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Abstract
In this article, a new multi-input deep convolutional neural networks (deep-CNNs)
model architecture is addressed for the recognition of predominant instruments in
polyphonic music using discrete wavelet transform (DWT). The proposed deep-CNNs
model employs a fusion of Mel-spectrogram and Mel-frequency cepstral coefficient
(MFCC) features as its first input and a concatenation of statistical features extracted
from decomposed signals obtained through DWT as its second input. Particle swarm
optimization (PSO), a feature selection algorithm, is employed tominimize the feature
dimensionality by excluding the irrelevant features. The proposedmodel is experimen-
tally tested on the IRMASdataset usingfixed-length single-labeled train data formodel
training and variable-lengthmulti-labeled test data formodel evaluation. The proposed
model is evaluated using several DWT feature dimensions, and a feature dimension
of 250 yields the best outcomes. The model performance is assessed by averaging the
precision, recall, and F1 measures on a micro- and macro-level. For a set of optimal
model hyperparameter values, our proposed model can reach micro and macro F1
measures of 0.695 and 0.631, which are 12.28% and 23.0% greater as compared to the
benchmark Han et al. (IEEE/ACM Trans Audio Speech Lang Process 25(1):208–221,
2016. https://doi.org/10.1109/taslp.2016.2632307) CNN model, respectively.
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1 Introduction

Music information retrieval (MIR), a rapidly growing field of study with numerous
practical applications, is useful for classifying, modifying, and synthesizing music.
The most important MIR subtask, the predominant instrument recognition in poly-
phonic music is addressed in this article. Identifying the predominating instruments
among several instruments being played simultaneously is the task of predominant
instrument recognition [17]. Musical instrument recognition has recently drawn a lot
of research interest because of its distinctiveness and significant commercial potential.
Real-life music is polyphonic, which is characterized by the interference caused by
the simultaneous occurrence of different musical sounds with significant variance in
playing style, audio quality, and timbre, which makes instrument recognition even
harder for computers and poses a major obstacle to the domain of MIR [16]. Due to
the current focus on deep learning and artificial intelligence (AI), these technologies
are being used widely in theMIR domain, which has aided in breakthroughs in several
sub-fields that have been encountering bottlenecks.

Due to the growing amount of music files that are available in digital format, there is
a significant need for music search. Searching for music is challenging because input
queries are typically in text format, unlike text search. Automatic predominant instru-
ment identification is crucial because source distinction performance can be greatly
enhanced by understanding the instrument type [17]. If the instrument information is
tagged, people can use their preferred instrument to search for their desired music.
Additionally, a variety of audio/music applications can make use of the obtained
instrument information, like creating music playlists [21], classifying sports audio
[20], classifying acoustic scenes [44], browsing news videos [52], automatic music
transcription [4], sound source separation [41], etc. Despite their diversity, these appli-
cations mainly rely on developing classification algorithms for musical instrument
recognition, which necessitate the extraction of features from available music data.

1.1 RelatedWorks

Present-day research now deals with polyphonic music, which is more representative
of real-life music as compared tomonophonicmusic. Different machine learning algo-
rithms have been addressed as a preliminary effort for musical instrument recognition
that dealt with polyphonic music audio synthesized from studio-recorded single tones.
Kitahara et al. [22] used principal component analysis (PCA) and linear discriminant
analysis (LDA) algorithms along with a range of spectral, temporal, and modula-
tion features to categorize five different instruments using a music database produced
by merging audio samples from solo musical instruments. The reported instrument
recognition accuracy for a duo, trio, and quartet was 84.1%, 77.6%, and 72.3%, respec-
tively. For sound separation in polyphonic audio, Heittola et al. [19] used a unique
source-filter model with Gaussian mixture model (GMM) andMel-frequency cepstral
coefficient (MFCC) features and achieved a recognition level of roughly 59% for a set
of six polyphonic notes selected at random from 19 distinct instruments on a single
music database [15]. Fuhrmann et al. [11] aimed to identify the most recognizable
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instruments in audio snippets to create a semantic relationship between them. With
the help of a set of unique timbral features obtained frommean and variance statistics,
they trained the support vector machine (SVM) model on a dataset of 11 modeled
instruments acquired from diverse sources [3]. Their performance evaluation resulted
in an F-measure greater than 0.65 and a precision score of around 0.86. Wu et al. [51]
reported a joint modeling combining sustained sound and attack sound for the recog-
nition of instruments on isolated notes spanning nine different instruments acquired
from a collection of three music databases [15, 32, 33]. They used logarithmic trans-
formation, which increased the correlation between individual timbre perception and
obtained a distribution closer to the Gaussian. The authors used PCA to normalize the
training set of data after transforming features into a low-dimensional vector. Utilizing
the SVMmodel and the proposed set of features, they were able to improve instrument
recognition performance by 20% and 6%, respectively, over the MFCC and source-
filter features. Bosch et al. [5] proposed a novel source separation technique to train
the SVMmodel employing typical hand-crafted audio timbral features with mean and
variance statistics generated frame-by-frame to identify the predominant instruments
on the IRMAS dataset of 11 instruments. They obtained the F1 measures for micro
and macro as 0.50 and 0.43, respectively, for their proposed model. Giannoulis et al.
[13] suggested a mask estimation method that made use of the probabilistic reliabil-
ity of multiple feature vectors with missing features to recognize multi-pitch musical
instruments without a sound source separation. Several masks were tested with the
proposed method and obtained a maximum recognition average accuracy of about
68% for 10 instruments from a combination of two music databases [15, 33]. Duan
et al. [8] introduced a cepstrum-based novel approach known as unified discrete cep-
strum (UDC) for instrument classification. As a result, without the need for source
separation, the individual sources could be estimated from a mixed spectrum directly.
Authors employed SVMwith UDC and the Mel-scale analogue of UDC to classify 13
various Western instruments on a single music database [32]. The recognition accu-
racy reported was about 37% and 25% for two and six polyphonic notes of randomly
mixed chords, respectively. Thus, all these reported algorithms for identifying musical
instruments need precise mining of hand-crafted features as input, which necessitates
in-depth knowledge of the pertinent field.

