
Circuits, Systems, and Signal Processing (2022) 41:4928–4951
https://doi.org/10.1007/s00034-022-02012-8

Design of the Processors for Fast Cosine and Sine Fourier
Transforms

Ivan Tsmots1 · Vasyl Rabyk2 · Natalia Kryvinska3,4 ·
Mykhaylo Yatsymirskyy4 · Vasyl Teslyuk1

Received: 2 November 2020 / Revised: 11 March 2022 / Accepted: 11 March 2022 /
Published online: 11 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
To solve large number of digital signal processing problems, such as on-board radar-
location or hydro-acoustic systems, it is necessary to perform discrete trigonometric
transforms over intensive data flows in real time with the constraints on size and
power consumption. To solve this problem, the hardware implementation in the form
of the VLSI has been proposed. In particular, we improve an algorithm for the fast
cosine and sine Fourier transforms with a focus on the parallel-streaming hardware
implementation. A flow graph of the improved algorithm has been developed on the
basis of addition, subtraction and multiplication of real numbers with the relation
scheme of algorithms. A linear projection of the improved algorithm for fast cosine
and sine Fourier transforms on the axis parallel to the data transmission has been
obtained. This makes it possible to change the type and dimensions of the transforms.
Further, we develop a structure of 2-4-8-16-point processor for fast cosine and sine
Fourier transforms. Such an implementation provides a reduction of the dimensions,
energy consumption and performance of the transforms in real time.

Keywords Fast cosine and sine Fourier transforms · 2-4-8-16-point processor · Very
large-scale integration (VLSI) · Altera Cyclone III FPGA EP3C16F484N6

1 Introduction

To solve a large number of digital signal processing problems [3, 7, 24], it is necessary
to perform discrete trigonometric transforms over intensive data flows in real time on

B Natalia Kryvinska
natalia.kryvinska@uniba.sk

B Vasyl Teslyuk
vasyl.m.teslyuk@lpnu.ua

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-022-02012-8&domain=pdf
http://orcid.org/0000-0002-4033-8618
http://orcid.org/0000-0003-2655-0812
http://orcid.org/0000-0003-3678-9229
http://orcid.org/0000-0002-3368-5531
http://orcid.org/0000-0002-5974-9310

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4929

means that meet the constraints on size and power consumption. The development
of new algorithms and parallel structures that focus on very large-scale integration
is the main way to meet such requirements. Among the many parallel structures, a
special place is occupied by parallel-flow structures, which provide high efficiency of
hardware loading and best meet the conditions of real-time operation. In parallel-flow
structures, the data are processed on a pipeline basis [25, 29].

Pipelining involves the division of structures into steps, each of which consists of
two units, that is, operating unit and buffer memory. Control over parallel-flow tools
is reduced to the clock pulses that move information from input to output, recording
intermediate results into the buffer memory. The frequency of the clock pulses is deter-
mined by the access time to the buffer memory and the delay time of the operating
unit. To ensure high efficiency of equipment, it is necessary that all pipeline steps have
approximately the same time of operation implementations. Parallel-stream imple-
mentation of discrete trigonometric transforms provides high efficiency of hardware
loading and most meets the real-time operating conditions.

To implement discrete trigonometric transforms, it is proposed to use discrete cosine
Fourier transform (DCT) [1, 5, 11] and discrete sine Fourier transform (DST) [10,
16, 20] as the main components. These transforms provide redundant execution of
discrete Fourier transforms and discrete Hartley transforms [13, 21] of complex, real,
complex conjugate, even or odd sequences. The use of DCT andDST provides parallel
processing of real, complex and complex conjugate sequences.

Therefore, the urgent task is to develop fast algorithms andparallel-streamstructures
of DCT and DST, focused on VLSI implementation.

2 Related work

Among the known [3, 5, 7, 10, 16, 20, 21, 24] fast algorithms for cosine Fourier
transform and sine Fourier transform, the algorithms developed on the basis of Rader-
Brenner method (CFTRB and SFTRB) are easy to implement [37]. The peculiarity of
such algorithms is that their graphs are basicallywith the relation scheme of algorithms
with basis 2, but due to the number of multiplications they correspond to the splitting
algorithms and have a very simple basic operation "real butterfly" [35]. A comparative
analysis of the fast CFTRB and SFTRB algorithms (FCFTRB and FSFTRB) and the
well-known graph of the Cooley-Tukey complex FFT algorithm with basis 2 and fre-
quent thinning [4, 6, 37] shows the coincidence of their structures when m � log2 N ,
where N is the dimension of the transform, the main stages of transition to transfor-
mations of less dimension. A significantly simplified basic operation performed on
real data with valid phase factors is performed.

In [2, 30, 35], fast algorithms for implementing Fourier transform were developed,
which are focused on the use of mass-parallel computing tools with a large amount
of memory (graphics processing units) [30, 35]. GPUs belong to the class of SIMD
processors (Single Instruction Multiple Data), the peculiarity of which is to use a
single operation to simultaneously processmultiple independent data.Compute unified
device architecture is used to develop software for parallel image processing based on
CPU and GPU [2], which reduces program development time and improves its quality

4930 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

[18, 36]. The disadvantage of this implementation is that it cannot provide intensive
data flows processing in real time.

Analysis of publications [2, 3, 5, 7, 10, 11, 16, 20, 21, 24, 30, 35, 37] shows that
hardware implementation with extensive use of spatial and temporal parallelization of
calculating discrete trigonometric transforms is themainway to increase performance.
Fast algorithms for calculating cosine and sine Fourier transforms can be implemented
on customized VLSI [22, 31], field-programmable gate array (FPGA) [15, 26] and
digital signal processors (DSP) [14, 17, 27]. The disadvantage of implementation on
customized VLSI is that such an implementation is appropriate only for large series.
The disadvantage of implementing discrete trigonometric transforms on DSP is that
the performance of DSP is not enough to process intensive data flows in real time.
Implementation of fast algorithms for cosine and sine Fourier transforms on the basis
of FPGA is currently the most appropriate.

The conducted analysis shows that the most adapted to the processing of intensive
data flows are parallel-flow structures, which should be implemented on the basis of
FPGA. However, in these publications little attention is paid to the development of
algorithms and VLSI processors, which are programmed due to the dimension of the
transform using FPGA.

Therefore, the topical tasks of today are to improve the algorithms for calculating
DCT and DST, to develop and implement low-point parallel-flow processor on FPGA
and on its basis synthesize thematrix pipeline processor formulti-point fast algorithms
for cosine Fourier transform (FCFT) and fast algorithms for sine Fourier transform
(FSFT).

The purpose of the research is to enhance calculation efficiency of DCT and DST
on the basis of the improved calculation algorithms and development as well as imple-
mentation of N -point matrix pipeline processor FCFT and FSFT on FPGA. To attain
the goal, the following tasks must be fulfilled:

• To improve the calculation algorithms DCT and DST focusing on implementation
in the form of VLSI that will ensure parallel-flow data processing.

