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Abstract This paper is concerned with finite-time synchronization in an array of
coupled neural networks with discontinuous activation functions, Markovian jump-
ing parameters, as well as discrete and infinite-time distributed delays (mixed delays)
under the framework of Filippov solution. Based on novel Lyapunov–Krasovskii func-
tionals and analytical techniques and M-matrix method, the difficulties caused by the
uncertainties of Filippov solutions, time delays, as well asMarkov chain are overcome.
Several sufficient conditions are obtained to guarantee the synchronization in finite
time. Different from existing results on finite-time synchronization of non-delayed
systems, the settling time for time-delay systems is dependent not only on the values
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of the error state at time zero, but also on the histories of the error state, the time
delays, and the initial value of Markov chain. Moreover, finite-time synchronization
of the coupled neural networks with nonidentical uncertain perturbations is also con-
sidered. The obtained results are also applicable to continuous nonlinear systems,
which essentially extend existing results which can only finite-timely synchronize or
stabilize non-delayed systems. Finally, numerical examples are given demonstrate the
effectiveness of the theoretical results.

Keywords Discontinuous neural networks · Filippov solutions · Markov Chain ·
Finite-time synchronization · Mixed delays

1 Introduction

In the past decades, synchronization of chaotic systems has been extensively studied
thanks to the pioneering work [25]. Although different kinds of synchronization, such
as generalized synchronization, projective synchronization, lag synchronization, have
been proposed and extensively studied [5,17,20,23,38,40,48,49], all these synchro-
nization can be classified as the following two kinds: synchronization as time goes to
infinity (or asymptotic synchronization) and synchronization in finite time. Compared
with the former, finite-time synchronization is optimal [41,42]. It is well known that
the range of time during which the chaotic oscillators are not synchronized corre-
sponds to the range of time during which the encoded message can unfortunately not
be recovered [41]. Therefore, finite-time technique enable us to recover the transmitted
signals in a setting time, while the transmitted signals can only be obtained as time
goes to infinity if the other synchronization technique is utilized. Obviously, compared
with asymptotic synchronization, finite-time synchronization improves the efficiency
and confidentiality greatly when it is applied to secure communication. Moreover,
the finite-time control techniques possess better robustness and disturbance rejection
properties [35], which are also considered in the present paper. Due to these advan-
tages, many researchers have devoted themselves to finite-time synchronization of
coupled chaotic systems. For example, authors in [36] addressed finite-time synchro-
nization of multi-agent systems, and authors in [1,33,37,41,43] considered finite-time
synchronization of some class of coupled chaotic systems.

Neural networks, as a class of important chaotic systems, have been extensively
applied pattern recognition, image processing, secure communication, automatic con-
trol, and associativememory [15,50]. Since the combination of a set of neural networks
could achieve higher level information processing [4], synchronization in an array of
coupled neural networks, as a typical collective behavior, has been extensively studied
in various fields [3,14,44]. However, the activation functions of the neural network
in the above-mentioned references are continuous. When the activation functions are
not continuous, most of existing results on synchronization of neural networks includ-
ing those in the former mentioned papers are not applicable any more. It is reported
that neural networks with discontinuous (or non-Lipschitz) neuron activations are an
ideal model when the gain of the neuron amplifiers is very high, which is frequently
encountered in applications [13]. For instance, in the classical model of Hopfield
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neural networks with graded response neurons, when the activations are assumed to
be in a high-gain limit, they actually closely approach discontinuous and comparator
functions [22]. Neural networks with discontinuous activations are a special kind of
differential equations with discontinuous state on the right-hand side. Since their solu-
tion cannot be guaranteed to be unique [10] (i.e., its solution is uncertain but belongs
to a collection), it has analysis difficulty in studying their synchronization.

In [39,43,45,46], synchronization of discontinuous dynamical systems has been
considered by using discontinuous controllers. Specially, finite-time synchronization
in an array of coupled nonidentical systems of differential equations with discontinu-
ous state on the right-hand side was investigated in [43], and [46] studied finite-time
synchronization of coupled discontinuous neural networks with mixed delays. One
phenomenon for neural networks which should not be ignored is the interconnections
among the neurons, which are often affected by some random factors such as such
environmental changes, random failures, and repairs [32]. Such change in the inter-
connection among the neurons usually takes place according to the rule of Markov
chain with finite state space [7]. In recent years, increasing attention has been attracted
to stability and stabilization ofMarkovian systems [18,19]. Although there weremany
results on asymptotic or exponential synchronization of Markovian neural networks
with continuous activations and various time delays [21,30,47], seldom result on syn-
chronization of Markovian neural networks with discontinuous activations and delays
is reported till now, not to mention finite-time synchronization of such kind of neural
networks, so the present paper solves this problem. Note that it is not an easy work to
deal with the Markov chain in studying finite-time synchronization. It is well known
that, for a given generator matrix, the Markov chain generated by the generator can be
completely different [47], which leads to uncertainty of the Markov chain. The usual
method to surmount the effect of the uncertainty is to introduce some free parameters
or matrices in studying dynamics of systems with Markovian jumping parameters
[30]. However, the free parameters shall make it difficult to ascertain the setting time.
Hence, we have to establish new analytical techniques to cope with this difficulty,
which is challenging.

Motivated by the above discussions, this paper aims to investigate finite-time syn-
chronization in an array of coupled neural networks with discontinuous activation
functions, Markovian jumping parameters, as well as mixed delays. Novel methods
are proposed to study the finite-time synchronization of the coupled neural networks.
Under a class of simple controller, difficulties caused by the uncertainties of Filippov
solutions, time delays, andMarkov chain arewell copedwith by using the newmethod,
M-matrix method, and designing some new Lyapunov–Krasovskii functionals. Our
synchronization criteria do not have any free parameters and can be easily verified.
Numerical examples demonstrate the effectiveness of the theoretical results.

The rest of this paper is organized as follows. Section 2presents themodel of linearly
coupled neural networks with discontinuous activations and mixed delays. Some nec-
essary preliminaries are provided in this section. Several finite-time synchronization
criteria are obtained in Sect. 3. Section 4 investigates the finite-time synchronization of
the coupled neural networks with nonidentical uncertain perturbations. Then, Sect. 5
gives numerical simulations to show the effectiveness of our results. Finally, Sect. 6
gives conclusions and future work.
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Notations In the sequel, if not explicitly stated, matrices are assumed to have compat-
ible dimensions; Rn denotes the set of n × 1 real vectors, and Rn×m denotes the set of
n × m matrices; In denotes the identity matrix of n-dimension; 1n is a column vector
with all n elements being 1; ‖ ·‖1 and ‖ ·‖∞ are the 1-norm and∞-norm of a vector or
a matrix, respectively. |Ψ | is a vector (or a matrix) derived by taking absolute values
of all the elements of the vector (or matrix) Ψ ; co[E] is the closure of the convex hull
of the set E ⊂ R

n . Moreover, let (Ω,F , {Ft }t≥0, P) be a complete probability space
with filtration {Ft }t≥0 satisfying the usual conditions (i.e., the filtration contains all
P-null sets and is right continuous). Denote by LF0((−∞, 0];Rn) the family of all
F0-measurable C((−∞, 0];Rn)-valued random variables ξ = {ξ(s) : s ≤ 0} such
that sup

s≤0
E{‖ξ(s)‖} < ∞, where E{·} stands for mathematical expectation operator

with respect to the given probability measure P .

2 Model Formulation and Preliminaries

Generally, neural networks with discrete and infinite-time distributed delays can be
described as follows:

ẋ(t) = −Cx(t) + A f (x(t)) + B f (x(t − τ(t)))

+D
∫ t

−∞
K (t − s) f (x(s))ds + J, (1)

where x(t) = (x1(t), . . . , xn(t))T ∈ R
n represents the state vector of the

neural network at time t ; n corresponds to the number of neurons; f (x(t)) =
( f1(x1(t)), . . . , fn(xn(t)))T is the neuron activation function;C = diag(c1, c2, . . . , cn)

is a diagonal matrix with ci > 0, which represents the rate with which the i th neu-
ron will reset its potential to the resting state; A = (ai j )n×n , B = (bi j )n×n and
D = (di j )n×n are the connection weight matrix, time-delayed weight matrix, and the
distributively time-delayed weight matrix, respectively; J = (J1, J2, . . . , Jn)T ∈ R

n

is an external input vector; τ(t) is the time-varying delay; K (t) is a nonnegative
bounded scalar function defined on [0,+∞) describing the delay kernel of the infinite-
time distributed delay.

