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Abstract
We propose a full processing pipeline to acquire anthropometric measurements from 3D measurements. The first stage of our
pipeline is a commercial point cloud scanner. In the second stage, a pre-defined body model is fitted to the captured point
cloud. We have generated one male and one female model from the SMPL library. The fitting process is based on non-rigid
iterative closest point algorithm that minimizes overall energy of point distance and local stiffness energy terms. In the third
stage, we measure multiple circumference paths on the fitted model surface and use a nonlinear regressor to provide the
final estimates of anthropometric measurements. We scanned 194 male and 181 female subjects, and the proposed pipeline
provides mean absolute errors from 2.5 to 16.0 mm depending on the anthropometric measurement.

Keywords Anthropometric measurement · 3D body model · Non-rigid ICP

1 Introduction

Anthropometricmeasurements, such as chest andhip circum-
ference or shoulder-to-shoulder distance, provide detailed
information about the body shape. The body shape infor-
mation is essential for industrial design [18], clothing
design [8], medical sciences [16] and ergonomics [19].
The measurements have traditionally been made man-
ually from physical subject using a tape measure, but
the raise of online shopping and personalized tools set
new demand for computerized anthropometric measure-
ments.

A standard pipeline for computerized anthropometric
measurements is the following [3,7,10,25–27]: (1) a 2D
or 3D body scan producing a 3D point cloud or an ini-
tial model, (2) fitting of a pre-defined model and (3)
measurements from the fitted model. The main challenge
is the step two which should provide an accurate and
watertight volumetric model of a subject so that impor-
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tant measurements can be made on the model surface.
Challenges arise from different sensor modalities, poses
and occluded regions. The proposed method in this work
shares the main steps of the standard pipeline (Fig. 1),
but instead of physiologically valid model fit, we adopt a
non-rigid iterative closest point (ICP) registration between
the model and captured point clouds. Moreover, we do not
make anthropometric measurements directly from the fitted
model surface, but extract a set of physiologically mean-
ingful surface features (body circumferences) and use them
to train a regressor that provides estimates of the physi-
cal anthropometric measurements. Our main contributions
are:

– A full processing pipeline from 3D body scans to anthro-
pometric measurements.

– The body model registration step using a non-rigid ICP
to fit a pre-defined model to captured body scans.

– Nonlinear regression based anthropometricmeasurement
estimation step from circumference based intermediate
features.

– A public benchmark dataset—NOMO3D—with anthro-
pometric measurement ground truth.

Our pipeline is evaluated with the NOMO3D dataset of real
male and female subjects (194plus 181) forwhichweprovide
average accuracy and percentage of subjects whose accuracy
is below the thresholds in [9].
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Fig. 1 The proposed pipeline for measuring anthropometric clothing
measurements from 3D body scans. A 3D point cloud is produced by
a set of depth sensors (body scanner). A body template is fitted (reg-
istered) to the 3D point cloud (step-2); circumference measurements

are computed on the model surface (step-3); supervised regression is
adopted to provide estimates of anthropometric measurements (step-4)

2 Related work

Anthropometric measurement datasets There have been
several campaigns to collect 3D body scans and anthro-
pometry ground truth for them. For example, the UMTRI
dataset was collected to find the safest sitting posture of
young children in cars [12]. ANSUR 88 (1988) and ANSUR
2012 datasets contain 3D body scans and tape measured
anthropometric measurements of US Army Force soldiers.
ANSUR 2012 contains 4082 male and 1986 female subjects
of varying age and 93 ground truth anthropometric measure-
ments for each of them. Unfortunately, UMTRI and ANSUR
datasets are not publicly available. CAESAR dataset [21] is
a commercial counterpart of ANSUR and contains 3D scans
of 2400 US & Canadian and 2000 European civilians with
tape measured ground truth. CAESAR (http://store.sae.org/
caesar/) has been used in various scientific works but has
not been widely adopted in benchmarking due to its price.
The main usage of UMTRI, ANSUR and CAESAR datasets
is to make “virtual tape measurements” on the point cloud
surface. In the follow-up work of the CAESAR, Robinette
and Daanen [20] compared virtual tape measurements over
two different scanners and scanning teams and showed that
measurements are highly reproducible within the US Army
defined error limits (cf. ANSURexperiments). Reproducibil-
ity error in their experiments was less than ±5 mm for the
most measurements. However, these were relative accuracies
over repeated tests. Simmons and Istook [23] noted that there

