper. The second last statement in Theorem 1.1 follows from the above
estimate (i).



1308 S. Gustafson et al. Ann. Henri Poincaré
For any s € R and T € R, we denote the full set of Strichartz norms of H*®
solutions for ¢ > T by

[ullstzs = sup  C(p) M|ull Lo(rc0irrs) -
" (pg):admissible ( D) (1.20)

When d = 3, this is just L°H® N L?H§. When d = 2, it is slightly bigger than
L>®H*NL?H?, . We define the weighted Lebesgue space L} 1 by the following norm
forany 0<b<1,seRand T > 0:

lelleg o = sup S lu®)ll L2res,0s,) - (1.21)

We denote the mixed norm by (where B is a Banach space)

ey 8y = Mllw®llz. Iz . (1.22)
The Holder inequality implies that
Lyt p x L2 p C ining (1.23)
We have also Ly} C Lp? 1 iff
by <bgy, s1+by>s3+by, T<T. (1.24)
Moreover we have
tPelyr (I'>0). (1.25)

The rest of this paper is organized as follows. In Section 2, we deal with
the three dimensional case, and the other sections are devoted to two dimensions.
After explaining the main ideas in Section 3, we give the main bilinear estimate
in Section 4, and then prove Theorem 1.2 in Section 5.

2. Three dimensions

In this section, we construct the wave operators in d = 3. The nonlinear terms are
estimated simply by the Holder and Sobolev inequalities, and the wave operators
are constructed for the equation in our normal form by the standard fixed point
theorem using the linear decay estimate. H'/? regularity would be sufficient for
the final state problem, but we do not pursue it in this paper. Once the solution u
is constructed in C ([T, 00); H') for some large T' > 1, it is uniquely extended to a
global one by the result in [2]. We will construct the asymptotically free solution
by the fixed point theorem in the space

(z,u) € Stzp N X5, (2.1)

for large T' > 1.
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2.1. The scaling critical case

We start with the simpler critical case e = 0. By using the L? decay estimate, we
have for the quadratic term for ¢ > T,

[ 1 ON ) lyds [ Js = o725 s (o) By ds
t t

< flullygt™2,

(2.2)

and for the cubic term
/ e N () | g ds / s = t17257 51/ 2u(s) |2, Ju(s) | L~ ds
t t

S t_3/4||u||§(§1”u”L(l’MYT(LOO) S t_3/4||u||§(g||u||5tz; :
(2.3)

The decay in Stz! is derived for the quadratic terms by

t
H/ eiH(sft)N2(u)dS

S ||N2(U)||L4/3 T,00;HL
Stzh (Trocittsa) (2.4)

S I E2u(®) 12 larsroey S T4l
and for the cubic terms by

IINB(U)||L4/3(T,00;H1/2) S I a3 ) oo s o0

3
o (2.5)

el s, -

As for the normal form, we have

1T Py < llllzslldllze . (2.6)

for any p > 3/2. Thus we get the unique solution (z,u) for (1.15) by the standard
fixed point argument in the space (2.1), provided that ||e_th<p||X% is sufficiently
small and T > 1. Then the solution is extended globally by the result in [2], and
local uniqueness of the olution (z,u) in Cy(H?') for (1.17), which follows easily
from the Strichartz, Sobolev, and Holder inequalities.

2.2. Large data wave operators

Next we consider the case € > 0 without size restriction. We define exponents
2
4,q%,q2 by

1/g=1/3—¢, 1/¢*=2/3—-2¢, 1/g2=1/3+2¢. (2.7)

The decay estimate implies that for ¢ > T,

|[T e onrwas s [l s N o)l i
¢ q

t

Hi, (2.8)

SJ T*1/2+2€||u||iié2}85(1{1) .
£, q
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The Strichartz estimate implies that

t
| emeantas| <INl

1
Stz

(2.9)
< T_1/4_6||U||i}é2;85(1{1) .

The cubic term has additional T%/4 decay due to the L*L bound by the same
argument as in (2.5). Then we use the complex interpolation

1/2-2. 1/4 1/2—60/4—e(2—36
|:L0>/T E(H;2)7L1§2?(H61) 0 = L9§27T/ et )(H;)7 (210)

where 6 € [0, 1] should be chosen to satisfy
(1-0)/¢2+6/6=1/q, (2.11)

ie., 0 =18¢/(1+ 12¢) < 1. The last inequality is because € < 1/6. To embed the
above space into X7, we need

0/2<10e, 6/4—e(2-30)> 2, (2.12)

i.e., 16e — 120 < 6 < 20e, which is satisfied by the above 6 with strict inequalities.
In fact we have

0/4 — (2 —30) = 2 + 5e/2. (2.13)
Therefore we get T~%%/2 as a small factor for the nonlinear term in the space (2.1).
The rest of proof is the same as in the critical case. ([

3. Main ideas in two dimensions

In the rest of the paper, we deal with the case d = 2. In this section we describe
the outline, and derive the key estimate in the next section, then finally prove the
main theorem in the last section.