• To develop a structure of 2-4-8-16-point processor of fast cosine and sine Fourier
transforms that will ensure a change of the dimension and type of transform (sine
or cosine) in the program implementation.

• To implement the low-point processor FCFT and FSFT on FPGA as a basic com-
ponent for synthesis of high-performance N -point processor.

• To synthesize the N -pointmatrix pipeline processor FCFTandFSFT thatwill ensure
resynching of intensity of data coming with calculation intensity. This will make it
possible to enhance efficiency of the use of the equipment.

3 Algorithms and tools for DCT and DST implementations

3.1 Improving the Algorithms for DCT and DST implementations

For N-point valid sequence x(n), n � 0, 1, . . . , N formulas for DCT and DST calcu-
lations are as given in [3, 7, 37]:

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4931

HC (k) � DCFTN { x(n)} �
N−1∑

n�0

x(n)Ckn
N , k � 0, 1, . . . , N − 1 (1)

HS(k) � DSFTN { x(n)} �
N−1∑

n�0

x(n)SknN , Cr
N � cos(2nr/N), SrN � sin(2nr/N)

(2)

Assume that N is a complex number that can be represented as the product of two
other numbers L andM, that is, N � LM . The main idea of DCT and DST algorithms
is to decompose the N-point DCT and DST into smaller-sized transforms. To do this,
the input x(n) and output HC (k), HS(k) sequences are numbered as follows:

n � Ml + m, l � 0, 1, . . . , L − 1, m � 0, 1, . . . ,M − 1 (3)

k � Lr + s, s � 0, 1, . . . , L − 1, r � 0, 1, . . . ,M − 1 (4)

Substituting (3) and (4) into (5), (6), we receive:

HC (sr) �
M−1∑

m�0

l−1∑

l�0

x(lm)C (Ml+m)(Lr+s)
N (5)

HS(sr) �
M−1∑

m�0

l−1∑

l�0

x(lm)S(Ml+m)(Lr+s)
N (6)

Functions C (Ml+m)(Lr+s)
N i S(Ml+m)(Lr+s)

N can be written as follows:

C (Ml+m)(Lr+s)
N � CMLr

N × CMls
N × CLrm

N × Cms
N � Cls

L × Crm
M × Cms

N (7)

S(Ml+m)(Lr+s)
N � SMLr

N × SMls
N × SLrmN × Sms

N � SlsL × SrmM × Sms
N (8)

Given the appearance of formulas (7) and (8), formulas (5) and (6) can be written
in the following way:

HC (sr) �
M−1∑

m�0

Cmr
M [Cmr

N {
l−1∑

l�0

x(lm)Csl)
L }] (9)

HS(sr) �
M−1∑

m�0

Smr
M [Smr

N {
l−1∑

l�0

x(lm)Ssl)L }] (10)

Calculation algorithms HC (k) and HS(k) based on formulas (9) and (10) require
for the following steps:

4932 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

Step1. We determine M of L-point transforms of subsequences x(l,m) in accor-
dance with the values of formulas (9) and (10) in parentheses, i.e.,

gc(s,m) �
L−1∑

l�0

x(l,m)Csl
l (11)

Step 2. We find the intermediate arrays hc(s,m) and hs(s,m), hc(s,m) (see square
brackets, respectively, (9) and (10))

hc(s,m) � q(s,m)Cms
N , hs(s,m) � q(s,m)Sms

N (12)

Step 3. We determine L of M-point transforms of arrays hc(s,m) and hs(s,m)

HC (sr) �
M−1∑

m�0

h(sm)Cmr
M , HC (sr) �

M−1∑

m�0

h(sm)Cmr
M (13)

To develop a small-point parallel-stream VLSI processor for FCFT and FSFT with
the ability to change the dimensions of the transforms, the FCFTRB and FSFTRB
algorithm was improved. The flow graph of the improved algorithm of 2-4-8-16-point
FCFTRB and FSFTRB [16, 28, 39] is given in Fig. 1, where q is a phase factor [32].

The peculiarity of the developed flow graph of the algorithm for 2-4-8-16-point
FCFTRB and FSFTRB is that it is focused on parallel-stream VLSI implementation.

P (6)

P (5)

P (4)

P (3)

P (2)

P (1)

P (7)

P (13)

P (12)

P (11)

P (10)

P (9)

P (8)

P (14)

P (0)

P (15)

x(0)
x(1)

N=2
x(0)

x(2)

N=4

x(1)

x(3)

x(0)

x(4)

N=8

x(2)

x(6)

x(1)

x(7)

x(3)

x(5)

x(0)

x(8)

N=16

x(4)

x(12)

x(2)

x(14)

x(6)

x(10)

x(15)

x(5)

x(11)

x(3)

x(13)

x(7)

x(9)

x(1)

CFFT
s=1
q=1
r=0
SFFT
s=-1
q=0
r=1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

s

s

s

s

s

s

s

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

s

q

r

s

r

q

r

q

Fig. 1 Flow graph of the improved algorithm for 2-4-8-16-point FCFTRB and FSFTRB

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4933

In this flow graph of the algorithm, the choice of FCFT or FSFT is made using the
appropriate special multipliers.

Special multipliers while implementing 16-point FCFT are the following ones:
R0 � R1 � R2 � R4 � R6 � 1, R3 � R5 � 0, R7 � R12 � R14 � −√

2, R8 �
R10 � −2,, R9 � −R13 � 2C2

16S
1
16, R11 � R15 � −2C2

16S
3
16 and during implemen-

tation of FCFT they are presented by: R0 � R1 � R7 � 0, R2 � R3 � R4 � R6 � 1,
R5 � R8 � R10 � √

2, R12 � R14 � −2, R9 � R13 � 2C2
16S

3
‘16, R11 � −R15 �

2C2
16S

1
16.

In addition to performing 16-point FCFT or FSFT, the above algorithm provides the
ability to implement 2-point, 4-point and 8-point transforms correspondingly. The flow
graph of the algorithm for 2-4-8-16-point FCFTRB and FSFTRB has been improved
by reducing in the ratio 2 the number of stages with the use of multiplication operation.
This ensured the use of only one multiplication device in its parallel-stream hardware
implementation.

The basic operations, which are used to implement the improved algorithm for
FCFTRB or FSFTRB, are given in Fig. 2.

The improved algorithm for 2-4-8-16-point FCFTRB or FSFTRB is implemented
on basic operations of the first and second types, which are performed on real numbers.
The basic operation of the first type is reduced to the addition and subtraction, and
the basic operation of the second type is reduced to the addition, subtraction and
multiplication operations. 16-point algorithm for FCFTRB or FSFTRB is focused on
parallel-stream hardware implementation by performing the multiplication operation
only at one stage.