is substantial variation in available softwares how to mea-
sure anthropometric measurements from 3D data. Paquette
et al. [17] demonstrated much larger errors for 3D mea-
surements as compared to manual tape measurements. They
reported systematic errors of up to 30–40mmdespite the fact
that standard measurement procedures were implemented to
the softwares (ISO-8559 and US Army).

3DHuman bodymodels The early works following the data
campaigns abovewere based on “virtual tapemeasurements”
where the anthropometric measurements were made manu-
ally with the help of 3D measurement software. If this step
needs to be automated, then 3D scan data need to be aligned
with a model for which the measurement paths can be pre-
defined using 3D model vertex ids. However, first a good 3D
human body model needs to be devised. The model should
contain intuitive parameterization for shape and pose and
provide realistic body shapes. There are several options for
scientific work. The most popular parametric body model is
MakeHuman which is an open source project (http://www.
makehuman.org/) based on an artistic body model and aim-
ing at high quality rendering for games and movies.

However, better models are based on statistics of real
human data. These require a single artist made initial point
model which is iteratively matched to scanned point clouds
in a normalized pose. Principal component analysis (PCA)
over the matched model points provides natural parameteri-
zation for the shape. The pose can be intuitively defined by
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a skeleton joint model, but the final quality depends on how
well the model can represent pose-specific shape deforma-
tions. One of the first attempts to create a 3D human body
fromPCA shape and skeleton pose is the SCAPEbodymodel
by Anguelov et al. [2]. Hirshberg et al. [11] proposed a better
parametric bodymodel for SCAPEand introduced theBlend-
SCAPE model. Other attempts are by Baek and Lee [3] and
more recently the SMPL model by Loper et al. [15]. SMPL
provides high-quality models where the shape is divided
to pose invariant and pose-dependent deformations and the
model parameters are optimized using a combination of their
own dataset of 1786 scans and 3800 scans from CAESAR.
For this work, we adopt the SMPL model due to its good
overall quality.

Computerized anthropometric measurements There have
been several attempts to infer 3D bodymodels from 2DRGB
images. For example, Guan et al. [10] proposed amethod and
compared their measurements to the ground truth. However,
for many industrial and commercial applications, the accu-
racy of 2D measurements is insufficient. For better accuracy,
3D scans are needed.

Weiss et al. [26] propose a Kinect-based 3D body scan
method that uses the SCAPE body model. The method
requires manual pose initialization and then optimizes the
model mesh using a standard ICP. Tsoli et al. [25] propose
a pipeline that is similar to ours. They use the BlendSCAPE
model to register a 3D scan, and then, they compute vari-
ous local and global features which are used in regression. A
different approach was proposed by Zuffi et al. [32] in their
“stitched puppet” model where the body model is divided to
local templates where “local PCA” matching is performed
and then the local parts are globally aligned in the next opti-
mization step.Wuhrer et al. [27] introduce an inverse problem
of ours where a 3D body model is estimated from the given
1D anthropometric measurements.

The above works particularly address the problem of
unknown pose. However, we believe that a fixed pose can
be assumed for many applications since customers can be
assumed co-operative. Therefore, the process can be drasti-
cally simplified and provide accurate results.