3.1. Iteration scheme

Let u® := V2 = Ve~ The integral equation is decomposed as follows

¢
z2—20= / e =) N3 (1) ds

oo

+ / t e =D N2 () — N?(u®)]ds (3.1)

t
+ / e HE=I N2 (40)ds =: Tri(u) + Dif (u) + Asy(u’).
The first two terms are estimated by simple Holder and Sobolev type inequalities,

and the main task is to derive enough time decay for the last term Asy(u®), which
is explicitly given by the data ¢. In estimating Dif (u), we use t~1L2° decay of u°,
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which forces us to assume smallness of the data ¢ (this is usual in the case of
critical decay). We further decompose Asy(u®) as follows:

t
Asy(u®) = Asy'(u®) + 2/, 2 = / e HE=91720)2ds . (3.2)

oo

2" is the only part where the oscillation of u° is completely canceled at & = 0.

3.2. Bilinear decay estimate
We will derive in the next section

0°3] < 167M©)* = Asy(u®) € 17 log 1) H". (33)
Notice that we have by the simple t 1L decay and the Holder that

t
pe H'NBY, — / =3 N2 (40)ds € L°(H) (3.4)
2t

so in (3.3) we are gaining roughly 1/t decay by losing £ at £ = 0, which is acceptable
for our nonlinearity.

The main idea of the decay estimate is as follows. For simplicity, consider the
Schrédinger evolution H (€) = [€]?. Our quadratic terms are roughly of the form

/ / (B (€ — ) (n)dnds (3.5)

oo

in the Fourier space, where the phase function ® is given by one of
Oo = H(E) — H(E—mn) + H(n) = € = & =nl* + [n]?,

o =HE)F (HE—n)+Hm) =P F(€—n*+n).

(3.6)

®( corresponds to |u|? and @1 to u? and u?. We can gain 1/t by integration by
parts in 7, picking up the divisor 1/|V,®|, where

Vp®o=-n—-§+n=¢,
Vo®s =F[(n—&) +n] =F@2n-¢).

Hence the singularity of 1/|V,®o| is canceled by |{| in (3.5). We need to integrate
twice, since we want to have t~! after the integration in s. Then we get |£|~! in
the case of ®¢, but it is almost in Lg and so OK if we allow the loss of logt.

(3.7)

In the case of @, V,® depends on n, which reflects the fact that u? and 42
are oscillatory. But now we can integrate in s, because at the stationary point
n = &/2, the phases ®+ do not vanish:

O =2m(E—n) = —2(n—¢&/2)* - [¢]/2. (3.8)

We are getting strong divisor 1/|¢|2, but it is still OK around the stationary point,

where we have |£| ~ || ~ |€ — n| and the nonlinearity supplies |n||n — &| decay.
Since our actual symbol H(§) is degenerate at £ = 0, we get a stronger

singularity, where the |n||n — &| gain plays a crucial role. In addition, we should
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carefully compare the unbalanced radial and angular components. The detail starts
in the next section.

4. Bilinear space-time phase estimates

As seen above, we are going to have a non-stationary phase estimate for the bilinear
expression with integration in space-time. Now we state the main estimate in a
slightly more general setting.

Lemma 4.1. Let d =2 and o > —1/2. Assume that F(§,n) satisfies

OSFI S gy oo i T~ a0, LS €= g, (@)

for all 0 < |k| < 2 and some nonnegative functions f,g € L N L? and f', g’ € L?,
where m := min(|€ —nl, |n|). (/' and g’ are not related to f and g.) Then we have

t
" s g, n)dnd
HI£| /Oo/e (&, mdnds v (42)

< 700 ) (| fll ez llgl Lonce + 11122 llg'122)
for0<0<1,t>2,

o {% =H(§)+H(n) —H(n—¢), (4.3)
op=H(E)F (Hn) +H(n-¢)),

and

{9§u§9+(1+a>1§" (® = o), (4.4)

071 <p <0+ (14 min(o,20)) ' (@ =dy).

The main part of proof is to derive precise lower bounds on the first derivative
of the phase and compatible upper bounds for the higher derivatives. In doing that,
we should carefully distinguish the radial and angular components, otherwise we
would get too much singularity at £ = 0.

4.1. Preliminaries

For any vectors &, 7, we denote
(€ =V1+eR, [€=V2+P, &= é' L &= EeN, & =E—TG. (45)

Then the phase function H () is written as
H(&) = H([¢]) = [€][€] - (4.6)

We will denote H'(£) := H'(|€]), etc. First we need to see that the above lemma
applies to Asy(u®). Its Fourier transform is a linear combination of the form MG
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with
nlln =&l — €7t (for ),
M, n) =
(& { Tl - O (for PUMY - (V)
Fol§ =mFo(-n) (2= =H(E)+H(n) - Hn-9),
G(&m) = ¢ Fo(§ = n)Fe(n) (=0, =H(E)~H(n) - Hmn-9),
Fo(=¢+n)Fo(-n) (2=0_=H(E)+Hmn) +Hn-¢)).
(4.7)
Then in all six cases, our assumption (1.10) implies the first condition of (4.1) with
o = —1/2 and some nonnegative functions f,g € L> N L? determined by ¢, and

the second one follows from the assumption ¢ € H'. In addition, we observe that
Asy’ (u®) does not contain the terms with ® = ®,. By symmetry, we will mainly
restrict our attention to the region where