For parallel-stream hardware implementation of the improved 16-point FCFTRB or
FSFTRB algorithm, it is necessary to obtain its linear projection on the axis parallel to
data transmission. The linear projection of the improved algorithm of 2-4-8-16-point
FCFTRB or FSFTRB on an axis parallel to data transmission is given in Fig. 3, where
FEOCS is operator for even and odd components selection, FSSP—switching, storage

Fig. 2 The basic operations of
the improved algorithm for
2-4-8-16-point FCFTRB or
FSFTRB: a first type; b second
type

a

b

a+b

a-b

(a)

a

b

Ri(a+b)

Ri+1(a-b)

Ri

Ri+1

(b)

FEOCS FSSP FBO FDS2 FBOFM FDS1 FBO FDS3 FBO

FS

Fc

Inx1

Inx2

OutX1

OutX1

Fig. 3 A linear projection of the improved 2-4-8-16-point algorithm for FCFTRB or FSFTRB

4934 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

and data permutation operator, FBO—functional operator for performing the basic
operation, FM—functional multiplication operator, FDS1 , FDS2 and FDS3—the first,
second and third delay and switching operators, FS—switching operator, FC—control
operator.

A peculiarity of the linear projection of the improved 16-point algorithm for
FCFTRB or FSFTRB is the ability to change the type (FCFT or FSFT) and the dimen-
sions of the transforms (2-4-8-16 point) by introducing control FC and switching FS

operators. Control operator FC provides the spacious and temporal deployment of the
FCFT or FSFT calculation process, and the switching operator FS provides a change in
the dimension of the transform. The main functional operators of the linear projection
of the improved 16-point algorithm for FCFTRB or FSFTRB are switching, storage
and data permutation FSSP operators and the functional operator for performing basic
operation FBO "real butterfly."

3.2 Developing 2-4-8-16-Point VLSI processor for FCFT and FSFT

For parallel-stream implementation of the improved 2-4-8-16-point algorithm for
FCFTRB or FSFTRB as a VLSI-processor [38], it has to operate on the pipeline prin-
ciple. Pipelining of the VLSI processor involves its division into steps by introducing
the buffer memory. In this case, each step of the pipeline consists of two components,
i.e., operating units and switching units, data storage and permutation [9, 12, 29].
To make the most of the benefits of VLSI technology, it is proposed to develop a
parallel-stream processor for FCFT or FSFT based on the following principles:

• modularity of structure;
• use of a system of elementary arithmetic operations;
• localization and simplification of relations between the steps of the pipeline;
• ensuring balance between input/output and calculations;
• use of pipelining and spatial parallelization of the calculation process;
• minimization of the external communication interface.

The parallel-streamVLSI processor for FCFT or FSFT is implemented by hardware
display of a linear projection of the graph of the improved 2-4-8-16-point algorithm
for FCFTRB or FSFTRB. The block diagram of the parallel-stream processor for 2-
4-8-16-point FCFT or FSFT is shown in Fig. 4, where CP is the input of the clock
pulses; T D—input for selecting the transform dimension; cos/sin—input to select the
type of transform; EOCSU—even and odd components selection unit, Rg—register,
Sw—switch, CU—control unit, PE—processor element [34].

The processor for 2-4-8-16-point FCFT-FSFT is implemented on the basis of
EOCSU and four series-connected PE . The processor for FCFT-FSFT is controlled
by the CU , which consists of non-volatile memory, address counter and registers.
The values of phase multipliers and control signals for EOCSU , four PE1-PE4 and
Sw are stored in non-volatile memory at certain addresses. The main components
of the structure of the parallel-stream processor (Fig. 4) are EOCSU , four PE, four
input Sw, destination registers Rg1, Rg2 and CU , which reflect in hardware a lin-
ear projection of the improved 2-4-8-16-point algorithm for FCFTRB and FSFTRB.

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4935

PE 2 PE 3 PE 4 Sw

Rg

Rg

CU

CP
TD

cos/ sin

Inx1

PE1

...

EOCSU

1

2

1a 1b 2a 3a2b 3b

4 a
4 b

1a
1b
2a
2b
3a
3bInx2

OutX1

OutX2

00

01

10

11

C1 C2

Fig. 4 The block diagram of 2-4-8-16-point processor for FCFT or FSFT

Sw1

=1

Rg1 Rg2

In1

R1

C2

C1 C2

Rg3 Rg4

Rg5 Rg6 Rg7 Rg8

C5

In2
Out2

Rg9 Rg10 Rg 11

Out1

C6 C7

C3 C4

00

11

01
10

000
001
010
011
100

101

аj

bj

0

1

Sw3

0
Sw2

1

Sw 4

Fig. 5 Block diagram of EOCSU

The given components and relations between them fully reflect the structure of the
parallel-stream processor for 2-4-8-16-point FCFTRB and FSFTRB.

Block diagram of EOCSU is shown in Fig. 5, where C1-C6 are control signals,
I n1, I n2—the data inputs, Out1, Out2—the outputs of even and odd components.

The EOCSU includes the following main components: adder, switches Sw1-Sw4
and delay registers Rg1-Rg11. Input data are fed to the inputs of the adder and the
first inputs of the switches Sw1 and Sw2. The value a + b is obtained at the outputs
of the adder, which is shifted one digit right and fed to the second input of the switch
Sw1 and the first input of the group of logic elements EXCLUSIVE OR. The value
of the control signal C1 provides multiplication of data by coefficients s (C1 � 0
multiplication by 1, C1 � 1 multiplication by minus 1). Switches Sw1 and Sw2 are
controlled by the signal C2 (C2 � 0 data transfer from the first inputs, C2 � 1 data
transfer from the second inputs). Using the signals C3-C4 and C5-C6, the number of

4936 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

Table 1 The time diagram of the EOCSU performance with the 16-point FCFT-FSFT

Time In1…In2 C1 C2 Rg1 Rg5 Rg2 Rg6 Rg3 Rg7 Rg4 Rg8

0 x(0) x(8) 0 0

1 x(4) x(12) 1 1 a1 b1

2 x(2) x(14) 1 1 a2 b2 a1 b1

3 x(6) x(10) 1 1 a3 b3 a2 b2 a1 b1

4 x(1) x(15) 1 1 a4 b4 a3 b3 a2 b2 a1 b1

5 x(5) x(11) 1 1 a5 b5 a4 b4 a3 b3 a2 b2

6 x(3) x(13) 1 1 a6 b6 a5 b5 a4 b4 a3 b3

7 x(7) x(9) 1 1 a7 b7 a6 b6 a5 b5 a4 b4

8 x(0) x(8) 1 1 a8 b8 a7 b7 a6 b6 a5 b5

9 x(4) x(12) 0 0 a1 b1 a8 b8 a7 b7 a6 b6

10 x(2) x(14) 1 1 a2 b2 a1 b1 a8 b8 a7 b7

11 x(6) x(10) 1 1 a3 b3 a2 b2 a1 b1 a8 b8

Time Rg9 Rg10 Rg11 C3 C4 C5 C6 C7 Out1 Out2

0 11

1 11

2 11

3 11

4 11 011 a1 b1

5 b1 11 011 a2 b2

6 b2 b1 11 010 a3 b4

7 b3 b2 b1 11 100 a4 b3

8 b4 b3 b2 11 000 a5 b8

9 b5 b4 b3 11 010 a6 b7

10 b6 b5 b4 11 100 a7 b6

11 b7 b6 b5 11 101 a8 b5

data delay cycles is selected in accordance with the flow graph of the algorithm for
FCFT-FSFT (Fig. 1).