3 3D body scanning

Recently, novel single depth sensor-based body scanning
approaches have been proposed, for example, BodyFu-
sion [28] and DoubleFusion [29], but since 3D scanning
is out of the scope of this work, a commercial 3D body
scanner was used. Our dataset was collected using a com-
mercial TC2 body scanner (https://www.tc2.com) that uses
off-the-shelf depth sensors (Intel RealSense R200). Inside
the scanner, subjects were instructed to step on the rotating

Fig. 2 A 3D body scan (point cloud) captured by TC2 body scanner.
The scanner covers most of the body surface and missing parts occur
only in the head and feet regions

platform and take a standing pose with the feet at around
their shoulder width apart and the arms slightly raised to
create a gap between the arms and torso. The platform then
rotates around once, during which three depth sensors pro-
duce a raw 3D scan of the customer, and the process takes
a few seconds (Fig. 2). The test subjects wore tight fitting
underwear-like sport costumes. The scanner outputs a tri-
angulated mesh structure in the regular OBJ file format.
Each triangulated mesh contains on average 57,000 vertices
and around 113,000 faces. For our experimental studies, we
scanned 194 men and 181 women. Scanned persons were
instructed to wear tight underwear.

4 Model registration

4.1 SMPL bodymodel

The popular 3D human body models MakeHuman, SCAPE
[2],BlendSCAPE[11] andSMPL[15] (seeSect. 2 for details)
share similar model parameterization {T ,S, θ} where T is
the initialmodel in a “canonical shape” and “canonical pose,”
S defines the shape deformation and θ defines the pose. Pose
parameterization is intuitive and typically based on a skeleton
rig of K skeleton joints. A pose is encoded to the 3D rotation
angles of K joints in θ . Each vertex location in T is relative
to a specific skeleton part or parts, and therefore, the whole
point cloud deforms. Parameterization of the shape is more
difficult to model since parameters need to capture shape
statistics of the human population. The standard approach is
to use principal component analysis (PCA) where principal
components represent the most important axes of variation
in the population. In the PCA space, any shape can be recon-
structed by linearly adding |β| principal directions to a mean
shape T (the zero shape):
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Fig. 3 We adopted the skinned multi-person linear model (SMPL) [15]
for our framework since it provides intuitive model parameterization
and high-quality models. A SMPL model in its canonical (zero-pose)
position (left) and the model in the initial position that corresponds to
the instructed pose in our body scans (right)

T + B(β) = T +
|β|∑

n=1

βnSn . (1)

Often as few as |β| = 10, principal component vectors pro-
vide sufficient accuracy for applications where subtle details
are not important. For our work, we selected the skinned
multi-person linear model (SMPL) by Loper et al. [15] since
it provides very competitive accuracy and the original imple-
mentation is publicly available.

SMPL mesh model contains N = 6890 vertices (13,766
faces) and K = 23 skeleton joints. The mesh has the same
topology for men and women, spatially varying resolution,
a clean quad structure, segmentation into parts, initial blend
weights and a skeletal rig. A particular detail that makes
SMPL registration more accurate than its competitors is that
it divides the shape deformation to pose-independent defor-
mation BS(β) and pose-specific deformation BP(θ) which
are summed to define the final shape. Notably, the shape
deformation parameters are also used to predict the rotations
of the K = 23 skeleton joints J (β) : R

|β| → R
3K . We

re-defined the SMPL zero-pose to correspond to the pose
subjects were instructed to take (Fig. 3).

4.2 Non-rigid ICP registration

The goal of the body model registration to the scanned
point cloud is to provide “skin-level registration” where the
two surfaces, themodel and the scan, overlay almost perfectly
(Fig. 4). This is a challenging task since (a) points contain
measurement noise, (b) large point regions may be missing
and (c) the model points do not exactly match the scan point
locations. To make the final anthropometric measurements
accurate in the next processing stage, we need a registration

Fig. 4 A scanned point cloud contains holes and measurement noise,
but registration of the 3D body model (red) is robust to these distortions
and achieves an accurate—“skin level”—registration which is essential
for accurate anthropometricmeasurements in the next stage (color figure
online)

method that is accurate and robust to the aforementioned
non-idealities.