Inl = [n—¢&l=m. (4.8)

Since we are going to integrate by parts twice, we need up to the third derivatives
of the phases. Let I(r) := H"(r)/r — H'(r)/r?. Explicit computations give us

A N A I R
() = =0 I0) == o I'(r) = 4<i3+[r]55’" 7,

As for the differences, we have for any r > s > 0,

HO) = )~ 00 =9, B =16~
H @ -H@IST )T O EOIS g =), (410)
AT P LCRE OIS

For any vector v, we denote the partial derivative with respect to n in the direction
v by OuF(§,m) :=v-0,F(£,n). We will omit the estimate with ®_, which is easier
than that with @ . For the phases &y and ¢, and for any vectors a, b, ¢, we have

®=H(E)+H(n)—-Hn-¢),

9.® = £H'(n)ay, — H'(n — )ay—¢,
0u0p® = £H" (n)ayby — H"(n — )ay—¢by—¢

H’ 4.11
+ (n) L b,# H'(n— f) e bn ¢ ( )

In| In— ¢

0a0y0:® = £H" (n)aybycy — H" (n — f)an—ﬁbn—fcn—f

+ I(TI) (a7 b’ C)77 - I(TI - 5) (a7 ba C)U—E )
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where the upper and lower signs correspond to ®y and ®, respectively, and
(a, b, c), denotes the symmetric 3-tensor defined by

(a,b,¢)y = a,,b# . c# + bnc# . a# + cna,# . b# . (4.12)

We will use the following elementary geometry. For any > s > 0 and unit vectors
«, 3, we have

|ra— sB| ~ |r — s| + sla— f], (4.13)

where < follows just by the triangle inequality and 2 follows by squaring the
both sides. For any nonzero vectors a, b, we have

_ la+0* = (la] = [p)?* _ (la| + [b])* — |a — bJ?

a+b?=21+a-b) = = . (4.14)
S allo allo
Hence by putting (a,b) = (n,£ —n) and (n,n — ), we have
~ — N 52_ _ _é— 2
O e RPN <o (RS
nlln = €] (4.15)
e ~ (Inl +1n —&D* = 1&]? '
N+n—EP2=2(1+7,—¢) = .
= =2 ) = T iy g

4.2. Estimate for |u|?, the case of ®

First we consider the phase ®¢, for which the integration in s does not play any
role. For a fixed 0 < § < 1 and each £ # 0, we split the integral region of 7 into
the following three overlapping domains:

Dy(8) = {neR ||yl —In—¢l > (1-20)[¢]},
Do(€) = {n € R* | ||n| — In = &|l < (1 = 5)[¢]}, (4.16)
D_(&) = {neR ||l —n— €&l < —(1—20)l¢]}
and choose a partition of unity 1 = x4+ (1) +xo(n) +x— (1) satisfying supp x. C D
for * = +,0, — and

Vi) < (nl +n— €D~ (k] <2). (4.17)

Such functions can be given in the form x((|n| — |n — &])/|¢]) with some one-
dimensional cut-off function y, then its n derivatives are given by
Gn — Gn—¢
X
¢l
1.l 1 1

Balpx = (an - an—f)(bn - bn—&)xu n ay 'bn _ g~ bn—& X

a - .

€1 ] In—=¢l | 1él

The above bounds (4.17) follows from these identities, (4.15), and [£| < |n| ~ [n—&|
in Dy N Dyg.

By symmetry, it suffices to estimate only in D and Dy. We first consider D .
Here we use the polar coordinates n = r6, or in other words, we choose the direction

Oax =
. (4.18)
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7 = 0 for the partial integration. By the definition of D, we have |n—¢| < |n| 2 |¢],
and by (4.15),

~ sl
1—1p_¢ S . 4.19
TS iy~ (419
Partial integration in r gives
/ Fe'®dn = z / (YF)e'®dn = ;2 / (Y2F)e'®tdn, (4.20)
where the operator Y is defined by
2
Y:zlarrz 1 _8TfI’ 87,’
r 0% ro.® (0,2 0,0
oG0P e e o, ok, & (4.21)
-7 (0,0)4 r(0,®) (0,9)3  r(9,P)2 (0,®)3  (0,9)2°
For the phase derivatives, we have the following estimates
0r®o = H'(n) — H'(n — &) + H'(n — §)(1 — y—¢)
In| ~ nll¢]
~ —|n—- 4+ (n— 1—7,_¢) > ,
H'(n—
0200 = H'(n) ~ 1"~ &)+ 17— ) - 1 7 g
—|n - - 0,
920 5“” =& =8, L < 0% (4.22)
S AL
07 ®g = H" (n) — H"(n — &) + H" (n = &)(1 =7 _¢)
+31(n— f)ﬁn—ﬁm#—gﬁ
|a§q>0| S |77| - |775_ £| 1- T—¢ X S 8T(I)OQ ’
n=&7m  In—E&Pn-6" " In—¢
where we have used |n| > |n — £|. Thus we obtain
F |(x+F)r| |O¢+E) |
Y2(x+F)| < | + +
YIS .00 -2 T 0,007 - € T (0.0
< il €l fE=mgm) (4.23)
™ nPIEPIn — €2t — & '

