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Abstract Remote sensing (RS) technology offers unpar-

alleled opportunities to explore river systems using

RADAR, multispectral, hyper spectral, and LiDAR data.

The accuracy reached by these technologies recently has

started to satisfy the spatial and spectral resolutions

required to properly analyse the hydromorphological

character of river systems at multiple scales. Using the

River Hierarchical Framework (RHF) as a reference we

describe the state-of-the-art RS technologies that can be

implemented to quantify hydromorphological characteris-

tics at each of the spatial scales incorporated in the RHF (i.

e. catchment, landscape unit, river segment, river reach,

sub-reach—geomorphic and hydraulic units). We also

report the results of a survey on RS data availability in EU

member states that shows the current potential to derive

RHF hydromorphological indicators from high-resolution

multispectral images and topographic LiDAR at the

national scale across Europe. This paper shows that many

of the assessment indicators proposed by the RHF can be

derived by different RS sources and existing methodolo-

gies, and that EU countries have sufficient RS data at

present to already begin their incorporation into hydro-

morphological assessment and monitoring, as mandated by

WFD. With cooperation and planning, RS data can form a

fundamental component of hydromorphological assess-

ment and monitoring in the future to help support the

effective and sustainable management of rivers, and this

would be done most effectively through the establishment

of multi-purpose RS acquisition campaigns and the

development of shared and standardized hydromorpho-

logical RS databases updated regularly through planned

resurveyed campaigns.

Keywords Fluvial geomorphology · River remote

sensing · River characterisation · Water framework

directive

Introduction

Fluvial geomorphological surveys have become increas-

ingly popular over the last decade as a tool to support

sustainable river management. They have been used

effectively in the assessment and mitigation of flood risk,

the design of sustainable restoration and rehabilitation

projects, and in the proposition of effective measures to

protect and increase freshwater ecosystem biodiversity

(Brierley and Fryirs 2005; Sear et al. 2009; Davies et al.

2010). However, a reliance on field-based approaches

limits their wide-spread application at the network scale

which is needed to meet current regulatory obligations

(Newson and Large 2006).

Fluvial geomorphology received renewed interest in

Europe, and a change in name, following the Water

Framework Directive (WFD) (EC 2000), which requires

the evaluation of river hydromorphological status for all

river systems in Europe. Considered a supporting element

for biological quality, hydromorphology is defined using a

selection of hydrological and geomorphological
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characteristics. hydromorphological characteristics also

form a central role in the delineation of water bodies and

the assignment of a river type. The ECOSTAT working

group of the Common Implementation Strategy (CIS) for

WFD analysed and grouped all Member State (MS)’s river

typologies into macro-categories in order to facilitate their

comparability in terms of ecological status: currently they

define 15 river types based upon the altitude, area and

geology of the river’s catchment. This exercise produces a

simple, high-level classification that should be integrated

with detailed classifications and assessments devised by

each MS. However, many MSs currently do not have an

established river classification implemented at the national

level. Consequently, the development of methods for

characterizing and monitoring hydromorphology robustly

and consistently over pan-European scale is an urgent

demand of the WFD as well as a challenging research topic

(Newson and Large 2006).

Most river geomorphological survey methodologies

(Brierley and Fryirs 2005; Sear et al. 2009; Rinaldi et al.

2013) rely heavily on expert opinion. Surveys are still con-

ducted predominately using field-based methods, which

require time- and resource-intensive field campaigns, as well

as a specific expertise in fluvial geomorphology that may not

be available to authorities across Europe. These prerequisites

limit de-facto their operative application to a limited number

of rivers (rarely extended to the entire river network scale),

and may call into question their appropriateness to moni-

toring purposes, which require an objective,

repeatable assessment method. Surveys typically rely

strongly on expert opinion and for this reason the conclusions

drawn can be highly dependent on the surveyors experience

and familiarity with the systems. It is in this context that the

REFORM project developed the Hierarchical Framework

(RHF), which outlines a comprehensive, flexible assessment

methodology that complements and extends the official

WFD guidelines for hydromorphological surveys (CEN

2004) by considering hydromorphological processes-form

interactions over a hierarchy of spatial scales from the

catchment down to the sub-reach (e.g. geomorphic and

hydraulic units) (Gurnell et al. 2015). The RHF encourages a

multi-scale approach where finer scale field data are inte-

grated with reliable data with large spatial coverage, or in

other words remotely-sensed data, to provide as far as pos-

sible a comprehensive and objective understanding of river

system functioning at the basin scale.

