
J. Cryptology (1998) 11: 161–185

© 1998 International Association for
Cryptologic Research

Lattice Reduction: A Toolbox for the Cryptanalyst

Antoine Joux
DGA/CELAR,
Bruz, France

Jacques Stern
Laboratoire d’Informatique,
Ecole Normale Sup´erieure,

Paris, France

Communicated by Andrew M. Odlyzko

Received 19 May 1994 and revised 31 December 1997

Abstract. In recent years, methods based on lattice reduction have been used repeat-
edly for the cryptanalytic attack of various systems. Even if they do not rest on highly
sophisticated theories, these methods may look a bit intricate to practically oriented
cryptographers, both from the mathematical and the algorithmic point of view. The aim
of this paper is to explain what can be achieved by lattice reduction algorithms, even
without understanding the actual mechanisms involved. Two examples are given. One
is the attack devised by the second author against Knuth’s truncated linear congruential
generator. This attack was announced a few years ago and appears here for the first time
in complete detail.

Key words. Lattices, Cryptanalysis, Knapsack cryptosystems.

1. Introduction

1.1. Historical Background

A lattice is a discrete subgroup ofRn or equivalently the setL consisting of integral
linear combinations

λ1b1+ · · · + λpbp

ofagivensetof independentn-dimensional vectorsb1, . . . ,bp. Thesequence(b1, . . . ,bp)

is said to be a basis ofL and p is its dimension.
From the mathematical point of view, the history of lattice reduction goes back to

the theory of quadratic forms developed by Lagrange, Gauss, Hermite, Korkine and
Zolotareff, and others (see [La], [G], [H], and [KZ]) and to Minkowski’s geometry of
numbers [M]. With the advent of algorithmic number theory, the subject had a revival
around 1980, when Lov´asz found a polynomial-time algorithm that computes a so-

161

162 A. Joux and J. Stern

calledreduced basisof a lattice. Actually, a reduction algorithm of the same flavor had
already been included in Lenstra’s work on integer programming (see [Le], circulated
around 1979) and the lattice reduction algorithm reached a final form in the paper [LLL]
by Lenstra, Lenstra and Lov´asz, from which the nameLLL algorithm comes. Further
refinements of the LLL algorithm were proposed by Schnorr [Sc1], [Sc2].

The relevance of those algorithms to cryptography was immediately understood:
in April 1982, Shamir [Sh] found a polynomial-time algorithm breaking the Merkle–
Hellman public key cryptosystem [MH] based on the knapsack problem, that had been
basically the unique alternative to RSA. Shamir used Lenstra’s integer programming
algorithm but, the same year, Adleman [A] extended Shamir’s work by treating the cryp-
tographic problem as a lattice problem rather than a linear programming problem. Further
improvements of these methods were obtained by Brickell [Br1], [Br2], by Lagarias and
Odlyzko [LO], and, more recently, by Coster et al. [CJL+].

Lattice reduction has also been applied successfully in various other cryptographic
contexts: against a version of Blum’s protocol for exchanging secrets [FHK+], against
truncated linear congruential generators [FHK+], [St], against cryptosystems based on
rational numbers [ST] or modular knapsacks [JS], [CJS], and, more recently, against RSA
with exponent 3 [Co] and in order to attack a new cryptosystem proposed by Hoffstein,
Pipher, and Silverman under the name NTRU (see [CS]). Despite the available literature,
papers are still submitted (and sometimes published) that describe cryptographic proto-
cols that can be broken, via lattice reduction techniques, almost by inspection. This fact,
which may be due to the apparent technicality of the subject, drove us to write a paper
that explains the power of lattice reduction in cryptography, without requiring any un-
derstanding of the actual mechanisms involved in the algorithms. Thus, in the examples
given in this paper, we focus on the transformation of some cryptographic problems into
lattice reduction problems. Some of the transformations are self-explanatory, others are
much more difficult to follow, however, in all cases no knowledge of the lattice reduction
algorithms themselves is required. This paper was also an opportunity to publish, in final
form, results that had been announced in [St] and [GJ].