However, with the advent of deep learning [23], the need for handcrafted features as
input has been reduced drastically. Deep learning is a technique for system design that
stacks numerous nonlinear modules to produce a higher-level representation auto-
matically from the raw audio data. It trains its parameters using backpropagation
algorithms, which can convert the raw inputs into useful task-specific representations.
Deep learning algorithms have recently been extensively used across several research
areas due to their improved performance [26, 27, 31, 40, 49]. Convolutional neural
networks (CNNs), a well-liked deep learning technique, build a feature hierarchy for
classification by iteratively convoluting the input source image with trained filters.
The hierarchical technique thus enables the higher layers to achieve more complex
features. CNNs have emerged as the most widely used technique for musical instru-
ment recognition in recent years. Li et al. [25] demonstrated that CNNs trained on raw
audio signals can outperform the conventional techniques of information retrieval
that employ hand-crafted features. Han et al. [17] addressed a deep-CNN model
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architecture for the recognition of predominant instruments in polyphonic music by
aggregating various outcomes from sliding windows spanning the audio data on the
IRMAS dataset [5] with Mel-spectrogram as input to the CNNmodel. The deep-CNN
model was evaluated using multi-labeled testing data after being trained using single-
labeled training data and obtained F1 measures of 0.619 and 0.513 for the micro
and macro, respectively. Han’s CNN model architecture was enhanced by Pons et
al. [34] with the addition of single-layer and multi-layer techniques. Authors aggre-
gated the predictions from SoftMax outputs on the IRMAS dataset [5] and applied a
threshold of 0.2 for the identification of pertinent timbre information of different instru-
ment classes and obtained F1 measures of 0.589 and 0.516 for the micro and macro,
respectively, for their model. Yu et al. [53] extended Han et al. [17] work with a CNN
model architecture based on the auxiliary classification to classify multiple instrument
classes through multitask learning technique and achieved F1 measures of 0.685 and
0.597 for the micro and macro, respectively, for their proposed model. Raghunath
et al. [39] proposed a transformer-based, multi-visual instrument recognition system
on an ensemble of tempogram, modgd-gram, and Mel-spectrogram functions and
were successful in achieving F1 measures of 0.66 and 0.62 for the micro and macro,
respectively. Lekshmi et al. [24] addressed the predominant instrument recognition
task usingCNNmodel architecture andmanaged to achieve the F1measures formicro
and macro as 0.69 and 0.62, respectively, through a feature fusion of modgd-gram and
Mel-spectrograms with late fusion. Each of these reported CNN-based classification
algorithms used single-labeled training data for training the model and multi-labeled
testing data to evaluate the model on the IRMAS dataset [5] to identify predominant
instruments in polyphonic music.

1.2 Motivation

Recent research onmusic information retrieval (MIR), which includes works onmusi-
cal instrument recognition, has focused on developing complex classification models
based on feature mining. However, the type and class of the features employed as
inputs for these models have not been given more importance. However, in the field
of healthcare [42, 43], medical image processing [48, 54], biomedical-signal pro-
cessing [46, 47], etc., one can find a substantial change in the feature diversity and
feature mining modalities. In the current literature [1, 2], researchers used discrete
wavelet transform (DWT) feature modality and were able to obtain notable perfor-
mance enhancement. It inspired us to use a fusion of statistical features concatenated
from decomposed signals obtained through DWT with perceptual features like Mel-
spectrogram andMFCC, taken as input to the proposed deep-CNNsmodel architecture
for the recognition of predominant instruments in polyphonic music.

1.3 Our Contributions

Our proposed work makes the following key contributions.

• We propose a multi-input deep-CNNs model architecture for the recognition of
predominant instruments in polyphonic music on the IRMAS dataset.
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• The proposed deep-CNNs model is fed with inputs that combine perceptual fea-
tures like Mel-spectrogram and MFCC with seven statistical features taken from
DWT.