Remote sensing (RS) technology is opening up new

possibilities for river science and management (Carbonneau

and Piegay 2012; Carbonneau et al. 2012). Marcus and

Fonstad (2010) stress that RS techniques should be more

widely applied in both science and management, but the

consistent progress seen in the field means that the range of

applications to fluvial geomorphology is now remarkable.

Many fluvial characteristics that are commonly monitored

for hydromorphological surveys have been measured in

scientific studies using RS technologies, such as multispec-

tral, hyperspectral, RADAR and LiDAR data. However due

to the steep cost of data acquisition, the use of RS for river

characterisation has been orientedmostly towards answering

specific research questions for case studies rather than con-

fronting aspects of operational implementation for wide

scale applications, as encouraged by Marcus and Fonstad

(2010). Recently, though, the acquisition ofRSdata covering

large areas (regional or national) has started to achieve

suitable spatial and spectral resolution for fluvial science.

With dawning RS data availability at broader scales and

suitable accuracy, the possibilities to survey and characterise

extensively the hydromorphological features of river sys-

tems atmultiple scales, from catchment to reaches, in Europe

is unprecedented. This availability of datasets however

challenges existing data analysis skills and requires sophis-

ticated statistical modelling frameworks to become

suitable for river characterisation and management (Alber

and Piégay 2011; Schmitt et al. 2014).

In this paper, we outline how a deeper integration of RS

data into existing river geomorphological assessmentswould

facilitate the objective, comparable characterisation of

hydromorphological status for rivers across the EU, as

mandated by the WFD. Using the hierarchical approach

outlined by RHF, we first identify the state-of-the-art RS

technologies that can be used to quantify hydromorpholog-

ical characteristics at each of the spatial scales incorporated

in the RHF (i.e. catchment, landscape unit, river segment,

river reach, sub-reach—geomorphic and hydraulic units) for

implementation within individual river basins, nationally or

across entire regions. Then we present an assessment of the

availability of RS data in a selection of EUMS to facilitate a

discussion of the current and potential use of these datasets

for river hydromorphological characterisation. Next we

discuss the data management and analysis issues that this

new multi-dimensional set of information poses, which are

transforming river characterisation into a data-mining

problem, and provide examples of analytical methodologies

to extract different components of river hydromorphology

from RS data. Finally, we summarise the potentials and

limitations of applying RS data to river hydromorphological

monitoring, especially over a pan-European scale, as

requested by the WFD.

The use of remote sensing for river
characterisation

The RHF developed a list of indicators of hydromorpho-

logical condition that represent key processes operating at

each spatial scale. The framework is coherent with earlier
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work on hierarchical functioning of river systems (e.g.

Frissell et al. 1986; Brierley et al. 2013) but it focuses on

how hydromorphological processes cascade down the

spatial scales to impact the form and behaviour of chan-

nels. Temporal change is expressly considered in RHF in

order to quantity process rates, detect changes in indicators

over time, identify pressures and link pressures to hydro-

morphological adjustment (Grabowski et al. 2014).

Uniquely, RHF also identifies the datasets that can be used

to characterise the indicators, for which RS data are a

primary source at most spatial scales. A brief summary of

the spatial units, their geomorphological significance, and

the RS data sources that can be used to characterise them

are presented in Table 1; a detailed explanation of the RHF

approach can be found in Gurnell et al. (2014). Our

intention here is to introduce the framework as an approach

to conceptualise and structure a hydromorphological

assessment, and to provide an overview on how RS data

can be used to support strategic data collection and

improve the resulting characterisation. In this section we

work our way down through the hierarchy of spatial scales

matching RS datasets and analytical approaches to a

selection of RHF indicators.

