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Abstract. Consider the following problem: Given k = 2q random lists of n-bit vec-
tors, L1, . . . ,Lk , each of length m, find x1 ∈ L1, . . . , xk ∈ Lk such that x1 +· · ·+xk =
0, where + is the XOR operation. This problem has applications in a number of ar-
eas, including cryptanalysis, coding theory, finding shortest lattice vectors, and learn-
ing theory. The so-called k-tree algorithm, due to Wagner, solves this problem in
Õ(2q+n/(q+1)) expected time provided the length m of the lists is large enough, specif-
ically if m ≥ 2n/(q+1).

In many applications, however, it is necessary to work with lists of smaller length,
where the above algorithm breaks down. In this paper we generalize the algorithm
to work for significantly smaller values of the list length m, all the way down to the
threshold value for which a solution exists with reasonable probability. Our algorithm
exhibits a tradeoff between the value of m and the running time. We also provide the
first rigorous bounds on the failure probability of both our algorithm and that of Wag-
ner.

As a third contribution, we give an extension of this algorithm to the case where the
vectors are not binary, but defined over an arbitrary finite field Fr , and a solution to
λ1x1 + · · · + λkxk = 0 with λi ∈ F

∗
r and xi ∈ Li is sought.

Key words. k-sum problem, Time-space tradeoff, Birthday problem, Collision
search, Finding low-weight codewords, Correlation attack, Sparse polynomials.

1. Introduction

1.1. Background

The k-sum problem is the following. We are given k lists L1, . . . ,Lk of n-bit vectors,
each of length m and chosen independently and uniformly at random, and we want to
find one vector from each list such that the XOR of these k vectors is equal to zero, i.e.,
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find x1 ∈ L1, . . . , xk ∈ Lk such that

x1 + x2 + · · · + xk = 0.

For simplicity, we will take k = 2q to be a power of 2.
This problem, which can be viewed as a k-dimensional variant of the classical birth-

day problem, arises in various domains. For example, Wagner [15] presents a number
of applications in cryptography, while a recent paper of Coron and Joux [9] shows how
to use the k-sum problem to find codewords in a certain context. Other applications
include finding shortest lattice vectors [1,10], solving subset-sum problems [11], and
statistical learning [5].

The k-sum problem is of course only interesting when a solution does indeed exist
with reasonable probability. A necessary condition for this is m2q ≥ 2n, i.e.,

m ≥ 2n/2q

. (1.1)

(This condition ensures that the expected number of solutions is at least 1.) Hence we
will always assume that (1.1) holds.

A naïve algorithm for solving this problem works as follows. Compute a list S1 of
sums x1 + · · · + x2q−1 , and a list S2 of sums x2q−1+1 + · · · + x2q , where xi ∈ Li . (The
summands xi can be chosen in any way, provided only that no two sums are identical.)
Then any vector appearing in both S1 and S2 yields a solution; such a vector can be
found in time essentially linear in the lengths of S1 and S2. In order to keep the suc-
cess probability reasonably large, we must ensure that a collision is likely to exist in
S1 and S2. The birthday paradigm tells us that it suffices to take |S1|, |S2| = Θ(2n/2),
resulting in an algorithm with running time Õ(2n/2).1

In the case where condition (1.1) holds with equality, this is also the best known
algorithm. But it turns out that (for q > 1) we can do much better if a stronger condition
holds. Wagner [15] showed that if

m ≥ 2n/(q+1) (1.2)

then the problem can be solved in expected time Õ(2q+n/(q+1)). The algorithm that
achieves this is called the “k-tree algorithm.”

To illustrate the main idea behind this algorithm, consider the case k = 4. Let
L1, . . . ,L4 be four lists of length m = 2n/3 each. (Here we have chosen m so that (1.2)
holds with equality.) We proceed in two rounds. In the first round, we compute a list L′

1
that contains all sums x1 + x2 with x1 ∈ L1 and x2 ∈ L2 such that the first n/3 bits of
the sum are zero. Similarly, we compute a list L′

2 of all sums of vectors in L3 and L4
such that the first n/3 bits are zero. Then the expected length of L′

1 (and analogously of
L′

2) is

2−n/3 · |L1| · |L2| = 2n/3.

In the second round, we find a pair x′
1 ∈ L′

1 and x′
2 ∈ L′

2 such that x′
1 + x′

2 = 0. Since
any sum of elements in L′

1 and L′
2 will be zero on the first n/3 bits, the probability that a

1 In this paper, the notation Õ hides factors that are logarithmic in the running time—i.e., polynomial
in n, logm and q .
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random sum x′
1 +x′

2 equals zero is 2−2n/3. Therefore, the expected number of matching
sums is

2−2n/3E
[|L′

1|
]
E
[|L′

2|
] = 2−2n/32n/32n/3 = 1,

so we expect the algorithm to find a solution. The lists L′
1 and L′

2 can both be computed
in time Õ(2n/3), as can the final set of matches. Hence this algorithm has an expected
running time of Õ(2n/3), which is significantly smaller than the Õ(2n/2) time required
by the naïve algorithm.2

A major limitation of the k-tree algorithm is that it breaks down when (1.2) fails to
hold. For applications where it is possible to either increase the length of the lists, m, or
increase the number of lists, k, this is not a problem, since we can then always arrange
for (1.2) to hold. This point of view is taken in Wagner’s paper [15], where it is assumed
in particular that the list length m can be made as large as desired.

However, in many applications, q , m and n are given values that cannot be varied at
will. One example of such a setting is the cryptographic attack against code-based hash
functions presented by Coron and Joux [9], where the values of n, q and m are given by
the designer of the hash function and the attacker cannot change them. Another example
is the problem of finding a sparse feedback polynomial for a given linear feedback shift
register, as discussed in [15]. Here q is fixed, since it determines the Hamming weight
of the polynomial to be found. Increasing the list length m has the effect of increasing
the degree of the polynomial being sought. Now if the sparse polynomial is to be used
in a correlation attack, then its degree must not exceed the amount of known running-
key data, and so in practice it cannot be arbitrarily large. Consequently, the value of m

should also be considered fixed in this application.
Motivated by such examples, in this paper we consider the k-sum problem with the

values of q , m and n fixed (subject only to the non-triviality requirement (1.1)). Our
goal is to find a solution x1 + · · · + xk = 0 as quickly as possible in this constrained
setting.

1.2. Results

We first show that the k-tree algorithm can be generalized to work for any set of para-
meter values satisfying the condition (1.1) for existence of a solution, i.e., for all values
of m satisfying

2n/2q ≤ m ≤ 2n/(q+1).

(For larger values of m, the original k-tree algorithm applies.) As we will see, the price
we pay for decreasing m in this range is a larger running time: the exponent of the
running time decreases with logm in a continuous, convex and piecewise linear fashion.
Our algorithm can be seen as interpolating between Wagner’s k-tree algorithm and the
naïve algorithm: at one extreme (m = 2n/(q+1)) it becomes the k-tree algorithm, and at
the other (m = 2n/2q

) it becomes the naïve algorithm.
The idea behind our modification (which we call the “extended k-tree algorithm”) is

the following. We can think of the original k-tree algorithm as eliminating (i.e., finding

2 Throughout the paper, expectations are taken over the random input lists. The algorithms are determin-
istic.
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vectors that sum to zero on) a fixed number logm bits in each round (except for the last
round, where 2 logm bits are eliminated).3 This choice keeps the list length constant
over all rounds, thereby balancing the work done in each round. (See Sect. 2 for a more
precise description of the k-tree algorithm.) While this guarantees a minimum maximal
list length, it also entails the strong requirement (1.2). In our extension, we vary the
number of bits eliminated (and thus the intermediate list lengths) in each round, in such
a way that ultimately more bits can be eliminated in total.

To illustrate how this can help, consider again the k = 4 example from earlier, and
suppose now that we take a smaller value of m, say m = 22n/7 instead of m = 2n/3.
(Note that this value takes us outside the scope of Wagner’s algorithm, but is still within
the existence bound (1.1).) If we eliminate �1 = n/7 bits in the first round (instead of
n/3 as previously), then E[|L′

1|] = 2−n/7|L1||L2| = 23n/7. We then eliminate the re-
maining �2 = 6n/7 bits in the second round, giving us an expected number of solutions
equal to

2−6n/7E
[|L′

1|
]
E
[|L′

2|
] = 2−6n/726n/7 = 1;

thus we again expect the algorithm to find a solution. This gives an algorithm with
expected running time Õ(23n/7) for this particular set of parameters, which is still sig-
nificantly better than the Õ(2n/2) naïve algorithm.

The key step in designing our algorithm is to specify an optimal strategy for choosing
the expected list lengths (or equivalently, the number of bits to be eliminated) in each
round. We do this by formulating this optimization problem as an integer program,
which we are then able to solve analytically. Perhaps surprisingly, the optimal strategy
turns out to be to let the lists grow in the first few rounds without eliminating any bits,
and then to switch to a second phase in which a fixed number of bits are eliminated
in each round. The role of the first phase is apparently to simply increase the pool of
vectors (by summing combinations from the original lists) until the number of vectors
is large enough for the elimination phase to work successfully.

We then go on to address the failure probability of the algorithm. Note that both our
algorithm as described above, and Wagner’s original k-tree algorithm, are based only on
an analysis of the expected number of solutions found, which says nothing useful about
the probability that a solution is actually found. In the last section of the paper, we give
the first rigorous bound on this probability. Our analysis, which uses the second moment
method, applies to both Wagner’s algorithm and our extension. The upshot is that, for a
wide range of parameters, if one naïvely aims for a single solution in expectation, then
the failure probability will be at most slightly larger than 3/4. Moreover, at the cost of
a small increase in running time, the failure probability can be reduced substantially.

In the final part of the paper, we present a modification of the algorithm that can be
used to solve instances where the lists contain vectors over an arbitrary finite field Fr

rather than over F2. In this case the problem is generalized to that of finding a suitable
linear combination (with coefficients in F

∗
r ) of vectors summing to zero. Such an al-

gorithm can be used, for example, to find low-weight codewords in non-binary linear
codes, or to compute sparse multiples of polynomials in Fr [X].