(m)*7

T e nlln — €l — &)

Next we consider Dy. Here the main part of V@ is its angular component,

FE€=mn)g(n).

which is not always close to either 77 or 7 — &, so we simply integrate in the direction
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of V®,.! Partial integration gives

. ] . —1 .
/ Fe'®tdn = z / (AF)e®tdn = - / (A%F)e'®dy , (4.24)
where the operator A is defined by
vo Vo Vo - (2V20 — ADI) - VO
AF =V . F= .VF — F 4.25
vopt = v vays 42
which satisfies
VF| |V?0|
AF| < F
V2E| v V2aP vl (120)
A’F| < VF Fl.
AHZ 1gap T wep VI [ vep F vap) 1P

In the region Dy, we have |n| ~ |n —&| 2 |£|. Using (4.13) together with (4.9)
and (4.10), we have

—

[V@o| ~ [H'(n) — H'(n — &)+ H'(n = &) —n — ¢
2 (i —n—¢,
" " H/(TI) H’(U—f)
V20| < |H"(n) — H"(n— _

H/ ~ ~ —_— —_—
+ [H”(U)Jr |77(|77)] men-—n—£§@n—¢
(4.27)
¢ N
S | |2+ <n>|n—n—£|,
7| 7|
(V3®| S [H"(n) — H" (n—&)| + [I(n) — I(n — &)
+ (H" () + [I(m)]) |7 —n — ¢
< N n—n-¢
S, n)2m)?
By the definition of Dy and (4.15), we have
D €12 = (Inl — In—€1)*  [¢?
n—n—¢P?= ~ ) (4.28)
| | inll — € Il
Hence we deduce that
vaol 2 L ey < V2 gsg < VRl (09
Il || bl

TOn the other hand, our method for estimating in Dg is not adequate in D4, where the angular
difference terms such as |H'(n)/|n| — H'(n — &)/|n — &|| in (4.26) can not be controlled.
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and therefore

2 In[l€ —nl
A F)| < _
A7 F)| S |v%|2|n|2<§><§_n>1+g<n>gf(£ m)g(n)

S €'>”<'n>3+20. 7(& —matn).

which is slightly better than the bound in (4.23).
In conclusion, we obtain

Fei®ot gn| < FE&=m)g(n) ,
/M_n. o /1>>|n. > el €12Inlln — €]

f(€=n)g(n)
i /1 < Inl~ln—gl JE12(€) ()27
F(€—=n)g(n)
i /1 < Inlsn—¢l (€ In — €lin — &'
< max(—log [£[,0)
~ €12

—2—0 f(f) %
+ (&) [H@HU 9(5)1 :

where we used the Schwarz inequality and the condition o > —1/2 for the second
integral. For 1 > |{|, we have also

/IFIdn S g (4.32)

Applying this estimate in the region {|¢| < 1/¢} and (4.31) in the rest, using the
Young inequality L' * L? ¢ L%, L? «+ L? C L™, and appending the same estimate
in the opposite region | — &| > ||, we obtain

‘<€>1+”|€| [ Femtan
L2 (4.33)

< 7 (logt)?|| fllL=nr2llgll Lenzz + t 2l 2llg l e,

for ¢ > 2. After integration in ¢, this estimate corresponds to the case § = 1 in (4.2).
The remaining case 0 < 6 < 1 is covered by interpolation, see Section 4.4.

(4.30)

t2

dnp  (4.31)

1f1z2llgll 2

Il + |l

4.3. Estimate for u?, the case of ®

Next we consider the phase @, for which we need to take account of the time
oscillation, and so split the integral into more regions. Let x € C*°(R) satisfy
x(s) =1for s <1 and x(s) =0 for s > 2, and denote X = 1 — x. Hence we have
supp x C (—00,2] and supp X C [1,00). We also denote

4.34
M = max(|n|, |n =€), m = min([n], |n - £]). 434
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FIGURE 1. Decomposition of 1 space for ®; when |£| < 1 and ¢ > 1.

For a fixed positive § < 1, and each £ # 0 and t > 1, we introduce partitions of
unity for n € R¢ by the following identities:

l=xr+Xxc, XC=Xr+Xr+Xr+xx, Xx=X%+x%+xx+x%.