A core component in constructing the SCAPE, Blend-
SCAPE and SMPL datasets is an artistic-generated point
model and an algorithm to register the model to real human
scans.However, these algorithmsperformcomplexoptimiza-
tion and must be manually initialized. Therefore, the artistic
models and special algorithms have not been used outside
body model generation. However, the final body models,
SCAPE, BlendSCAPE and SMPL, provide intuitive param-
eterization as discussed in Sect. 4.1 and registration can be
defined as an optimization problem where a few pose and
shape parameters {S, θ} are optimized to minimize a regis-
tration error. Skin-level registration requires a large number
of PCA components for the shape, and therefore, we take an
alternative approach from the generic point cloud matching
literature.

Several comparison of generic registration methods exist.
For example, Bogo et al. [4] introduced the FAUST dataset
for comparing non-rigid registration methods. In their exper-
iments, several popular methods, e.g., generalized multi-
dimensional scaling (GMDS) [5], Möbius voting [14] and
blended intrinsic maps (BIM) [13], did not perform well
since these methods assume that both inputs are watertight
and have the same topology. However, the baseline point
cloud matching method, iterative closest point (ICP), does
not require such assumptions.
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There are two extensions of the baseline ICP that are suit-
able for human body point clouds: Amberg et al. [1] and
Schneider et al. [22]. Since the 3D scans often contain holes
(Fig. 2),we adopted theAmberg et al. approach that explicitly
handles missing points. The challenge is twofold—we want
to retain the global convergence properties of ICP while still
allow local deformations to the skin level. Local deforma-
tions make this ICP non-rigid.

The starting point of our algorithm is a pre-aligned model
defined by {T , βi , θk}i=1,...,|β|,k=1,...,K that brings the SMPL
template to approximate correspondence with the obtained
scan point cloud Tscan. A simple procedure for pre-alignment
is described in Sect. 4.3. If we define the pre-alignedmodel as
V , then the problem is to find optimal values for the alignment
parameters X so that V(X ) registers the template points to
the surface points Tscan.

To solve the optimal parameters X , an energy function of
three terms is defined [1]:

E(X ) = Ed(X ) + αEs(X ) + βEl(X ) . (2)

Ed is the standard ICP distance term between the model and
scan points

Ed(X ) =
∑

vi∈V
widist

2 (Tscan,Xivi ) (3)

where Xi is a linear mapping of a single model vertex vi to
correspondence in Tscan. wi defines whether a model point
has a correspondence in scan (wi = 1) or not (wi = 0). Es

is a local stiffness term

Es(X ) =
∑

i∈N j

‖(Xi − X j )diag(1, 1, 1, γ )‖2F (4)

where ‖·‖2F is the matrix Frobenius norm. The stiffness term
enforces similar transformations between neighbor vertices
N j of the model vertex v j . γ is used to weight differences
in the rotational and skew part of the deformation against the
translations part of the deformation (γ = 1 in the experi-
ments). The third energy term is a landmark term

El(X ) =
∑

vi ,l∈L
‖Xivi − l‖2 . (5)

The landmarks L are pre-defined and important positions
in the model and this term enforces them to be registered
accurately. The landmark term improves registration signif-
icantly, but requires manual labeling of selected keypoints
and is therefore omitted in our experiments.

The algorithm in [1] uses locally affine regularization
which assigns an affine transformation to each vertex and

minimizes the difference in the transformation of neighbor-
ing vertices. The deformation parameters X , which would
be applied on source vertices to generate the target surface
deformation, are obtained by minimizing the cost function
in Eq. 6 directly and exactly.

Ē(X ) =
∥∥∥∥∥∥

⎡

⎣
αM ⊗ G
WD
βDL

⎤

⎦X −
⎡

⎣
0

WU
U L

⎤

⎦

∥∥∥∥∥∥

2

F

= ‖AX − B‖2F

. (6)

The cost function Ē(X ) takes its minimum at X =
(ATA−1)ATB. In the above equation, M is the node-
arc incidence matrix of the template mesh topology, and
G := diag(1, 1, 1, γ ) is a weighting matrix, W :=
diag(w1, . . . , wn) represents the weighting matrix in which
wi = 0 if template vertices vi corresponds to missing data
in the target mesh and n represents the number of template
vertices, D is the sparse matrix of template vertices mapping
the 4n × 3 deformation parameters X , U is the matrix of the
correspondence points on the target mesh, DL and U L are
the pre-defined landmarks on the template mesh and their
correspondence points on the target mesh, respectively, the
Kronecker product is denoted by ⊗. α and β are the penalty
terms that balance the two corresponding energy functions
with respect to the standard ICP term Ed .