1.2. Functional Description of Lattice Reduction Algorithms

As already mentioned, a latticeL consists of integral linear combinations

λ1b1+ · · · + λpbp

of a given set ofn-dimensional vectorsb1, . . . ,bp. From the algorithmic point of view,
we are interested in the case where allbi ’s have integer coordinates. In this case, the
latticeL can be represented by a very simple data structure by considering the matrixBL

whose columns are the coordinates of the vectorsb1, . . . ,bp. Lattice reduction algorithms
perform the following very simple operations:

(i) Exchanging two columns ofBL .
(ii) Adding to a given column an integer multiple of another one.

(iii) Deleting zero columns.

What is not simple is the precise way the sequence of above transformations is chosen.

Lattice Reduction: A Toolbox for the Cryptanalyst 163

We simply mention that the algorithm tries

(i) to have the shortest columns ahead and
(ii) to make the columns mutually “as orthogonal as possible.”

Ideally, we would like to come out with the first column of the matrix consisting of
the coordinates of a shortest nonzero vector ofL and with “almost” orthogonal columns.
Unfortunately, this is not the case and we note that no efficient algorithm is known for
finding the shortest nonzero vector ofL. This is actually a fundamental problem which
lies at the heart of the solution of many problems in number theory. Still, from the
output of the algorithm, it is possible to build a vector whose length does not exceed the
length of a shortest vector by more than a given multiplicative constant, depending on
the dimension ofL as well as on the variant of the algorithm used. It turns out that this
is enough for many applications.

1.3. Proved Performances

Let L be a lattice generated by of a set ofn-dimensional vectors. LetBL be the associated
matrix. Denote byB the value of the matrix obtained as an output of the LLL algorithm
and denote byb1, . . . ,bq its column vectors. Finally, letλ1 be the length of a shortest
nonzero vector ofL (in the usual euclidean sense). The following essentially comes from
[LLL]:

Fact 1.

(i) b1, . . . ,bq is a basis of L.
(ii) |b1| ≤ 2(q−1)/2× λ.

(iii) |b1| ≤ 2(q−1)/2× (1(L))1/q.

In the above,1(L) denotes the determinant ofL, that is the (euclidean) volume
of the q-dimensional parallelepiped enclosed byb1, . . . ,bq. In case the lattice is full
dimensional (which meansn = q), this volume is the absolute value of the determinant
of B or of any other basis generatingL. In the general case,1(L) can also be computed
by a simple formula which we omit. Condition (iii) means that the length ofb1 is not too
far from what it is in the “ideal” case, corresponding to a basis consisting of mutually
orthogonal vectors of equal length.

For the cryptanalyst, the heuristic meaning of Fact 1 is that if he only needs a short
enough vector of a lattice, then LLL will do the job. Similarly, if he knows that the
(unknown) shortest vector is much smaller than the other elements of the lattice or
much smaller than the value(1(L))1/q, then LLL will presumably disclose it. There
is a generalization of Fact 1 which is sometimes useful, it is related to the so-called
successive minimaof the lattice: thei th minimum is the smallest positive valueλi such
that there existi linearly independent elements of the lattice in the ball of radiusλi

centered at the origin.

Fact 2. |bi | ≤ 2(q−1)/2× λi .

164 A. Joux and J. Stern

For the cryptanalyst, this fact amounts to saying that ifi (unknown) linearly dependent
vectors of the lattice are very small, the sublattice they span will be disclosed by LLL.

Actually, the LLL algorithm consists of a family of different algorithms depending
on a constantγ , 1

4 < γ < 1. The case that is described above corresponds to the value
γ = 3

4 and if another value ofγ is chosen, then the powers of two appearing in the above
facts must be replaced by the same powers of 4/(4γ − 1).

In [Sc1], Schnorr proposes a whole hierarchy of lattice reduction algorithms, which
are extensions of the LLL algorithms and which he calls blockwise Korkine–Zolotareff
reductions (BKZ). What changes here is the strategy to perform the operations on the
matrix BL . The extended strategy involves a search on sublattices generated by blocks
of columns of the original matrix. When the size of the blocks grows, the performances
of the algorithm get better and better, achieving the situation obtained from Fact 1 by
replacing powers of two by powers of any constantσ > 1.

1.4. Actual Performances

In all the applications, experiments show that LLL behaves much more nicely than should
be expected in view of the theory. Especially the worst-case constantKq, which appears
in Fact 1 as 2(q−1)/2 seems to be much smaller in practical terms.