3 Throughout the paper, log denotes base-2 logarithm unless otherwise stated.
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1.3. Related Work

The basic idea of the k-tree algorithm was apparently rediscovered several times. In
1991, Camion and Patarin [7] constructed a k-tree scheme for breaking knapsack-based
hash functions. In 2000, Blum, Kalai and Wasserman [5] devised a similar algorithm to
prove a conjecture in learning theory. In 2002, Wagner [15] published a paper dedicated
entirely to the k-tree algorithm, including some extensions and several applications.

In the same year, Chose, Joux and Mitton [8] proposed an algorithm for finding low-
weight parity checks for a linear feedback shift register. Their algorithm is similar to
the 4-tree algorithm. Unlike the other authors, Chose et al. propose a scheme where
the number of eliminated bits varies from round to round. However, their motivation
for doing so is quite different from ours, leading to very different results: unlike the
k-tree algorithm, their algorithm finds all the solutions, and their choice of parameters
is designed so as to minimize the memory use without sacrificing too much speed. Our
goal, on the other hand, is to find only a single solution, and we choose the parameters
so as to minimize running time (and memory use) for that purpose.

In 2004, Coron and Joux [9] used Wagner’s algorithm to break a hash function based
on error correcting codes. Since Wagner’s condition (1.2) does not hold in their case,
they tweaked the algorithm by removing one level of the tree and working on lists that
were sums of pairs of vectors. This strategy is a special case of our algorithm, and hence
can be viewed as an interesting application of the extended k-tree algorithm. The attack
by Coron and Joux was subsequently refined by Augot, Sendrier and Finiasz [2] to a
variant that does not always eliminate the same number of bits per round. Other refine-
ments of the k-tree algorithm, aimed at minimizing its memory usage, were published
by Bernstein, Lange, Niederhagen, Peters and Schwabe [4].

We are not aware of any previous analysis of the failure probability of the original
k-tree algorithm; however, some modified versions have been analyzed, as we now dis-
cuss.

First, Blum, Kalai and Wasserman [5] analyzed a related algorithm, which differs
from Wagner’s algorithm in that it searches for collisions in a single list. Another dif-
ference is that only a subset of the valid pairs is selected in the merging step. In 2005,
Lyubashevsky [11] analyzed a variant of Wagner’s algorithm devised to solve the inte-
ger subset-sum problem; thus the list elements are integers mod t rather than bitstrings.
As in the Blum et al. algorithm, only a subset of the valid pairs is used when merging.
In this construction, the length of the lists has to be roughly the square of the length
that Wagner’s algorithm prescribes. In 2008, Shallue [14] modified Lyubashevsky’s al-
gorithm so that the merging step selects a larger subset of valid pairs. As a result, in
order to achieve non-trivial failure probability the lists need to be of length O(m logm)

where m is the length required by Wagner’s algorithm.
A key difference between all these three constructions and Wagner’s original algo-

rithm is that the list merging step does not select all valid pairs. This has two drawbacks.
First, it results in an inflation of the list length (and hence running time) relative to Wag-
ner’s algorithm. Second, in these constructions the merge operation does not increase
the lengths of the intermediate lists, which is a key ingredient of our extended algorithm.

Finally, we briefly mention an alternative approach to the k-sum problem which is
applicable in the regime where k ≥ n (which typically does not hold in the kind of
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Fig. 1. The k-tree algorithm for k = 4.

applications mentioned earlier). Bellare and Micciancio [3] show that in this scenario
the k-sum problem can be solved by Gaussian elimination in time O(n3 + kn).

2. The Extended k-tree Algorithm

In this section we present a framework for our extended k-tree algorithm; as we shall
see, the original k-tree algorithm of Wagner [15] is a special case.

Given an instance of the k-sum problem as described in the Introduction, the (ex-
tended) k-tree algorithm proceeds in q rounds, where k = 2q is the number of input
lists. In each round, pairs of lists are merged to form a new list, so that the number of
lists is halved in each round. For example, in the first round the lists L1 and L2 are
merged into a new list L′

1, the lists L3 and L4 are merged into a list L′
2, and so forth.

Specifically, the list L′
i is composed of all the sums x + y with x ∈ L2i−1 and y ∈ L2i

such that x + y is zero on the first �1 bits. The integer �1 is a parameter of the algorithm
that is to be selected for optimal performance. We say that the first round eliminates �1

bits.
The other rounds are akin to the first one. In the second round, lists L′′

1, . . . ,L
′′
2q−2 are

created from L′
1, . . . ,L

′
2q−1 , eliminating a further sequence of �2 bits and thus causing

the vectors in the lists L′′
1, . . . ,L

′′
2q−2 to be zero on the first �1 + �2 bits.

Iterating this procedure for q rounds, we get a single, final list containing vectors
that are zero on the first

∑q

i=1 �i bits, each of which is a sum of the form
∑k

i=1 xi with
xi ∈ Li . Since our goal is to find sums that are zero on all n bits, the final list will contain
sums of the desired form provided that

q∑

i=1

�i ≥ n. (2.1)

The algorithm can be visually represented as a complete binary tree of height q ,
with each node containing a list of vectors. Level j of the tree contains the lists after j

rounds of the algorithm, with the leaves (at level 0) containing the input lists L1, . . . ,Lk .
Figure 1 gives a pictorial illustration of the case k = 4.
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Note that, since the input lists are random, the lengths of the lists at all internal nodes
within the tree are random variables. We will write Mj for the random variable repre-
senting the length of a list at level j . The distribution of Mj is determined by the values
of m and �1, . . . , �j .

Note that Mq is the total number of solutions found by the algorithm. We will also
specify as a parameter the desired expected number of solutions found, which we write
as 2c. So our goal is to ensure that

E[Mq ] ≥ 2c. (2.2)

Canonically one may think of the value c = 0, i.e., a single solution is sufficient in
expectation. (This is what we did in the examples in the Introduction.) However, as we
will see in Sect. 4, the failure probability of the algorithm can be made significantly
smaller by increasing the value of c slightly (e.g., by choosing c = 1). This entails a
slight tightening of condition (1.1), which becomes

m ≥ 2(n+c)/2q

. (2.3)

In the remainder of the paper we shall always assume that (2.3) holds. We will also
assume that

m ≤ 2(n+c)/(q+1), (2.4)

since Wagner’s algorithm applies for all larger m. Finally, for technical reasons we will
also assume that c < 2 logm; since typically c is a small constant (such as 0 or 1), while
the list lengths are quite large, this represents no restriction in practice.

Note that the choice of the parameters �i critically impacts the behavior of the al-
gorithm. Roughly speaking, increasing �i has the effect of reducing E[Mj ] for every
j ≥ i, while decreasing it has the opposite effect. Since the running time is essentially
proportional to the sum of the lengths of the lists at internal nodes in the tree, for optimal
performance we seek a strategy for choosing the �i such that E[Mj ] is not too large for
any 1 ≤ j ≤ q − 1; however, we also need to ensure that the constraints (2.1) and (2.2)
both hold.

As a simple example, assuming m is a power of 2, Wagner’s original k-tree al-
gorithm [15] chooses �j = logm for j = 1, . . . , q − 1 and �q = 2 logm, leading to
E[Mj ] = m for j = 1, . . . , q − 1 and E[Mq ] = 1, i.e., all lists (except the last) have
the same expected length as the initial lists. In this case, condition (2.1) translates to
(q + 1) logm ≥ n, which is exactly Wagner’s condition (1.2) discussed earlier. If this
condition holds, this choice for the �i works very well. One of the main goals of this
paper is to find optimal choices for the �i when (1.2) does not hold.

Remark. The merging step at each node, as presented above, retains pairs of vectors
whose sum on certain subsequences of bits is zero. As a result, the algorithm produces
only solutions that satisfy these constraints. This is an arbitrary choice that was made
only to simplify the presentation. In fact, the target values for the sums at each node
could be chosen randomly, subject only to the requirement that the sum of all the target
values at any level equals zero. This yields an algorithm that chooses a random solution,
rather than one of the above special form.
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3. Choosing the Parameters

As we saw in Sect. 2, our algorithm is specified by the parameters �i that determine the
number of bits eliminated in each round. Our goal now is to find an optimal choice for
the �i when m, q , n and c are given, i.e., to find a set of parameters that minimizes the
running time while guaranteeing at least 2c solutions in expectation.

In Sect. 3.1, we will show how to reduce the problem of finding the optimal �i to
an integer program. We will then give an explicit solution to this integer program in
Sect. 3.2.

3.1. The Integer Program

We start by giving a formula for the expected list length at each level of the tree. We
write b0 := logm, and define 2bj as the expected length of the lists at level j of the tree.
Then we have

bj = 2bj−1 − �j , (3.1)

where �j is the number of bits eliminated at level j . To see this, let the random variable
Mj be the number of vectors appearing in the list at some fixed node at level j , so that
2bj = E[Mj ]. Writing Ml

j−1, Mr
j−1 for the number of vectors in the lists at the left and

right children of the node respectively, we have

2bj = E
[
Ml

j−1M
r
j−1

]
2−�j = E

[
Ml

j−1

]
E
[
Mr

j−1

]
2−�j = 22bj−1−�j ,

which proves (3.1). Since the list at the root of the tree consists exactly of the solutions
found by the algorithm, the expected number of solutions found is 2bq . The maximum
expected list length that the algorithm has to process is

max
0≤j≤q−1

2bj . (3.2)

(Note that bq does not appear in this formula; this is because we do not need to explicitly
compute the complete list of all matches, but can stop as soon as we have found a
solution.) Since the expected running time of our algorithm is Õ(2q+u), where 2u is
the maximum expected list length, our goal will be to choose the �j so as to minimize
the expression (3.2). For our formulation of the integer program it will be convenient to
use both the �j and the bj as variables. However, it can be seen from (3.1) that the �j

determine the bj and vice versa.
Suppose now that we specify that the expected number of solutions found by the

algorithm should be at least 2c. This leads to the following integer program:

minimize u

s.t. bj ≤ u, j = 0, . . . , q − 1,

�j ≥ 0, �j integer, j = 1, . . . , q,
q∑

j=1

�j ≥ n,

bq ≥ c.
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Example. For n = 100, m = 216, and q = 4 (which are typical parameter values in,
e.g., codeword-finding applications), and setting c = 1 (for an expected two solutions),
the integer program dictates that we should choose �1 = 9, �2 = 23, �3 = 23, �4 = 45.
This solution has an expected maximum list length of 223, resulting in roughly 223+4 =
227 expected vector operations, which is a very feasible computation.