The whole registration process consists of two loops.
In the outer loop, a series of deformations of the tem-
plate are performed for each stiffness αi ∈ {α1, . . . , αn},
where αi > αi+1. These α values guarantee the registra-
tion process from a global deformation to more localized
ones. In our experiments, α values are set to from 100 to
1 by step size 1. In the inner loop, a deformation X for a
fixed stiffness term αi and preliminary correspondences is
found. Preliminary correspondences are found by a nearest
point search. The optimal deformationX is determined until
||X j − X j−1|| < ε, where ε is the threshold.

4.3 Pre-alignment and initialization procedures

A simple pre-alignment procedure is performed before
non-rigid ICP registration. Generally, the mis-alignment of
registration is partly raised bywrong scales, face orientations,
the different center points of subjects. To depreciate it, first,
we scale all scans into the same unit of measurement (meter)
as the SMPLmodel meshes; we then rotate all scans to make
sure that they face the same direction. Compared to the pre-
vious works which adopt the mean coordinate of vertices as
the center points and align all meshes into the same center
point, we additionally align all samples into the same lowest
point (Z -axis). The center points change dramatically since
the missing parts on scans and bring negative effects on reg-
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istration. A standard point (x, y, 0) is employed as the lowest
point for all meshes. After the pre-alignment procedure, all
scans and the SMPL models are standing on the X–Y plane
and facing to Y -axis direction with the same scale.

The height of the SMPL model is controlled by the first
shape parameter β1. To obtain a suitable initial value for
β1, we utilize a simple linear function over the heights of
the training set scans to estimate the parameter β̂1 ≈ β1.
To initialize the pose parameters, we start from the pose θ

(on the right in Fig. 3) and iteratively test a number of arm
angle shifts to match with the target scan. These initialization
procedures aid convergence and improve accuracy, but their
effect is not significant.

5 Anthropometric measurements

Theproposedpipeline outputs estimates of the target physical
anthropometric measurements from a fitted model (Sect. 4)
by first calculating circumference paths through the model
points (Sect. 5.1) and then estimating the physical mea-
surements from the path distances by nonlinear regression
(Sect. 5.2).

5.1 Surfacemeasurements

The registration process brings two main benefits: (a) it
produces a hole-free mesh without missing body parts and
reduces the point cloud noise; and (b) registered meshes of
all subjects are in the same topology that facilitates finding
the corresponding vertices of the pre-defined circumference
paths.

For each anthropometric measurement ti , we define a set
of surface circumference paths. The path lengths t (1)i ,…, t (C)

i
are used as features for regression. The paths are defined as
sets of vertices in the model Pc

i = {
vc1, v

c
2, . . . , v

c
m

}
. The

length of a circumference path is the sum of edge lengths
through the defined path (Fig. 5). The selected circumfer-
ence paths were not optimal, but manually set near the true
anthropometric measurement locations. It was assumed that
multiple paths provide extra robustness to shape deforma-
tions (see the ablation study in the experimental part of our
work).

5.2 Nonlinear regression

The purpose of a suitable regressor is to find a mapping f (·)
such that

f (Pi ) :
(
t (1)i , . . . , t (C)

i

)
�→ t̂i (7)

Path 1

Path 2

Path 3

Path 4

Fig. 5 Distances of circumference paths through mesh vertices of a
registered SMPL body model are used as features for regression. Multi-
ple paths (dotted red, green and blue lines) are used to estimate a single
anthropometric measurement. Example circumference paths: Path 1:
NaturalWAIST; Path 2: Hip; Path 3: Thigh; Path 4: Knee (color figure
online)

where t̂i is the estimate of the true anthropometric cloth-
ing measurement ti . The most straightforward solution is the
ordinary least squares (linear regression) which finds a solu-
tion ω = (ω0, ω1, . . . , ωC )T that minimizes the squared loss
over training subjects i