1.5. Implementations

The running time of the LLL algorithm is polynomial with respect to the dimensionn of
the space, the dimensionq of the lattice, and the size of the matrixBL . More precisely,
if m is the maximal number of bits in the coefficients of the original matrixBL , then the
running time of the standard LLL algorithm isO(nq5m3). Albeit polynomial, this is not
negligible and does not allow any efficient implementation. Following a suggestion made
by Odlyzko and independently by Schnorr, actual implementations of LLL reductions,
including the one used by the authors, substitute floating arithmetic for the rational
arithmetic required by the original specification of the algorithms. Nevertheless, this
cannot be done in a naive way as the strategy may occasionally be misled by floating point
errors and enter a loop. Fortunately, these occasional errors can be spotted and corrected,
at a minor cost in terms of computing time, by performing “exact computation.”

Of course, the running time of the LLL algorithm also depends on the value of the
constantγ adopted and several heuristics can be helpful, such as computing first with a
moderate value ofγ and ultimately with a value close to 1. Similarly, BKZ reductions
have a worse computing time than LLL. Finally, the computing time also depends on
the kind of problems one addresses.

2. Generic Problems That Fall under the Scope of Lattice Reduction

2.1. Direct Use of Lattice Reduction

By “direct use” we mean practical applications where the lattice comes from the data in
a natural way. This was the situation for the original attack against the Merkle–Hellman
cryptosystems. We simply mention the method, firstly because it does not involve any

Lattice Reduction: A Toolbox for the Cryptanalyst 165

specific analysis besides the results stated in Section 1 and also because it did not prove
useful in more recent work.

2.2. Dependence Relations with Coefficients of Moderate Size

The search of linear dependence relations with small coefficients in a family of numbers
or vectors is probably the source of most frequent uses of lattice reduction. This general
class of applications can be further divided into two cases, ordinary relations and modular
relations. We deal with the ordinary case here, and with the modular case in the next
subsection. It should be noted that we do not cover here the problems of solving knapsacks
and finding minimal polynomials. We consider them as specific problems and they receive
detailed treatment in subsequent subsections. Before we turn to practical matters, we
briefly discuss the question from a mathematical point of view.

2.2.1. Some Combinatorial Landmarks

For the cryptographer, the search for linear dependence relations with coefficients of
moderate size can occur either because he is looking for specific objects, whose existence
is known (trapdoors, etc.), or for generic objects he might use for further analysis. The
following combinatorial lemma ensures the existence of such generic relations.

Lemma 1. Assume V1, . . . , Vn is a family of vectors with integer coefficients in the
t-dimensional space, with t < n. Let M denote an upper bound for the absolute values
of all coefficients of the various Vi ’s. There exists an integer relation

n∑
i=1

αi Vi = 0

such thatmax|αi | ≤ B, where B is given by

log B = t
log M + logn+ 1

n− t
.

Remark. Throughout the paper log denotes the base 2 logarithm.

Proof. Consider all possible linear combinations
n∑

i=1

µi Vi

with 0≤ µi < B. An easy counting argument shows that the number of such combina-
tions is exactlyBn and that the resulting vectors have all coordinates (strictly) bounded
by nBM. Since there are less than(2nBM)t such vectors, two distinct combinations have
to compute the same value, as soon as

(2nBM)t ≤ Bn,

which amounts to the given relation

log B = t
log M + logn+ 1

n− t
.

166 A. Joux and J. Stern

This gives

n∑
i=1

µi Vi =
n∑

i=1

µ′i Vi

with 0≤ µi < B and 0≤ µ′i < B. The result follows by difference.

Remark. It is obvious that the shortest dependence relation (say with respect to the
euclidean length) can be much shorter than what is claimed in the above lemma. We give
a heuristic argument to show that our estimate is probably pessimistic. If we consider
that vectors computed by the formula

n∑
i=1

µi Vi

behave like random elements in thet-dimensional cube of size(2BM), then, by the
birthday paradox, we can see that a collision happens with constant probability as soon
as

log B = t

2

log M + logn+ 1

n− t/2
.