The time diagram of the EOCSU performance with the 16-point FCFT-FSFT is
given in Table 1.

The time diagram (Table 1) shows how the data move in EOCSU EOCSU from
inputs In1 and In2 to outputs Out1 and Out2 while performing from 16-point FCFT-
FSFT. In addition to that, the given diagram shows how the state of control signals
changes at inputs C1,…, C7 while performing from 16-point FCFT-FSFT.

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4937

In Table 1 the values a1,…,a8 and b1,…,b8 are determined the following way:

a1 � x(0); b1 � x(8); a2 � 1/2[x(4) + x(12)]; b2 � −1/2[x(4) + x(12)];

a3 � 1/2[x(2) + x(14)]; b3 � −1/2[x(2) + x(14)]; a4 � 1/2[x(6) + x(10)];

b4 � −1/2[x(6) + x(10)];

a5 � 1/2[x(1) + x(15)]; b5 � −1/2[x(1) + x(15)]; a6 � 1/2[x(5) + x(11)];

b6 � −1/2[x(5) + x(11)];

a7 � 1/2[x(3) + x(13)]; b7 � −1/2[x(3) + x(13)]; a8 � 1/2[x(7) + x(9)];

b8 � −1/2[x(7) + x(9)].

The first PE1 performs calculations of the basic operation of the second type
a∗ � (a + b)Ri , b∗ � (a − b)Ri+1, and others (PE2, PE3, PE4) are responsible
for data transfer delay and the performance of the basic operation of the first type
a∗ � a + b, b∗ � a − b. The structure of PE1 is shown in Fig. 6.

To increase the performance of PE1, the pipeline registers Rg1–Rg4 are added to it,
which provide a reduction of the pipelining cycle. Multiplication in PE1 is performed
with ordinary accuracy.

The generalized structure of PE2, PE3 and PE4 is shown in Fig. 7. These processor
elements include control signalsC1-C5, adder and subtractor, groups of logic elements
AND and EXCLUSIVEOR, switches Sw1 and Sw2 and delay devices, which consist
of a set of series-connected registers (Rg1–Rg2 j−2).

A peculiarity of the processor elements PE2, PE3 and PE4 is a different number
of data transmission delay cycles, the value of which is determined by its sequence
number j (j � 2, 3, 4) and is equal to Z j � 2 j−2. The control signals C1-C5 are
designed for switching and data transmission control. Signal C1 provides switching

a

b

Rg1

Rg2

Rg3

Rg4

Ri Ri+1

a*=Ri (a+b)

b*=Ri+1 (a - b)

Fig. 6 PE1 structure

=1

=1

&
Rg2 Rg2 j-2...

Rg1 Rg2 Rg... &

а

b

4C 5C3C2C

а =C2C4(а+b)*

b =C3C5(а-b)*
2 j-2

Sw1 Rg1

Sw2

C1

C1

Fig. 7 Generalized structure of PE2, PE3 and PE4

4938 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

of switches Sw1 and Sw2 (C1 � 0—data transfer from the first inputs, C1 � 1—data
transfer from the second inputs), signals C2, C3, C4 and C5 provide multiplication
of data by coefficients s, q, r (C2 � 1, C3 � 1—multiplication by 1, C2 � 0,
C3 � 0—data multiplied by 0, C4 � 0, C5 � 0—data multiplied by 1, C4 � 1,
C5 � 1—data multiplied by minus 1).

The processor provides 2-4-8- or 16-point FCFT-FSFT, while the clock frequency
of data input and data output does not depend on the dimension of the transform.Before
starting to work the size of the transform is selected by control signals, which are fed
to the input of the T D and the type of the transform (log .1—FCFT, log .0—FSFT) is
selected by the signal at the input cos/sin.

The processor is controlled by theCU , which generates control signals for switches
Sw, switching and delay circuits SDS1 and SDS2 and supplies the phase multipliers
Ri , Ri+1 to the inputs of the multiplication devices of PE1. The dimension of transfer
is chosen by the switch Sw (Fig. 4) and the switches Sw4 i Sw5 (Fig. 5). For the choice
of 2-, 4-, 8- and 16-tpoint FCFT-FSFT at the inputs C1 and C2 of the switch Sw and
at the inputs C3, C4 of the switch Sw4 the next values are given: 00, 01, 10 i 11. The
switch Sw5 is controlled by the signals C5, C6 and C7, at which for performance of 2-
and 4-point FCFT-FSFT the next values come: 000 i 001. While performing 8-point
FCFT-FSFT by the signals C5, C6 and C7, the next values are got: 010, 010, 001 and
011. The values of signals C5, C6 i C7 with 16-point FCFT-FSFT are given in Table
1.

Developed 2-4-8-16-point processor for FCFT-FSFT works on the pipeline prin-
ciple with the clock cycle Tk � tRg + tMD , where tRg and tMD are the operating
time of the register and the multiplication device, respectively. The maximal initial
delay determined by the number of embedded pipelined stages while performing from
16-point FCFT-FSFT is equal to 13 clock cycles.

The hardware costs for the implementation of such a processor are determined as
follows:

W16−Pr � WEOCSU +WPE1 +WPE2 +WPE3 +WPE4 + 2WSw4 - 1 + 2WRg +WCU

(14)

where WEOCSU is hardware costs for even and odd components selection unit, WPE1 ,
WPE2 , WPE3 , WPE4—hardware costs for the 1st, 2nd, 3rd and 4th processor elements,
respectively, WSw4−1—hardware costs for the switch 4 in 1, WRg—hardware costs
for the register, WCU—hardware costs for the control unit. To estimate the hardware
costs for the implementation of the 16-point processor for FCFT-FSFT, it is necessary
to calculate the costs for the implementation of the main components (EOCSU ,
PE1, PE2, PE3, PE4 and CU). Hardware costs for the implementation of the main
components based on functional units are determined as follows:

WEOCSU � WAd + 2(WSw2−1 +WSw4−1) + 8WRg +WExcOR, (15)

WPE1 � WAd +WSb + 4WRg + 2WMD, (16)

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4939

WPE2 � WAd +WSd + 2WSw2−1 + 2WI + 2WExcOR + 2WRg, (17)

WPE3 � WAd +WSb + 2WSw2−1 + 2WI + 2WExcOR + 4WRg, (18)

WPE4 � WAd +WSd + 2WSw2−1 + 2WI + 2WExcOR + 8WRg, (19)

WCU � 4WRg +WCl +WM , (20)

where WAd ,WSb, WRg,WSw2−1 , WSw4−1 ,WMD, WCl ,WM ,WI ,WExcOR, are the
hardware costs for the adder, subtractor, register, switch 2 in 1, switch 4 in 1, mul-
tiplication device, counter, memory, logic elements AND and EXCLUSIVE OR,
respectively. Substituting the values from formulas (15)–(20) into formula 14 we
obtain:

(21)

W16−Pr � 4WAd + 3WSd + 2WMD + 32WRg +WCl +WM

+ 8WSw2−1 + 4WSw4−1 + 6nWI + 7nWExcOR

To estimate the costs for processor implementation, a logic valve, which is an
element of the inverter, AND,OR type, is taken as ameasurement unit. The equipment
costs for implementation of functional nodes in the valves are given in Table 2 [35].