For the same parameters, the naïve algorithm performs approximately 250 operations,
which is plainly unreasonable. Wagner’s original algorithm is not intended to be used
in this case, but if we use it anyway, eliminating 16 bits in each round to keep the list
lengths constant, it will only succeed with probability at most 2−20. Since a single run
of Wagner’s algorithm costs roughly 216+4 = 220 operations in this case, the expected
running time (with repeated trials until a solution is found) would be about 240, again
prohibitively large.

3.2. Solution of the Integer Program

We will now compute the optimum of the above integer program. We shall first consider
the linear programming relaxation (without the integrality constraint), and then show
that its solution can easily be rounded to a solution of the integer version.

We proceed by showing that the optimal solution of the LP has three “phases.” In the
first phase, for small i (i.e., low levels of the tree), the �i are all equal to zero, and bi

is doubled (so the length of the lists is squared) in each round. In the second phase, for
larger values of i, bi (and hence the length of the lists) remains fixed, meaning that a
fixed number of bits �i is eliminated in each round. The third phase consists only of
the final round, where the list is collapsed to the desired expected number of solutions,
which is 2c.

More precisely, we will prove the following.

Theorem 3.1. For any set of parameters n,m,q, c satisfying conditions (2.3), (2.4)
and c < 2 logm, the linear program defined above is feasible and has an optimal solu-
tion of the following form:

bi = 2ib0, �i = 0, for 1 ≤ i < p;
bp = u, �p = 2pb0 − u;
bi = u, �i = u, for p < i < q;
bq = c, �q = 2u − c,

where p is the least integer such that

n ≤ (q − p + 1)2p logm − c,

and u is given by

u = n + c − 2p logm

q − p
.

Note that the value i = p marks the beginning of the second phase.
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Proof. We will first show that the linear program is feasible. To this end, set �1 =
· · · = �q−1 = 0, �q = n. From (3.1), it follows then that bi = 2ib0 for i < q , and bq =
2qb0 − n. Set u = maxi≤q−1 bi = 2q−1b0.

We now verify that this solution is feasible. Clearly, all the �i are non-negative and∑q

i=0 �i ≥ n. The condition bq ≥ c translates to 2qb0 ≥ n + c, which, recalling that
b0 = logm, is equivalent to condition (2.3) and hence satisfied by assumption. Thus the
solution is feasible.

Next we will show that any solution not of the form given in the statement of the
theorem can be strictly improved. Since the LP is bounded (as can readily be checked
from (3.1)) this will establish the theorem.

Consider first a feasible solution �� = (�1, . . . , �q) in which there is some index
j ∈ {1, . . . , q − 1} such that �j > 0 and bj < u. Then for suitably small ε > 0 the
transformation

�j �→ �j − ε, �j+1 �→ �j+1 + 2ε, bj �→ bj + ε (3.3)

yields another feasible solution with the same value of u. (This can easily be checked
using the recursive definition (3.1).) Note that this transformation increases the sum of
the �i by ε, so the constraint

∑q

i=1 �i ≥ n becomes slack.
Similarly, in a feasible solution �� in which bq > c, the transformation

�q �→ �q + ε, bq �→ bq − ε (3.4)

yields another feasible solution with the same value of u and makes the sum constraint
slack.

Thus any solution that does not satisfy the conditions �j = 0 or bj = u for all j ∈
{1, . . . , q − 1}, and bq = c, can be transformed into a solution with the same value
of the objective function u that does satisfy these conditions and where in addition∑q

i=1 �i > n.
We now show that such a solution can be transformed into one with a smaller value

of u. Since u = maxj bj , it is enough to show that any maximal bj can be reduced;
the procedure can be repeated if necessary. We argue first that we cannot have b0 =
maxj bj . For if so, substituting the recursion (3.1) into

∑
i �i > n, we get

∑q

i=1(2bi−1 −
bi) > n, or equivalently 2b0 +∑q−1

i=1 bi − bq > n, and hence (q + 1)b0 − c > n; but this
violates condition (2.4). So now let 1 ≤ j ≤ q − 1 be an index such that bj = u, and
consider the transformation

�j �→ �j + ε, �j+1 �→ �j+1 − 2ε, bj �→ bj − ε. (3.5)

We claim that, for small enough ε > 0, this yields a feasible solution. To see this, we
just need to check that �j+1 > 0. But if �j+1 = 0 then by (3.1) we would have bj+1 =
2bj = 2u. If j + 1 < q this gives a contradiction because bj+1 ≤ u. And if j + 1 = q

then c = bj+1 = 2u ≥ 2b0 = 2 logm, which violates our assumption that c < 2 logm.
The above argument shows that any optimal solution must satisfy �j = 0 or bj = u

for 1 ≤ j ≤ q − 1. We need to verify that the indices j for which �j = 0 form an initial
segment. To see this, simply observe that if bj = u and �j+1 = 0 then from (3.1) we
have bj+1 = 2u which contradicts the constraint bj+1 ≤ u.
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Equation (3.1) can now be used to reconstruct the values of �p, . . . , �q, b1, . . . , bp−1
by direct computation.

It remains to determine p and u. From bp−1 ≤ u and 0 ≤ �p = 2pb0 − u we get
2p−1b0 ≤ u ≤ 2pb0. Since, as we have seen above, the constraint

∑
i �i ≥ n must be

tight in an optimal solution, we also have n = ∑q

i=1 �i = (q − p)u + 2pb0 − c. Substi-
tuting the above bounds on u into this equation for n gives

n ∈ [
(q − p + 2)2p−1b0 − c, (q − p + 1)2pb0 − c

]
.

Note that for distinct p ∈ {1, . . . , q − 1} the interiors of these intervals are disjoint, and
that the intervals cover [(q + 1)b0 − c,2qb0 − c], which is precisely the range of values
of n for which the algorithm is applicable. So for given n, m, q and c satisfying (2.3)
and (2.4), there is a unique choice of p (except at the endpoints, which belong to two
intervals; either choice of p yields the same solution in this case). Once p is known, we
can solve for u from n = (q − p)u + 2pb0 − c. �

The optimal solution to the linear program as given by Theorem 3.1 can result in
fractional values for the �i ; however, we need them to be integers. Fortunately, it turns
out that the optimal solution of the corresponding integer program can be obtained by a
simple rounding of the LP solution. This is the content of the following claim.

Claim 3.2. Assume b0 and c are integers. The optimal solution �1, . . . , �q of the inte-
ger program can be obtained by replacing u by 
u� in the LP solution of Theorem 3.1.

Note that the value of p is not changed by this rounding operation.

Proof. Clearly, if this solution is feasible then it must be optimal since 
u� is the small-
est integer exceeding u. Write ũ, �̃1, . . . , �̃q , b̃1, . . . , b̃q for the putative integer solution
obtained by applying the above rounding to the LP solution u, �1, . . . , �q, b1, . . . , bq .

Then
∑q

i=1 �i = (q − p)u + 2pb0 − c, which is increasing with u since q − p ≥ 0;
hence

∑q

i=1 �̃i ≥ n, as required. To see that �̃j ≥ 0, note that clearly �̃j ≥ �j for all j

except j = p. But we also have �̃p ≥ 0 because z − u ≥ 0 implies z − 
u� ≥ 0 for any
integer z.

Finally, it can be checked by direct computation that the b̃i and �̃i still satisfy (3.1). �

Remark. The constraint
∑

i �i ≥ n may not be tight in the given integer solution.
This is not a problem however; for example, the length of the vectors can be increased
to

∑
i �i by padding them with random bits at the end. Any solution to this new instance

will also be a solution to the original one.

Note that the value of u given in Theorem 3.1 does not change if we replace n by
n + c and c by 0. So for simplicity we will assume c = 0 for the remainder of this
section, i.e., we will assume that the algorithm aims for just one solution in expectation.

Corollary 3.3. For all parameters n,m,q such that 2n/2q ≤ m ≤ 2n/(q+1), the ex-
pected running time of the algorithm is Õ(2q+u∗(n,m,q)), where u∗(n,m,q) is the opti-
mal value of u in the LP for parameters n,m and q as given in Theorem 3.1.
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Fig. 2. Comparison of the extended k-tree algorithm with the naïve algorithm.

Moreover u∗(n,m,q) is a continuous, convex, piecewise affine and decreasing func-
tion of logm.

Proof. Up to logarithmic factors, the running time is equal to the sum of all the list
lengths that the algorithm processes. There are 2q+1 −1 = O(2q) lists, each of expected
length at most 2
u∗(n,m,q)� = O(2u∗

) by Claim 3.2, resulting in an expected running time
Õ(2q+u∗(n,m,q)).

By Theorem 3.1, p is piecewise constant (as a function of n,m,q), and hence
u∗(n,m,q) is piecewise affine as a function of logm. The other properties are easy
to verify. �

To illustrate this corollary, consider the plot in Fig. 2 which compares the expected
running time exponents of the naïve algorithm and the extended k-tree algorithm. We
take the same example as in Sect. 3.1, with q = 4, n = 100. The relevant range for m

is then 26.25 ≤ m ≤ 220. At the very right, for m = 220, our algorithm is the same as
the original k-tree algorithm, and uses roughly 220+4 = 224 vector operations. As noted
before, the original k-tree algorithm does not work for m < 220 in this setting.

At the left border, for m = 26.25, our algorithm is nothing but a (somewhat compli-
cated) variant of the naïve algorithm, and the estimated expected running time is 250+4.
For m < 26.25 the probability that any solution exists at all decays rapidly.

Note that our algorithm contains both the naïve algorithm and the original k-tree
algorithm as special cases, but does substantially better than the naïve algorithm for a
wide range of values of m where the original k-tree algorithm no longer works.