2.2.2. Practical Point of View

Given a family of integer vectors (or numbers)V1, . . . , Vn, we describe the principle
of dependence relations search. We construct the lattice given by the columns of the
following matrix: 

K V1 K V2 · · · K Vn

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 ,

whereK is a well chosen constant.
We distinguish two cases: either we are looking for exact relations or else for approx-

imate relations. In the first case,K should be large enough to ensure that the first vector
of the reduced basis has zero components in its upper part corresponding to the firstt
coordinates, wheret is the dimension of theVi ’s. More accurately, in view of Fact 1,
K should be larger than the size of the expected linear relation multiplied by a safety
coefficient 2n/2. Thus, LLL will discover short vectors whose upper part is guaranteed
to be zero, and these vectors clearly correspond to linear dependencies with small co-
efficients. The coefficients appear as coordinates of rankt + 1, . . . , t + n of the output
vector.

In the case of approximate relations, we can chooseK = 1. Output vectors will be
short but there is no reason why the upper part should be zero. This clearly corresponds
to approximate dependencies with small coefficients.

Lattice Reduction: A Toolbox for the Cryptanalyst 167

2.3. Modular Relations

In the previous section we explained how to disclose linear relations with moderate
coefficients between integer vectors. We now discuss the case of modm numbers. The
basic problem is how one can force lattice reduction to deal with modular relations. The
answer is very simple and consists in adding to the lattice basis a few columns that ensure
modular reduction as shown in the following matrix:


K V1 K V2 · · · K Vn KmI

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

... 0
0 0 · · · 1 0

 ,

whereI is a t-dimensional identity matrix, witht the dimension of theVi ’s. It is clear
that the added columns force reduction of numbers modulom.

From a practical point of view, we need to foretell whether or not the resulting lattice
will disclose the expected dependence relation. To discuss this question and provide
heuristics, we remark that the lattice includes short vectors that are not related whatsoever
with the existence of any linear relation. These vectors can be obtained by multiplying
any of the firstn vectors in the initial basis by a factorm and then by reducing the upper
part modm, with the help of the extra columns. We obtain a vector whose components
are all zero except one whose value ism. Applying the above construction to allVi ’s,
we get a family ofn vectors of sizem that are mutually orthogonal. Experiments show
that, if m is too small, this family appears in sequence as the first output vectors of a
reduced basis, and thus masks any useful information about linear relations. However,
if the (euclidean) size of the expected relation is smaller thanm, we can reasonably
hope that the reduction algorithm will find it. Using Fact 1 above, it is possible to give
conditions that will ascertain the above heuristic observations. Still, this is not very useful
in practice and we do not pursue the matter. We close the section by observing that, in
the special case wherem = 2, we cannot expect to disclose relations with more than
three ones. Moreover, such relations can usually be found faster by exhaustive search.
This explains why lattice reduction algorithms are not successful for attacking binary
problems, such as finding the shortest codeword in a linear code, or the solution of a
SAT problem.

2.4. Knapsack Problems

Solving knapsack problems is a subcase of searching linear relations between given
numbers. However, we treat it specifically, not only because of its historical importance
in cryptography but also because it is is more involved than the general case, due to the
fact that the expected relations have coefficients in{0,1}. In cryptographic scenarios, we
know that such a relation exists between the given elements of the knapsacka1, . . . ,an

and the target sums = ∑n
i=1 εi ai . Moreover, we know that the euclidean size of this

relation is
√
αn, whereα is the proportion of ones in the relations.α may or may not be

known to the cryptanalyst but in most practical examples it is a part of the cryptographic

168 A. Joux and J. Stern

system itself. Furthermore,α is an important parameter when trying to analyze the
performances of lattice-based attacks against knapsack problems. However, discussing
the influence ofα is somewhat technical and is not within the scope of this article. We
refer the interested reader to [CJL+] or [J]. In what follows we consider the most natural
case and setα = 1

2.
Another parameter that is quite important in knapsack problems is the density of the

knapsack:

d = n

log2(maxi ai)
.