• Feature selection algorithm, particle swarm optimization (PSO), is used to reduce
feature dimensionality by removing the irrelevant features.

• Our proposed model successfully achieves the F1 measures for micro and macro
as 0.695 and 0.631, respectively for an optimal set of model hyperparameters
obtained through experiments.

The remaining section of this article is organized as follows. In Sect. 2, the system
description is offered, which gives a thorough explanation of the audio pre-processing,
feature selection, and feature extraction methods that were employed to identify the
predominant instrument. Also covered in detail are the proposed network architecture
design and training configuration. Section3 discusses the system evaluation, explain-
ing the IRMASdataset, the testing configuration, and themetrics for evaluating system
performance. Section4 covers the experimental results and discussion. This section
outlines the proposed model performance analysis, followed by instrument-wise per-
formance analysis and a comparison to existing model algorithms already in use for
the recognition of the predominant instrument in polyphonic music. Finally, in Sect. 5,
we conclude our research work.

2 SystemDescription

This section outlines the system description by first describing the audio data pre-
processing method, then extraction of features, and finally feature selection. After
that, the proposed deep-CNNs network architecture and training configuration are
discussed.

2.1 Audio Pre-processing

Before the extraction of audio features, the training and testing audio samples from
the IRMAS dataset were preprocessed identically as described in [17]. To normalize
the audio data, it is converted from stereo to mono, sampled at 22.05 kHz, and then
divided by the highest value employing the integrated library of Librosa (https://
librosa.org/doc/latest/index.html). The built-in modules of Librosa [29] are used to
compute the perceptual features: Mel-spectrogram and MFCC from the preprocessed
audio data, which are utilized as the first line of input to the proposed deep-CNNs
model. The number of the Mel-frequency bins and MFCCs is chosen to be 128 and
20, respectively. Using the pywavelets library (https://pywavelets.readthedocs.io/en/
latest/), we compute DWT coefficients up to level five, resulting in six coefficients
as cD1, cD2, cD3, cD4, cD5, and cA5. Seven distinct statistical features are derived
from the preprocessed, decomposed signals obtained through DWT and used as the
second line of input to the proposed deep-CNNs model. In our experimental work, we
employ the same ideal window size of 1024 samples (about 46 ms) and hop size of
512 samples (about 23 ms) as those described in [17].

https://librosa.org/ doc/latest/index.html
https://librosa.org/ doc/latest/index.html
https://pywavelets.readthedocs.io/en/ latest/
https://pywavelets.readthedocs.io/en/ latest/
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Fig. 1 Block diagram for MFCC computation

2.2 Feature Extraction

Deep-CNNs are capable of learning hierarchical feature representations automatically
from raw data, but employing hand-crafted and domain-specific features as inputs to
CNNs greatly enhances the performance. This work is largely focused on employ-
ing perceptually informed features like Mel-spectrogram, MFCC, and DWT-based
statistical features.

2.2.1 Mel-Spectrogram

Mel-spectrograms [38] frequently employed in audio and speech processing appli-
cations [12, 45] are computed through STFT-extracted coefficients with relation to
compositional frequencies. To extract Mel-spectrograms, which simulate the non-
linear perception of sound by the human ear, which is better at distinguishing between
lower frequencies than higher ones, each frame of the frequency-domain representa-
tion is processed by a Mel filter bank. The formula for converting frequency ( f ) in
Hertz to Mel-frequency ( fm ) is described in [7] as:

( fm) = 2595 log10

(
1 + f

700

)
(1)

2.2.2 MFCCs

For a long time, audio processing applications have relied on Mel-frequency cepstral
coefficients (MFCCs) as a standard representation of acoustic features [36]. According
toWikipedia [50], the short-term power spectrum of a sound is represented by theMel-
frequency cepstrum (MFC), which is based on a linear cosine transform of a log power
spectrum on the nonlinearMel-scale of frequency.Mel is a numerical value that relates
to a pitch, much like a pitch specifies the frequency. Figure 1 depicts the fundamental
approach for computing MFCCs.

2.2.3 Discrete Wavelet Transform (DWT)

Wavelet is a type ofmathematical function,which is localized in the time and frequency
domains.Wavelet transform (WT) employswavelets as its basis functions in contrast to
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Table 1 Seven most prevalent wavelet types with 52 mother wavelets