Remark. In the graph we are seemingly overtaken by the naïve algorithm shortly
before m = 26.25. This is just an artifact of our analysis. While our running time estimate
is the best that can be achieved purely in terms of the maximum list length, it should be
noted that the additional factor 2q of Corollary 3.3 is crude for small m, because (as can
be seen from the LP solution) in that case only very few lists will have maximal length.
Since for m = 26.25 our algorithm is essentially the same as the naïve algorithm, it must
in fact have the same complexity.
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4. Analysis of the Failure Probability

Up to this point, we have implicitly assumed that it is enough to design the algorithm
so that the expected number of solutions found is at least one, and that a single run
of the algorithm would then yield a solution with good probability. The goal of this
section is to justify this assumption, i.e., to show that the number of solutions per run
is concentrated around its expectation in most interesting cases, and that therefore the
algorithm does indeed produce an output with reasonable probability. We note that our
analysis applies also to the original k-tree algorithm of Wagner [15], whose failure
probability had apparently not previously been bounded.

4.1. Preliminaries

Let N be the number of solutions found by the algorithm. Thus the algorithm succeeds
when N > 0 and fails if N = 0. Write the input lists as L1 = (x1

1 , . . . , x1
m), . . . ,L2q =

(x2q

1 , . . . , x2q

m ). Let S = {1, . . . ,m}2q
, and let a = (a1, . . . , a2q ) ∈ S . Then the vector of

indices a corresponds to a solution found by the algorithm if x1
a1

+ · · · + x2q

a2q = 0, and

if in addition the xi
ai

satisfy the constraints imposed by the internal nodes of the tree.
For example, we must have x1

a1
+ x2

a2
= 0 on the first �1 bits, and so on; there are 2q − 1

such constraints to be satisfied.
If we write Ia as the indicator random variable of the event that a is a solution, then

N = ∑
a∈S Ia. Writing μ := E[Ia], we get by Chebyshev’s inequality

Pr(N = 0) ≤ Var(N)

E[N ]2
≤ |S|μ + ∑

a,b∈S,a �=b Cov(Ia, Ib)

|S|2μ2

≤ E[N ]−1 + Eab[Cov(Ia, Ib) | a �= b]
μ2

, (4.1)

where Eab[ · ] denotes expectation over a and b chosen independently and uniformly at
random from S .

If Ia and Ib were independent whenever a �= b, then this probability would of course
be bounded by E[N ]−1. However, Ia and Ib can be highly correlated if a and b have
many components in common. We therefore have to bound the covariance terms in (4.1).

4.2. Incidence Trees

Fix a, b ∈ S . The incidence tree for a and b is a complete binary tree of height q with
the nodes being either squares (�) or triangles (
) according to the following rules.
The ith leaf (from the left) is associated with the ith components of a and b. A node is
a triangle if and only if all the components of a and b in the leaves below it are equal.
Note that the shape of any internal node can be deduced from the shape of its children: it
is a triangle if and only if both its children are triangles. For an example of an incidence
tree with q = 2, see Fig. 3.

If the incidence tree of a and b is known, then the value of Cov(Ia, Ib) can be com-
puted easily. First note that we can factor Ia as follows:

Ia =
∏

y

Ja(y),
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Fig. 3. The incidence tree of a = (12,7,6,9) and b = (12,7,6,8).

where y runs over all the internal nodes of the tree, and Ja(y) is the indicator random
variable of the event that the constraint implied by node y is satisfied by a. (Note that
the constraint at y involves only �j bits, where j is the level of y; this constraint can be
satisfied even if the constraints at some of the descendants of y are not.)

For fixed internal nodes y and z, the random variables Ja(y) and Jb(z) are equal
if y = z and y is a triangle in the (a, b)-incidence tree. Otherwise Ja(y) and Jb(z) are
independent. In particular, the Ja(y) (where y runs over the internal nodes) are mutually
independent. So for any internal node y, we have

E
[
Ja(y)Jb(y)

] =
{

E[Ja(y)] = 2−�level(y) if y is a triangle;

E[Ja(y)]E[Jb(y)] = 2−2�level(y) if y is a square.

Here, level(y) denotes the level of the node y in question. Writing Fab :=
E
[∏

y square Jb(y)
] = 2−∑

y square �level(y) , we have

E[IaIb] = E

[
Ia

∏

y square

Jb(y)

]
= E[Ia]E

[ ∏

y square

Jb(y)

]
= μFab.

We can then compute the covariance Cov(Ia, Ib) as follows:

Cov(Ia, Ib) = E[IaIb] − μ2 = μ(Fab − μ). (4.2)

4.3. Computing the Expected Covariance

We now derive an exact recursive formula for Eab[Cov(Ia, Ib) |a �= b]. To this end, we
study the behavior of the random variable Fab when a and b are random. For a node y

at level j ≥ 1, define

Sj :=
∏

z a square
descendant of y

2−�level(z) ,

where z runs over all square internal nodes in the subtree whose root is y. With this
notation, note that Fab = Sq . For j ≥ 1, we write E�

ab[Sj ] for the expectation (over a, b)
of Sj , conditional on the node with respect to which Sj is defined being a square. Then,
setting S0 = 1, we have

E�
ab[Sj ] = 2−�j E�

ab[Sj−1]
(
E�

ab[Sj−1](1 − αj ) + αj

)
, (4.3)
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where

αj := Pr(a level-j node y has a 
 child | y is a �) = 2 · m−2j−1

1 + m−2j−1 . (4.4)

Now, (4.3) can be used recursively to compute E�
ab[Sq ]. From this we can compute

Eab[Cov(Ia, Ib) | a �= b] = μ(E�
ab[Sq ] − μ), which follows from (4.2) and the facts that

Fab = Sq and E�
ab[Sq ] = Eab[Sq | a �= b].

Putting everything together, we see that the error bound (4.1) of Sect. 4.1 can be
written as

Pr(N = 0) ≤ E[N ]−1 + μ−1E�
ab[Sq ] − 1, (4.5)

where E�
ab[Sq ] is the solution to the recurrence (4.3). Note that the quantity

μ−1E�
ab[Sq ] − 1 captures the contribution due to dependencies between the indicator

random variables Ia .

Remark. Inequality (4.5) provides a method for numerically bounding the failure
probability of the extended k-tree algorithm for any choice of the parameter values
(�1, . . . , �q), provided only that

∑
i �i ≥ n. Of course, the values N and E�

ab[Sq ] will
depend on the choice of the �i .

Example. Consider our running example with q = 4, m = 216, n = 100, �1 = 9,
�2 = 23, �3 = 23, �4 = 45. With these settings we get two solutions per run in expec-
tation (c = 1); hence we would like the failure probability to be close to 1/2 (as would
be the case if the random variables Ia were independent). Using the above recursive
method to compute Eab[Cov(Ia, Ib) | a �= b], we get a bound on the failure probability
of 0.5000017. Thus the effect of dependencies is very small, as desired.

4.4. Bounding the Failure Probability

In this section we consider the optimal choice of the parameters �i , as described in
Sect. 3. For this choice of the �i , we provide the following analytic upper bound on the
failure probability that is useful in many applications.

Theorem 4.1. If �1, . . . , �q are chosen optimally as in Sect. 3.2, then the algorithm
will fail to find a solution with probability at most

2−c + exp(qk/m) − 1,

where 2c = E[N ] is the expected number of solutions.

Proof. In light of inequality (4.5), it is enough to show that the quantity μ−1E�
ab[Sq ]

is bounded above by exp(qk/m).
Define sj := E�

ab[Sj ]. From (4.3), we have sj = 2−�j s2
j−1(1−αj + αj

sj−1
) with s0 = 1.

Let μj := 2−�j μ2
j−1 with μ0 = 1. Note that μj is the probability that a fixed partial sum
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appears in a node at level j ; in particular μ = μq . By inspecting the recursions, we also

get μ = μq = 2−∑q
i=1 �i2q−i

, and μj ≤ sj .

We also define tj := m−2j
and remark that t−1

j is equal to the number of partial sums
that are candidates to appear in a node at level j ; hence the expected list length at level
j is equal to t−1

j μj . Note also from the definition (4.4) of αj that αj ≤ 2tj−1.
Unwinding the formula for sq , we get

sq = 2−∑q
i=1 �i2q−i

q−1∏

j=0

(
1 − αj+1 + αj+1

sj

)2q−j−1

≤ μ ·
q−1∏

j=0

(
1 + 2tj

μj

)2q−j−1

= μ · exp

{
q−1∑

j=0

2q−j−1 ln

(
1 + 2tj

μj

)}

.

Now we bound the sum in the exponent. Noting that ln(1 + x) ≤ x, and that tjμ
−1
j =

2−bj , the summand in j can be bounded above by 2q−j−bj . Since bj is increasing in j

(for the optimal choice of �j given by Theorem 3.1 and Claim 3.2), the largest summand
is the one for which j = 0, so estimating the sum by taking q times the largest summand
we get

μ−1E�
ab[Sq ] = μ−1sq ≤ exp

(
q2q/2b0

) = exp(qk/m),

which completes the proof. �

To interpret Theorem 4.1, note that the additional error probability due to dependen-
cies is approximately qk/m, assuming this quantity is fairly small. Hence if c = 1, we
will get an overall error probability very close to 1/2 provided qk is much smaller than
m. This condition is satisfied in particular for the various applications mentioned in the
introduction. E.g., for our running example above with n = 100, m = 216, q = 4, c = 1,
Theorem 4.1 bounds the failure probability by 0.50097, which is very close to 1/2 (the
best we can hope for from a second moment analysis), and only slightly larger than the
value 0.5000017 computed at the end of the previous subsection.

Note also that in typical applications (when qk/m is small) the principal variable
controlling the error probability is c; if c is not too large, increasing c causes the failure
probability to decrease significantly.

Remark. The failure probability given by Theorem 4.1 differs at first sight qualita-
tively from those in [11,14] for the special case of Wagner’s algorithm in that it does
not decay to zero with the list length. However, our bound applies to the optimal algo-
rithm for given n, m, q and c, while in [11,14] the list length m is required to be larger
by a factor of α in order to achieve the bound on the failure probability (which decays
exponentially with α). Obviously, since we achieve a constant failure probability for the
given list length m, increasing the list length by a factor of α would allow us to run α
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independent trials of our algorithm, which also causes the failure probability to decrease
exponentially with α.