The trajectory of the solution x(t) to neural network (1) can be any desired state:
equilibrium point, a non-trivial periodic or almost periodic orbit, or even a chaotic
orbit.

In this paper, we suppose that the activation function f (x(t)) is not continuous on
R

n . Hence, system (1) becomes a differential equation with discontinuous right-hand
side. In this case, the existence and uniqueness of the solution to (1) might be lost, and
at the worst case, one cannot define a solution in the conventional sense.

In order to study the dynamics of a system of differential equation with discontin-
uous right-hand side, we first transform it into a differential inclusion [10] by using
Filippov regularization; then by the measurable selection theorem in [2], we reach
an uncertain differential equation. Thus, studying the dynamics of the system of dif-
ferential equation with discontinuous right-hand side has at last been transformed
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into studying the corresponding problem of the uncertain differential equation. The
Filippov regularization is defined as follows:

Definition 1 [10] The Filippov set-valued map of f (x) at x ∈ R
n is defined as

follows:

F(x) =
⋂
ς>0

⋂
μ(Ω)=0

co[ f (B(x, ς) \ Ω)],

where B(x, ς) = {y : ‖y − x‖ ≤ ς}, and μ(Ω) is the Lebesgue measure of set Ω .

By Definition 1, the Filippov set-valued map gives the convex hull of f (·) at the
discontinuity points (ignoring sets of measure zero) when applied to the discontinuity
points, but is otherwise the same as f (·) at continuous points. A vector-value function
x(t) defined on the interval [0, T ] is called a Filippov solution of ẋ(t) = f (x(t)) if it is
absolutely continuous on [0, T ] and satisfies the differential inclusion ẋ(t) ∈ F(x(t))
for t ∈ [0, T ]. By the measurable selection theorem in [2], we can find a measurable
function γ : [0, T ] → R

n such that γ (t) ∈ F(x(t)) for almost all (a.a.) t ∈ [0, T ]
and ẋ(t) = γ (t) for a.a. t ∈ [0, T ].

As for the neural network (1), we assume that

(H1) For every i = 1, 2, . . . , n, fi : R → R is continuous except on a countable
set of isolate points {ρi

k}, where there exist finite right and left limits f +
i (ρi

k)

and f −
i (ρi

k), respectively. Moreover, fi has at most a finite number of jump
discontinuities in every compact interval of R.

(H2) For each i = 1, 2, . . . , n, there exist nonnegative constants zi and pi such that
sup |ξi − ηi | ≤ zi |u − v| + pi for ∀u, v ∈ R, where ξi ∈ Fi (u), ηi ∈ Fi (v),
Fi (u) = [min{ f −

i (u), f +
i (u)}, max{ f −

i (u), f +
i (u)}].

(H3) There exist two constants μ < 1 and τ such that τ̇ (t) ≤ μ and 0 < τ(t) ≤ τ .
(H4) There is a positive constant q such that

∫ +∞
0 K (u)du = q.

Note that, when pi = 0 in (H2), the function fi (u) is continuous on R. Hence, the
assumption (H2) includes continuous activation function f (x), x ∈ R

n as a special
case. In the following, we denote F(x(t)) = (F1(x1(t)), F2(x2(t)), . . . , Fn(xn(t)))T.

The following Definition 2 specifies what a Filippov solution of system (1) is.

Definition 2 [12] A function x : (−∞, T ] → R
n , T ∈ (0,+∞], is a Filippov

solution of the discontinuous system (1) on (−∞, T ] if:
(i) x is continuous on (−∞, T ] and absolutely continuous on [0, T ];
(ii) There exists a measurable function γ (t) = (γ1(t), γ2(t), . . . , γn(t))T : (−∞, T ]

→ R
n , such that γ (t) ∈ F(x(t)) for almost all (a.a.) t ∈ (−∞, T ] and

ẋ(t) = −Cx(t) + Aγ (t) + Bγ (t − τ(t)) + D
∫ t

−∞
K (t − s)γ (s)ds

+J, for a.a. t ∈ [0, T ]. (2)

Definition 3 (IVP) [13] For any continuous function ϕ : (−∞, 0] → R
n and mea-

surable selection ψ : (−∞, 0] → R
n such that ψ(s) ∈ F(ϕ(s)) for a.a. s ∈ (−∞, 0]
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by an initial value problem associated to (2) with initial condition (ϕ, ψ), we mean the
following problem: find a couple of functions [x(t), γ (t)] : (−∞, T ] → R

n × R
n ,

such that x(t) is a solution of (2) on (−∞, T ] for some T > 0, γ (t) is an output
associated with x(t), and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = −Cx(t) + Aγ (t) + Bγ (t − τ(t)) + D
∫ t
−∞ K (t − s)γ (s)ds

+J, for a.a. t ∈ [0, T ],
γ (t) ∈ F(x(t)), for a.a. t ∈ [0, T ],
x(s) = ϕ(s), ∀s ∈ (−∞, 0],
γ (s) = ψ(s), for a.a. s ∈ (−∞, 0].

(3)

Lemma 1 [46] Suppose that (H1)–(H4) are satisfied. Then, there exists at least one
solution x(t) of discontinuous neural network (1) on [0,+∞) in the sense of equation
(3).

Let {rt , t ≥ 0} be a right-continuous Markov chain on the probability space
(Ω,F , {Ft }t≥0, P) taking values in a finite state space � = {1, 2, . . . , w} with gen-
erator Π = (πi j )w×w given by:

P{rt+�t = j : rt = i} =
{

πi j�t + O(�t), if i 
= j,
1 + πi i�t + O(�t), if i = j,

where w is a positive integer, �t > 0 and lim
�t→0

O(�t)
�t = 0. Here, πi j ≥ 0 is the

transition rate from i to j if i 
= j while πi i = −
w∑

j=1, j 
=i
πi j .

As a standing hypothesis, we assume that Π is irreducible. This is equivalent
to the condition that, for any i, j ∈ � , we can find i1, i2, . . . , ik ∈ � such that
πi i1πi1i2 . . . , πik j > 0.

Usually, a coupled system is related to a digraph. Let G = {N , ε,V} be a digraph
with a node setN = {1, 2, . . . , N }, an edge set E ⊆ N ×N , and aweighted adjacency
matrix V = (vi j )N×N with nonnegative elements. A directed edge denoted by ( j, i)
means that node i has access to node j , i.e., node i can receive information from node
j . The elements of the adjacency matrix V = (vi j )N×N are defined as follows: if there
is a directed link from node j to i ( j 
= i), then vi j > 0; otherwise, vi j = 0. We
assume that vi i = 0 for all i ∈ N . The Laplacian matrix with respect to the digraph
G is L = (li j )N×N with li j = −vi j i 
= j , and lii = ∑

j=1, j 
=i vi j .
Considering linear state coupling, an array of coupled neural network (1) with

Markovian parameters under the Markov chain defined above can be described as

ẋi (t) = −C(rt )xi (t) + A(rt ) f (xi (t)) + B(rt ) f (xi (t − τ(t))) + J (rt )

+ D(rt )

∫ t

−∞
K (t − s) f (xi (s))ds −

N∑
j=1

li j (rt )Φ(x j (t) − xi (t))

+ Ri (rt , t), i = 1, 2, . . . , N , (4)
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where {rt , t ≥ 0} is the continuous-time Markov process describing the evolution of
the mode at time t , xi (t) = (xi1(t), . . . , xin(t))T ∈ R

n represents the state vector of
the i th node of the network at time t ; L(rt ) = (li j (rt ))N×N is the Laplacian matrix of
the coupled network, Φ = diag(φ1, . . . , φn) with φl > 0, l = 1, . . . , n; Ri (rt , t) are
controllers to be designed. The other parameters have the same physical meanings as
those in the neural network (1).

The initial condition associated with system (4) is given by xi (t) = φi (t) ∈
C((−∞, 0];Rn), i = 1, 2, . . . , N .

Definition 4 The coupled neural network (4) is said to be finite-timely synchronized
if, by adding suitable designed controllers, there exists a constant t1 > 0, such that
lim
t→t1

E{‖xi (t) − x1(t)‖1} = 0 and E{‖xi (t) − x1(t)‖1} ≡ 0 for t > t1, i = 2, . . . , N ,

where t1 is called the settling time.