Sl. no. Wavelet type Mother wavelets

1 Coiflets (coif) coif1, coif2, coif3, coif4, coif5

2 Daubechies (db) db1, db2, db3, db4, db5, db6, db7, db8, db9

db10

3 Discrete Meyer (dmey) dmey

4 Haar (haar) haar

5 Symlets (sym) sym2, sym3, sym4, sym5, sym6, sym7, sym8

rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4

6 Reverse biorthogonal (rbio) rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.7

rbio3.9, rbio4.4, rbio5.5, rbio6.8

bior1.1, bior1.3, bior1.5, bior2.2, bior2.4

7 Biorthogonal (bior) bior2.6, bior2.8, bior3.1, bior3.3, bior3.7

bior3.9, bior4.4, bior5.5, bior6.8

the conventional Fourier transform, which uses sines and cosines of a fixed frequency
[1]. Using WT, a multi-resolution analysis (MRA)-based method, a signal is split into
different frequency bins, notably high and low-frequency bins [6]. The WT can be
applied in continuous form (CWT) or in discrete form (DWT), which is employed
in our experimental work. In CWT, the signal is represented by a group of basis
functions referred to as mother wavelets. These mother wavelets are interrelated to
one another by simple scaling and translation. In DWT, digital filtering techniques
are used to represent the digital signals in their time-scale equivalents. Redundancy is
one of the drawbacks of CWT, but DWT is more effective because it uses a frequency
filter bank to remove undesirable frequencies and decompose the signal into different
levels. There are different types of wavelets based on the frequency components they
are associated with. As a result, the choice of specific wavelet type(s) determines the
first step of wavelet-based digital signal processing (DSP). Multiple mother wavelets
result in distinct levels of DWT for the same audio segment, which eventually leads to
multiple class detection outcomes. Table 1 depicts the seven most prevalent wavelet
typeswhichwere considered in this article [1]. Eachwavelet type consists of individual
members (motherwavelets)with various filter lengths and the resultantmotherwavelet
can be more smoothly characterized by a higher filter length. We use a total number
of 52 mother wavelets out of these seven distinct types of wavelets. For a given audio
segment, each mother wavelet generates its distinct coefficients, which might lead to
varying recognition performances for the same piece of audio signal.
Computationally, DWT is calculated using a multi-level decomposition algorithm
[18], a similar process of sub-band filtering. This involves processing a signal through
a sequence of low-pass and high-pass filters. This procedure yields two outputs at
each level: an approximation coefficient (cA) and a detail coefficient (cD) by convo-
luting the input signal with the coefficients of a pair of low-pass (Lp) and high-pass
(Hp) half-band filters as depicted in Fig. 2. The convolution operation can be defined
mathematically as:
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Fig. 2 Block diagram for the filter analysis

x[n] ∗ f [n] =
∞∑

k=−∞
x[k] · f [n − k] (2)

where x[n] is the input signal and f [n] is the filter impulse response. Considering,
g[n] and h[n] are the low-pass and high-pass half-band filters, the output of the new
decomposed level can be obtained as:

ylow[n] =
∑
k

x[k] · g[2k − n] (3)

yhigh[n] =
∑
k

x[k] · h[2k − n] (4)

where ylow[n] and yhigh[n] are the set of output signals. The resultingDWTcoefficients
[28] can be obtained as follows:

D[a, b] = 1√
a

p−1∑
m=0

x (tm) · �

(
tm − b

a

)
(5)

where a represents the scale parameter (a = 2 j ), b represents the translation parameter
(b = k2 j ) with j, k ∈ Z , j represents scale index, k represents wavelet transform
signal index, m represents discrete-time stamp that needs to be summed up varying
from 0 to p = 2 j and D represents DWT coefficients. These coefficients form the
basis for the feature extraction step. In this article, we compute the DWT coefficients
up to level five, yielding six coefficients: cD1, cD2, cD3, cD4, cD5, and cA5 using
the pywavelets library (https://pywavelets.readthedocs.io/en/latest/). From these six
DWT coefficients, we then extract seven significant statistical features including mean
absolute value (MAV), averagepower (AVP), variance (VAR), standarddeviation (SD),
mean (MEAN), skewness (SKW), and Shannon entropy (SE), as described in [1].
Therefore, a total of 2184 DWT features (52 mother wavelets× 6 wavelet coefficients
× 7 statistical indicators) are employed for each audio segment.

https://pywavelets.readthedocs.io/en/latest/
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2.2.4 Statistical Features

We employ seven statistical functions to extract meaningful numerical representations
from the output coefficients of DWT. These functions are listed below.

MAV = 1

n

n∑
i=1

|xi | (6)

AVP = 1

n

n∑
i=1

|xi |2 (7)

VAR = 1

n − 1

n∑
i=1

(xi − μ)2 (8)

SD =
√√√√ 1

n − 1

n∑
i=1

(xi − μ)2 (9)

MEAN = 1

n

n∑
i=1

xi (10)

SKW =
∑N

i=1 (xi − μ)3

N · (SD)3
(11)

SE = −k
n∑

i=1

P (xi ) log2 (P (xi )) (12)

where N is the segment length, xi is the i th audio data sample in a segment, n is the
total number of samples that make up an audio file, μ is the mean of audio samples,
P(xi ) is the probability of sample xi and k is a positive constant.