∑

i

(
ti − ωT t i

)2
(8)

where ti is a training set the ground truth value and t i =
(t (1)i , . . . , t (C)

i )T are the computed circumference path dis-
tances for this specific anthropometric measurement. Linear
regression with regularization (ridge regression) minimizes
the squared loss with a weight penalty term λ

∑

i

(
ti − ωT t i

)2 + λ||ω|| . (9)

There are alsomore advanced extensions of linear regression,
such as elastic net regression [31], and other learning-based
regressors such as support vector regression (SVR) [24]. We
compare several popular regression methods in our ablations
studies.
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6 Experiments

6.1 Dataset and settings

We collected a set of 3D scans using the commercial scanner
(Sect. 3). The dataset—NOMO3D—consists of 194male and
181 female scans. For each subject, a clothing expert (tailor)
made the actual anthropometric measurements (15 male and
19 female). All results are average performance over fivefold
cross-validation.

Method evaluation We employ the mean absolute error
(MAE) as the error metric between the ground truth and esti-
mated anthropometricmeasurements. For eachmeasurement
i , mean absolute error εi , over all subjects j was obtained as

εi = 1

| j |
| j |∑

j=1

∣∣∣t ( j)i − t̂ ( j)i

∣∣∣ . (10)

In addition to themeasurement-specificMAEs, we also com-
puted the averageMAEs over allmeasures.All numberswere
measured in millimeters (mm). Moreover, for each measure-
ment, we also report the proportion of the test samples for
which the accuracy was below the defined error limits in [9]
as Success rate.

Computational complexity The most time-consuming part
is the non-rigid ICP registration. Matlab code was adapted
from [1] and it runs approximately 2min on each scan. The
pre-alignment and initialization procedures are very fast, less
than a second, as well as the regression which is also com-
putationally fast.

6.2 Results

The average fivefold errors for each anthropometric mea-
surement and their accuracy thresholds and success rates are
shown inTable 1. In all cases, the number of surfacemeasure-
ments were optimized for each anthropometric measurement
and the best performing regressor (nonlinear SVR) was used.
For the both male and female subjects the best performing
measurement was neck circumference with 93% test cases
below the threshold (6 mm) for men and 81% for women.
The worst performing measure was ankle circumference for
which only 28% of male 24% of female success rates were
achieved.The error distributions for themale and female neck
and ankle circumferences and male chest and female natural
waist circumferences are shown in Fig. 6. The distributions
reveal that there exists a small amount of test samples with
a large error. It turned out that the main source of large esti-

mation errors yields from the body scanner that often misses
certain body parts. For example, feet regions often lack point
cloud pointswhichmakes the registration fail in these regions
(Fig. 7).

6.3 Ablation study

Number of circumference paths In the first ablation
study, we investigated the effect of adding multiple surface
measurements (circumference paths) to the anthropometric
regression. The results for three well and three poorly per-
forming measurements for the both male and female are
shown in Fig. 8. Results are for nonlinear SVR regressor
with fivefold cross-validation. The most important findings
are that additional paths always improve the accuracy and
depending on the measurement the results saturate at 3–
9 surface circumference paths. In particular, paths close to
the physical anthropometric measurement location strongly
contribute to the estimation accuracy. The best single paths
(C = 1) were also selected using cross-validation and the
resultswith andwithout SVRregression are shown inTable 1.
These results indicate that (i) the multi-path regression is
superior to single path regression and (ii) SVR significantly
improves the estimation performance.

Non-rigid ICP To validate the importance of non-rigid ICP,
we conducted an experiment where the SMPL model was
directly fitted to the point clouds. SMPL parameter optimiza-
tion was done using the popular L-BFGS-B optimizer [30].
Similar to the non-rigid ICP, the distance term Ed with the
normal direction constraints was used as the target function.
The stop criterion was set to 10−6 to keep the computation
times reasonable, and the same pre-alignment procedure was
adopted. The results are shown inTable 1 and are clearly infe-
rior to the proposed non-rigid ICP registration.