In Table 2, the analytical expressions are given for estimating the costs in valves for
implementation of functional nodes depending on their bitness n. In order to estimate
the costs in valves for processor implementation, it is necessary to determine the num-
ber and bitness of each type of functional node needed for processor implementation.
The estimate of the costs in valves for processor implementation is done by adding
the costs for implementation of logical elements of inverter type and, or the costs for
the determined number and bitness of functional nodes.

Substituting the values of the implementation costs for functional units given in
Table 1 into formula (21), we receive:

W16−Pr � 484n + 20n2 (22)

Table 2 The equipment costs for
implementation of functional
nodes

N p/p Functional nodes Equipment (valves) costs

1 EXCLUSIVE OR 3

2 Register 7n

3 n-bit adder 18n

4 n-bit subtractor 18n

5 Multiplication device 10n2

6 Counter 11n

7 m-input, n- bit switch 2 mn

8 m-input, n-bit memory 2mn

4940 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

Formula (22) allows us to estimate the equipment costs in the valves for the imple-
mentation of 16-point processor FCFT-FSFT.

3.3 Implementing 2-4-8-16-point processor components of FCFT-FSFT on FPGA

To implement 2-4-8-16-point processor for FCFT-FSFT, Altera Cyclone III FPGA
EP3C16F484N6 [8, 19, 33] with the Quartus II development environment was chosen.
The main components of the 2-4-8-16-point processor for FCFT-FSFT are proces-
sor elements PE1–PE4, which are implemented as separate modules. The input data
processed by FCFT-FSFT processor are 16-bit. Data processing is carried out in a
fixed-point format, which is fixed before the highest digit. A necessary condition for
the use of this arithmetic is input data and special factor transforms so that |x(n)| < 1
ta |Ri | < 1. The values of the special factors Ri for the 16-point transform are given
in Table 3.

Using FPGA, a circuit of the first processor element PE1 was developed, which
implements the basic operation of the second type a∗ � (a + b)Ri , b∗ � (a − b)Ri+1.
The circuit of the processor element PE1 is shown in Fig. 8, where Clk is clock
pulses, InA, InB—16-bit data inputs, R_Wj—inputs of phase multipliers, A_Out,
B_Out—outputs of the basic operation results of the second type.

The main components on the basis of which the first processor element PE1
is implemented are the following ones: Shift_R_1—one-digit right shift device,

Table 3 The values of the special factors Ri

i FCFT FSFT

Ri (DEC) Ri (HEX) Ri (DEC) Ri (HEX)

0 0.5000000 0 × 4000 0 0

1 0.5000000 0 × 4000 0 0

2 0.5000000 0 × 4000 0.5000000 0 × 4000

3 0 0 0.5000000 0 × 4000

4 0.5000000 0 × 4000 0.5000000 0 × 4000

5 0 0 0.7071068 0 × 5A82

6 0.5000000 0 × 4000 0.5000000 0 × 4000

7 − 0.7071068 0 × A57E 0 0

8 − 1.0000000 0 × 8001 0.7071068 0 × 5A82

9 0.2705981 0 × 22A2 0.6532815 0 × 539E

10 − 1.0000000 0 × 8001 0.7071068 0 × 5A82

11 − 0.6532815 0 × AC62 0.2705981 0 × 22A2

12 − 0.7071068 0 × A57E − 1.0000000 0 × 8001

13 − 0.2705981 0 × DD5E 0.6532815 0 × 539E

14 − 0.7071068 0 × A57E − 1.0000000 0 × 8001

15 − 0.6532815 0 × AC62 − 0.2705981 0 × DD5E

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4941

Fig. 8 A circuit of the first processor element PE1

4942 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

Fig. 9 Graphical representation and interface of the processor element PE1

Fig. 10 Time diagrams of the processor element PE_1 operation

ADD_16—16-bit adder, SUB_16—16-bit subtraction device, Mult_16—16-bit mul-
tiplication device, Rg1_16—16-bit register, Clk_Pe_1—synchronization unit. Data
from inputs In_A, In_B are fed to the shift device Shift_R_1, which perform right
one-digit shift, i.e., division by two. From the outputs of the shift devices Shift_R_1
data are fed to the inputs of the adder ADD_16 and the subtraction device SUB_16, at
the outputs of which we obtain the sum of a + b and the difference a− b, respectively.
The operation of the adder ADD_16 and the subtraction device SUB_16 is synchro-
nized with the clock pulses Clk. Special multipliers R j from the inputs R_Wj are
written to the registers Rg1_16 by the clock pulses Clk_1 and Clk_2. With the help of
hardware multipliers Mult_16 the multiplication of the sum a + b and the difference
a-b by the phase factors from the outputs of the registers Rg1_16 is performed. At the
outputs A_Out and B_Out we receive the products (a + b)R j and (a − b)R j+1, which
come from the outputs of themultiplication devicesMult_16. Graphical representation
and interface of the first processor element PE1 are shown in Fig. 9.

Time diagrams of the processor element PE_1 are shown in Fig. 10. The time
diagram (Fig. 10) determines the length of clock cycle time of the processor element
PE_1 and shows step-by-step data movement in the given processor element while
performing the basic operation of the second type a∗ � (a + b)Ri , b∗ � (a − b)Ri+1.

It is seen in the time diagrams that the results of the calculations (a + b)R j and
(a − b)R j+1 at the outputs A_Out and B_Out (a − b)R j+1 are obtained during two
clock pulses Clk. The time diagram shows an example of operation of the processor
element PE_1 for values InA � 5000, InB � 1000, R_Wj � 16,384, R_Wj + 1 �
16,384.

The structures of the processor elements PE_2, PE_3 and PE_4 are developed,
which implement the basic operation of the first type a∗ � a + b, b∗ � a − b. The
circuit of the processor element PE_3, which implements the basic operation of the
first type, is shown in Fig. 11.

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4943

Fig. 11 The circuit of the
processor element PE_3

4944 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

Fig. 12 Graphical representation of the processor element (PE_3)

Fig. 13 Time diagrams of the processor element PE_3 operation

A peculiarity of the processor elements PE_2, PE_3 and PE_4 is the uniformity
of the structure. These processor elements differ from each other only in a different
number of data transfer delay cycles, the value of which is determined by the sequence
number j of the processor element Z j � 2 j−2. Graphical representation and interface
of one of the processor elements (PE_3) is shown in Fig. 12.