At the catchment level, pan-European datasets are

available under common data formats for some indicators,

particularly those related to geology and land cover (see

links in Table 1). These datasets are a result of a long

process of standardisation, monitoring and data processing

at pan-European level, and therefore provide a consistent

and reliable source of data for most MS. RS data have been

central to the formation of many of these datasets. For

instance the Corine datasets are the result of a European

Union project that began in 1985; Corine stands for ‘co-

ordination of information on the environment’ and it was a

prototype for data collection and harmonisation to provide

evidence to tackle environmental issues across Europe. The

2006 Corine land cover dataset classifies land cover into 44

classes using RS data from the SPOT-4/5 and IRS P6 LISS

III satellites. The dataset is freely available from the

European Environment Agency for most MS in both raster

and vector formats and has a minimum mapping unit of

25 ha. The standard is a goal yet to be achieved for smaller

unit scale hydromorphological indicators.

The landscape unit is important for understanding the

hydrological responsiveness of a catchment and also its

sediment source and delivery characteristics. Topography,

geology, and land cover are the key characteristics used to

delineate the units and to derive indicators related to the

production of runoff, fine sediment and coarse sediment.

Runoff production is a complex response of soil hydro-

logical properties, parent geology, topography, land cover/

use and precipitation, but can be assessed in a relative

manner for the landscape units based on Corinne land

cover, using level 2 classes (Gurnell et al. 2014). Soil

erosion is a major source of fine sediment in river systems,

so soil erosion models that couple hydrological models,

land cover and soil properties maps can be used to estimate

the rate of fine sediment production in landscape units (e.g.

the Pan-European Soil Erosion Risk Assessment—

PESERA; Kirkby et al. 2004). Coarse sediment production

estimation is more challenging because of the detailed and

case-specific knowledge on geology and topography nee-

ded in order to be able to locate the potential source of

sediment and assess their connectivity, spatially and tem-

porally (Fryirs 2013). Czuba and Foufoula-Georgiou

(2014) build a network based framework for identifying

potential synchronizations and amplifications of sediment

delivery at the basin scale using simply a digital elevation

model (DEM) and its derived fluvial morphological fea-

tures. An attempt based on a semi-automatic procedure at

the catchment scale using a DEM and multispectral

orthophotos, and available geological layers was made by

Bertrand et al. (2013). They modelled the potential impacts

of sediment replenishment on functional units of gravel bed

rivers to study the impact on habitat diversity and on trout

distribution at the network scale in the Drôme River net-

work, France. The European Landslide Susceptibility Map

available from the JRC’s Soil portals can also be used in an

assessment of sediment delivery potential.

At the segment and reach scales, RS data have only

recently been used for hydromorphological characterisation

and management applications following improvements to

the accuracy of topographic data (e.g. LiDAR). For

example, floodplain width was characterised and its control

on channel dynamics assessed continuously at the regional

scale (Rhône Basin, France) using a 25 m resolution DEM

to support a discussion on longitudinal, multi-scale patterns

and fluvial processes (Notebaert and Piégay 2013).

Recently, sophisticated semi-automated recognition tools

based on detailed topographic LiDAR data have been

successfully developed for the delineation of fluvial ter-

races and floodplain features (Stout and Belmont 2014).

Furthermore, sequential LiDAR surveys can be compared

to calculate sediment budgets and to investigate channel

pattern changes (Flener et al. 2013; Wheaton et al. 2013;

Pirot et al. 2014), which can incorporate uncertainty to

improve the detection of topographic change and to derive

error estimates for the sediment budget (Lallias-Tacon

et al. 2014).