Regression methods We compared a number of publicly
available regression methods for the regression step. The
standard linear regressors were linear regression, stepwise
linear regression and ridge regression, and more recent
regression methods are elastic net linear regression, Gaus-
sian process regression (GPR), binary regression decision
tree (BRDT), linear support vector regression (SVR) and
Nonlinear SVR. The mean accuracy and success rates for
these methods are shown in Table 2. The results show
that even the basic linear regressors (linear regression,
ridge regression and stepwise linear regression) perform
well indicating that the proposed registration step performs
well. Nonlinear SVR and Gaussian process regression also
performwell. They are all safe choices for regressing anthro-
pometric measurements from surface measurements, but we
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Table 1 Average fivefold (80% for training and 20% for testing) performance (mean absolute error) and success rate (a proportion of the test
samples within the error limits in [9]) of anthropometric measurements

Measure Best single (C = 1) Best single+SVR L-BFGS-B+SVR Multiple paths+SVR Limit [9]

MAE (mm) % MAE (mm) % C MAE (mm) % C MAE (mm) % (mm)

Male

Ankle circ. 36.4 0 8.4 37.6 6 12.3 27.5 6 7.7 28.6 4

Bicep circ. 7.8 45.8 6.5 57.8 8 19.4 16.2 8 6.1 57.6 6

Calf circ. 6.9 41.2 4.0 70.3 6 17.7 16.8 6 3.0 82.2 5

Chest circ. 15.6 60.0 15.5 61.6 5 43.3 22.9 5 14.3 63.7 15

Elbow circ. 4.0 56.5 3.7 62.8 8 11.4 16.2 8 2.6 77.9 4

Hip circ. 9.2 71.7 9.3 75.4 4 32.6 22.9 4 8.8 73.3 12

Knee circ. 8.5 28.3 6.0 44.0 6 15.5 12.9 6 5.1 46.6 4

NaturalWaist circ. 15.8 49.0 13.2 57.3 4 50.0 15.6 4 12.8 57.6 12

NeckBase circ. 35.1 4.2 10.2 61.0 3 15.7 43.6 3 8.0 72.6 11

Neck circ. 3.0 92.1 3.0 91.1 4 16.3 22.4 4 2.5 93.7 6

Thigh circ. 10.6 31.4 10.5 32.5 8 27.9 16.8 8 7.9 48.7 6

TrouserWaist circ. 25.5 – 12.0 – 3 36.4 – 3 9.1 – –

Wrist circ. 7.2 43.2 5.2 57.8 6 6.6 49.2 6 4.5 67.2 5

Shoulder_to_shoulder 13.7 – 13.8 – 4 18.0 – 4 12.0 – –

Shoulder_to_wrist 40.3 – 14.7 – 6 27.3 – 6 12.7 – –

Avg. 16.0 43.6 9.1 59.1 23.4 23.6 7.8 64.1

Female

Ankle circ. 18.8 14.4 14.3 23.0 6 17.7 14.7 6 13.4 24.7 4

Bicep circ. 19.7 8.5 7.9 48.3 8 15.9 25.4 8 4.9 73.9 6

Calf circ. 7.3 37.4 3.8 70.7 6 18.0 19.8 6 3.0 82.8 5

Bust circ. 17.3 44.0 15.2 60.6 3 42.1 19.2 3 12.0 71.4 15

Elbow circ. 4.5 57.4 4.5 59.7 6 11.7 22.0 6 3.4 70.5 4

Hip circ. 18.7 26.3 8.9 70.9 4 37.0 21.5 4 8.9 71.4 12

Knee circ. 9.9 21.1 6.9 39.4 6 17.3 22.0 6 5.9 41.1 4

NaturalWaist circ. 13.7 55.7 12.8 56.3 5 41.0 16.4 5 12.0 59.7 12

NeckBase circ. 58.8 0.6 10.6 63.6 3 13.0 54.2 3 10.2 62.5 11

Neck circ. 6.3 67.1 5.5 74.0 5 13.4 32.2 5 4.8 81.5 6

Thigh circ. 10.1 35.8 9.7 39.2 8 29.9 13.6 8 7.9 46.3 6

TrouserWaist circ. 15.6 – 15.4 – 3 38.0 – 3 14.8 – –

Wrist circ. 6.0 49.1 5.0 59.4 8 6.9 40.7 8 4.4 65.7 5

UnderBust circ. 14.2 69.5 14.3 69.5 2 34.3 27.1 2 13.4 71.8 16

Shoulder_to_shoulder 26.5 – 13.8 – 4 17.9 – 4 12.7 – –

Shoulder_to_wrist 22.4 – 16.8 – 4 25.5 – 4 13.7 – –

Bust_to_bust 12.2 46.0 11.6 54.6 9 15.7 39.6 9 10.4 57.5 10