This parameter is the ratio between the number of elements in the knapsack and the
number of bits in each element. This parameter determines the size of short vectors in
the lattice other than the{0,1} solution vector. It was shown in [LO] that, when the
density is low, the shortest vector gives the solution to the knapsack problem. If we use
the lattice that was described above, and if we assume that shortest lattice-vectors can
be efficiently computed (even if this is not totally accurate), then low density means
d < 0.6463. In recent work [CJL+], this condition was improved tod < 0.9408. In
order to reach that bound, either one of the following lattices can be used:



Ka1 Ka2 · · · Kan −Ks
n+ 1 −1 · · · −1 −1
−1 n+ 1 · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · n+ 1 −1
−1 −1 · · · −1 n+ 1


,


Ka1 Ka2 · · · Kan Ks

1 0 · · · 0 1
2

0 1 · · · 0 1
2

...
...

. . .
...

...

0 0 · · · 1 1
2

.

Before we close this section, we warn the reader on the meaning of low-density attacks.
The inequalityd < 0.9408 provides aprovableguarantee that, from a shortest vector for
a lattice computed from the problem, one can, with high probability, solve the original
knapsack problem. This kind of result is sometimes described in the setting of “oracles”:
it states that if one is granted access to a lattice reduction oracle, i.e., to a function that
returns the shortest vector of a lattice (at no computation cost), then one can solve the
low-density knapsack problem. It does not mean at all that one cannot successfully attack
knapsack problems with a higher density: it only means that such attacks will not follow
from a theorem but only from various heuristics. From a practical point of view, it does
not make much difference.

2.5. Minimal Polynomials

Finding the minimal polynomial of a real algebraic numberx of degreed corresponds
to searching a linear dependency between 1,x, x2, . . . , xd. Since we are working with
integer lattices, we choose a large integerK and we try to find an approximate relation
between the closest integers toK , K x, K x2, . . . , K xd. More precisely, we reduce the

Lattice Reduction: A Toolbox for the Cryptanalyst 169

following lattice: 

K bK xe bK x2e · · · bK xde
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


.

The first vector of the reduced lattice can be written as
ε

a0

a1
...

ad

 .
Since we wish to interpreta0, . . . , ad as the coefficients of the minimal polynomial of
x, i.e., we want to conclude thata0+a1x+a2x2+ · · ·+adxd = 0. The most important
parameters here areK andd. If d is smaller than the degree of the minimal polynomial of
x, then this technique cannot succeed. Likewise, ifK is too small, then it cannot succeed
either. To see this, assume for example thatx is between 0 and 1 and apply Lemma 1:
this yields a linear combination of the elements on the first row of the above matrix with
coefficients bounded above byB, whereB satisfies

log B = log K + logd + 1

n− 1
.

If K is small, this relation is much more likely to appear as an output to lattice reduction
algorithms than the one corresponding to the minimal polynomial. Taking into account
the heuristic remarks following Lemma 1, it is safe to haveK ≥ (max|ai |)2d. Hence,
K should be much larger than the expected size of the coefficients of the minimal
polynomial. Ifd is not exactly known, for example, if we only know an upper bound on
the degree of the minimal polynomial ofx, then the following trick can be applied: take
the first two or three vectors appearing in the output reduced lattice, transform them into
polynomials, and compute their gcd. IfK is large enough, then the minimal polynomial
of x is usually obtained.

It is very important to know that the procedure we just described can give positive
results, i.e., it can find a minimal polynomial, but cannot give negative ones.

3. Two Examples

We now turn to two specific examples. As mentioned in the Introduction, these were
chosen among the authors’ contributions in the area and appear here for the first time
in journal version. The basic ideas behind the transformations used in these two exam-
ples are quite simple. However, the proofs that these transformations lead to successful
cryptanalysis are more difficult. Yet they do not rely on any knowledge of the lattice
reduction algorithms which are used but see them as black boxes.

170 A. Joux and J. Stern

3.1. Cryptanalysis of Knuth’s Truncated Linear Congruential Generators

In this section we discuss the predictability of the sequence given by outputting a constant
proportion of the leading bits of the numbers produced by a linear congruential gener-
ator (LCG). As is known, LCGs are a quite popular tool for producing pseudorandom
sequences. The LCG works as follows: a modulusm is chosen as well as a multipliera,
relatively prime tom, and an incrementb. Then, from a given seedx0, one can generate
the sequence(xi), defined by

xi+1 = (axi + b) modm.

Knuth’s book [K1] contains a thorough discussion of these generators.
In case all the bits of the successivexi ’s are announced, the sequence becomes exactly

predictable even if the modulus, the multiplier, and the increment are not known. This is
a result of Boyar (see [P]). The journal version [Bo], which appeared after [St], extends
the initial method to the case where a small portion of the lower bits are discarded.