Riparian vegetation is both an indicator of and a control

on hydromorphological functioning in rivers at the segment
and reach scales. Attributes of riparian vegetation cover (e.

g. extent of the riparian corridor, longitudinal continuity,

patchiness, and composition) provide an insight into the

morphological adjustment of the river, natural process of

vegetation succession, and the level of human modification

The use of remote sensing to characterise hydromorphological… 59
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to the floodplain. Mapping riparian vegetation attributes is

an established field of research, in which multiple types of

RS data have been used to identify and characterise veg-

etation. Whilst much research has been conducted using

aerial imagery and multispectral data, Johansen et al.

(2010b) found that discrete return LiDAR is more cost-

effective than QuickBird and SPOT-5 data for mapping

riparian zone attributes over long river networks

(26,000 km of stream length in this study). Moreover they

found that SPOT-5 data were not useful for mapping most

of the riparian attributes because of its coarse spatial res-

olution (pixel size = 10 m). More recently, Michez et al.

(2013) developed automated tools to quantify key riparian

zone attributes for the assessment of the ecological integ-

rity of the riparian zone at a network scale from a single

aerial LiDAR dataset (Houille River, Belgium). This type

of analysis offers the possibility of expanding the assess-

ment of riparian zone vegetation to the entire Flanders

region, which was completely mapped in 2014 with aerial

LIDAR (13.000 km). Also, average riparian corridor width

has been calculated across Europe by Weissteiner et al.

(2013) from Landsat ETM+ imagery and the ASTER

DEM based on an improved riparian area detection model

(Clerici et al. 2013). The estimated riparian corridor width

was used to assess the buffering capacity of riparian areas

for nutrients and pesticides (Weissteiner et al. 2013, 2014).

At the segment scale, Synthetic Aperture Radar (SAR)

represents an alternative to optical imagery, aerial pho-

tography and hydraulic models for mapping flood extent

over large areas. SAR data has almost complete worldwide

spatial coverage, can be easily analysed to segment surface

water from land, and benefits from frequent resurveying

(the exact timing of which depends on the satellite used).

This opens the door for important management applica-

tions, including improved prediction of flood wave

dynamics to inform better, more targeted flood hazard

assessment (Neal et al. 2009). The recent launch of satel-

lites carrying high-resolution SAR (\5 m), such as

TerraSAR-X, RADARSAT 2 and the COSMO-SkyMed,

promises further applications in this direction in the near

future (Bates 2006). Moreover new algorithms like Per-

sistent or Permanent Scatterer (PSInSAR) techniques

permit the measurement of movement in a single pixel over

time with millimetre-scale precision, and have begun to be

exploited in the study of rockslide activity and kinematics

and the analysis of damage to buildings (Frattini et al.

2013). Given recent improvements to data accuracy, spatial

coverage, and resurvey frequency, it represents a potential

and yet unexplored resource for monitoring channel mor-

phological dynamic at a variety of scales.

At the reach scale, many key hydromorphological fea-

tures can now be derived with semi-automated procedures

based on LiDAR data and high-resolution multispectral

orthophotos. Channel slope can be measured at the network

scale with accuracy comparable to field surveys from a 5 m

resolution LiDAR DEM (Biron et al. 2013). Channel

widths can be measured from freely-available aerial ima-

gery (e.g. Google Earth; Fisher et al. 2013), calculated

automatically from LiDAR data (Legleiter, 2012), or esti-

mated from high-resolution multispectral data based on the

delineation of low-flow water channels and unvegetated

bars (Bertrand et al. 2013). By coupling channel gradient

and active channel width measurements with hydrological

models, total and specific stream power can be calculated

continuously along a river course (Barker et al. 2009).