For the convenience of study, we denote Θ(rt ) = Θk when t ≥ 0 and rt =
k. Moreover, in the remaining section of this paper, we need the following matrix
notations: Ck = diag(c1k, c2k, . . . , cnk), Ak = (ai jk)n×n , Bk = (bi jk)n×n , Dk =
(di jk)n×n . The coupled neural network (4) with Filippov solution in the sense of
Definition 2 are presented as follows:

ẋi (t) = −Ck xi (t) + Akαi (t) + Bkαi (t − τ(t)) + Dk

∫ t

−∞
K (t − s)αi (s)ds

+Jk −
N∑

j=1

li jkΦ(x j (t) − xi (t)) + Rik(t), i = 1, 2, . . . , N , (5)

where αi (t) ∈ F(xi (t)).
According to Definitions 2 and 3 , investigating synchronization of the coupled

neural networks with discontinuous activations (4) is equivalent to studying the same
problem for eq. (5). Let ei (t) = xi (t)− x1(t), βi (t) = αi (t)−α1(t), i = 1, 2, . . . , N .
Considering e1(t) ≡ 0, we derive error dynamical system from system (5) as follows:

ėi (t) = −Ckei (t) + Akβi (t) + Bkβi (t − τ(t)) + Dk

∫ t

−∞
K (t − s)βi (s)ds

−
N∑

j=2

l̃i jkΦe j (t) + Rik(t), i = 2, . . . , N , (6)

where l̃i jk = li jk − l1 jk , i, j = 2, 3, . . . , N .
The initial condition of (6) is ϕi (t) = φi (t) − φ1(t) ∈ C((−∞, 0];Rn), i =

2, 3, . . . , N .

Remark 1 Generally, the Markov chain state of the underlying coupled systems is
assumed to be available to the isolate neural network at any time. However, this
assumption may sometimes be impossible to be satisfied for systems without time
stamp information. Thus, the ideal requirement inevitably limits the applications of
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the obtained results. Therefore, we do not synchronize the coupled neural network (4)
onto an isolate neural network with identical Markov chain generator matrix.

Function V (x) : Rn → R is C-regular [6], if V (x) is:

(i) regular in R
n ;

(ii) positive definite, i.e., V (x) > 0 for x 
= 0 and V (0) = 0;
(iii) radially unbounded, i.e., V (x) → +∞ as ‖x‖ → +∞.

Note that a C-regular Lyapunov function V (x) is not necessarily differentiable.
Let V : Rn → R be a locally Lipschitz continuous function. The Clarke’s gener-

alized gradient of V at x ∈ R
n [6] is defined by ∂V (x) = co[lim∇V (xi ) : xi →

x, xi /∈ Ω ∪N ], where Ω ⊂ R
n is the set of Lebesgue measure zero where ∇V does

not exist, and N ⊂ R
n is an arbitrary set with measure zero.

The next lemma will be useful to compute the time derivative along solutions (4)
of the Lyapunov function designed in the later sections.

Lemma 2 (Chain rule) [6] If V (x) : Rn → R is C-regular, and x(t) is absolutely con-
tinuous on any compact subinterval of [0,+∞). Then, x(t) and V (x(t)) : [0,+∞) →
R are differentiable for a.a. t ∈ [0,+∞) and

d

dt
V (x(t)) = γ (t)ẋ(t), ∀γ (t) ∈ ∂V (x(t)),

where ∂V (x(t)) is the Clarke generalized gradient of V at x(t).

Lemma 3 [16] If A = (ai j )n×n ∈ R
n×n with ai j ≤ 0 (i 
= j), then the following

statements are equivalent:

(i) A is an M-matrix.
(ii) A−1 exists and all the elements of A−1 are nonnegative.
(iii) All the eigenvalues of A have positive real parts.

Lemma 4 [42] Let A = (ai j )n×n ∈ R
n×n with ai j ≤ 0 (i 
= j),

n∑
j=1

ai j = 0,

i, j = 1, 2, . . . , n. If A is irreducible, then, for any ζ > 0, A + ζ In is a non-singular
M-matrix.

3 Finite-Time Synchronization of the Coupled Neural Networks

It is well known that classical results on synchronization or stability of systems with
Markov jumping parameters need to introduce some free parameters or matrices to
manage the uncertainty of the Markov chain [21–32]. If the free-parameters-based
result is on asymptotic synchronization or stability, it cannot cause much trouble in
real applications since its achieving time is infinity. But in the case of finite-time syn-
chronization or stability, free parameters will make it difficult to ascertain the settling
time for a given system. In order that our results are optimal and easy to ascertain the
settling time in practical applications, special analysis techniques are established in
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this section. On the other hand, the uncertainties induced by Filippov solutions and the
delays (including finite-time discrete and infinite-time distributed delays) shall also be
dealt with at the same time. Specifically, a set of simple discontinuous controllers are
employed to deal with the uncertainties of the Filippov solutions, a special M-matrix
technique is developed to overcome the uncertain effects of Markov chain. Moreover,
some new analytical methods are established to cope with the uncertain factors of
the mixed delays. Through this series of control and analytical methods, several syn-
chronization criteria for the coupled discontinuous neural network (4) are derived.
Furthermore, the upper bounds of the synchronization time are estimated when the
distributed delays are bounded or there is no delay in (4).

Inspired by [43], we use the following simple controller:

Rik(t) = −ξ k
i ei (t) − ηksgn(ei (t)), (7)

where sgn(ei (t)) = (sgn(ei1(t)), sgn(ei2(t)), . . . , sgn(ein(t)))T, ξ k
i > 0 and ηk > 0

are constants to be determined, i = 2, 3, . . . , N .
Note that controller (7) is discontinuous, and its discontinuous points are a special

case of the condition (H1). By using the same analysis method in [46], it is easy to get
that, under the assumptions (H1)–(H4), the Filippov solution to system (4) exists on
[0,+∞). In order to avoid unnecessary repetition, we do not prove them here.

Denote z = (z1, z2, . . . , zn)T, p = (p1, p2, . . . , pn)T, ck = min{clk, l =
1, 2, . . . , n}, φ = min{φl , l = 1, 2, . . . , n}, φ = max{φl , l = 1, 2, . . . , n},
‖Bz‖ = max{‖|Bk |z‖∞, k ∈ � }, ‖Dz‖ = max{‖|Dk |z‖∞, k ∈ � }, e(t) =
(eT2 (t), eT3 (t), . . . , eTN (t)). The following Theorem 1 is one of our main results.

Theorem 1 Assume that the assumptions (H1)–(H4) are satisfied. If the control gains
ξ k

i , ηk , i = 2, 3, . . . , N, k ∈ � , are chosen such that ηk > ‖|Ak |p‖∞ +‖|Bk |p‖∞ +
q‖|Dk |p‖∞ and ξ k

i > −ck+‖|Ak |z‖∞−l̃i ikφ+
N∑

j=2, j 
=i
|l̃ j ik |φ+q‖Dz‖+‖Bz‖

1−μ
� χk

i ,

k = 1, 2, . . . , w, i = 2, 3, . . . , N, then the coupled neural network (4) is finite-timely
synchronized under controller (7).

Proof Since {e(t), rt , t ≥ 0} is not a Markov process, in order to cast our model into
the framework for aMarkov system, let us define a newMarkov process {et , rt , t ≥ 0}
by et (s) = e(t + s), s ≤ 0. Then, {et , rt , t ≥ 0} is a Markov process {et , rt , t ≥ 0}
[7].

From ξ k
i > χk

i , k = 1, 2, . . . , w, i = 2, 3, . . . , N , we get that ζ = max{χk
i −

ξ k
i , k = 1, 2, . . . , w, i = 2, 3, . . . , N } < 0. On the other hand, since Π is irreducible,

−Π is also irreducible. From Lemma 4, −Π − ζ Iw is a non-singular M-matrix.
According to Lemma 3, (−Π − ζ Iw)−1 exists and all the elements of (−Π − ζ Iw)−1

are nonnegative. Since (−Π−ζ Iw)−1 is also invertible, there exists at least one positive
element in each row of (−Π − ζ Iw)−1. Let δ be the maximum of the row sums of
(−Π − ζ Iw)−1. Then, all the elements of (ρ1, ρ2, . . . , ρw)T = 1

δ
(−Π − ζ Iw)−11w

are positive and max{ρk, k ∈ � } = 1 and
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∑
l∈�

πklρl + ρkζ = −1

δ
< 0. (8)

When rt = k ∈ � , consider the following Markovian switching Lyapunov–
Krasovskii functional:

V (et , k, t) =
3∑

l=1

Vl(et , k, t), (9)

where

V1(et , k, t) = ρk

N∑
i=2

‖ei (t)‖1,

V2(et , k, t) = ‖Bz‖
1 − μ

N∑
i=2

∫ t

t−τ(t)
‖ei (s)‖1ds,

V3(et , k, t) = ‖Dz‖
N∑

i=2

∫ 0

−∞

∫ t

t+s
K (−s)‖ei (u)‖1duds.