The third processor element PE_3 performs a delay of 4 clock pulses. Data from the
inputs In_A, In_B are fed to the inputs of the first and second shift devices Shift_R_1,
which perform one-digit right shift. From the outputs of the first shift device, the
data are fed to the first input of the switch Sw2_1, and the data from the second shift
device are fed to the second input of the switch through the first register Rg4_16.
The first register Rg4_16 delays the data to 4 clock pulses Clk. The operation of the
switch Sw2_1 is synchronized by the speed Clk / 4. Speed division is performed by the
counter Count. The switch Sw2_l has two 16-bit input buses (In_A, In_B), an input
bus selection signal (Sel) and two 16-bit output buses Out_A, Out_B.

If at the input Sel the level of logic is "1," then the input signals are switched to the
output crosswise (Out_A� In_B; Out_B� In_A). Otherwise, the signals are switched
directly to the output (Out_A � In_A; Out_B � In_B). Data from the switch Sw2_1
output Out_A go to the input of the second register Rg4_16 and from the output Out_B
data are fed to the inputs of the adder ADD_16 (addend) and SUB_16 (subtrahend).
From the output of the second register, the delayed signals are fed to the other inputs
of the elements ADD_16 (first term) and SUB_16 (minuend). At the outputs of the
elements ADD_16 and SUB_16 the sum a + b and the difference a − b of the input
data are obtained.

Time diagrams of the processor element PE_3 are shown in Fig. 13. During the
first 4 clock pulses Clk data are not transmitted to the outputs A_Out and B_Out.
During the next 4 clock pulses the results of the calculation are obtained at the outputs
A_Out, B_Out. Time diagram (Fig. 13) shows an example of the processor element
PE_3 operation at the values InA � 15,000, InB � 16,600.

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4945

Table 4 The number of
components of the processor
FCFT-FSFT and the expenses
for their implementation

The name of
components

The number of
components

The number of
gates

Adder 9 2592

Multiplication device 2 5120

Memory 16 × 45 bit 1 720

Register 42 4704

4-digit counter 1 44

2-input switch 8 512

4- input switch 3 384

8- input switch 1 256

Elements of logic 240 600

Implementation of the processor element PE_1 requires the use of 68 logic elements,
65 registers, 4 built-in hardware multipliers and 81 outputs. The hardware resources
required for the implementation of each of the processor elements PE_2, PE_3, PE_4
are consisted of 66 logic elements, 36 registers, 66 outputs.

The number of the used components for implementation of the 16-digit 2-4-8-16-
point processor FCFT-FSFT and the number of gates for their implementation are
given in Table 4.

The estimated number of the gates necessary for implementation of the 16-digit
2-4-8-16-point processor FCFT-FSFT equals about 14,932 gates.

On the basis of the developed processor elements, a model of processor of 2-4-8-
16-point FCFT or FSFT has been synthesized. The model is used for its work in all
performances.

3.4 Implementation of N-point processor for FCFT-FSFT based onVLSI processors
for FCFT-FSFT

The main requirement for the N -point processor for FCFT-FSFT is to ensure the
processing of data flows in real time with minimal hardware costs. To do this, the
following condition must be met:

Pd ≤ DN−Pr, (23)

where Pd is the intensity of the data flow, DN−Pr is the calculation intensity of the N -
point processor for FCFT-FSFT. The intensity of the data flow to the N -point processor
is determined as follows:

Pd � hnd Fd , (24)

where h is the number of data channels; nd is a bit size of data channels; Fd is a
data frequency. The calculation intensity of the N -point processor for FCFT-FSFT is

4946 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

determined as follows:

DN−Pr � 2pns/Cpc, (25)

where Cpc is the pipeline clock cycle of the N-point processor, ns is the bit set of data
processing channels in the low-point VLSI processor, p is the number of low-point
VLSI processors in the tier.

We synthesize the N-point processor for FCFT-FSFT on the basis of the developed
16-point VLSI processor for FCFT-FSFT, which has two processing paths, the ability
to adjust the size (2-4-8- or 16-point) and the type of transfer FCFT or FSFT. To
implement the N -point processor for FCFT-FSFT in real time we choose a matrix
structure that works on the pipeline principle. For the synthesis of such a processor,
the required number of the developed 16-point VLSI processors for FCFT-FSFT is
determined by the formula:

R � p × m �
⌈

Pd
DN−Pr

⌉
×

⌈
log2 N

log2 L

⌉
, (26)

where L � 16, ��—is the sign of rounding to a larger whole. Lower-point VLSI
processors form a two-dimensional array of size p × m, where m is the number of
series-connected low-point VLSI processors, i.e., tiers of the matrix processor; p is
the number of low-point VLSI processors in the tier. In each tier, the last m may be the
exception and 16-point FCFT-FSFT is performed. In the lastm tier, 2k-point transform
is performed, where k � log2 N − l(m − 1). The structure of the pipeline matrix
processor for N-point FCFT-FSFT is shown in Fig. 14, where SPM is specialized
parallel memory,CU—control unit, PS—pipeline step, MD—multiplication device,
VLSI low-point processor for FCFT-FSFT, CP—input of clock pulses, CC—input
of conversion code.

A peculiarity of the SPM structure is its adaptation to the data structure and to the
algorithms for calculating FCFT-FSFT. This memory provides simultaneous access
to a set of data, ordering, delay and switching of data flows. The main components of
the SPM include the storage, the switching network, the address generators and the
control unit. The capacity of each unit of SPM is equal to QSPM � 2Ui , where U is
the size of the transform; i is the data width.

Matrix N-point processor for FCFT-FSFT works on the pipeline principle, provid-
ing the division of the array of low-point VLSI processors into the pipeline steps by
introducing SPM. In this case, each step of the pipeline consists of p low-point VLSI
processors, 2p multiplication devices and SPM. Different arrays m are processed by
N-point matrix pipeline processor. Frequency of change of arrays is determined by
the macrocycle of the pipeline, which is equal to the intensity of the calculation of
DN−Pr.

Matrix pipeline implementation of the N -point processor for FCFT-FSFT provides
high efficiency of loading the hardware and most corresponds to working conditions
in real time. The use of SPM for the interaction between the steps of the pipeline mini-
mizes the problems associated with the synchronization of low-point VLSI processors
and the N-point matrix processor in general.

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4947

1 2 h cos/sinCP

SPM1

SPM2

VLSI low1 VLSI lowр

MD1 MD2 MD2(р-1) MD 2р

VLSI low1 VLSI lowр

SPMOut

PS 1

PS 2

PS m

1 g

CU

CC

Fig. 14 The structure of the pipeline matrix processor for N-point FCFT-FSFT

A peculiarity of the developedmatrix pipeline processor is the ability to adapt to the
intensity of data flow. The interface of the developed processor provides simultaneous
input of h data and output of g processing results in each clock cycle. Control over
the matrix pipeline processor for FCFT-FSFT is reduced to generation of clock pulses
that move data from input to output.

Hardware costs for the implementation of matrix pipeline N-point processor for
FCFT-FSFT (Fig. 14) are determined by the following formula:

WN−Pr � mpW16−Pr + (m + 1)pWSPM + 2p(m − 1)WMD +WCU , (27)

where W16−Pr,WSPM ,WMD,WCU are hardware costs for the 16-point processor for
FCFT-FSFT, specialized parallel memory, multiplication device and control unit.