(4.35)
and
A (&) )
=x|0 =yxc-x[d 0N
XF X< |€|>7 XT xXc X< |§|3 )
2
X% =XT* X<+, X(IJ" =XT X0'X <<|§>|3;\> , (4.36)
X3 = xx - X)) XE = xx - X)) - R(+4e)

where x4+ and xo are the same as in (4.16). Hence denoting by D = supp x¥, we
have (see Figure 1)

R? = Dp U D} UD; UDSUDYUDYUDyUD%. (4.37)

Remark that Dx and Dr cover the stationary-phase regions in space and time, re-
spectively. D is an annular region, separating D x into two connected components
(if |€] < 1). The derivatives of the cut-off functions satisfy

IVExp] S M7 (@ V) o] + (=€ V)xi] S m™F,

. (4.38)
IVoxkl S 1CI71 + Dr(€)[g] 72 Pm =12,
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for |k| < 2, where Dy is identified with its characteristic function. We can easily
derive these bounds using

A el _ A
OAN=1+Dy_c~ RPrx="" < , 4.39
n—¢§ m |77_€| m2 ( )
I T . (&)
VoAl =i +n—&l~ s Vx| S €3 /2ma/e

together with similar estimates for the radial derivative in n — £.
In Dp, D; and DY, we use the polar coordinates n = 7 and integrate twice
in the radial direction.? Since |n| > |n — &| + €|, we have

—0,®y = H'(n) — H'(n — &) + H'(n = §)(1 + M) ,

H(n-¢), .
o201 S 1)+ 1 -+ 1
il =8 . =
< 1+, ¢), .
St g T )
03F4| S H" (n) + H" (1 — &) + [I(n — )| |
< 1 L+ 7y

+ .
(=6 In—&Rn—-¢°
In Dp, we have || ~ [n —&| > [¢], which implies that

0.0 2 - 'ng' ) 2 ) (4.41)
and also
0| < 10,@lm™"  (k=1,2). (4.42)

Therefore, defining Y by (4.20) with ® = &, we get

Delnlln —&lf (€ —=mn)g(n) F(&=magn)
|Y2(XFF)| S 9 9 140, \o S 4420 : (4-43)
(0r®4)2[n = &2 — &) (n) 3]
Since o > —1, we obtain by the Schwarz inequality
@ [ppet-tay| < ool @
L{
In D7, we have || ~ [£] 2 |n — €| and by the radial component
2 2
_9,®, > | - [3 (4.45)

m (&)

2Here we can not use the operator A because there is no cancellation between the angular
terms H'(n)/|n| and H'(n —¢€)/|n — €| in V2®4, and also because the cut-off function has larger
derivative in the angular direction.
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whereas in D% we have |n| ~ |[£| ~ |n — £| and by the angular component

2
08y 2O+ 2 (1.46)

and we have (4.42) in both cases. Hence we have for x = 0, +,
V20 F)| < Dr(&)*Inlln — €€ —mg(n) _ Dr(€)' 7 F(€ = n)g(n) (4.47)

€14 — E2(E) = T T 1ePlm— €l - &

For €| > 1, this gives the same bound as in the last term in (4.31). For |{] < 1,
we use the shape of Dy and the polar coordinates for n — &,

1<F min(m, [€]2)] £]| o< ]lg]| Lo
V2(yvEF dn < ’ dm
/I (xpF)ldn < ; EPPm (4.48)

S I lze<llgllz= log(1/[€])

where the factor min(m, |¢[?) is coming from integration in 7 — &. We can treat
D7 in the same way by symmetry. Thus we obtain for x = 0, +, —,

H ©* / xpFe'®+tdn

St eean=llgllzznres - (4.49)
L2
€

Next we exploit the time oscillation in Dy, which is split into the following
two cases:

A 6P /(€)
4.50
{A < IEB/E% Il —In— €l < (1—d)le]. (4.50)
In the first case, we have |n| +|n — & ~ |¢] < 1 and
nl® In—¢&P° j€1° 1%
—d, =2\ — 2 ; 4.

Y e T ey g © @ a0

while in the second case, we have |n| ~ |np — &| ~ |£] and

Oy = [H(E) — H(In| + In— &D] + [H(In + |n — &) — H(n) — H(n - £)]

- €)3 (4.52)

O
where we used (4.10) and the identity

ab(2a + b) ab(a + 2b)

Hlat ) = H@=HO= 1 h o) ¥ a8+ 14

(a,b>0). (4.53)
Therefore we can integrate in s for £ # 0:
t ) ei‘b+t
v | [ [ emtiemasar| =| [ 4 ccerian (454)
9] 1P 4

)
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for x = S5, 4,0, —. In particular, we have

2
xS < /C . |<§|Z <€|>£2|+20f(§ —mg(n)dn

1 (4.55)
< " 2+ 2—0)d¢.
e [ €2 Qa2 0
Hence by using the triangle inequality we obtain
/2 1/2
2+2G’XS < <£>1 2 <<> ood
[CReCS PR I DIWICERYS ettt

St fllpoence gl -

In DY, we use the polar coordinate ¢ = lei“’g and partial integration in I:

/ Fe'®d¢ = z / (ZF)e'*dc, (4.57)

where the operator Z is defined by

1, 1 1 topki o)
Z = = — . 4.58
90 =00 " (@02 T a0 (4.58)
The first derivative is given by
0%y = H'(n)ilc + H'(n — En — & (459)
= (H'(n) = H'(n—&))ic + H'(n = &) (e +n1— &),
where the radial component can be estimated by
. £+20)-C
(B0~ B~ ) 2 |1 (ol —n - ) © T2
(n) In|
i L . (4.60)
> Inl* —1In—¢&*&-¢ > [§14L¢: |
() l (&)
and the angular component by
L — +n— ~
Hn- @ +1—8) =1 -0 g,
2/¢
- (4.61)
To rewrite it in terms of w, let & and 3 be the angles € [0, 7] such that
cosa:17/—\§-:\§, cosB=7-E. (4.62)
Then by the sine theorem and w ~ sinw by |w| < 7/2, we have
[74+n—¢& 2 sina+sing > < + >|C||sinw| > ICI|<.u|7 (4.63)
In—=¢&l - Inl m
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and so
/ T €ll¢ )[¢|w?
H' (=8 +n—-¢&) 2 <mir|12” 2 2 < >|m|w . (4.64)
Thus we obtain
€licl | ©Iclw® _ OIcl [ 2, mlg]
|8l +|N <§> + m m <w + <€>2> ( 65)
The second derivative is estimated by
070y S H )+ B -9+ T g O D e
il - )
€l ) [l [* 2l ol (4.6
< n. 1+7,_¢).
S m [ ST mip G
Then by using |n| ~ max(m, |(|) and the above estimate, we obtain
07 @] S 1@ |[m™" +[¢[71]. (4.67)

Thus we obtain
|Z(X}F)| S |<I>+|wj(DXf(§ —n)g(n), where

) m €lm {1 1 Drle) }
T (i) (w2 + ) 0 m e Lm 1) g
m2 |:]. + 1 + DT<§>
o o o m 1/2|¢13/2
(O lePmy 1) (w2 + ) L el mig
Using |n| ~ max(m, |(]), we have for [£| > 1,
1 1
T <
B T e I

} . (4.68)

(4.69)

the first term is treated as the last term of (4.31), and the second term by using
the triangle and the Schwarz inequalities

— d
J(€=matmdc />C>1/t|<|2||f(€/2 Ollzzllgll = .

1>(cI21/t <12
S ||fHL2||g||L°° logt,

(4.70)
gmdc | _ / /
S |f(& = n)g(n)[Pdnd§
||/<>1 |C|2 L2 1)1 1¢14
£
S I llzzllglle -
For |£| <1, we have
T 1 m'/2 Dy (4.71)

<
YX S w2+ ) T e
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and so in the polar coordinates ¢ = (I,w),

/ y /lél /2,, ldidw I min(l, [¢*)
= 2w+ leP) T €14

(4.72)
_ logt + [log ¢
~ I3
Thus we obtain
H<5>2+min(0’20)x+HLg(\g\gl/t) St logt)?(| fll penre gl peonze - (4.73)

We have the same bound for X~ by symmetry.

In DY, we use the operator A defined by (4.24) with ® = & . Here we have
€] ~ |n| ~ |§€ —n| and |(¢| < 1/2, which implies by the same argument as in (4.63)
that

47 E 2 :g: . (4.74)
Hence we have
V4] > H (g — i+ 78 <f|>£'|<' V20, < g < 'Vrj’*' . @Ts)

and so
JAXSF)| S @4 DY wk f(€ —n)g(n), where

o . (& & e { 1 <€>DT} < 1 { 1 <€>DT]
B o L S B R [ L
(4.76)
This bound is better than (4.68), and so in the same way we obtain
||<f>2+2UXOHL2 (e|>1/8) ~ St 1(10gt)||f||L°°ﬁL2||g||L°°mL2- (4.77)

On the other hand, we have for |£] < 1/t < 1,

2t 2t
XxFldsdn < / / €21 | N1l e s
//t t Jinl < el (4.78)

Stz llgl - -

Putting the pieces together, we obtain

. t .
-
0o L

Here the condition o > —1/2 is inevitable for ®,. The difference from the case
of @ is the unbalance between the || from U and the 1/|¢| from the partial
integration, which costs one regularity. On the other hand, ® is better at £ =0
than ®(, which is non-oscillatory at & = 0.