LetLbe theweak infinitesimal generator of the randomprocess (et , k, t), then based
on Lemma 2, differentiating V1(et , k, t) along the solutions of (6) and considering
controller (7) produce that

LV1(et , k, t) = ρk

N∑
i=2

1Tndiag(sgn(ei (t)))

[
− Ckei (t) + Akβi (t) + Bkβi (t − τ(t))

−
N∑

j=2

l̃i jkΦe j (t) + Dk

∫ t

−∞
K (t − s)βi (s)ds

−ξ k
i ei (t) − ηksgn(ei (t))

]
+

∑
l∈�

πklρl

N∑
i=2

‖ei (t)‖1. (10)

It is obvious that, if eil(t) = 0, then sgn(eil(t))
∑n

j=1 al jkβi j (t) = 0, otherwise,

sgn(eil(t))
n∑

j=1

al jkβi j (t) ≤
n∑

j=1

|al jk ||βi j (t)| ≤
n∑

j=1

z j |al jk ||ei j (t)| +
n∑

j=1

|al jk |p j ,

l = 1, 2, . . . , n, i = 2, 3, . . . , N . In any case, we have

sgn(eil(t))
n∑

j=1

al jkβi j (t) ≤
n∑

j=1

z j |al jk ||ei j (t)| +
n∑

j=1

|al jk |p jλil ,
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where λil = 1 if eil(t) = 0, otherwise λil = 0. Therefore,

1Tndiag{sgn(ei (t)}Akβi (t) ≤
n∑

l=1

n∑
j=1

z j |al jk ||ei j (t)| +
n∑

l=1

n∑
j=1

|al jk |p jλil

≤ ‖|Ak |z‖∞‖ei (t)‖1 + ‖|Ak |p‖∞
n∑

l=1

λil . (11)

Similarly, we have

1Tndiag{sgn(ei (t)}Bkβi (t − τ(t))

≤ ‖|Bk |z‖∞‖ei (t − τ(t))‖1 + ‖|Bk |p‖∞
n∑

l=1

λil , (12)

and

1Tndiag{sgn(ei (t)}Dk

∫ t

−∞
K (t − s)βi (s)ds

≤ ‖|Dk |z‖∞
∫ t

−∞
K (t − s)‖ei (s)‖1ds + q‖|Dk |p‖∞

n∑
l=1

λil , (13)

and

1Tndiag{sgn(ei (t)}ηksgn(ei (t)) = ηk
n∑

l=1

λil . (14)

Substituting (11)–(14) into (10) yields

LV1(et , k, t) ≤
N∑

i=2

[( ∑
l∈�

πklρl + ρk

(
− ck − ξ k

i + ‖|Ak |z‖∞ − l̃i ikφ

+
N∑

j=2, j 
=i

|l̃ j ik |φ
))

‖ei (t)‖1 + ρk‖|Bk |z‖∞‖ei (t − τ(t))‖1

+ρk‖|Dk |z‖∞
∫ t

−∞
K (t − s)‖ei (s)‖1ds − ρk

[
ηk

−
(

‖|Ak |p‖∞ + ‖|Bk |p‖∞ + q‖|Dk |p‖∞
)] n∑

l=1

λil

]

≤
N∑

i=2

[( ∑
l∈�

πklρl + ρk(−ck − ξ k
i + ‖|Ak |z‖∞ − l̃i ikφ
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+
N∑

j=2, j 
=i

|l̃ j ik |φ)

)
‖ei (t)‖1 + ‖Bz‖‖ei (t − τ(t))‖1

+‖Dz‖
∫ t

−∞
K (t − s)‖ei (s)‖1ds − ρε

n∑
l=1

λil

]
, (15)

where max{ρk, k ∈ � } = 1 has been used, ρ = min{ρk, k ∈ � }, ε = min{ηk −
(‖Ak‖∞ + ‖|Bk |p‖∞ + q‖|Dk |p‖∞), k ∈ � } > 0.

Differentiating V2(et , k, t) and V3(et , k, t) derives that

LV2(et , k, t) ≤ ‖Bz‖
1 − μ

N∑
i=2

[‖ei (t)‖1 − (1 − μ)‖ei (t − τ(t))‖1], (16)

and

LV3(et , k, t) = ‖Dz‖
N∑

i=2

∫ 0

−∞
K (−s)‖ei (t)‖1ds

−‖Dz‖
N∑

i=2

∫ 0

−∞
K (−s)‖ei (t + s)‖1ds

= q‖Dz‖
N∑

i=2

‖ei (t)‖1

−‖Dz‖
N∑

i=2

∫ t

−∞
K (t − s)‖ei (s)‖1ds. (17)

It is followed from (9) and (15)–(17) that

LV (et , k, t) ≤
N∑

i=2

[( ∑
l∈�

πklρl + ρk(χ
k
i − ξ k

i )

)
‖ei (t)‖1 − ρε

n∑
l=1

λil

]
. (18)

Inequality (8) means that
∑

l∈�

πklρl + ρk(χ
k
i − ξ k

i ) ≤ − 1
δ

< 0 for k = 1, 2, . . . , w,

i = 2, 3, . . . , N . From this inequality and (18), we get that

LV (et , k, t) ≤ −ρε

N∑
i=2

n∑
l=1

λil . (19)

Inequality (19) and the arbitrariness of k ∈ � imply that

LV (et , rt , t) ≤ −ρε

N∑
i=2

n∑
l=1

λil .
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Hence,

d

dt
E{V (et , rt , t)} ≤ −ρε

N∑
i=2

n∑
l=1

λil . (20)

Because E{V (et , rt , t)} is positive definite and non-increasing, known from (20),
there exists nonnegative constant V ∗ such that

lim
t→+∞E{V (et , rt , t)} = V ∗ and E{V (et , rt , t)} ≥ V ∗, ∀t ≥ 0. (21)

On the other hand, integratingboth sides of inequality (20) from0 to t gets the following
inequality:

E{V (et , rt , t)} − V (e0, r0, 0) ≤ −ρε

N∑
i=2

n∑
l=1

λil t. (22)

Now we prove that there exists t1 ∈ (0,+∞) such that

lim
t→t1

E{‖e(t)‖1} = 0. (23)

On the contrary, suppose that E{‖e(t)‖1} > 0 for all t > 0. Then, at any
instant t ∈ [0,+∞), there exists at least one pair (i, l), i ∈ {1, 2, . . . , N },
l ∈ {1, 2, . . . , n} such that E{|eil(t)|} > 0, and so

N∑
i=2

n∑
l=1

λil ≥ 1, which further

leads to E{V (et , rt , t)} − V (e0, r0, 0) ≤ −ρεt for all t ∈ [0,+∞), known from
(22). Therefore, lim

t→+∞E{V (et , rt , t)} = −∞, which contradicts (21). So there exists

t1 ∈ (0,+∞) such that the conditions in (23) hold true.
Next, we prove thatE{‖e(t)‖1} ≡ 0 for ∀t ≥ t1. On the contrary, there exists t2 > t1

such that E{‖e(t2)‖1} > 0. Let ts = sup{t ∈ [t1, t2] : E{‖e(t)‖1} = 0}. We have ts <

t2, E{‖e(ts)‖1} = 0 and E{‖e(t)‖1} > 0 for all t ∈ (ts, t2]. By E{‖e(t)‖1} > 0 for all
t ∈ (ts, t2], there exists at least one pair (i0, l0), i0 ∈ {1, 2, . . . , N }, l0 ∈ {1, 2, . . . , n}
such that E{|ei0l0(t)|} > 0 at any instant t ∈ (ts, t3], where ts < t3 ≤ t2. By the
same argument as above, we get that d

dt E{V (et , rt , t)} ≤ −ρεt < 0 in the time inter-

val (ts, t3]. Hence, 0 < E{V (et3 , rt3 , t3)} = V (es, rs, s) + ∫ t3
ts
dE{V (eμ, rμ,μ)} <