To obtain a non-trivial failure probability with Theorem 4.1, it is necessary to aim for
more than one solution in expectation (c > 0). We will now show that even if we aim
for one solution, or indeed somewhat less, the failure probability can still be usefully
bounded in many cases.

Corollary 4.2. If �1, . . . , �q are chosen optimally as in Sect. 3.2 with −2 logm + 1 <

c ≤ 0, then the algorithm will fail to find a solution with probability at most

1 − 2c−1
(

3

2
− exp(qk/m)

)
.

Proof. Consider an instance I with parameters n,m,q . We wish to bound the failure
probability of the algorithm when solving I with c ≤ 0. From the instance I , build a
new instance I ′ with parameters n + c − 1,m,q by removing the last 1 − c bits from
each vector in every list. (By our assumed lower bound on c, these bits are all eliminated
in the last round.) The choice of the �i made by the algorithm for instance I ′ with c = 1
is the same as that for instance I with the given value of c. If the algorithm is applied to
I ′, by Theorem 4.1 it finds a solution with probability at least

3

2
− exp(qk/m).

If we now consider the corresponding sum in I , we get a vector that has a zero in all
positions except possibly for the last 1 − c of them. The values in these positions will
all be zero with probability 2c−1; in that case, this solution will also be found by the
algorithm when it runs on instance I with the given value of c. Therefore the algorithm
fails on I with probability at most 1 − 2c−1( 3

2 − exp(qk/m)), as claimed. �

5. Larger Alphabets

The k-sum problem has a natural generalization to non-binary alphabets, where the goal
is now to find a non-trivial linear combination of vectors summing to zero. Formally,
we state the problem as follows.

Let r be a prime power. We are given k = 2q lists L1, . . . ,Lk , each of length m,
containing (independent, uniformly sampled) random vectors from F

n
r . We wish to find

x1 ∈ L1, . . . , xk ∈ Lk and λ1, . . . , λk ∈ F
∗
r such that

λ1x1 + · · · + λkxk = 0.

The requirement that all the λi have to be nonzero is arguably somewhat artificial, since
for typical applications any solution with not all the λi zero is satisfactory. However,
this formulation has the advantage that it does indeed generalize the binary case.

The k-sum problem over non-binary alphabets can be used to solve general finite-field
versions of the various problems mentioned in the introduction. For example, it can be
used to find low-weight codewords in codes with comparatively few redundant symbols
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defined over a moderate size alphabet, such as the erasure-correcting codes analyzed
in [6]. Typical parameter values that might arise in such a setting are the following,
which we shall use as our running example throughout this section:

Example. We work in F64, and consider vectors of n = 18 symbols; such a vector is
then representable with 108 bits. We wish to find a sum of k = 8 of them from 8 lists,
such that their sum equals zero.

The obvious generalization of the k-tree algorithm consists of just putting every pos-
sible nonzero scalar multiple of every vector into the lists. This has two serious draw-
backs, however. First, it inflates the list lengths (and hence both the space and time
requirements) by a factor of r − 1; and second, it destroys the independence of the vec-
tors in a list, making analysis much harder. In the following, we develop an alternative
version of the extended k-tree algorithm tailored to the non-binary case. Our version
suffers at most only a factor 4 increase in space and a factor

√
r increase in time com-

pared to the binary version with the same parameter values. Moreover, we are still able
to carry out a full analysis of our algorithm, including the failure probability, similar to
that for the binary case given earlier. The algorithm works for a range of m analogous
to that for the binary case (see (5.3) below).

Remark. The generalization of the k-sum problem to finite fields is not the only nat-
ural one; another natural question is that of finding a {−1,0,1}-linear, combination of
vectors in Fr that sum to zero. This latter problem and variants of it come up in lat-
tice reduction and related problems; see, for example, [12]. For many such problems, a
straightforward adaptation of the algorithm in Sect. 2 can be used.

5.1. The Merging Procedure

The starting point for our modified algorithm is a more involved merging procedure,
which ensures that only a single scalar multiple of each relevant linear combination is
retained in the lists at each stage of the algorithm. This is key to avoiding a blow-up of
a factor r − 1 in the list lengths. In this section we describe this merging procedure.

We are given two lists L1, L2 and an integer � designating the number of positions
to eliminate. We wish to construct a minimal merged list L, i.e., a list of vectors having
the following properties:

• Validity. Every vector in L is of the form λ1x1 + λ2x2 with λi ∈ F
∗
r and xi ∈ Li

and it has a prefix of � zeros.
• Completeness. If λ1, λ2 ∈ F

∗
r , x1 ∈ L1 and x2 ∈ L2 are such that y = λ1x1 + λ2x2

has � leading zeros, then there exists a μ ∈ F
∗
r such that μy appears in L.

• Minimality. If y = λ1x1 + λ2x2 appears in L, then no other linear combination
μy = (μλ1)x1 + (μλ2)x2 with μ �= 1 appears in L. (A scalar multiple of y may of
course appear in L by coincidence, i.e., if it can be written as a linear combination
that is not just a scaling of λ1x1 + λ2x2.)

Such a list can be efficiently computed as follows. By multiplying the vectors in the lists
with suitable constants, we can assume they are all of the normalized form

(0, . . . ,0,1,∗, . . . ,∗); (5.1)
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that is, the leftmost nonzero position, if it exists, is a 1.
Let x1 ∈ L1 and x2 ∈ L2 be two normalized vectors in their respective lists, and

let � be the number of positions that we wish to eliminate. We make the following
observations.

1. If either x1 or x2 has less than � leading zeros, then the only possible valid linear
combinations λ1x1 + λ2x2 with � leading zeros satisfy λ1 + λ2 = 0. In particular
the first � symbols of x1 and x2 are equal in this case.

2. Otherwise, both x1 and x2 have at least � leading zeros. Then there are exactly
r − 1 distinct valid sums of x1 and x2 which have at least � leading zeros, namely
all sums of the form x1 + λx2, where λ runs over F

∗
r .

This shows that by normalizing the vectors in both lists, and by sorting one list, a merg-
ing algorithm can be implemented in Õ(|L1| + |L2|) vector operations.

The expected number of vectors in the merged list is given by the following proposi-
tion.

Proposition 5.1. If m1 = |L1| and m2 = |L2|, the (unnormalized) vectors in Li are
uniformly distributed, and the list L1 is independent of L2, then the merged list L con-
tains

E
[|L|] = m1m2(r − 1)r−� (5.2)

elements in expectation.

Note that formula (5.2) generalizes (3.1).

Proof. W.l.o.g., we can assume that all the vectors in L1 and L2 are normalized as in
(5.1). Write pi for the expected fraction of vectors in L1 (or L2) with exactly i leading
zeros, and p≥� for the expected fraction of vectors with at least � leading zeros. Then

pi = r−i
(
1 − r−1), p≥� = r−�.

A vector in L1 having i < � leading zeros is merged with probability r−(�−(i+1)) with
any given vector in L2 with i leading zeros. It cannot be merged with any vector having
a different number of leading zeros. Hence the expected number of vectors in L obtained
from merging such vectors is

m1m2p
2
i r

−(�−(i+1)).

In addition, we get all the vectors obtained from combining the vectors which already
have at least � leading zeros. In expectation, this will result in

m1m2(r − 1)p2≥�

vectors. So, summing up, we get

E
[|L|] = m1m2

[

(r − 1)p2≥� +
�−1∑

i=0

p2
i r

i−(�−1)

]

= m1m2(r − 1)r−�,

as desired. �
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5.2. The Range of m

The following inequalities give the interesting range of m analogous to the range given
in the binary case by (2.3) and (2.4):

r(n+c)/2q

(r − 1)1−1/2q ≤ m ≤ r(n+c)/(q+1)

(r − 1)1−1/(q+1)
. (5.3)

The lower bound for m corresponds to the requirement that a solution exists with rea-
sonable probability and follows from the Markov inequality, while the upper bound
corresponds to the list length at which a Wagner-style algorithm can be implemented
and follows from (5.2) and the condition that the list size remains constant over the
rounds.

Taking the example from the beginning of Sect. 5 with n = 18, r = 64, and k = 8, we
get the approximate range 309 ≤ m ≤ 6 · 106 for m in this case.

5.3. The Linear Program

Write �i for the number of symbols that we wish to eliminate at level i. Following our
notation from Sect. 3.1, for i = 0, . . . , q we define bj := logr E[list length at level j ],
and using (5.2) we see that

b0 = logr m;
bj = 2bj−1 + �r − �j if j ≥ 1,

where �r := logr (r − 1).
Assuming we wish to find rc nonequivalent solutions in expectation, we get the fol-

lowing linear program to minimize the maximal list length:

minimize u

s.t. bj ≤ u, j = 0, . . . , q − 1,

�j ≥ 0, j = 1, . . . , q,
q∑

j=1

�j ≥ n,

bq ≥ c.

We will for now ignore the problem that the �j should be integer; this problem will be
separately addressed in Sect. 5.4.

Theorem 5.2. Suppose that m is in the range given by (5.3), and that c < 2 logr m +
�r . Then the optimal solution of the above linear program is as follows:

bi = 2ib0 + (
2i − 1

)
�r, �i = 0, for 1 ≤ i < p;

bp = u, �p = 2pb0 + (2p − 1)�r − u;
bi = u, �i = u + �r, for p < i < q;
bq = c, �q = 2u + �r − c.
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Here, p is the least integer such that

n ≤ (q − p + 1)2p(logr m + �r) − �r − c,

and the value of u is

u = n + c − 2p logr m − (2p − 1)�r

q − p
− �r.

Proof. The proof is analogous to the proof of Theorem 3.1. We therefore give an
abridged version, just filling in some new computational details.

Direct verification shows that if m satisfies the lower bound given by (5.3), then the
solution �1 = · · · = �q−1 = 0, �q = n is feasible.

Now we need to show that any solution not having the shape given in the theorem
can be improved. This follows exactly as in the proof of Theorem 3.1, by showing that
any such solution can always be improved using transformations (3.3), (3.4) and (3.5)
the same way as in the proof of Theorem 3.1.