2.3 Feature Selection

A lot of inherent redundancy in the features retrieved from DWT frequently has a
detrimental impact on themodel’s performance.Additionally, the length of the training
period substantially increases as the feature dimension grows. To avoid the above
limitations, we thus employ the PSO, a feature selection algorithm, to minimize the
feature dimension [9]. PSO algorithm treats each distinct feature subset as a particle,
and then it optimizes an objective function that measures the effectiveness of the
chosen subset. The algorithm initializes the position and velocity of each particle at
random within the solution space. The position and velocity of each particle are then
updated in each iteration using:

Xt+1
i = Xt

i + V t+1
i (13)

V t+1
i = wV t

i + c1 · r1 · (
Pt
i − Xt

i

) + c2 · r2 · (
Gt − Xt

i

)
(14)
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where Xt
i is the position of the i th particle at iteration t , V t

i is the velocity of the i th
particle at iteration t , and w is a variable that regulates the impact of the particle’s
current velocity on its next velocity such that w ∈ [0, 1], c1 and c2 are the cognitive
and social parameters which regulate the impact of a particle’s personal best and the
global best on its velocity, r1, and r2 are random constants such that r1, r2 ∈ [0, 1], Pt

i
represents the personal best position of the i th particle at iteration t and Gt represents
the global best position of the population at iteration t . After updating the positions,
each particle’s objective function value is evaluated, and its personal best and the
global best are updated accordingly. The algorithm ends when the minimal value of
the objective function or the maximum number of iterations is attained. We use the
NiaPy library (https://niapy.org/en/stable/) to implement PSO on the extracted DWT
features of variable length (DWT-150, DWT-250, DWT-350, and DWT-500). The
initial population size is set at 50, and the number of iterations is set to 100. The
fitness of each solution is evaluated using the k-nearest neighbor (k-NN) algorithm
using a continuous tenfold cross-validation process.

2.4 Network Architecture

In this research study, a new deep-CNNs model architecture is proposed to identify
the predominant instruments in polyphonic music, as shown in Fig. 3. The inputs
to the network are fed through two different pathways: one for MFCCs and Mel-
spectrograms, and the other for DWT-based statistical features. The former employs a
succession of convolutional blocks, whereas the latter uses a dense layer. We employ
five convolutional blocks in total with convolutional layer filters rising from 16 to 256
by a factor of 2. Each convolutional block has two convolutional layers, a layer for
batch normalization, a layer for maximum pooling, and a dropout layer with a dropout
rate of 0.25. The batch normalization layer offers regularization while the dropout
layer prevents overfitting. Each convolutional layer uses a 3×3 kernel of stride 1 with
equal padding and ReLU as the activation function [30]. The max-pooling layer, in
contrast, uses a 2×2 kernel of stride of 2. However, the final convolutional block lacks
the max pooling layer for preserving the dimensionality of the input to the subsequent
layer. To flatten the output of the last convolutional block, a global average pooling
(GAP) layer is added after the dropout layer. The first path results in a 256-feature
dimension output across a global average pooling (GAP) layer, whereas the second
path results in a 64-feature dimension output across a dense layer. These two outputs
are then concatenated to provide an output feature dimension of 320 (256+64). After
that, the concatenated output of feature dimension 320 is passed over two dense layers.
A dropout layer with a dropout rate of 0.5 follows the first dense layer, which has 512
units, and a batch normalization and a dropout layer with a dropout rate of 0.5 follow
the second dense layer, which has 256 units. ReLU acts as the activation function
for these two fully connected layers. Finally, the prediction output is produced by the
dense output layer with 11 units using SoftMax as the activation function. Table 2
depicts the input dimensions and parameter values in each layer for the proposed
network architecture.

https://niapy.org/en/stable/
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Fig. 3 Schematic of the proposed deep-CNNs model architecture
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Table 2 Proposed deep-CNNs network architecture description

Input 1 Input 2

Input dimension Description Input dimension Description

44 × 148 × 1 Fusion of Mel-spectrogram and MFCC 250 DWT features

44 × 148 × 16 3 × 3 convolution, 16 filters 64 Dense

44 × 148 × 16 3 × 3 convolution, 16 filters

44 × 148 × 16 Batch normalization

22 × 74 × 16 2 × 2 max-pooling

22 × 74 × 16 Dropout (0.25)

22 × 74 × 32 3 × 3 convolution, 32 filters

22 × 74 × 32 3 × 3 convolution, 32 filters

22 × 74 × 32 Batch normalization

11 × 37 × 32 2 × 2 max-pooling

11 × 37 × 32 Dropout (0.25)

11 × 37 × 64 3 × 3 convolution, 64 filters

11 × 37 × 64 3 × 3 convolution, 64 filters

11 × 37 × 64 Batch normalization

5 × 18 × 64 2 × 2 max-pooling

5 × 18 × 64 Dropout (0.25)

5 × 18 × 128 3 × 3 convolution, 128 filters

5 × 18 × 128 3 × 3 convolution, 128 filters

5 × 18 × 128 Batch normalization

2 × 9 × 128 2 × 2 max-pooling

2 × 9 × 128 Dropout (0.25)

2 × 9 × 256 3 × 3 convolution, 256 filters

2 × 9 × 256 3 × 3 convolution, 256 filters

2 × 9 × 256 Batch normalization

2 × 9 × 256 Dropout (0.25)