−ρε(t3 − ts) < 0, which is a contradiction.
To sum up, there exists a constant t1 > 0 such that lim

t→t1
E{‖e(t)‖1} = 0 and

E{‖e(t)‖1} ≡ 0 for t > t1, which implies that lim
t→t1

E{‖ei (t)‖1} = 0 andE{‖ei (t)‖1} ≡
0 for t > t1, i = 2, . . . , N . According to Definition 4, the coupled neural network (4)
is synchronized in a finite-time under controller (7). The proof is completed. ��
Remark 2 From the above deduction, we can see that there exists a t2 > t1 such
that limt→t2 E{V2(et , rt , t)} = 0, and limt→t2 E{V3(et , rt , t)} = V ∗. Moreover, the
constant V ∗ is zero only in the case that all the initial conditions of (6) are zero,
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i.e., ϕi (t) = 0 for t ≤ 0. Actually, V ∗ is positive as long as there exists one i0 ∈
{2, 3, . . . , N } such that ‖ϕi0(t)‖1 
= 0 for all t ≤ 0 due to the infinite interval of
the double integral. Note that the exact value of V ∗ is related to the initial value of
error system (6) and the error of the measurable selection αi (t), i = 1, 2, . . . , N .
Since the measurable selections αi (t), i = 1, 2, . . . , N are uncertain, it is difficult
to get the exact value of V ∗, and hence, it is not easy to estimate the settling time
t1 though it exists. However, it can be seen from (20) that increasing the values of
ρ and ε can accelerate the synchronization. Therefore, larger values of ξ k

i and ηk

(k = 1, 2, . . . , w, i = 2, 3, . . . , N ) can decrease the settling time.

Remark 3 Since controller (7) is very simple and has no time delay, it is easy to
be implemented in practice if the number of coupled nodes is not large. Numerical
simulations in Sect. 5 demonstrate that the designed controllers are very effective.
However, N − 1 controllers are needed for a network with N nodes. When N is very
large, it is difficult to control all nodes in practice though computing the inequalities
in Theorem 1 is not difficult.

When the delay kernel satisfies the following condition:

K (t) =
{

0, t > θ,

1, 0 ≤ t ≤ θ,
(24)

where θ > 0 is a constant, then the coupled neural network (4) becomes the following
system with finite-time discrete and distributed delays:

ẋi (t) = −C(rt )xi (t) + A(rt ) f (xi (t)) + B(rt ) f (xi (t − τ(t)))

+D(rt )

∫ t

t−θ

f (xi (s))ds + J (rt ) −
N∑

j=1

li j (rt )Φ(x j (t) − xi (t))

+Ri (rt )(t), i = 1, 2, . . . , N . (25)

Correspondingly, error dynamical system (6) turns out to the following form:

ėi (t) = −Ckei (t) + Akβi (t) + Bkβi (t − τ(t)) + Dk

∫ t

t−θ

βi (s)ds

−
N∑

j=2

l̃i jkΦe j (t) + Rik(t), i = 2, . . . , N , (26)

It is obvious that Theorem 1 is applicable to system (25). The following Theorem 2
shows that not only the network (25) can be finite-timely synchronized, but also the
settling time can be explicitly given.

Theorem 2 Assume that the assumptions (H1)–(H3) are satisfied. If the control
gains ξ k

i , ηk , i = 2, 3, . . . , N, k ∈ � , are chosen such that ηk > ‖|Ak |p‖∞ +
‖|Bk |p‖∞ + θ‖|Dk |p‖∞ and ξ k

i > −ck + ‖|Ak |z‖∞ − l̃i ikφ + ∑N
j=2, j 
=i |l̃ j ik |φ +
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θ‖Dz‖ + ‖Bz‖
1−μ

= χ̂k
i , k = 1, 2, . . . , w, i = 2, 3, . . . , N, then the coupled

neural network (25) is finite-timely synchronized under controller (7). Moreover,

the settling time satisfies t1 ≤ 1
ρ̂mε

[ ∑N
i=2 ‖ϕi (0)‖1 + ‖Bz‖

1−μ

∑N
i=2

∫ 0
−τ0

‖ϕi (s)‖1ds +
‖Dz‖∑N

i=2

∫ 0
−θ

∫ 0
s ‖ϕi (u)‖1duds

]−max{τ, θ}, where (ρ̂1, ρ̂2, . . . , ρ̂w)T = 1
δ̂
(−Π−

ζ̂ Iw)−11w, ζ̂ = max{χ̂k
i −ξ k

i , k = 1, 2, . . . , w, i = 2, 3, . . . , N }, δ̂ is the maximum of

the sow sums of (−Π − ζ̂ Iw)−1, ρ̂m = min{ρ̂k, k ∈ � }, ε = min{ηk − (‖|Ak |p‖∞ +
‖|Bk |p‖∞ + θ‖|Dk |p‖∞), k ∈ � }, τ0 = τ(0).

Proof By the similar discussions as that given in the proof of Theorem 1, we get that

∑
l∈�

πklρl + ρk ζ̂ = −1

δ̂
< 0. (27)

So,

∑
l∈�

πklρl + ρk(χ̂
k
i − ξ k

i ) < 0. (28)

When rt = k ∈ � , modify the Lyapunov–Krasovskii functional candidate in (9)
as:

V̂ (et , k, t) =
3∑

l=1

V̂l(et , k, t), (29)

where

V̂1(et , k, t) = ρ̂k

N∑
i=2

‖ei (t)‖1,

V̂2(et , k, t) = ‖Bz‖
1 − μ

N∑
i=2

∫ t

t−τ(t)
‖ei (s)‖1ds,

V̂3(et , k, t) = ‖Dz‖
N∑

i=2

∫ 0

−θ

∫ t

t+s
K (−s)‖ei (u)‖1duds.

Using the same proof procedure as that given in the proof of Theorem 1 and the
conditions in Theorem 2 yields that

dE{V̂ (et , rt , t) ≤ −ρ̂mε

N∑
i=2

n∑
l=1

λildt. (30)

Moreover, there exists t1 ∈ (0,+∞) such that

lim
t→t1

E{‖ei (t)‖1} = 0 and E{‖ei (t)‖1} ≡ 0 for all t > t1, i = 2, . . . , N . (31)
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It is obvious that V̂ (et2 , rt2 , t2) = 0 and V̂ (et , rt , t) ≡ 0, ∀t ≥ t2, where t2 =
t1 + max{τ, θ}.

By the same discussions as those given in the proof of Theorem 1, we get∑N
i=1

∑n
l=1 λil ≥ 1 before t2. Therefore, it is followed from (30) that

dE{V̂ (et , rt , t)} ≤ −ρ̂mεdt, t ∈ [0, t2). (32)

Integrating both sides of inequality (32) from 0 to t2 obtains that:

t2 ≤ V̂ (e0, r0, 0)

ρ̂mε
.

Hence, t1 ≤ V̂ (e0,r0,0)
ρ̂mε

− max{τ, θ}. The proof is completed. ��

Remark 4 It can be seen from Theorem 2 that larger values of ρ̂m and ε lead to
smaller settling time. Hence, increasing the values of ξ k

i and ηk (k = 1, 2, . . . , w, i =
2, 3, . . . , N ) can decrease the synchronization time in practice. Since 0 < ρ̂m ≤ 1,
the effect of large value of ξ k

i (k = 1, 2, . . . , w, i = 2, 3, . . . , N ) on the settling time
is limit. Therefore, it is better to increase the value of ηk (k = 1, 2, . . . , w) in order to
effectively decrease the settling time.

When there is no delay in (1), i.e., Bk = Dk = 0 (zero matrix), the following
Corollary 1 can be easily obtained from Theorem 2.

Corollary 1 Assume that the assumptions (H1)–(H2) are satisfied. If the control gains
ξ k

i , ηk , i = 2, 3, . . . , N, k ∈ � , are chosen such that ηk > ‖|Ak |p‖∞ and ξ k
i > −ck +

‖|Ak |z‖∞ − l̃i ikφ + ∑N
j=2, j 
=i |l̃ j ik |φ = χ̃k

i , k = 1, 2, . . . , w, i = 2, 3, . . . , N, then
the coupled neural network (1) with Bk = Dk = 0 is finite-timely synchronized under
controller (7). Moreover, the settling time is estimated as t1 ≤ 1

ρ̃mε

∑N
i=2 ‖ϕi (0)‖1,

where ε = min{ηk − ‖|Ak |p‖∞, k ∈ � }, (ρ̃1, ρ̃2, . . . , ρ̃w)T = 1
δ̃
(−Π − ζ̃ Iw)−11w,

ζ̃ = max{χ̃k
i − ξ k

i , k = 1, 2, . . . , w, i = 2, 3, . . . , N }, ρ̃m = min{ρ̃k, k ∈ � }, δ̃ is
the maximum of the sow sums of (−Π − ζ̃ Iw)−1.