We now compute p. For i = 1, . . . , q , write

ti = 2ib0 + (
2i − 1

)
�r.

Note that with this notation we have bi = ti for i < p, and �p = tp − u. Plugging this
into the constraints bp−1 ≤ u and 0 ≤ �p gives

tp−1 ≤ u ≤ tp.

Since the sum constraint is tight in the optimal solution, we can deduce from these
bounds on u that

n ∈ [
tp + (q − p)(tp−1 + �r) − c, tp + (q − p)(tp + �r) − c

]
.

The fact that tp+1 = 2tp + �r implies that, as p varies, these intervals for n have dis-
joint interiors and meet at the endpoints. Moreover, the range of n increases with p

monotonically. This gives us the condition on computing p in the theorem.
Finally, the value of n follows immediately from the tight sum constraint∑q

j=1 �j = n. �

Example. With c = 0, our running example with n = 18, r = 64 and q = 3, an input
list length of m = 106 leads to a solution with a maximal list length of ru ≈ 225. For
these parameters, the extended k-tree algorithm thus runs much faster than the naïve
algorithm, which takes about 254−6 = 248 time.4

Remark. We should observe that the following algorithm based on solving linear
equations may also be competitive here. Build a k × n matrix A with coefficients in Fr

constructed by setting the ith row to be a randomly selected vector from Li , 1 ≤ i ≤ k.
Now solve the linear system λA = 0, where λ ∈ F

k
r . If there is a non-trivial solution

4 The −6 in the exponent comes from the fact that we only seek a solution up to linear scaling.
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with λi �= 0 for every 1 ≤ i ≤ k, then a solution to the given k-list problem can easily be
deduced.

A comparison is in order. Since in some applications a solution with not all the λi �= 0
is satisfactory, we will ignore this requirement in our comparison. Then a randomly
constructed matrix A has probability approximately rk−n of yielding a solution. Hence,
approximately rn−k trials are needed for this algorithm to produce a solution, leading
to a running time of Õ(rn−k).

For the example numbers above (n = 18, r = 64, q = 3), we thus estimate the running
time of this algorithm to be 260 trials, which is much worse than the extended k-tree
algorithm; indeed, it is even worse than the naïve algorithm! However, in some cases
(when r is large) the linear equations algorithm can outperform the k-tree algorithm.
To illustrate when this may occur, note from the optimal solution above that n + c ≤
(q + 1)u+q . If we set c = 0, it follows that the linear equations algorithm is faster (i.e.,
rn−k < ru) if

2q

q
− 1 ≥ u. (5.4)

Note that (5.4) could potentially also hold in the binary case. However, this is unlikely to
occur in practical settings because the maximum expected list length there is 2u (rather
than ru), so u is typically much larger in the binary case.

5.4. Implementation

We now face an amplified version of the rounding problem that we already had in the
binary case: the linear program finds real values for �i , but the list merging step a priori
needs them to be integer. We could proceed as in the binary case, and use the same
rounding, but this results in a potential increase of the maximal list length by a factor r

in the worst case.
In this section, we present a solution to this problem which results in a list length

increase by a factor 4 at most, and is thus preferable in most cases. We proceed in
several steps. First, in Sect. 5.4.1 we present a way to partially eliminate symbols. The
effect of this is that we no longer need the �i to be integer, but they can also take certain
non-integer values. Even with partial elimination, the �i cannot be chosen freely: they
still have to be chosen from some discrete superset of N. Therefore, some rounding is
necessary all the same. In Sect. 5.4.2 we solve the problem of appropriately rounding
the �i . Finally, in Sect. 5.4.3, we combine these techniques and show that this rounding
scheme results in a list length increase of at most factor of 4 (independently of r), when
compared to the unrounded version. The running time, however, increases by a factor
O(

√
r), as we will also see.

5.4.1. Basic Partial Elimination

Assume we wish to eliminate �1 symbols, where �1 is not necessarily an integer. First
we eliminate ��1� symbols as usual, giving us a list of (normalized) vectors of the form

(0, . . . ,0,1,∗, . . . ,∗, x).
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Now, eliminating the additional γ1-fraction of a symbol, where γ1 := �1 − ��1�, cor-
responds to putting another constraint on the value that x in the above vector is al-
lowed to take. We do this as follows. Fix an arbitrary partial elimination set V ⊂ Fr of
size |V | = r1−γ1 , and throw away all the vectors for which x /∈ V . (This assumes that
r1−γ1 = r1−�1+��1� is an integer, a requirement that we will arrange for in Sect. 5.4.3.)

Assuming that the elements of the last position are distributed uniformly over Fr (see
Sect. 5.4.4), the new list will have an expected length predicted by (5.2). In the next
elimination round, the collision probability for the position corresponding to x will be
|V |−1, instead of r−1 as is the case for the other nonzero positions.

Now suppose that in the next partial elimination round, we wish to eliminate �2 sym-
bols (i.e., in total, we want �1 + �2 symbols to be zero after this round). Let t be the
largest integer such that

t + (1 − γ1) ≤ �2.

We first eliminate t positions from the left plus the last position (which contains a
(1 − γ1)-fraction of a symbol), and then eliminate a γ2-fraction of the symbol in the
second-last position, where

γ2 := �2 − (t + 1 − γ1).

This procedure can be extended in the obvious way to any number of rounds. Note that
we assumed that �2 ≥ 1, and similarly for all the subsequent values of �i . Inspection of
the optimal solution shows that this is the case if u ≥ 1; and if u < 1, the linear equations
algorithm mentioned earlier is preferable anyway (see (5.4)).

Remark. An induction proof can be used to show that Proposition 5.1 still holds when
a fractional number of symbols are eliminated according to the above scheme.

5.4.2. Finer-grained Rounding

Recall that in the binary case our algorithm required the values of �i to be integers. As
we will see, in the Fr case we can relax this restriction, but we still need the �i to belong
to some discrete set containing the integers.

We will now describe a rounding scheme that can be used to round the values∑j

i=1 �i , 1 ≤ j ≤ q , to any discrete subset N ⊂ S ⊂ R. This scheme has the follow-
ing properties:

• The increase in the maximal list length can be bounded by a factor that depends
only on the maximum distance between two neighboring points in S, i.e., on the
quantity gap(S) defined as follows:

gap(S) := sup
{
b − a | a, b ∈ R, b ≥ a such that (a, b) ∩ S = ∅}

. (5.5)

• There is no restriction on other parameters such as the input list length b0.

We first need a useful characterization of feasible solutions.
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Claim 5.3. Let �1, . . . , �q be a feasible solution to an (n,m,q, c)-instance, and let
b0, . . . , bq be the corresponding b-values. Let ĉ ≤ c. Then any solution �̂1, . . . , �̂q with
b-values b̂i satisfying

b̂i ≥ bi for 1 ≤ i ≤ q − 1, and ĉ ≤ b̂q ≤ bq

and such that �̂i ≥ 0 is a feasible solution to an (n,m,q, ĉ)-instance.

Proof. We just need to verify that the sum constraint is satisfied by the �̂i . Since �̂i =
2b̂i−1 − b̂i + �r , we have

n ≤
q∑

i=1

�i

= 2
q−1∑

i=0

bi −
q∑

i=1

bi + q�r

= 2b0 +
q−1∑

i=1

bi − bq + q�r

≤ 2b0 +
q−1∑

i=1

b̂i − b̂q + q�r

=
q∑

i=1

�̂i ,

finishing the proof. �

Claim 5.3 can be used to obtain the following rounding scheme. Let S be some dis-
crete set with gap(S) < ∞. We are given an (n,m,q, ĉ)-instance, and we seek a feasible
solution �̂1, . . . , �̂q with the property that

∑i
j=1 �̂j ∈ S for 1 ≤ i ≤ q .

We begin by computing an unrounded solution. To this aim, we set c := ĉ + gap(S),
and use Theorem 5.2 to compute the optimal solution to an (n,m,q, c)-instance. The
constraint on c in Theorem 5.2 translates to a slightly stronger constraint on ĉ, namely

ĉ + gap(S) ≤ 2 logr m + �r ; (5.6)

we assume this from now on. Let �1, . . . , �q be this unrounded solution.
Now, we greedily deduce a rounded solution as follows: Pick for �̂1 the largest value

in S such that b̂1 ≥ b1. Then find the largest �̂2 such that �̂1 + �̂2 ∈ S, and such that
b̂2 ≥ b2. Proceed to determine �̂3, . . . , �̂q−1 in that order. Finally, pick �̂q such that
∑q

i=1 �̂i ∈ S and b̂q ∈ [ĉ, c]. (This last choice is possible because of 5.6 and the fact that
we choose c such that c − ĉ ≥ gap(S).)
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We claim that the �̂i obtained this way are nonnegative. This is clear for 1 ≤ i ≤ q −1,
because choosing �̂i = 0 already yields

b̂i = 2b̂i−1 + �r ≥ 2bi−1 + �r ≥ bi.

In addition we have, by our choice of b̂q ,

�̂q = 2b̂q−1 + �r − b̂q ≥ 2bq−1 + �r − c = �q ≥ 0.

So we can use Claim 5.3 and conclude that this solution is feasible.

5.4.3. Combining Partial Elimination and Rounding

For the partial elimination algorithm in Sect. 5.4.1 to work, the values �i must be chosen
so that partial elimination sets of the appropriate size exist. This leads to the following
choice of S for the rounding scheme of Sect. 5.4.2:

S = {
t ∈ R | r1−(t−�t�) ∈ N

}
.

Let �1, . . . , �q be a rounded solution. The size of the partial elimination set at level j can

then be computed as follows. If t := ∑j

i=1 �i is an integer, then no partial elimination
takes place in this round. Otherwise we have a partial elimination set of size |Vj | =
r1−(t−�t�) ∈ N. Note that 1 ≤ |Vj | ≤ r − 1.