To estimate the hardware costs for matrix pipeline N-point processors for FCFT-
FSFT we take p � N

L � N
16 ,m � log2 N

log2 L
� log2 N

4 and n � 16. Such N-point
processors for FCFT-FSFT provide the maximum intensity of calculation DN−Pr.
Hardware costs for the implementation of matrix pipeline N-point processors for
FCFT-FSFT with the maximum calculation intensity are shown in Fig. 15.

It is possible to reduce hardware costs for the implementation of matrix pipeline
N-point processors for FCFT-FSFT by reducing the number of VLSI processors in the
pipeline stages. This reduction in the number of VLSI processors will decrease the
computational intensity and increase the computation time of N-point FCFT-FSFT.

4948 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

0

200000
400000

600000
800000

1000000
1200000

1400000

1600000
1800000
2000000

16 32 64 128 256 512

W

N

Fig. 15 Hardware costs for the implementation of matrix pipeline N-point processors for FCFT-FSFT (N is
a transform dimension, W is a number of gates)

3.5 Discussion of the results of hardware implementation

The developed parallel-stream VLSI processor FCFT-FSFT is oriented toward pro-
cessing input data in real time. In such processing it is necessary to meet the condition
Fid < Fcc, where Fid is frequency of input data coming, and Fcc—clock cycle fre-
quency of performance of processor pipeline. There are two possible approaches to
meet this condition.

The first approach is an increase of Fcc by pipeline implementation ofmultiplication
device. In this implementation, the processor can work with pipeline clock cycle equal
to Tk � tr Rg + tadd + tdle Tk � tPg + tCm + 3tI , where tr Rg is the time of reading
information from register, tadd—the time of addition, tdle—the time of information
delay by logical element.

The second approach is parallel inclusion two and more VLSI processors FCFT-
FSFT. The number of simultaneously inclusioned processors is determined by
frequency of input data coming Fd.

4 Conclusions

We improved in this paper an algorithm for the FCFTRB-FSFTRB. We focused on
hardware implementation, which by preserving the relation scheme of algorithmswith
basis 2 and focusing the multiplication operation on one stage of the calculation pro-
vides a reduction in hardware costs and implementation on the same type of processor
elements.

Besides, a parallel-stream VLSI processor for FCFT-FSFT has been developed,
which, due to the possibility of changing phase factors and switching data transmission
from the outputs of processor elements to the output of the processor, allows choosing
the type of the transform and its dimension.

Even and odd components selection unit and processor elements that perform basic
operations of the first and second type have been implemented on Altera Cyclone III
FPGA EP3C16F484N6 with the Quartus II development environment.

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4949

N -pointmatrix pipeline processor for fast cosine and sine Fourier transforms,which
is highly efficient for the equipment use, was synthesized on the basis of the developed
2-4-8-16-point parallel stream processor.

The developed 2-4-8-16-point processor of fast cosine and sine Fourier transforms,
processors of discrete Fourier and Hartley transforms of complex, real, complex-
linked, even and odd sequences ensure paralleling of the processing process and their
simple performance.

Data availability Our manuscript has no associated data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest/competing interests.

References

1. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. 23, 90–93 (1974)
2. A. Batyuk, E. Struk, I. Tsmots, Development principles and criteria for the selection of VLSI-structures

for coordinated parallel calculation of basic operations of real-time digital signal processing algorithms,
in Proceedings of the 9th International Conference on The Experience of Designing and Applica-
tion of CAD Systems in Microelectronics, CADSM 2007, Lviv-Polyana, Ukraine, 19–24 Feb. 2007,
pp. 179–180.

3. R.E. Blahut, Fast algorithms for signal processing. 1ed. Cambridge University Press: NewYork, USA,
2010

4. N. Brisebarre, M. Joldeş, J.-M. Muller, A.-M. Naneş, J. Picot, Error analysis of some operations
involved in the cooley-Tukey fast fourier transform. ACM Trans. Math. Soft. 46(2), 1–27 (2020)

5. W. Chen, C. Smith, S. Fralick, A fast computational algorithm for the discrete cosine transform. IEEE
Trans. Commun. 25(9), 1004–1009 (1977)

6. J.W. Cooley, J.W. Tukey, An algorithm for machine calculation of complex Fourier series. Math.
Comput. 19, 297–301 (1965)

7. P. Duhamel, M. Vitterli, Fast Fourier transform: a tutorial review and a state of the art. Signal Process.
19, 259–299 (1990)

8. Electronic components database. Available online: https://www.digchip.com/datasheets/parts/
datasheet/033/EP3C16F484C6.php. Accessed 5 Aug 2020.

9. M.Garrido, J. Grajal,M.A. Sanchez, O. Gustafsson, Pipelined radix-2k feedforward FFT architectures.
IEEE Trans Very Large Scale Integr. Syst. 21, 23–32 (2011)

10. M. Garrido, S. Huang, S. Chen, O. Gustafsson, The serial commutator FFT. IEEE Trans. Circuits Syst.
II Express Briefs 63(10), 974–978 (2016)

11. L.O. Hnativ, Integer cosine transforms for high-efficiency image and video coding. Cybern. Syst. Anal.
52(5), 802–816 (2016)

12. C. Ingemarsson, P. Källström, F. Qureshi, O. Gustafsson, Efficient FPGA Mapping of Pipeline. IEEE
Trans. Very Large Scale Integr. Syst. 25, 2486–2497 (2017)

13. K.J. Jones, R. Coster, Area-efficient and scalable solution to real-data fast fourier transform via regu-
larised fast Hartley transform. IET Signal Proc. 1(3), 128–138 (2007)

14. M. Kasyanchuk, I. Yakymenko, S. Ivas’ev, Ya. Nykolaychuk, Fundamental theoretical and algorithmic
principles of the applied tasks decision of theory of numbers and construction of the high-performance
special processors on their basis, in Proceedings of the XI International Conference on The Experience
of Designing and Application of CAD Systems in Microelectronics, CADSM 2011, 23–25 February,
2011, Polyana-Svalyava (Zakarpattya), Ukraine, pp.168–169 (2011).

15. V. Kumar, K.K. Mahapatra, et al. An efficient distributed arithmetic based VLSI architecture for DCT.
IEEE Trans. Circ. Syst. I Regular Papers, pp. 978–983 (2011).

16. A.C. Mert, E. Kalali, I. Hamzaoglu, High performance 2D transform hardware for future video coding.
IEEE Trans. Consum. Electron. 63(2), 117–125 (2017)

https://www.digchip.com/datasheets/parts/datasheet/033/EP3C16F484C6.php.

4950 Circuits, Systems, and Signal Processing (2022) 41:4928–4951

17. J.G. Nash, Distributed-memory-based FFT architecture and FPGA implementations. Electronics 7,
116 (2018)

18. A. Nukada, Y. Maruyama, S. Matsuoka, High performance 3-D FFT using multiple CUDA GPUs, in
Proceedings of the 5th Annual Workshop on General Purpose Processing with Graphics Processing
Units, GPGPU-5, New York, NY, USA, ACM, , pp. 57–63 (2012).