Remark 5 The analysis methods developed in this paper are applicable to finite-time
synchronization of differential equations with or without delay and are completely
different from those utilized in [33,37,41,43], and [1], which used the finite-time
stability theorems developed in [34] and [11]. Notice that it is crucial to select the
variable λil in the proofs of Theorems 1 and 2 according to the value of eil(t)
which makes our proposed method work for this finite-time problem. It should be
emphasized that studying finite-time stability and synchronization of general non-
linear time-delay systems is extremely difficult in the literature. For instance, the
authors of [24] tried to study the finite-time stability and stabilization of retarded-type
functional differential equations by using Lyapunov functionals. Unfortunately, the
theoretical result in [24] cannot be applied in practice for studying the finite-time
stabilization problem because it is extremely difficult to find a Lyapunov functional
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satisfying the assumptions in [24]. According to [9], the finite-time stability theorem
in [34] and [11] is not applicable to time-delay systems because its framework is
based on the inequality V̇ (x) ≤ −αV η(x), where α > 0 and 0 < η < 1 are constants,
α1(|x |) ≤ V (x) ≤ α2(|x |)with class-K functions α1(·), α2(·). Note that our analytical
technique is based on 1-norm; hence, our Lyapunov functionals are not the positive
definite quadratic form as those in [33,37,41,43], and [1]. It is proved theoretically
that the 1-norm-based analytical technique is effective for finite-time synchronization
of delayed systems though the conditions and t1 in Theorem 2 seem to be complex.

Remark 6 Based on the new M-matrix approach, the settling time does not involve
any free parameters, which means that, for a given system with known initial value
and generator matrix of the Markov chain, the settling time is fixed when the control
gains have been suitably chosen. Different from existing results on finite-time syn-
chronization, the settling time in Theorem 2 is determined not only by the values of
the error state at t = 0, but also by the history of the error state, time delays, and the
generator matrix of the Markov chain.

The above synchronization criteria show that the control gains ηk have the two roles:
(a) to tune the synchronization time; (b) to overcome the uncertainties of the Filippov
solutions. Specially, when the activation functions f are continuous, the ηk can be any
positive constant. On the other hand, it can be seen from the proofs above that the role
of ξ k

i is to keep the error system stable. Due to the uncertainty of Markov chain, the
above synchronization criteria are some what conservative, known from the definition
of ‖Bz‖, ‖Dz‖, ε, ε, and ε, etc. This problem is inevitable because Markov chain is
really difficult to be dealt with in determining control gains and synchronization time
with the designed Lyapunov–Krasovskii functionals. For the time being, we do not
find a suitable Lyapunov–Krasovskii functionals in quadric form to get a better result.
However, if there is only one mode in (4), the conservativeness of the corresponding
synchronization condition can be reduced. Consider the following coupled neural
networks without Markov jumping parameters:

ẋi (t) = −Cxi (t) + A f (xi (t)) + B f (xi (t − τ(t))) + D
∫ t

−∞
K (t − s) f (xi (s))ds

+J −
N∑

j=1

li jΦ(x j (t) − xi (t)) + Ri (t), i = 1, 2, . . . , N , (33)

with the controller:

Ri (t) = −ξi ei (t) − ηsgn(ei (t)), (34)

where ξi > 0 and η > 0 are constants to be determined, sgn(ei (t)) is the same as that
above, i = 2, 3, . . . , N .

The following corollaries show that the conservativeness of the control gains and the
settling time is further reduced for (4) without Markovian jumping parameters. They
can be easily obtained from Theorems 1, 2 and Corollary 1, respectively, and hence,
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their proof are omitted here. Let l̃i j = li j − l1 j , i, j = 2, 3, . . . , N , c = min{cl , l =
1, 2, . . . , n}.
Corollary 2 Assume that the assumptions (H1)–(H4) are satisfied. If the control gains
ξi , η, i = 2, 3, . . . , N, are chosen such that η > ‖|A|p‖∞ + ‖|B|p‖∞ + q‖|D|p‖∞
and ξi = −c + ‖|A|z‖∞ − l̃i iφ + ∑N

j=2, j 
=i |l̃ j i |φ + q‖|D|z‖∞ + ‖|B|z‖∞
1−μ

, then the
coupled neural network (33) is finite-timely synchronized under controller (34).

Corollary 3 Assume that the assumptions (H1)–(H3) and (24) are satisfied. If the
control gains ξi , η, i = 2, 3, . . . , N, are chosen such that η > ‖|A|p‖∞ +
‖|B|p‖∞ + θ‖|D|p‖∞ and ξi = −c + ‖|A|z‖∞ − l̃i iφ + ∑N

j=2, j 
=i |l̃ j i |φ +
θ‖|D|z‖∞ + ‖|B|z‖∞

1−μ
, then the coupled neural network (33) is finite-timely synchro-

nized under controller (34). Moreover, the settling time is t1 ≤ 1
ε

[ ∑N
i=2 ‖ϕi (0)‖1 +

‖|B|z‖∞
1−μ

∑N
i=2

∫ 0
−τ(0) ‖ϕi (s)‖1ds+‖|D|z‖∞

∑N
i=2

∫ 0
−θ

∫ 0
s ‖ϕi (u)‖1duds

]−max{τ, θ},
where ε = min{η − ‖|A|p‖∞ + ‖|B|p‖∞ + θ‖|D|p‖∞}.
Corollary 4 Assume that the assumptions (H1)–(H2) are satisfied. If the control gains
ξi , η, i = 2, 3, . . . , N, are chosen such that η > ‖|A|p‖∞ and ξi = −c +‖|A|z‖∞ −
l̃i iφ + ∑N

j=2, j 
=i |l̃ j i |φ, i = 2, 3, . . . , N, then the coupled neural network (33) with
Bk = Dk = 0 is finite-timely synchronized under controller (34). Moreover, the
settling time is t1 ≤ 1

ε

∑N
i=2 ‖ϕi (0)‖1, where ε = min{η − ‖|A|p‖∞, k ∈ � }.

4 Finite-Time Synchronization with Perturbations

In real-world applications, the coupled neural network (4) might represent a nominal
model that is valid only under ideal conditions, while a more accurate description of
the system might be provided by a perturbed model. In this section, we investigate the
finite-time synchronization of the coupled neural network (4), which is presented as
follows:

ẋi (t) = −C(rt )xi (t) + A(rt ) f (xi (t)) + B(rt ) f (xi (t − τ(t)))

+D(rt )

∫ t

−∞
K (t − s) f (xi (s))ds

+J (rt ) −
N∑

j=1

li j (rt )Φ(x j (t) − xi (t))

+gi (xi (t), t, rt ) + R̃i (rt , t), i = 1, 2, . . . , N , (35)

where the perturbation term gi (xi (t), t, rt ) = (gi1(xi (t), t, rt ), gi2(xi (t), t, rt ), . . . ,

gin(xi (t), t, rt ))
T, i = 1, 2, . . . , N result from disturbances, uncertainties, parameters

variations, ormodeling errors, R̃i (rt , t) is the controller to be designed,which is similar
to controller (7).

For simplicity, we consider only continuous norm-bounded perturbations so that
the Filippov solution of each node system of the perturbed network (35) is guaranteed.
Precisely, the following assumption (H5) is used.
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(H5) gi (xi (t), t, rt ), i = 1, 2, . . . , N , are continuous, and there are constants hi (rt ) ≥
0 such that ‖gi (xi (t), t, rt )‖∞ ≤ hi (rt ), i = 1, 2, . . . , N .

Remark 7 The gi (xi (t), t, rt ), i = 1, 2, . . . , N , are not required to be differentiable or
satisfy Lipchitz condition. Moreover, each node may subject to different perturbation.
Since the states of chaotic systems are bounded, it is reasonable to assume that the
perturbations are bounded. Hence, the condition (H5) is general.

When rt = k, it can be obtained from (35) that

ėi (t) = −Ckei (t) + Akβi (t) + Bkβi (t − τ(t)) + Dk

∫ t

−∞
K (t − s)βi (s)ds

−
N∑

j=2

l̃i jkΦe j (t) + gik(xi (t), t) − g1k(x1(t), t) + R̃ik(t),

i = 2, . . . , N , (36)

where gik(xi (t), t) = (gi1,k(xi (t), t), gi2,k(xi (t), t), . . . , gin,k(xi (t), t))T, i =
1, 2, . . . , N .