We now turn our attention to the cost (in terms of the increase in maximal list size)
of this rounding. We first need to compute gap(S). We have N ⊂ S, and S + z = S for
any z ∈ Z. So we can restrict our attention to the points of S in the interval [0,1], which
are the points logr (r/i) for i = 1, . . . , r . The distance between the neighbors logr (r/i)

and logr (r/(i + 1)) is logr (1 + i−1). This is largest if i = 1, in which case the value is
logr 2. Hence, we have gap(S) = logr 2.

Therefore, in the algorithm of Sect. 5.4.2, we set c = ĉ + logr 2, where ĉ is the true
target value. The cost increase for finding a solution to an (n,m,q, c)-instance rather
than an (n,m,q, ĉ)-instance is at most a factor r logr 2 = 2, if we ignore rounding. Now,
since b̂i ≤ bi + logr 2, the rounding itself contributes another factor r logr 2 = 2 to the
cost, resulting in a rounded version that has a maximal list length at most 4 times that
of the unrounded solution.

Remark. In Sect. 5.4.1 we remarked that �i ≥ 1 is needed for p < i ≤ q in order for
partial elimination to work, and that this follows from u ≥ 1. For the rounded solution,
however, u ≥ 1 is not sufficient to guarantee �i ≥ 1; we also need �r ≥ logr 2, which
holds for all r ≥ 3. Thus the present rounding scheme is not applicable to the binary
case.

5.4.4. Uniformity of Partially Eliminated Symbols

In our analysis in Sect. 5.1, we made the assumption that the elements in the partial elim-
ination position are uniformly distributed. Strictly speaking, this assumption is wrong:
the fact that we normalize vectors has the effect that the value 1 appears slightly more
often than other values.
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On the other hand, if we disregard vectors that are zero in every position other than the
last, the distribution is uniform. We will thus bound the probability that we encounter
any such “bad” vector throughout the algorithm, and simply abort whenever such a bad
event happens.

The only levels that are susceptible to this problem are the levels p,p + 1, . . . , q − 1.
We start by studying a list of the (q − 1)st level. At this level, a random vector is
bad with probability r1−�q , and so a list contains a bad vector with probability at most
rbq−1+1−�q . Plugging in the values for �q and bq−1 from Theorem 5.2, we see that this
probability is at most

r1+c−u

r − 1
.

The total failure probability at level q − 1 is hence at most twice this value, since we
have two lists to consider. For a general level p ≤ q − i ≤ q − 1, a similar computation
yields a failure probability of

2i r
bq−i+i−∑q

j=q−i+1 �j .

Now note that the value
∑q

j=q−i+1 �j does not decrease under our rounding scheme of

Sects. 5.4.2 and 5.4.3, and the quantity rbq−i increases by at most a factor of two. Hence,
plugging in the optimal unrounded solution for �j and bj , and taking into account the
worst-case additional penalty due to rounding, we get a maximum of

2i+1rc+i(1−u−�r) = 2rc

(
2r1−u

r − 1

)i

.

Summing from i = 1, . . . ,∞ gives an upper bound on the overall probability of a bad
vector appearing of

4rc

ru(1 − r−1) − 2
≤ 4rc

m(1 − r−1) − 2
, (5.7)

where we have used the fact that ru ≥ m, because the expected list length is minimum
at the beginning of the algorithm. This bound is useful unless the input list length m is
small compared to the desired number of solutions rc .

5.4.5. Fast Partial Elimination

Partial elimination reduces the number of matches by a factor |V |/r . So if we just do
the integer elimination part first, and then throw away non-matches for the partial part,
this entails

r/|V | = r/
(
r1−γ

) = rγ

additional operations per match. (Here, γ is the fractional part of the number � of sym-
bols to be eliminated.) This is of course not a problem if γ is small, but can introduce a
factor as large as r if γ is close to 1.
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We now give a different strategy that is better if γ is large. Fix the set V . We need to
merge vectors of the form

v1 = (1, a1,∗, . . . ,∗, a2)

with vectors of the form

v2 = (1, b1,∗, . . . ,∗, b2).

Specifically, for v1 we want to quickly find all the v2 such that

v2 − v1 = (0, b1 − a1,∗, . . . ,∗, b2 − a2) ∼ (
0,1,∗, . . . ,∗, (b1 − a1)

−1(b2 − a2)
)

is a partial match, i.e., (b1 −a1)
−1(b2 −a2) ∈ V . We do this as follows. For each c ∈ V ,

we seek a match with in addition

(b1 − a1)
−1(b2 − a2) = c,

i.e.,

b2 − cb1 = a2 − ca1.

So for a fixed c, we sort the list in such a way that the lookup for a match on the integer
part together with the value b2 − cb1 is fast. Since we have to do this for every c, this
slows down the algorithm by a factor of |V | = r1−γ .

Combining with the first strategy, we can get away with increasing the running time
by a factor of

min
(
r1−γ , rγ

) ≤ r1/2.

With a little care in implementation, the memory use is in either case proportional to
the length of the lists. Thus we have achieved the time and space bounds claimed at the
beginning of Sect. 5.

5.5. Failure Probability Analysis

In this section, we bound the failure probability of the extended k-tree algorithm over
large alphabets. Specifically, we shall prove the following theorem:

Theorem 5.4. If �1, . . . , �q are chosen according to Theorem 5.2 and Sect. 5.4.2, then
the failure probability of the algorithm is at most

r−c + 4rc

m(1 − r−1) − 2
+ exp(3qk/2m) − 1.

Here, r−c is the error term arising from the expected number of solutions, the second
term comes from (5.7), and the last term follows from the second moment as described
in the next two subsections. The analysis based on the second moment method is similar
to but rather more technically involved than that for the binary case, as presented in
Sect. 4.

In the following failure probability analysis, in particular in the proof of Lemma 5.5,
we will assume that the value 0 is not contained in any partial elimination set. Since the
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maximal size of a partial elimination set is r − 1, and the sets can be chosen freely by
the algorithm, we may assume w.l.o.g. that this property holds.

5.5.1. Preliminaries

Following Sect. 4.1, we write

Li = {
xi

1, . . . , x
i
m

}

for i = 1, . . . , k, where the xi
j are Fr -vectors of length n. The components of xi

j are
random variables, sampled uniformly and independently from Fr . We define the outputs
of the algorithm as follows. Let

S = (
F

∗
r × {1, . . . ,m})k

.

Then a = ((λ1, i1), . . . , (λk, ik)) ∈ S is a solution for the given input if and only if

λ1x
1
i1

+ · · · + λkx
k
ik

= 0.

Two solutions ((λ1, i1), . . . , (λk, ik)) and ((λ′
1, i

′
1), . . . , (λ

′
k, i

′
k)) are equivalent if

i1 = i′1, . . . , ik = i′k and λ1 = cλ′
1, . . . , λk = cλ′

k

for some c ∈ F
∗
r . Writing S for the set of equivalence classes of S , we have |S| =

(r − 1)k−1mk . For a ∈ S , let Ia be the indicator random variable of the event that a is
a solution found by the algorithm.5 The number of (nonequivalent) solutions found by
the algorithm is N := ∑

a∈S Ia ; the algorithm fails if and only if N = 0. As in Sect. 4.1,
we get can bound the probability of this event as follows:

Pr(N = 0) ≤ E[N ]−1 + Eab[Cov(Ia, Ib) | a �= b]
μ2

, (5.8)

where μ := E[Ia] and Eab[·] denotes the expectation over a, b selected randomly
from S .

5.5.2. Covariance Computation

In this section, we estimate the correlation of the events that two different sums are
solutions found by the algorithm, i.e., we establish an inequality analogous to (4.2). The
analysis is lengthier than that of Sect. 4.2, mainly because of complications introduced
by partial elimination.

The sample space in this section is the input of the algorithm, i.e., the random lists.
For a given a = ((λ1, i1), . . . , (λk, ik)) ∈ S , we define the event

Eq,1(a) := {
the sum λ1x

1
i1

+ · · · + λkx
k
ik

appears in the root node
}
,

5 We shall abuse notation by having a = ((λ1, i1), . . . , (λk, ik)) denote either an element of S or its equiv-

alence class in S , depending on the context. This makes sense because the events we consider hold either for
all members of an equivalence class or for none of them.
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which is the event that a is a solution found by the algorithm. Note that Ia is just the
indicator random variable of Eq,1(a).

We can define similar events for the other nodes of the tree. For 1 ≤ j ≤ q and 1 ≤
t ≤ 2q−j , we denote the event that the relevant partial sum corresponding to a appears
in the t th level-j node by Ej,t (a). With this notation, we have

Pr
(

Ej,t (a)
) = r−∑j

i=1 2j−i �i =: μj

for 1 ≤ j ≤ q and 1 ≤ t ≤ 2q−j . This is the probability that a particular set of parameters
appears in a level-j node, so in particular the probability that a is a solution found by
the algorithm is equal to Pr(Eq,1(a)) = μq = μ.

We now generalize the notion of an (a, b)-incidence tree defined in Sect. 4.2. Let
a, b ∈ S . The (a, b)-incidence tree is the complete binary tree of height q +1 which has
in every node either a square or a triangle corresponding to the following rule. Write
a = ((λ1, i1), . . . , (λk, ik)) and b = ((λ′

1, i
′
1), . . . , (λ

′
k, i

′
k)). Let x be a node of the tree.

If for every j such that the j th node on level 0 is below x, we have ij = i′j and λj = cλ′
j

for some c independent of j , then the node x is a triangle. Otherwise it is a square.
From this definition it follows, as in the binary case, that if a node has no triangle or

exactly one triangle as child, then it is a square. However, unlike in the binary case, a
node which has two triangle children can be either a triangle or a square.

The following Lemma establishes a bound analogous to (4.2).

Lemma 5.5. Fix a, b ∈ S . Assume that the partial elimination sets are chosen so that
they do not contain the value 0. Then we have

Cov(Ia, Ib) ≤ μ(Fab − μ), (5.9)

where Fab = r
−∑

y square �level(y) .