256 Global average pooling

Concatenation of input 1 and input 2

Input dimension Description

320 Concatenation

512 Dense

512 Dropout (0.5)

256 Dense

256 Batch normalization

256 Dropout (0.5)

11 Dense, SoftMax



Circuits, Systems, and Signal Processing (2024) 43:4239–4271 4251

2.5 Training Configuration

We train the proposed network like [17] by utilizing categorical cross-entropy as a loss
function and Adam as an optimizer. Additionally, the ReduceLROnPlateau call-back
from Keras (https://keras.io/api/callbacks/reduce_lr_on_plateau/) is used to reduce
the learning rate by a predetermined amount if a desired metric doesn’t improve after
a set number of epochs. For this, an initial learning rate of 0.01 is used, and if the
validation loss does not decrease continuously for 7 consecutive epochs, the learning
rate is reduced by a factor of 0.5. The minimum learning rate is set at 0.00005, while
the batch size is set at 128. Since the training data audio files are each 3.0 s long, we
experiment with a variety of analysis window sizes of 0.5 s, 1.0 s, 1.5 s, and 3.0 s and
obtain 1.0 s as the idealwindow size, like [17], regardless of the identification threshold
0.55. The original 3.0 s training data audio files are segmented without overlapping
using an optimal window size of 1.0 s and applied the same label to each segmented
chunk. The validation set is developed using 15% of the training dataset, and Keras’
early stopping call-back is utilized to halt training if validation loss does not decrease
for 20 epochs. Using the Glorot uniform initializer, the weights are initialized for the
dense and convolutional layers, respectively [14].

3 System Evaluation

This section provides an overview of the system evaluation by initially describing
the IRMAS dataset. The testing configuration and performance evaluation are then
discussed.

3.1 IRMAS Dataset

The IRMAS dataset [5] contains stereo musical recordings with a 44.1 kHz sample
rate. The dataset containsmultiple classes of instruments, and in each instrument class,
the audio files comprise music from a variety of production styles and performers. The
audio files are annotated with predominant instruments present and aremeant to train a
classifier for the recognition of predominant instruments such as Organ (org), Clarinet
(cla), Trumpet (tru), Cello (cel), Acoustic guitar (acg), Violin (vio), Piano (pia), Flute
(flu), Electric guitar (elg), Saxophone (sax), and Human voice (voi). The IRMAS
dataset has already been divided into distinct train and test datasets. The training
dataset consists of 6705 stereo audio recordings, each of duration 3s, that were taken
from more than 2000 different recordings. These audio recordings are single-labeled
with a single predominant instrument. The testing dataset consists of 4917 stereo
audio recordings with a varied duration between 5 and 20s. These audio recordings
are multi-labeled and cover 1-5 instrument labels per sample. Both the training and
testing datasets on the IRMAS dataset have highly uneven instrument distributions.
To conduct fair comparisons with [17], 15% of the training dataset is utilized for
developing a validation set. The test dataset is split into two halves, the development
set, and the pure test set with no correlation between them. The development set is

https://keras.io/api/callbacks/reduce_lr_on_plateau/
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used to identify the optimal model hyperparameters, while the pure test set is used for
model evaluation.

3.2 Testing Configuration

The IMRAS test dataset consists of audio snippets of various lengths. As a result, we
split the test dataset samples into segments of 1.0 s each to manage these variable-
length inputs, much like [17]. The proposed CNNmodel is trained on 1.0 s segmented
audio files of the train dataset and the SoftMax probabilities of individual instruments
in each segment, for each file in the test dataset, are then predicted using the trained
model. Then, for each distinct audio file, we compute a class-wise average of these
probabilities across all the segments. We next divide the class-wise aggregate proba-
bilities by the highest probability found among the segments to normalize it. The final
forecast is then made using a threshold value. The instruments that have an aggregated
probability higher than the selected threshold value are regarded as the predominant
instruments. For choosing the ideal threshold, a range of threshold values between
0.2 and 0.8 is experimented, and an optimal threshold value of 0.55 is selected, as
obtained the same described in [17].

3.3 Performance Evaluation

Using straightforward metrics like accuracy to evaluate performance may lead to
inaccurate results since the IRMAS dataset comprises an uneven number of instances
for each instrument class and the individual audio file contains a variable number
of annotations. Therefore, the proposed CNN model performance is assessed using
advanced metrics like the micro and macro average-based F1-score [5, 10, 11, 17, 53]
as follows:

Pmacro = 1

N

N∑
n=1

tpn
tpn + f pn

(15)

Pmicro =
∑N

n=1 tpn∑N
n=1 (tpn + f pn)

(16)

Rmacro = 1

N

N∑
n=1

tpn
tpn + f nn

(17)

Rmicro =
∑N

n=1 tpn∑N
n=1 (tpn + f nn)

(18)

F1macro = 2PmacroRmacro

Pmacro + Rmacro
(19)

F1micro = 2PmicroRmicro

Pmicro + Rmicro
(20)
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where N is the total number of classes, n is the class index, and tpn , f pn , and f nn
are the respective numbers of true positives, false positives, and false negatives for a
specific class with index n.