These advances are permitting the development of

screening tools for river sensitivity to erosion and deposi-

tion processes at the network scale (Biron et al. 2013; Bizzi

and Lerner 2015). However, it is worth bearing in mind

that estimates of active channel width using RS may have

limited geomorphological relevance as they are based on

the water surface at the time of data acquisition. Unless the

campaign was timed to a specific high flow event, they will

not provide information on the width of the channel at the

discharge which is believed to have the most impact on

channel morphology (i.e. bankfull discharge). The quan-

tification of bankfull channel width with RS data is still

problematic and an open issue in research since its

assessment requires detailed knowledge of the channel

topography and associated morphological features. For this

reason its calculation often need to be integrated by field-

based knowledge. The identification of river infrastruc-

tures, like bridges, roads and railways can also partly

automated by RS data (Gilvear et al. 2004; Luo et al.

2007).

At the sub-reach scale, geomorphic units, large wood,

water depth and bed sediment sizes have been measured

from high-resolution RS data (Westaway et al. 2003;

Legleiter 2012, 2014). For example, image texture has been

used successfully to estimate bed sediment size as areas

with larger sediment have more shadows, which suggest a

more heterogeneous texture (Carbonneau et al. 2004, 2005;

Buscombe et al. 2010). Hyperspectral data have been

particularly useful at this scale. For instance Marcus et al.

(2003) used 1-m resolution, 128-band hyperspectral ima-

gery to map in-stream habitats and found very high

correlations with field derived measures. Interestingly, the

study concluded that “accuracy estimates for the in-stream

habitat and wood mapping may have been misleadingly

low because the fine-resolution imagery captured fine-scale

variations not mapped by field teams, which in turn gen-

erated false ‘misclassifications’ when the image and field

maps were compared”. This provides an idea of the

potential challenges of using such techniques for assess-

ment purposes. For water depth, multispectral and hyper

spectral images have be analysed using a band-ratio to map
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bathymetry (Legleiter et al. 2004), and more recently

spectrally-based depth retrieval has been examined in

greater detail using radiative transfer models and field

spectroscopy to establish the range of conditions under

which this approach would be most appropriate (Legleiter

et al. 2009). River bathymetry can also be assessed using

shorter green wavelengths LIDAR capable of penetrating

through the water column to the bed. These LiDAR sys-

tems, also called bathymetric LiDAR, were originally

designed for coastal environments and have been applied to

rivers only recently (Bailly et al. 2012). However, most

existing bathymetric LiDAR yield a relatively coarse spa-

tial resolution due to a large spot size and spacing and thus

are not well suited to small-to medium-sized channels

(Hilldale and Raff 2008).

Pan-European examples of RS data availability
for river hydromorphological characterisation

Despite a 2007 EU directive encouraging MS to establish a

common Infrastructure for Spatial Information in the

European Community (INSPIRE) (EC 2007), it is difficult

to obtain information on the current coverage of RS data at

the national scale for each MS. The INSPIRE geoportal,

established as a means to disseminate this information, is

not complete at present, and information is often more

readily available from national geoportals, though these

can be difficult to find or navigate. Therefore we conducted

an informal survey of MS environmental agencies and

geoportals to assess RS data availability over Europe. The

aim is to evaluate the current potential to derive RHF

hydromorphological indicators from high-resolution mul-

tispectral images and topographic LiDAR at the national

scale. The results of the survey are limited to those MS that

positively responded to the questionnaire. Details of the

technical specifications by MS for these two datasets can

be found in Tables 2 and 3.