The controller R̃ik(t) is designed as follows, which can be derived by a small
modification of controller (7).

R̃ik(t) = −ξ k
i ei (t) − ηk

i sgn(ei (t)), (37)

where sgn(ei (t)) = (sgn(ei1(t)), sgn(ei2(t)), . . . , sgn(ein(t)))T, ξ k
i > 0 and ηk

i > 0
are constants to be determined, i = 2, 3, . . . , N .

Theorem 3 Assume that the assumptions (H1)–(H5) are satisfied. If the control gains
ξ k

i , ηk
i , i = 2, 3, . . . , N, k ∈ � , are chosen such that ηk

i > ‖|Ak |p‖∞ +‖|Bk |p‖∞ +
q‖|Dk |p‖∞ + hik + h1k and ξ k

i > χk
i , k = 1, 2, . . . , w, i = 2, 3, . . . , N, then the

coupled neural network (35) is finite-timely synchronized under controller (37), where
χk

i are the same as those in Theorem 1.

Proof Denote g̃ik(t) = gik(xi (t), t) − g1k(x1(t), t). It follows from (H5) that

1Tndiag{sgn(ei (t))}g̃ik(t) =
n∑

l=1

sgn(eil(t))g̃il,k(t) ≤
n∑

l=1

|g̃il,k(t)|λil

≤ ‖g̃ik(t)‖∞
n∑

l=1

λil ≤ (hik + h1k)

n∑
l=1

λil , (38)

where λil is defined in the proof of Theorem 1.
The other part of the proof is same as that given in the proof of Theorem 1. The

proof is completed. ��
We remark that the corresponding results on finite-time synchronization can also

be easily obtained for Theorem 2, Corollaries 1–4 when the perturbations satisfying
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(H5) are considered. The only change is to raise the control gains ηk by hik + h1k .
This means that controller (7) possesses good perturbation rejection and robustness
properties.

Remark 8 Controllers (7) and (37) are discontinuous, and the phenomenon of chat-
tering will appear [8]. In order to eliminate the chattering, controllers (7) and (37) can
be modified as

Rik(t) = −ξ k
i ei (t) − ηk ei (t)

‖ei (t)‖1 + ν
, (39)

and

R̃ik(t) = −ξ k
i ei (t) − ηk

i
ei (t)

‖ei (t)‖1 + ν
, (40)

respectively, where ν is a sufficiently small positive constant.

5 Numerical Examples

In this section, three numerical examples are given to verify the above theoretical
analysis. Specifically, Example 1 is to verify the Theorem 1, Example 2 is to verify
Theorem 3, and Example 3 aims to illustrate the Theorem 2. Moreover, the accuracy
of the estimation of settling time is also discussed. The synchronization errors are
‖ei (t)‖1 = |xi1(t) − x11(t)| + |xi2(t) − x12(t)|, i = 2, 3, 4, 5.

Example 1 Consider the following two modes:

ẋ(t) = −Ck x(t) + Ak f (x(t)) + Bk f (x(t − τ(t))) + Dk

∫ t

−∞
K (t − s) f (x(s))ds

+Jk + uk(x(t), t), k = 1, 2, (41)

where x(t) = (x1(t), x2(t))T, uk(x(t), t) is external perturbation, τ(t) = 1, K (t) =
e−0.5t , J1 = J2 = (1, 1.2)T,

C1 =
(
1.2 0
0 1

)
, A1 =

(
3 −0.3
4 4.5

)
, B1 =

(−1.4 0.1
0.3 −8

)
, D1 =

(−1.2 0.1
−2.8 −1

)
,

C2=
(
1.2 0
0 1.1

)
, A2=

(
0 −0.3
4 5

)
, B2=

( −1 0.12
0.35 −9.5

)
, D2=

( −1 0.09
−2.6 −1.2

)
,

the activation function is f (x) = ( f1(x1), f2(x2)) with

fi (xi ) =
{

tanh(xi ) + 0.35, xi > 0, i = 1, 2,
tanh(xi ) − 0.35, xi < 0, i = 1, 2.
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Fig. 1 Chaotic-like trajectories of models 1 (a) and 2 (b) in system (41) without perturbation
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Fig. 2 Network topologies G1 (left) and G2 (right) in the example

Figure 1 shows the chaotic-like trajectories ofmodels 1 and 2 in system (41)without
perturbation,where the initial condition ofmodel 1 is x(t) = (0.1, 0.2)T,∀t ∈ [−1, 0],
and x(t) = 0 for t < −1, the initial condition of model 2 is x(t) = (−0.1, 0.2)T,
∀t ∈ [−1, 0], and x(t) = 0 for t < −1.

It is easy to check that the discontinuous activation function f satisfies (H1). More-
over, by simple computation, we get z1 = z2 = 1, p1 = p2 = 0.7, μ = 0, τ = 1,
q = 2. So (H1)–(H4) are all satisfied.

When there is no perturbation, consider a coupled neural networks consisting of
five identical models (41) with Markovian parameters, where the digraphs G1 and G2
of the coupled network are shown in Fig. 2.

By simple computation, we get that ‖A1 p‖∞ + ‖B1 p‖∞ + q‖D1 p‖∞ = 17.08,
‖A2 p‖∞ + ‖B2 p‖∞ + q‖D2 p‖∞ = 18.515, χ1

2 = 21.95, χ1
3 = 21.95, χ1

4 = 23.95,
χ1
5 = 24.95, χ2

2 = 21.35, χ2
3 = 22.35, χ2

4 = 24.35, χ2
5 = 21.85. By Theorem 1,

if we take η1 = 18, η2 = 19, ξ12 = ξ13 = 22, ξ14 = 24, ξ15 = 25, ξ22 = 21.5,
ξ23 = 22.5, ξ24 = 24.5, ξ25 = 22, then, with any irreducible Π , the coupled neural
networks with the Markovian jumping parameters in (41) and the digraphs G1 and G2
can be finite-timely synchronized by controller (7).
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Fig. 3 Time response of
synchronization errors under
controller (39)
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According to Remark 8, we use controller (39) with ν = 0.001 instead of con-
troller (7) in the simulations. The initial values of the coupled network are chosen
randomly in the real number interval [−3, 3] for t ∈ [−1, 0], and all the states of
the coupled neural networks are zero for t < −1, the time step size is δ = 0.0002,

Π =
(−3000 3000

4000 −4000

)
, r0 = 1. Figure 3 describes the time evolutions of the syn-

chronization errors, fromwhich one can see that the synchronization is realized before
0.1, which matches Theorem 1.

Example 2 Now consider the coupled neural network (35). The parameters are
the same as those in Example 1 except the perturbations. When u1(x(t), t) =
(0.5| cos(t)|,−0.3 sin(t))T = w1(x(t), t), u1(x(t), t) = (−0.5 cos(t), 0)T =
w2(x(t), t), u1(x(t), t) = (0.65 sin(x2(t)),−0.2| sin(x1(t))|)T = w3(x(t), t), the
trajectories of the mode 1 with the same initial condition as that in Fig. 1a are shown
in Fig. 4, respectively.

When u2(x(t), t) = (0.5| sin(x1(t))|,−0.3 sin(t))T = w̄1(x(t), t), u2(x(t), t) =
(0.5| cos(x1(t))|,−0.3 cos(t))T = w̄2(x(t), t), u2(x(t), t) = (0.13 sin(x1(t)),−0.4
| cos(x2(t))|)T = w̄3(x(t), t), the trajectories of the mode 2 with the same initial
condition as that in Fig. 1b are shown in Fig. 5, respectively.

Suppose the perturbations to each node in coupled mode 1 are g1(x1(t), t, 1) =
w1(x1(t), t), g2(x2(t), t, 1) = w2(x2(t), t), g3(x3(t), t, 1) = w2(x3(t), t), g4(x4(t),
t, 1) = w3(x3(t), t), g5(x5(t), t, 1) = w3(x4(t), t), the perturbations to each node in
coupled mode 2 are g1(x1(t), t, 2) = w̄1(x1(t), t), g2(x2(t), t, 2) = w̄2(x3(t), t),
g3(x3(t), t, 2) = w̄2(x3(t), t), g4(x4(t), t, 2) = w̄3(x4(t), t), g5(x5(t), t, 2) =
w̄3(x5(t), t). It follows that h11 = h21 = h31 = h12 = h22 = h32 = 0.5,
h41 = h51 = 0.65, h42 = h52 = 0.4.