19. OBrien Labs. Altera Cyclone II, III, IV Development Kits. Available online: https://obrienlabs.
blogspot.com/2010/12/altera-cyclone-iii-development-kits.html. (accessed on 05.08.2020).

20. I. Prots’ko,V.Teslyuk,Algorithmof efficient computationDSTI-IVusing cyclic convolutions.WSEAS
Trans. Signal Process. 10, 278–288 (2014)

21. I. Prots’ko, Algorithm of efficient computation of generalised discrete Hartley transform based on
cyclic convolutions. IET Signal Proc. 4(8), 301–308 (2014)

22. D. Puchala, K. Stokfiszewski, B. Szczepaniak, M. Yatsymirskyy, Effectiveness of Fast Fourier Trans-
form implementations on GPU and CPU. Przeglad Elektrotechniczny 92(7), 69–71 (2016)

23. M. Raguraman, D. Saravanan, FPGA implementation of approximate 2d discrete cosine transforms.
Circuits Syst. 7, 434–445 (2016)

24. K.R. Rao, D.N. Kim, J.J. Hwang, Fast Fourier Transform—Algorithms and Applications (Springer,
Berlin, 2011)

25. B.R. Rau, J.A. Fisher, Instruction-level parallel processing: history, overview and perspective. J. Super-
comput. 7(1), 9–50 (1993)

26. J.J. Rodriguez-Andina, M.J. Moure, M.D. Valdes-Pena, Advanced features and industrial applications
of FPGAs—a review. IEEE Trans. Ind. Inform. 11, 853–864 (2015)

27. P. Saha, A. Banerjee, A. Dandapat, P. Bhattacharyya, ASIC implementation of high speed processor
for calculating discrete Fourier transformation using circular convolution technique. WSEAS Trans.
Circuits Syst. 10, 278–288 (2011)

28. S. Shen, W. Shen, Y. Fan, X. Zeng, A Unified 4/8/16/32-Point Integer IDCT architecture for multiple
video coding standards, in IEEE International Conference onMultimedia andExpo, ICME,Melbourne,
VIC Australia, 9-13, pp. 788–793 (2012)

29. G. Sohi, Instruction issue logic for high-performance interruptible, multiple functional unit, pipelined
computers. IEEE Trans. Comput. 39(3), 349–359 (1990)

30. K. Stokfiszewski, K. Wieloch, M. Yatsymirskyy, The fast fourier transform partitioning scheme for
GPU’s computation effectiveness improvement, in Advances in Intelligent Systems and Computing,
Springer: Lviv, Ukraine, 2018, Volume 689, pp. 511–522 (2018).

31. T.-Y. Sung, Y.-S. Shieh, An efficient VLSI linear array for DCT/IDCT using subband decomposition
algorithm. Hindawi Publishing Corporation Mathematical Problems in Engineering, 2010, 87–93.

32. T. Tao, S. Liu, H. Ma, M. Li, X. Zhou, X. Wang, J. Weng, Twiddle factor neutralization method for
heterodyne velocimetry. Rev. Sci. Instrum. 85(1), 013101 (2014). https://doi.org/10.1063/1.4859598

33. Terasic Technologies FPGA Dev Kits for Altera Cyclone® II, III, & IV. Available online: https://ru.
mouser.com/new/terasic-technologies/terasic-fpga-dev-cyclone-kits/ (accessed on 05.08.2020).

34. R.L. Tokheim, Digital Electronics: Principles and Application. 8th edition. McGraw Hill Higher
Education: New York, USA, January 16, 576 (2013).

35. I.G.Tsmots, Informatsijni tehnologii ta spetsializovani zasobyobrobky sygnaliv i zobrazhenu realnomu
chasi. UAD: Lviv, Ukraine, (2005). (in Ukrainian).

36. J. Wu, Jaja, j. High Performance FFT Based Poisson Solver on a CPU-GPU Heterogeneous Platform.
Processing (IPDPS) 2013 IEEE 27th International Symposium on Parallel & Distributed, Boston, MA,
USA, 20–24 May 2013, pp. 115–125.

37. M.M. Yatsymirskyy, Shvydki algorytmy ortogonalnyh trygonometrychnyh peretvoren. Akademichnyj
Expres: Lviv, Ukraine, (1997). (in Ukrainian).

38. Md. ZainulAbidin, M.O. Sharrif, Tan shao theong design of a VLSI digit slicing fast Fourier transform
processor. Microelectron. J. 22(5–6), 15–26 (1991)

39. X. Zhao, J. Chen, M. Karczewicz, L. Zhang, X. Li, W. Chien, Enhanced multiple transform for video
coding, in Proceedings on data compression conference, Snowbird, UT, USA, pp. 73–82 (2016).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://obrienlabs.blogspot.com/2010/12/altera-cyclone-iii-development-kits.html
https://doi.org/10.1063/1.4859598
https://ru.mouser.com/new/terasic-technologies/terasic-fpga-dev-cyclone-kits/

Circuits, Systems, and Signal Processing (2022) 41:4928–4951 4951

Authors and Affiliations

Ivan Tsmots1 · Vasyl Rabyk2 · Natalia Kryvinska3,4 ·
Mykhaylo Yatsymirskyy4 · Vasyl Teslyuk1

Ivan Tsmots
ivan.tsmots@gmail.com

Vasyl Rabyk
rabykv@ukr.net

Mykhaylo Yatsymirskyy
mykhaylo.yatsymirskyy@p.lodz.pl

1 Department of Automated Control Systems, Lviv Polytechnic National University, Lviv 79013,
Ukraine

2 Department of RadioPhysics and Computer Technologies, Ivan Franko National University of
Lviv, 1, Universytetska Str., Lviv 79000, Ukraine

3 Department of Information Systems, Faculty of Management, Comenius University, Bratislava,
Bratislava 25 82005, Slovakia

4 Institute of Information Technology, Lodz University of Technology, Wolczanska 215 Street,
Lodz, Poland

http://orcid.org/0000-0002-4033-8618
http://orcid.org/0000-0003-2655-0812
http://orcid.org/0000-0003-3678-9229
http://orcid.org/0000-0002-3368-5531
http://orcid.org/0000-0002-5974-9310

	Design of the Processors for Fast Cosine and Sine Fourier Transforms
	Abstract
	1 Introduction
	2 Related work
	3 Algorithms and tools for DCT and DST implementations
	3.1 Improving the Algorithms for DCT and DST implementations
	3.2 Developing 2-4-8-16-Point VLSI processor for FCFT and FSFT
	3.3 Implementing 2-4-8-16-point processor components of FCFT-FSFT on FPGA
	3.4 Implementation of N-point processor for FCFT-FSFT based on VLSI processors for FCFT-FSFT
	3.5 Discussion of the results of hardware implementation

	4 Conclusions
	References