Proof. We proceed by induction on the rounds of the algorithm. We need to show that

Pr
(

Ej,1(a) ∧ Ej,1(b)
) ≤ μjr

−∑
y square �level(y) , (5.10)

where the sum only runs over the nodes in the tree rooted at the (j,1)-node: applied to
the root node, the latter can be rewritten as

E[IaIb] ≤ μqFab,

which in turn is just a restatement of (5.9).
Write Nj,i (a) for the event that the constraint implied by the node itself holds. Hence

Nj,i (a) constrains the values of the appropriate sum at the previous partial elimination
position (if any) and at the newly eliminated positions to be zero, and puts a constraint
on the value at the new partial elimination position. So we have, for example,

Ej,1(a) = Ej−1,1(a) ∧ Ej−1,2(a) ∧ Nj,1(a);
but note that if a symbol was partially eliminated in round j − 1, the three events in this
conjunction are not necessarily independent.
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We have, using the induction hypothesis at level j − 1,

Pr
(

Ej,1(a) ∧ Ej,1(b)
)

= Pr
(

Nj,1(a) ∧ Nj,1(b) | Ej−1,1(a) ∧ Ej−1,2(a) ∧ Ej−1,1(b) ∧ Ej−1,2(b)
)

× Pr
(

Ej−1,1(a) ∧ Ej−1,2(a) ∧ Ej−1,1(b) ∧ Ej−1,2(b)
)

≤ Pr
(

Nj,1(a) ∧ Nj,1(b) | Ej−1,1(a) ∧ Ej−1,2(a) ∧ Ej−1,1(b) ∧ Ej−1,2(b)
)

× r
−∑

y square �level(y) r
−∑

y square �level(y)μ2
j−1, (5.11)

where the sums in the exponents run over the subtrees rooted at (j −1,1) and (j −1,2),

respectively.
Now we distinguish some cases. First, if the (j,1)-node is a triangle, then all the

nodes below it are triangles, and the inequality (5.10) is trivial in this case.
Second, we show that the case in which the (j,1)-node is a square but its chil-

dren are triangles cannot occur if partial elimination took place in round j − 1. To
this aim, we show that Nj,1(a) and Nj,1(b) are mutually exclusive in this case. Write
a = ((λ1, i1), . . . , (λ2q , i2q )) and b = ((λ′

1, i
′
1), . . . , (λ

′
2q , i

′
2q )). Since nodes (j − 1,1)

and (j − 1,2) are triangles, we have i1 = i′1, . . . , i2j = i′
2j , and λ1 = cλ′

1, . . . , λ2j−1 =
cλ′

2j−1 and λ2j−1+1 = dλ′
2j−1+1

, . . . , λ2j = dλ′
2j for some c, d ∈ F

∗
r . Now let ze ∈ Fr ,

1 ≤ e ≤ 2j , be the value of xe
ie

at the partial elimination position at round j − 1. Since
Ej,1(a) holds, we have

λ1z1 + · · · + λ2j−1z2j−1
︸ ︷︷ ︸

=:T1

+λ2j−1+1z2j−1+1 + · · · + λ2j z2j

︸ ︷︷ ︸
=:T2

= 0.

Similarly, because of Ej,1(b), we also have cT1 + dT2 = 0, giving

(
1 1
c d

)(
T1
T2

)
= 0.

Now, T1 and T2 are nonzero because those values are contained in some partial elimina-
tion set, and hence the determinant of the above matrix must be zero; thus c = d . How-
ever, if c = d then the (j,1)-node is a triangle, which we excluded. Therefore Nj,1(a)

and Nj,1(b) are mutually exclusive conditional on Ej−1,1(a), Ej−1,2(a), Ej−1,1(b) and
Ej−1,2(b) in this case, so (5.10) again holds trivially.

Second, if no partial position was eliminated in round j − 1, the events Nj,1(a) and
Nj,1(b) are independent conditional on Ej−1,1(a) ∧ Ej−1,2(a) ∧ Ej−1,1(b) ∧ Ej−1,2(b).
Therefore, we have

Pr
(

Nj,1(a) ∧ Nj,1(b) | Ej−1,1(a) ∧ Ej−1,2(a) ∧ Ej−1,1(b) ∧ Ej−1,2(b)
)

= Pr
(

Nj,1(a) | Ej−1,1(a) ∧ Ej−1,2(a)
) × Pr

(
Nj,1(b) | Ej−1,1(b) ∧ Ej−1,2(b)

)
,

= r−2�j . (5.12)

Plugging (5.12) into (5.11) establishes the desired inequality (5.10) for j in this case.
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Finally, if (j,1) is a square and only one of its children is a triangle, (5.12) is still
valid, again by conditional independence, and thus (5.10) also holds in this case. �

5.5.3. Estimating the Expected Covariance

Lemma 5.5 establishes an upper bound on the covariance Cov(Ia, Ib) for given a, b ∈
S . Now, in analogous fashion to Sect. 4.3, we randomize the choice of a, b ∈ S and
compute an upper bound on E[Cov(Ia, Ib) | a �= b].

Define

αj = Pr(a level-j node y has exactly one 
 child | y is a �),

βj = Pr(a level-j node y has two 
 children | y is a �).

Then, a short computation gives

αj = 2m−2j−1
(r − 1)−(2j−1−1)(1 − m−2j−1

(r − 1)−(2j−1−1))

1 − m−2j
(r − 1)−(2j −1)

and

βj = (r − 2)m−2j
(r − 1)−(2j −1)

1 − m−2j
(r − 1)−(2j −1)

.

The denominator is in each case close to 1, so we get a good upper bound if we discard
it. Doing this, and writing tj := m−2j

(r − 1)−(2j −1), we get

αj ≤ 2tj−1(1 − tj−1) ≤ 2tj−1,

βj ≤ (r − 2)tj .

Note that the tj satisfy the recursion tj = t2
j−1
r−1 . Also, t−1

j is equal to the number of
distinct candidate sums (up to equivalence) for a level-j node, and so we have

μj · t−1
j = E[list length at level j ].

For 1 ≤ j ≤ q , we define Sj in analogous fashion to Sect. 4.3. Let y be a node at level
j ≥ 1, and set

Sj :=
∏

z a square
descendant of y

r−�level(z) .
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Note that Sq = Fab , where Fab is the quantity defined in Lemma 5.5. Set sj := E�
ab[Sj ].

Note that sj ≥ μj . Our goal is to upper bound sq/μq . First, the sj satisfy the following:

sj = r−�j
[
(1 − αj − βj )s

2
j−1 + αj sj−1 + βj

]

≤ r−�j s2
j−1

[
1 + αj

sj−1
+ βj

s2
j−1

]

≤ r−�j s2
j−1

[
1 + 2tj−1

μj−1
+ r − 2

r − 1

(
tj−1

μj−1

)2]

≤ μj

j−1∏

i=0

[
1 + 2ti

μi

+ r − 2

r − 1

(
ti

μi

)2]2j−i−1

.

Now, using the approximation ln(1 + x) ≤ x and the fact that the expected list size
t−1
i μi is at least 1 for any level < q , we get

sq ≤ μq exp

{
q−1∑

i=0

2q−i−1 ti

μi

(
2 + (r − 2)ti

(r − 1)μi

)}

≤ μq exp

{
3

2

q−1∑

i=0

2q−i ti

μi

}

≤ μq exp

{
3q2q

2m

}
. (5.13)

To get the last inequality, we bounded the sum by the maximum times q; the largest
term is the one for i = 0, since the smallest expected list length at any level < q is at
level 0, where it is m.

5.5.4. Proof of Theorem 5.4

We are now ready to prove Theorem 5.4. Using first (5.9) and then (5.13), we have

Eab

[
Cov(Ia, Ib) | a �= b

] ≤ μq

(
E�

ab[Fab] − μq

) ≤ μ2
q

(
exp

(
3qk

2m

)
− 1

)
.

Now, plugging this and the fact that E[N ] = rc into (5.8), and adding the probability of
a bad vector from (5.7), we get the statement of Theorem 5.4.

6. Concluding Remarks and Open Problems

The problem studied in this paper is sometimes referred to as the multi-list k-sum prob-
lem, to emphasise the fact that the summands are taken from k distinct lists. An interest-
ing variant is the single-list k-sum problem, which is the problem of finding k distinct
entries in one list L that sum to zero. The single-list problem has a number of natural ap-
plications; for example, the problem of finding a sparse multiple of a given polynomial
reduces more naturally to the single-list k-sum problem.
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It seems obvious that an algorithm similar to the extended k-tree algorithm can be
used for the single-list problem, but it appears to be much more difficult to analyze the
behavior of such an algorithm. The difficulties stem from the fact that the lists are no
longer independent, and that the event that some sum appears in a node of the tree is
related to the events that permutations of that sum appear. These effects make it hard
to get a rigorous estimate even of the expected list sizes, let alone an estimate of their
variance.

It is of course always possible to reduce the single-list problem with k summands to
a multi-list problem with k independent lists simply by chopping up the input list into
k distinct lists. However, this artificially reduces the effective list length and removes
a large number of sums from consideration. It would be interesting to develop, and
rigorously analyze, an algorithm tailored to the single-list case.

Another point worth mentioning is that our version of the k-tree algorithm on finite
fields differs from the binary version in an interesting respect. As we observed at the
end of Sect. 2, in the binary algorithm it is possible to randomly choose the constraints
on the internal nodes of the tree, and hence sample a random solution of the original
problem. Our non-binary version no longer has this property, but rather finds certain
special solutions only. We do not currently know whether it is possible to modify the
non-binary algorithm so that it finds arbitrary solutions.

Recall also that our non-binary algorithm has a merging cost overhead of
√

r . This
additional cost is somewhat surprising, and it would be nice to avoid it (without sub-
stantially increasing the space requirement). Such savings could be significant in appli-
cations where the field size r is large.

We conclude by mentioning another related open problem. An algorithm similar to
the (extended) k-tree algorithm can be used to solve the following variant of the subset-
sum problem: given k lists L1, . . . ,Lk of m entries, each containing random integer
moduli in Z/pZ, find x1 ∈ L1, . . . , xk ∈ Lk such that x1 + · · · + xk = 0 mod p. While
some progress has been made on analyzing such an algorithm (see, e.g., [11,14]), the
optimal choice of the parameters is not yet known. The analysis of our paper does not
directly carry over, since the partial sums in the nodes are not uniformly distributed.
However, it is possible that our techniques can be adapted to this case with some more
work.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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