Most of the countries surveyed have preferred to use

aerial orthophotos to update their national geographical

database, and most have used this data source to survey

their entire national territory recently (Table 2). The only

exception is Cyprus, which relied on satellite acquisitions

at 50 cm for the national scale and a more detailed set of

aerial orthophotos for the main national river network

(20 cm resolution). Overall, all countries collect

orthophotos at a spatial resolution of 0.5 m or better. Some

MS achieved very high spatial resolution, such as the

Netherlands (10 cm for the whole territory—41,543 km2),

Austria (20 cm for the whole territory—86,000 km2),

Czech Republic (25 cm for the whole territory—

78,866 km2), Norway (25 cm for the whole territory—

385,178 km2) and Poland (25 cm for the whole territory—

449,964 km2). In some cases a high longitudinal acquisi-

tion overlapping ([50 %) was respected to allow for the

generation of stereoscopic DEMs (Deilami and Hashim

2011). Most of the orthophoto campaigns were conducted

with the sole purpose of creating a visual cartographic

reference of the highest possible detail. For this reason, the

images are composed only of the visible bands. The near

infrared (NIR) band was acquired by only seven MS. NIR

data are essential for the characterisation of some hydro-

morphological indicators (Table 1), most notably those

related to riparian vegetation, and their omission from

national databases poses limitations on hydromorphologi-

cal assessment and monitoring strategies.

Many of the MS surveyed have a national coverage of

LiDAR data (Table 3), though acquisition for the whole

territory is still in progress for some (e.g. Czech Republic,

Finland, Spain and Slovenia) and should be completed by

2014–2015. Other countries do not have national datasets,

but still have LiDAR coverage for large proportions of

their territories. For example, the United Kingdom and

Slovenia are limiting their acquisitions to specific target

areas (ca. [70 % of their territory), whilst Norway and

Cyprus are limiting theirs to the main river networks. As a

result, more than 75 % of the European territory is cur-

rently covered by LiDAR data, with a density of LiDAR

point returns for the datasets ranging from 0.5 to 16–20

points/m2. Point return density has important implications

for the final spatial resolution of a digital terrain model

(DTM) or digital surface model (DSM) interpolated from

LiDAR data. When planning an acquisition campaign, a

higher density of points (e.g. more than 10/m2) demands

more flight hours, which increases the cost of acquisition.

For this reason, where possible some countries have

acquired LiDAR data with higher density of points only in

some specific locations (such as in Polish cities, where the

density of points used is 12/m2). However, even with the

lowest density of points (0.5/m2), it is still possible to

extract DTM and DSM at a high spatial resolution of 2–

5 m, depending on the interpolation technique used. Most

MS have these two final products (DTM and DSM) already

available, apart from Finland (only DTM) and Poland (only

raw las files). This means that there is already a good level

of topographical detail, which would allow for the char-

acterisation of some of the morphological indicators listed

in Table 1 at almost pan-EU scale (e.g. channel dimensions

and features, valley controls on channel dynamics, etc.).

Some countries (e.g. the Netherlands, Poland and Cyprus)

also have the original las files, which contain the laser point

cloud returns, offering the possibility of exploiting the

LiDAR signal beyond the extraction of DTM and DSM

products, e.g. characterisation of riparian vegetation

structure (Bertoldi et al. 2011). Furthermore, in most cases

these data are free to non-commercial use or under
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agreement with local authorities, and therefore ready to be

exploited for any environmental application of non-com-

mercial purpose. However, it is worth pointing out that

only the Netherlands and Belgium plan to update the

LiDAR dataset regularly, every 6 and 1 year, respectively.

Re-acquisition of RS data is essential to monitoring chan-

ges in hydromorphology over time, to quantifying rates of

hydromorphological processes, and to assessing the success

of management measures (Wheaton et al. 2013; Lallias-

Tacon et al. 2014).

Only a few MS acquire LiDAR and aerial-orthophotos

simultaneously (Cyprus, Romania, Spain and Sweden). In

the case of Sweden, this is because the main scope of

acquisition was for hydromorphological characterisation of

river and lakes. This is the only MS, amongst the ones

surveyed, where RS techniques are already implemented

for hydromorphological characterisation. For all other

MS, LiDAR acquisitions were mostly conducted for

topographic purposes or, in some cases, to respond to

the European Floods Directive. The lack of syn-

chronous LiDAR and aerial orthophotos acquisitions limits

significantly the potential for hydromorphological charac-

terisation, since some indicators listed in Table 1 require

high-resolution multispectral information, which can

obtained from orthophotos, whilst for many others topo-

graphic information is essential. This can cause problems,

especially for highly dynamic river systems, for which

topographic information may not match the spectral

information if they are acquired at different dates, partic-

ularly if a large flow event occurred within the acquisition

period. Therefore, simultaneous acquisition campaigns are

encouraged to better exploit RS data for hydromorpho-

logical characterisation.