By Theorem 3, the coupled neural networks with Markov jumping parameters and
nonidentical perturbations can be finite-timely synchronized under controller (37) if
the control gains satisfy the conditions: η1i > 18.08 for i = 2, 3, η1i > 18.23 for
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Fig. 4 Trajectories of mode 1 in (41) with the same initial condition as that in Fig. 1a under different
perturbations: a u1(x(t), t) = w1(x(t), t); b u1(x(t), t) = w2(x(t), t); c u1(x(t), t) = w3(x(t), t)

i = 4, 5, η2i > 19.515 for i = 2, 3, η2i > 19.415 for i = 4, 5, ξ k
i > χk

i , i = 2, 3, 4, 5,
k = 1, 2, are the same as those in Example 1.

Take controller (40)withν = 0.001 insteadof controller (37) in the simulations.The
initial values of the coupled network are chosen randomly in the real number interval
[−3, 3] for t ∈ [−1, 0] and all the states of the coupled neural networks are zero for
t < −1, the time step size is δ = 0.0002. Figure 6 describes the time evolutions
of the synchronization errors, from which one can see that the synchronization of
the Markovian coupled neural networks with nonidentical perturbations is achieved
quickly, and the Theorem 3 is verified.

Example 3 Consider the following discontinuous Markovian jumping neural net-
work:

ẋ(t) = −Ck x(t) + Ak f (x(t)) + Bk f (x(t − τ(t)))

+Dk

∫ t

t−θ

f (x(s))ds + Jk, k = 1, 2, (42)
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Fig. 5 Trajectories of mode 2 in (41) with the same initial condition as that in Fig. 1b under different
perturbations: a u2(x(t), t) = w̄1(x(t), t); b u2(x(t), t) = w̄2(x(t), t); c u2(x(t), t) = w̄3(x(t), t)

Fig. 6 Time response of
synchronization errors under
controller (40)
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Fig. 7 Chaotic-like trajectories of models 1 (left) and 2 (right) in system (42)

where x(t) = (x1(t), x2(t))T, τ(t) = 1, θ = 0.3, J1 = (0.1, 1.2)T, J2 =
(0.1, 0.45)T,

C1 =
(
1.2 0
0 1

)
, A1 =

(
3 −0.3
8 5

)
, B1 =

(−1.4 0.1
0.3 −8

)
, D1 =

(−1.2 0.1
−2.8 −1

)
,

C2=
(
1 0
0 1

)
, A2 =

(
2.7 −0.3
7.8 5.3

)
, B2=

(−1.42 0.1
0.28 −8.1

)
, D2=

(−0.98 0.12
−2.7 −1.2

)
,

the activation function is f (x) = ( f1(x1), f2(x2)) with

fi (xi ) =
{

tanh(xi ) + 0.05, xi > 0, i = 1, 2,
tanh(xi ) − 0.05, xi < 0, i = 1, 2.

Figure 7 shows the Chaotic-like trajectories of models 1 and 2 in system (42),
where the initial condition of models 1 and 2 is the same as x(t) = (0.5,−0.5)T,
∀t ∈ [−1, 0].

It is not difficult to verified that (H1)–(H4) are satisfied and z1 = z2 = 1, p1 =
p2 = 0.1, μ = 0, τ = 1, θ = 0.3.

Consider a coupled neural networks consisting of five identical models (42) with
Markovian parameters and the digraphs G1, G2 shown in Fig. 2.

It is followed that‖A1 p‖∞+‖B1 p‖∞+θ‖D1 p‖∞ = 2.244,‖A2 p‖∞+‖B2 p‖∞+
θ‖D2 p‖∞ = 2.265, χ̂1

2 = χ̂1
3 = 18.55, χ̂1

4 = 20.55, χ̂1
5 = 21.55, χ̂2

2 = 17.65,
χ̂2
3 = 18.65, χ̂2

4 = 20.65, χ̂2
5 = 18.15. According to Theorem 2, the coupled neural

networks with any irreducible Π and the Markovian jumping parameters in (42) and
the digraphs G1 and G2 can be finite-timely synchronized by controller (7) with the
control gains η1 = 2.25, η2 = 2.27 (i.e., ε = 0.05), ξ12 = ξ13 = 18.6, ξ14 = 20.6,
ξ15 = 21.6, ξ22 = 17.7, ξ23 = 18.7, ξ24 = 20.7, ξ25 = 18.2.

In the simulations, we use controller (39) with ν = 0.001 instead of controller
(7). The initial values of the coupled network are randomly chosen as x1(t) =
(0.8801,−0.7524)T, x2(t) = (−0.0535, 0.3450)T, x3(t) = (0.2666,−0.1450)T,
x4(t) = (0.0998, 0.9211)T, x5(t) = (−0.6171,−0.0849)T for t ∈ [−1, 0], the time
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Fig. 8 Time response of
synchronization errors under
controller (39)
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Fig. 9 Time response of
synchronization errors under
controller (39) with
η1 = η2 = 17 (red) and
η1 = η2 = 23 (blue)
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step size is δ = 0.0005, Π =
(−700 700

800 −800

)
, r0 = 1. Based on Theorem 2, the

coupled network is synchronized in the time t1 = 1476.9s. Figure 8 describes the
time evolutions of the synchronization errors. One can see from Fig. 8 that all the
synchronization errors become zero before 1.2s.

Now we verify the accuracy of the settling time t1 by changing the control gains η1

and η2 and keeping the other parameters same as those in Fig. 8. By Theorem 2, we get
t1 ≤ 4.0217 when η1 = η2 = 17 (ε = 14.735), and t2 ≤ 2.5686 when η1 = η2 = 23
(ε = 20.735). Figure 9 shows that the synchronization is realized before 0.05s for the
case of η1 = η2 = 17 and before 0.04s in the case of η1 = η2 = 23. Figure 9 not only
demonstrates the correctness of Theorem 2, but also shows that the control gains ηk in
controller (7) can be used to tune the synchronization time. In the three simulations,
the errors between the synchronization time in the simulation and the settling time
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Fig. 10 Different trajectories of models 1 in system (42) with different initial values: x(t) = (1,−0.5)T

(a), x(t) = (−0.5, 0.5)T (b), x(t) = (0.4, 0.6)T (c), where ∀t ∈ [−1, 0]

t1 are roughly estimated as �t = 1475.7 (ε = 0.05), �t = 3.9717 (ε = 14.735),
�t = 2.5286 (ε = 20.735), respectively. These data suggest that the accuracy of the
estimation of the settling time improves as the increasing of control gains ηk (or the
number ε).

Remark 9 The trajectory of the delayed neural networks with discontinuous activa-
tion functions is heavily dependent on the initial condition. We take the model 1 in
Example 2 as an example. Its trajectories are completely different with initial different
values: x(t) = (1,−0.5)T, x(t) = (−0.5, 0.5)T, x(t) = (0.4, 0.6)T, ∀t ∈ [−1, 0],
which are shown in Fig. 10. Although the node systems with different initial condi-
tions exhibit different trajectories, the finite-time synchronization is still achieved and
verifies the theoretical analysis in the examples. So the controller has desired robust
property.

6 Conclusions

In this paper, finite-time synchronization in an array of coupled delayed neural net-
works with discontinuous activation functions,Markovian jumping parameters as well
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as nonidentical uncertain perturbations has been studied. The time delay includes
discrete delay, finite-time and infinite-time distributed delay. By using a class of sim-
ple controller, novel analytical techniques, M-matrix method and newly designed
Lyapunov–Krasovskii functionals, sufficient conditions guaranteeing the finite-time
synchronization of the considered system are derived. The uncertainties caused by the
mixed delays, Filippov solutions and Markov chain and the uncertainties of external
perturbations have been properly handled by using a class of simple controllers. More-
over, the settling time is also given for coupled neural networks with finite-time mixed
delays and without delay. Results of this paper essentially extend existing ones con-
cerning finite-time synchronization of systems of differential equations without delay.
Several useful corollaries have also given for neural networks without Markovian
jumping parameters. The accuracy of the estimation of settling time is also discussed
with numerical simulations.

Recently, dynamical behaviors of general nonlinear systems based on fuzzy
dynamic models have been extensively investigated [26–29]. However, to the best
of our knowledge, few results are published on finite-time control of fuzzy dynamic
models with time delays, packet dropouts, as well as quantization. Our future research
is to solve this problem, which is also challenging.
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