4 Experimental Results and Discussion

4.1 Ablation Study forWavelet and Coefficients-Level Selection

In this work, we conducted an ablation study to select the appropriate wavelet or
wavelets from the list of wavelets shown in Table 1 and the level of signal decom-
position to compute the appropriate number of DWT coefficients without taking the
PSO into account to improve the performance of the proposed model for the task
of predominant instrument recognition in polyphonic music. The model performance
was examined while considering distinct wavelet types with different levels of signal
decomposition, and the results are shown in Tables 3, 4, 5, 6, 7, 8, and 9. From the
obtained investigation results, it is apparent that when five levels of signal decom-
position are considered, the model performs better for each type of wavelet. So, we
resumed our investigation into the model’s performance, combining multiple wavelet
types at random with five levels of signal decomposition, and the findings are dis-
played in Table 10. According to the findings of the experimental studies on ablation
presented in Tables 3, 4, 5, 6, 7, 8, 9, and 10, it is recommended that these seven
wavelet types be considered collectively to enhance the model performance while
extracting six DWT coefficients: cD1, cD2, cD3, cD4, cD5, and cA5 spanning five
levels of signal decomposition, as shown in Table 11. The maximum predicted values
obtained through experimentation have been highlighted in bold in the Tables 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, and 13.

4.2 ProposedModel Performance Analysis

Our proposed CNNmodel architecture differs from the benchmark Han’s CNNmodel
[17] in a few key aspects. A five-convolutional-block design is used rather than the
four-convolutional-block architecture adopted in [17]. The proposed architecture also
includes batch normalization layers and the ReduceLROnPlateau call-back function.
Additionally, rather than using the global max pooling layer, we utilize the global
average pooling (GAP) layer. Experiments are conducted to show the efficacy of the
proposed CNN model architecture. We train the model with early stopping for 150
epochs [35]. It is illustrated that changing the model architecture and using a multiple-
feature fusion of Mel-spectrogram, MFCC, and statistical features extracted from
DWT with PSO, a feature selection algorithm for removing irrelevant features, can
improve the network performance. Figures 4 and 5 display the visual representation of
Mel-spectrogram, MFCC, and DWT coefficients cD1, cD2, cD3, cD4, cD5, and cA5
up to level five considering one mother wavelet from seven distinct wavelet types for
1.0 s normalized audio clip featuring Cello as the lead instrument. A new CNNmodel
architecture is proposed withMel-spectrogram,MFCC features as input to deep-CNN
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(Proposed-CNN) which is the modified version of the benchmark Han’s CNN model,
without considering the DWT features. Then, using PSO as a feature selector, the
DWT features of varied dimensions, including DWT-150, DWT-250, DWT-350, and
DWT-500, are employed as the second input features to the proposed CNN architec-
ture. We consider Han’s CNN model [17], which received a score of 0.619 and 0.513
for micro and macro F1 measures, respectively, as a benchmark for the model perfor-
mance comparison. Table 12 summarizes the overall recognition performance of each
proposed model in terms of model type, input feature dimension, and micro–macro
measurement metrics (scores) in comparison to Han’s CNN model. Further, Table 12
shows that all our proposed models: CNN, CNN+DWT (150), CNN+DWT (250),
CNN+DWT (350), and CNN+DWT (500) -perform better than Han’s CNN model.
Additionally, it is inferred that the proposed-CNN+DWT (250) model performs the
best among all the models, outperforming Han’s CNNmodel [17] the most, achieving
F1 measures for micro and macro as 0.695 and 0.631, which are 12.28% and 23.0%
greater than Han’s CNN model outcomes. The bar chart in Fig. 6 illustrates the same.

4.3 Instrument-Wise Performance Analysis

In this part, we analyze the instrument-wise performance of our proposed models,
CNN, CNN+DWT (150), CNN+DWT (250), CNN+DWT (350), and CNN+DWT
(500), in comparison to Han’s CNN model as a benchmark, using micro and macro
precision, recall, and F1 measures, as shown in Table 13. Table 13 shows that there
is some variation in the recognition performance on the IRMAS dataset based on the
type of instrument. The lowest scores of all the instruments across all the models are
found for the cello and clarinet. This is primarily because both classes have much
fewer data samples than the other instrument classes. However, despite the limited
data available on flute class, it offers good recognition performance. This is explained
by the fact that a flute has a very distinctive spectral pattern. As a result, the model
can clearly distinguish the flute class from the other classes, leading to a successful
performance evaluation for the flute class. Additionally, out of all themodels, the voice
class has the greatest F1 score. This is explained by the fact that the human voice
produces recognizable inharmonic rhythms that make it easy to distinguish from other
instruments. The voice class also has the highest data samples on the IRMAS dataset,
which can be another factor. Other instruments perform only moderately. Table 13
clearly shows that our proposed CNN+DWT (250) model outperforms the benchmark
Han et al. CNN model [17] for identifying the predominant instrument in polyphonic
music. The bar chart in Fig. 7 serves as an illustration of the same.
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Fig. 4 Visualizations ofMel-spectrogram (topfigure) andMFCC (bottomfigure) for one-second normalized
audio clip featuring Cello as the lead instrument