Discussion

RS technology provides an unprecedented amount of

information, which creates challenging research issues due

to the multi-dimensionality and large size of these datasets.

In hydrology, where suitable accuracy for continental scale

applications have existed for several years, data manage-

ment issues are well known (Lehner and Grill 2013) and

various types of continental-scale assessments already exist

from drought severity analysis (Sheffield et al. 2012) and

flood pattern simulations under climate change scenarios

(Dankers and Feyen 2009; Van Der Knijff et al. 2010), to

world-wide forest mapping (Hansen et al. 2013). The

development of RS-based assessment and monitoring at the

national and continental scale, as required by the WFD,

could build easily from this foundation as much of the

basic data acquisition, management and analysis issues are

common. Although we have shown that many relevant

hydromorphological indicators can now be derived from

RS, applications to large spatial areas are limited by

logistical and technical difficulties and the availability of

well-tested, easily-accessible automated and semi-auto-

mated data analysis procedures.

Data availability in Europe, as this research highlighted,

has already reached a good level of detail, sufficient to

support hydromorphological assessment for WFD. How-

ever, following our investigation at pan-EU level there are

some opportunities to easily increase the potential of RS

data for river hydromorphological characterisation further:

(1) the coupled acquisition of topographic and multispec-

tral information; and (2) the establishment of a regular

resurveying plan. First, the absence of the NIR band for

aerial orthophotos and the lack of simultaneity with topo-

graphic acquisitions for most MS pose a limitation to an

effective implementation of RS techniques within the RHF.

Second, river systems change over time, and a regular

surveying campaigns will detect and quantify those chan-

ges which will help inform process-based understanding

and management of the river. To this end, environmental

agencies, water authorities and river managers across

Europe must design coordinated, cost-effective acquisi-

tions campaigns of RS data at regional/national levels. To

do this, agreements would need to be made in the near

future concerning the types of RS data to be collected and

the frequency with which to collect them. The fact that,

until now, RS datasets have been collected independently

for specific purposes (see Tables 2, 3) highlights the value

of finding synergies with other environmental management

needs, so that costs of RS acquisition campaigns and

database resource can be shared within and amongst MS.

However, an aim of increased cooperation and effi-

ciency is not sufficient, and further work needs to be done

to harmonise data acquisition and analysis, which are

affected by a host of technical and logistical difficulties.

Even calculating hydromorphological indicators based on

established RS approaches can present significant limita-

tions: e.g. sun glint on water surfaces and shadows cast

across the river channel by riparian vegetation, high banks,

and buildings are the cause of most misclassification errors

in automated procedure (Gilvear et al. 2004). Small

streams, rivers in gorges and turbid water can severely

limit assessment and monitoring based exclusively on RS.

For this reason, field geomorphological surveys are still

needed to support and integrate with hydromorphological

surveys conducted using RS data. It is also important to

support the development of alternative techniques to esti-

mate hydromorphological characteristic from different RS

data sources to test their robustness and ensure results are

consistent with field surveys. For example, Whited et al.

(2013) classified salmon habitat suitability using multi-

spectral Landsat imagery and global terrain data (90 m
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resolution) encompassing over 3,400,000 km2, and then

compared the results with a classifications derived from

finer scale (i.e. ≤2.4-m resolution) remote sensing data for a

subset of the study area. In this way they were able to

evaluate the suitability of lower resolution data for habitat

assessments and expand the potential application of RS-

based approaches. A diversification of techniques and

approaches would provide Europe with more flexibility in

data acquisition options, more capability for monitoring

features more frequently and across larger areas, and more

opportunity for validation of results by assessing congru-

ence between characterisations derived from different data

sources and analytical methods.