NeckSide_to_wrist 26.4 – 16.8 – 4 25.8 – 4 16.0 – –

NeckSide_to_bust 13.9 30.9 13.4 35.4 6 17.7 24.9 6 13.0 36.6 8

Avg. 17.0 37.6 10.9 55.0 23.1 26.2 9.7 61.2

Bold denote the best result among several methods
“C” denotes the number of circumference paths used in estimation. “best single” is the best single path performance. ”+SVR” uses SVR regression
for the estimates. “L-BFGS-B+SVR” uses the SMPL model fitted by the L-BFGS-B optimizer
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Measurement  Error [mm]

N
um

b
er

s
Male : 
     Ankle Circumference

Male : 
    Neck Circumference

Male : 
    Chest Circumference

Female : 
     Ankle Circumference

Female : 
    Neck Circumference

Female : 
    NaturalWaist Circ.

Fig. 6 Error distributions illustrating low, moderate and well per-
forming estimates. Top (male) : ankle circumference (low), chest
circumference (moderate), neck circumference (high); bottom (female) :

ankle circumference (low), natural waist circumference (moderate) and
neck circumference (high). The red vertical lines denote the acceptance
thresholds in [9] (color figure online)

Fig. 7 Two examples of registration failures due to missing points in
the scanned point clouds: scanned point cloud (left),model emphasizing
the ankle circumference location (middle) and output of the registration
process (right) that illustrates the failure cases (color figure online)

selected the nonlinear SVR due to its best overall perfor-
mance.

7 Conclusions

This work introduced a full processing pipeline for estimat-
ing physical anthropometric measurements from 3D body
scans. The pipeline consisted of a commercial 3D scanner, a
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Fig. 8 Test set errors (MAEs) as functions of the number of surface
measurements (circumference paths) for threewell performing (success
> 50%) (top) and three poorly performing (< 50%) anthropometric
measurements (bottom)
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Table 2 Average MAEs and success rates of several regression methods

Non-lin SVR Ridge reg. Lin reg. Stepw. reg. GPR ElasticNet BRDT Lin SVR

Male

7.81 64% 8.28 62% 8.32 62% 8.35 62% 8.33 62% 9.16 56% 10.94 52% 31.80 19%

Female

9.73 61% 10.55 57% 10.62 56% 10.54 58% 10.60 59% 12.05 50% 14.05 46% 28.72 23%

Bold denote the best result among several methods

deformable SMPL body model, non-rigid ICP-based model
registration, computation of circumference path features
and nonlinear regression for anthropometric measurement
estimation.Depending on themeasurement, our pipeline pro-
vided success rates from 28% to 93% for male and from 24
to 82% for female subjects. The proposed pipeline works in
practice and shows that an affordable scanning system can
be built for clothing industry.

In the future work, we will further investigate and refine
each step of the pipeline. For example, selection of better
surface features in addition to the circumference paths, fast-
to-compute alternatives for the slow ICPalgorithm (e.g.Chen
et al. [6]) and better scanners and scanning procedures.
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