St logt)? )| fll oenz2 9l L2 - (4.79)
2



1324 S. Gustafson et al. Ann. Henri Poincaré

4.4. Interpolating estimates

Thus we have proved (4.2) in the case §# = 1. On the other hand, we have for any
keZ,

|/ 1 mian <2 [1re i
L2(2k <|€|<2k+1) Lg (4.80)
S 20 ez lg e -
which implies that for any ¢ > 0,
t
[ [ tanas Sl s
2t L2(2k<[g|<2k 1)
This corresponds to the case § = —1 in (4.2), although it is divergent for the
integral t — oo. By applying real interpolation or the Holder inequality to dyadic
sequences on |¢| and ¢, we obtain the desired estimate (4.2) for 0 < 6 < 1. O
5. Proof of the 2D theorem
5.1. Bootstrap setting
We decompose our solution z = 2° + 2! and u = u® + u!, where
D=l 40 = V20, (5.1)
and starting from the above estimates, we will derive
Iz St N2 lgne SE750 lulle SE77, (5.2)
with some «, 3 satisfying
g<1/2, 1-08<a<28, (5.3)

by the standard iteration argument. («, §) can be arbitrarily close, but not equal,
to (1,1/2). We fix x € (0,1/4) such that

124k <a<2B—k. (5.4)

Let HWHB% . <6 < 1. The L” decay (1.18) implies the following bounds on the
free part u® = u + iud:

@Ol S Nellar s Nudllee +1Velllie S el <ot

1w’ @®)lles S ¢ llll go

4/3,2

(5.5)

The last quantity is finite for high frequency by interpolation of Bll)l and H'. The
low frequency part is also finite, because (1.10) implies that

-1/2 52/p—2 52 /p—1
(V)2 € BY272n B2/p~t (5.6)
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for all p > 1. The above Bg/g,z norm in [¢] < 1 is bounded by choosing p = 4/3 and

position. (5.6) is proved as follows. Let <V>71/2<p = Y jez ¥ be a Littlewood-Paley
decomposition. By (1.10) we have for 0 < k1 + ko < 2,

using the trivial inequality >, |a; 1?2 < supjgo(2’j/2|aj|)2 on the dyadic decom-

PHIVFY S Y MOV Fel e L2 N L2 (5.7)
0<i<k

Since F1; is supported around ¢ ~ 27, we get
[VEFpil| e < 277 * min(27, 1), (5.8)

where we denote the L> N L? norm of (5.7) by . Hence by Plancherel’s identity
and an interpolation inequality (or using the estimate with £ = 0 on |z| < R and
|k| = 2 on |z| > R with the minimizing R), we obtain

o < 150 220 e 2|12 < min(1,279)A (5.9)

which implies (5.6) for p = 1, and then p > 1 follows just by the Sobolev embedding
for the Besov space.

In the following three subsections, we derive estimates on the normal form,
the trilinear terms and the quadratic difference terms, where we need not assume
that w is the solution. For any function u, we denote

||U||Z’T = ||UHL51TL;§ + | RQUHL&T@ + ||V“||L31TL§ 5

(5.10)
lellze =l gz s + I Rewlllny  roe + 1Vl llzy pee + llu— 2’2,

Remark that Zp is not a norm, but it is designed to measure different types of
decay of u® and u —u", namely dispersive and dissipative. Since 3 < 1/2, we have

lull s 2o S Nullz, (5.11)

5.2. Normal form

The quadratic part is estimated just by the Holder inequality:

lulllzg o2z ST " llullzs 0 ST "lull%, .
’ 0, T =z

. . ) (5.12)
[ul” = |wlllg ez S T " (lullze + wllze)llu — w2, -

5.3. Trilinear term

For 1 < p < 0o, we have

IV @]y < WulPunllze + Ju®Vul| o (5.13)
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We apply this estimate after expanding u = u® 4+ u!, choosing different p for each
term. For example, (ug)?Vusy is expanded into the following spaces
0 2 0
luzuaVusllpze 1o < llu2lzp pallVuslley e

BN\ 2%

”ugugvuéHL‘l"frlmLz S ||ug||L1/T2L4 L} TL;QHVUéHLSTLﬁv (5.14)
’ r 0, I B ’

||u2U%VU§||L§7:g—3/4L§/3 Slluallp palVuzlis, rz

where we used the interpolation inequalities of Gagliardo—Nirenberg type:

2/3 1/3 1/2 1/2
lullzge < IulZ2vul 2, lullzs S lul f219ul (5.15)

The other terms containing u; are estimated in the same way. Thus we obtain

| Tri)sess, S T~ lull%, |

‘ . - (5.16)
| Tri(u) — Tri(w)||se.2, ST [l zp + w2, ) lu — wllz,

5.4. Quadratic error term

The quadratic difference term can be expanded by putting v = u® + u'
N2(u® +u') — N?(u®) = —2i(2ul + uj)ui

5.17
—2PU 'V - (uVul + ul Vul + ulVaul), (517

and each term is estimated in T~®StzL by using

luduillm < lufllwrlludlle < 6677 ullz, ,

luruilley < luillcolluillm < > ulZ, ,
[uyVuglze < fJudllpel|Vusll e S 67 fullz, , (5.18)
lurVuslce < luillcaVuslize < 6t~ lullz, ,
lurVug|lze < lluillcel Vugllze < 672 ullZ, ,

where ¢ is the small factor coming from H‘/’HB} E and we choose p € (1,2) and
q € (2,00) such that

a—k>1-1/g=3/2—1/p. (5.19)