When adopting a remote sensing based approach even

the delineation of river reaches can be problematic, as it

requires a transferable method based on consistent, spa-

tially-continuous data that is applicable to a wide range of

river types. Delineation would normally be done based on

the expert judgment of a fluvial geomorphologist according

to river-specific longitudinal variations in geomorphologi-

cal forms and drivers. Whilst RS may form a part of their

assessment, it becomes the focus when extending the

delineation to the river network, basin or national scale.

With the introduction of multispectral high resolution RS

information, the delineation of river segments and reaches

becomes a data mining task based on virtually continuous

multi-dimensional data along the river channel. To do this,

automated or semi-automated procedures are needed to

identify and classify geomorphological features (Alber and

Piégay 2011; Stout and Belmont 2014; Tarolli 2014).

Significant progress has been made in this area of research

recently. For example, Leviandier et al. (2012) compared

statistical algorithms for detecting homogeneous river

reaches along a longitudinal continuum using active

channel width. Parker et al. (2012) developed a river seg-

mentation based on stream power. Other authors have

proposed multi-dimensional river segmentation based on

multiple hydromorphological drivers like active channel

width, slope and channel confinement to automatically

identify reaches with similar geomorphic properties (Bizzi

and Lerner 2012; Schmitt et al 2014). Alber and Piégay

(2011) have proposed an entire framework for aggregating

and disaggregating virtually continuous hydromorphologi-

cal variables for characterizing fluvial features at the

network-scale. Based on this framework Roux et al. (2014)

have developed the “Fluvial Corridor” ArcGIS toolbox, a

package for multiscale riverscape exploration. The devel-

opment of semi-automated procedures to analyse

hydromorphological data from RS has the potential to

enhance objective, comprehensive river characterisation

for European MS.

Conclusion

RS technology is transforming our capacity to analyse river

systems (Marcus and Fonstad 2010; Carbonneau et al.

2012) by increasing the spatial coverage of the morpho-

logical information gathered by field campaigns. As a

result we have entered an era where data can be considered

‘virtually’ continuous along the river channel. This paper

has shown that many of the assessment indicators proposed

by the RHF can be derived by different RS sources and

existing methodologies, and that EU countries have suffi-

cient RS data at present to begin their incorporation into

hydromorphological assessment and monitoring. Further

work, though, is needed to advance automated and semi-

automated analytical approaches sufficiently to ensure that

this is done in a robust and consistent manner. When this

has been achieved, RS-derived indicators of hydromor-

phology will provide researchers with a reliable database to

quantify process-form relationships that would support the

development of improved quantitative models of river

behaviour.

It is worth emphasising, though, that RS data will never

substitute the wide range of data sources that currently

contribute to the accurate assessment of current river

behaviour, geomorphological sensitivity and the evaluation

of future trajectories (Simon and Rinaldi 2006; Liébault

et al. 2013; Grabowski et al. 2014). Expert interpretations,

field surveys and historical analysis will remain important

ways of reading the landscape (Brierley et al. 2013), but RS

data will support and corroborate conclusions drawn from

these sources. Soon, lines will blur further as the ever-

growing temporal record of RS data will allow historical

analysis to be conducted based on semi-automated proce-

dures and virtually continuous data.

RS data can support the hydromorphological assessment

and monitoring of European rivers as mandated by WFD,

which so far have been insufficiently addressed by the

member states due to the demanding efforts it would

require (Newson and Large 2006). This aspect is particu-

larly crucial in Europe, because, according to the first WFD

River Basin Management Plans submitted by member

states, hydromorphological alterations together with water

pollution from diffuse sources are the main barriers to the

achievement of the good ecological status by 2015 (Euro-

pean Environment Agency 2012). With cooperation and

planning, RS data can form a fundamental component of

hydromorphological assessment and monitoring in the

future to help support the effective and sustainable man-

agement of rivers, and this would be done most effectively

through the establishment of multi-purpose RS acquisition

campaigns and the development of shared and standardized
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hydromorphological RS databases updated regularly

through planned resurveyed campaigns.
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