4.4 Comparison to ExistingModel Algorithms

Table 14 compares the overall performance of several existing model algorithms with
our proposed model algorithm CNN+DWT (250) for the task of identifying the pre-
dominant instrument in polyphonic music on the IRMAS dataset. Bosch et al. [5]
used the framewise mean and variance statistics of typical hand-crafted timbral audio
features to train their proposed SVM model algorithm on a flexible audio source
separation framework (FASST) and reported 0.50 and 0.43 for micro and macro F1
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Fig. 5 Visualizations of six DWT coefficients (cD1, cD2, cD3, cD4, cD5, and cA5) taken from a single
wavelet from each distinct wavelet type for one-second normalized audio clip featuring Cello as the lead
instrument
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Fig. 6 Comparison of performance between the benchmark Han’s CNN model architecture (Han-CNN)
[17] and the proposed CNNmodel architectures: CNN, CNN+DWT (150), CNN+DWT (250), CNN+DWT
(350), and CNN+DWT (500) based on micro and macro scores

measures, respectively. The benchmark Han et al. model [17] addressed a deep-CNN
model algorithm for the predominant instrument recognition in polyphonic music
with Mel-spectrogram feature as input to their model and reported improvements in
both micro and macro F1 measures as 0.619 and 0.513, respectively. Pons et al. [34]
adopted Han’s CNN model [17] with a novel algorithm design that successfully cap-
tures the required audio timbre information and reported 0.589 and 0.516 for micro
and macro F1 measures, respectively. Yu et al. [53] proposed a deep-CNNmodel with
an auxiliary classification algorithm to make their model learn the varied instrument
classes through a multitask learning approach and reported 0.685 and 0.597 for micro
and macro F1measures, respectively. Raghunath et al. [39] explored one transformer-
based algorithm on an ensemble of tempogram, modgd-gram, and Mel-spectrogram
visual representations for the detection of several dominant instruments in polyphonic
music. Their model algorithm obtained 0.66 and 0.62 for micro and macro F1 mea-
sures, respectively. After experimenting with several fusion algorithms, Lekshmi et
al. [24] addressed a late fusion algorithm that received 0.69 and 0.62 for micro and
macro F1measures, respectively.We proposed a new deep-CNNsmodel architecture,
CNN+DWT (250), which employs a feature fusion of Mel-spectrogram, MFCC, and
statistical features extracted from DWT as model inputs. The experimental outcomes
show that our proposed model algorithm surpasses all other model algorithms, achiev-
ing 0.695 and 0.631 formicro andmacro F1measures, respectively, for the recognition
of the predominant instrument in polyphonic music on the IRMAS dataset.
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Fig. 7 Instrument-wise performance analysis for the proposed model CNN+DWT (250)

Table 14 Comparison of proposed model performance with various existing model algorithms on IRMAS
dataset

Sl. no. Model algorithm Micro F1 Macro F1

1 Bosh et al. [5] 0.50 0.43

2 Han et al. [17] 0.619 0.513

3 Pons et al. [34] 0.589 0.516

4 Yu et al. [53] 0.685 0.597

5 Reghunath et al. [39] 0.66 0.62

6 Lekshmi et al. [24] 0.69 0.62

7 Proposed-CNN + DWT (250) 0.695 0.631

Performance of the proposed model is emphasized

5 Conclusion

In this article, we proposed a new multi-input deep-CNNs model architecture for the
recognition of predominant musical instruments in polyphonic music. A fusion of
Mel-spectrogram and MFCC features was used as the first input, and a concatenation
of statistical features extracted from decomposed signals obtained through DWT was
used as the second input to the proposed deep-CNNs model. Using PSO, a feature
selection algorithm, the feature dimensionality was reduced by excluding the irrele-
vant features. All our proposed models were experimentally evaluated on the IRMAS
dataset. In experimental work, the fixed-length, single-labeled train data was used for
model training, whereas the variable-length, multi-labeled test data was utilized for
model evaluation. By using the final proposed model CNN+DWT (250), we were able
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to outperform the benchmark Han et al. CNN model architecture [17] by 12.28% and
23.0%, reaching the F1measures formicro andmacro as 0.695 and0.631, respectively.
Therefore, it can be hypothesized that using DWT-based features along with percep-
tually informed features, like Mel-spectrogram and MFCC, as input to deep-CNNs
will result in a more performance-effective representation for the task of predomi-
nant instrument recognition in polyphonic music than doing so with just perceptually
informed features. However, we think that integrating transformer models [37] with
our proposed CNN+DWT (250) model would lead to better outcomes for this task.
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