Thus we obtain

D4 ()] 023,
| Dif (u) = Dif (w) 5123

T [0+ T " ullz,] 2

e e (5.20)
T [0+ T (lull zr + llwllz)}[lu — wlz;, -

IZANRYAN
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5.5. Iteration argument

We define an iteration sequence (z(x), u(ry, v(x)) for £ =0,1,2... and t > T > 1,
by

2(0) = V(o) = 20 = e tHip, o) = u’ =V20,
21y = 2° 4 Tri(ugy) + Dif (u)) + Asy(u) (5.21)
k1) = Vogern) = Ve — PW;)'Q
We introduce the following norm for z:
I2llzz = N2l oy rx + U2l e g (5.22)

Since B < a, we have |[z[|z2 < T[|2||s¢.1,. Using the Sobolev embedding my?c
L% and B < «, we have for any k,j =0,1,2...,
sy = wn llzg ~ owen) = v llog i + e —ugenlizs
< Nz = 2yl z2 + Muy | = lugyPllog ooz s (5:23)
and then the quadratic part is estimated by using (5.12) and o + k < 203,
ey = lugy Plleg pz S T luwllzr + luglzr] lluwy —ugyllzy, - (5.24)
For the first iteration, we have w1y — u@) = —P[u’[*/2 € R, and so
luwy—wo)lzg s S vy =vo)llg iy S M Pleg 22 S T "[WllZ, . (5.25)
As for z(;), we use (5.16) and (5.20), deriving
211y = 2Ganllsezs, ST [0+ T7(1+ [luy |l 20 + llugyll22)?]

(5.26)
X Nuy —ug iz, -
For the first iteration, we apply (5.16) and (4.2). Then we get
lz) = 2l z2. S 1 Tri(u®) [ p-aseas, + [ Asy(u”)] 22 (5.27)
ST [IW°IZ, +lleld]
where we denote
el = el + > (1€ 1™ OERE)| oo - (5.28)
0<|k|<2
Gathering the above estimates, we deduce that
Dy = |lz@y — 2e-1) |l z2 + llugesr) —umwllzg, Bk = luwllzr
D1 S (6+T7"(14 Egy1 + Ex + Ex1)*) Dy, (k=1,2,3...),
Dy ST [l (1 + [u”)z2) + lellX] - (5.29)

k—1
By $ Y Di+lumlze luglze S 1ulllze(1+ T[] 2,) .
j=1
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Hence for sufficiently small § and large T', (2(x), u(x)) converges to some function
(z,u) satisfying the equation (1.15) and

2 = 2z)llzz + llu —ullzs, + 12 = 2@)llr-asiz2, S D1 (5.30)

The uniqueness for ¢ > T is proved also by the above difference estimates. In
addition, (4.2) implies that

U2 g+ 2y = 2% = 2 lle2) + 202 | e S Dol (5.31)

where we used the fact that z(;) — 20 — 2/ = Asy’'(u®) does not contain ®,. By
using this estimate together with (5.25) and the LP decay, we also obtain

Wl S lulds S €25(D1 + lu0]l20)?,
Wlliee S Nl S (el 2o + ) (5.32)

St (||<P||B

for any small ¢ > 0. In particular, z(T),v(T) € H*® for 0 < s < 1. The local
uniqueness for (1.17) in this class is easily derived from the Strichartz, Sobolev
and Holder inequalities.

2 2 02 )2
2/(14¢),1 + ”(’OHN + Dl + ”u ”ZT) )

5.6. Global continuation

The final task is to extend our solution u to t < 7. We can not apply the H!
global wellposedness of u by [2], since Asy(u®) barely falls out of L?. However
the nonlinear energy is still finite, because uy,|u|> € L?, and the L? singular
part at low frequency belongs to L>°. Hence we can apply the global existence
results in [10], and we have only to see persistence of our function space, namely
(z,v) € C(R; H* N H'). The conserved energy can be written as

where we denote p := u; + ‘”2| . [10, Theorem 1.1] gives
peCR;L?), ueCR;(L®+HYNHY), (5.34
u— eiA(t*T)u(T) e C(R;HY). '

Hence we have u € C(R; H®) for 0 < s < 1, which implies for 0 < s < 1 that
PU Y ul? € C(R; H?). (5.35)

On the other hand, by using the identities
Juf?

Uzlzul—l—Pu

5 = Pp+Quy, 2z2=1us, (5.36)

we get

2 € O(R;(L® +HY)YNHY), VpeCR;L*+ L7, (5.37)
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and the integral equation for z can be written as

z= e*iH(t*T)z(T)

. (5.38)
_ / e =20 (puy) + 2PU IV - (uy Vuz) — 2U (pus — uiuz)]ds ,
T

where the nonlinearity is in C(R; H' + H%*/3). Hence the Strichartz estimate
implies that

2(t) — e HED (7Y € C(R; HY), (5.39)
and therefore
ze C(R;H?), (5.40)
for 0 < s < 1. Combined with (5.35), this implies that
v=z—PU u|?/2 € C(R; H?), (5.41)
for0 <s<1. O
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