The idea of outputting the leading bits of each of thexi ’s in order to increase the
resistance of the LCG goes back to Knuth [K2]. Thus, one can output, for example,
half of the bits or a smaller proportion. The predictability of the resulting sequence has
been investigated by Frieze et al. [FHK+]. They showed that, provided both the modulus
m and the multipliera are known, the sequence becomes completely predictable once
the leading bits corresponding to the first fewxi ’s have been announced. Actually, their
algorithm may fail on a set of exceptional multipliers but the proportion of integers
modm in this set is shown to be as small asO(m−ε), for some given positive constant
ε < 1. Of course, the parameterε is connected with the number of observed outputs: the
more observations are available, the more the algorithm is reliable. We refer to [FHK+]
for exact statements. We note that the technique applies equally to the case where any
fixed proportionα of the bits is announced. The mathematical analysis becomes more
intricate and the proof is only carried through for specific values ofm: square-free or
“almost square-free” numbers. Again, we refer to [FHK+] and we observe that, for
practical purposes, the mild theoretical restrictions in the proofs are not too relevant.

Our results cover the case wherem anda are unknown parameters. In view of the
above, our sole task is to disclose these values. We describe a polynomial-time algorithm
that performs this task. This algorithm includes two steps: in the first step our algorithm
produces a polynomialP(x) of degreeO(

√
logm), with integral coefficients, such that

P(a) = 0 modm.

This part of the algorithm is proved, using results from [FHK+] and similar assumptions
on m anda. In the second step we start with a sequence of such polynomials and we
propose an algorithm that provably outputs a multiplem̃ of m. Based on a heuristic
analysis, we then make it highly plausible thatm̃ quickly decreases tom when the
number of polynomials in the sequence increases. This is confirmed by experiments.
Finally, we show how to computea once the correct value ofm has been recovered.

3.1.1. First Step of the Algorithm

In order to describe both the algorithm and the underlying analysis, we need some
notations. We letν be the number of bits of the modulusm. If we output a proportionα

Lattice Reduction: A Toolbox for the Cryptanalyst 171

of bits, we can write

xi = 2βν yi + zi ,

whereβ = 1− α, yi consists of the leading bits ofxi , andzi consists of the trailing
bits. Our algorithm is more accurately described as a sequence of different algorithms
depending on a parametert . We letVi be the element ofZt defined by

Vi =


yi+1− yi

yi+2− yi+1
...

yi+t − yi+t−1

 .
Applying the techniques of Section 2.2, we can find a linear relation

n∑
i=1

λi Vi = 0,

whose coefficients are moderate integers. More precisely, it follows from Lemma 1 that
such a relation exists with|λi | ≤ B with

log B = t
log(2αν)+ logn+ 1

n− t
= t

αν + logn+ 1

n− t
.

Considering the multiplicative loss 2(n−1)/2 coming from Fact 1, it follows that, if we
use the LLL algorithm, the euclidean length|λ| of the output relation will satisfy

|λ| ≤ √n2(n−1)/2B.

We now consider the (unknown) vectorsWi defined by

Wi =


xi+1− xi

xi+2− xi+1
...

xi+t − xi+t−1


and we let

U =
n∑

i=1

λi Wi .

We note that each coordinate ofWi −2βνVi is the differencezi+1−zi of two integers be-
tween 0 and 2βν , hence is≤2βν in absolute value. From this, using the Schwarz inequality,
we get that|U | = |∑n

i=1 λi (Wi − 2βνVi)| is bounded above byM = √tn2βν2(n−1)/2B.
Taking logarithms, we have

log M = log t + logn

2
+ βν + n− 1

2
+ t

αν + logn+ 1

n− t
.

172 A. Joux and J. Stern

We balance the two terms with largest contribution besidesβν by lettingn ' √2αtν.
We get (for fixedt)

log M = βν +
√

2αtν + o(
√
ν).

Sinceν is basically logm, we finally obtain|U | = O(mβ+δ), for anyδ > 0.
We now proceed to show thatU is zero. We give a heuristic argument and refer the

interested reader to Appendix A where we provide a mathematical proof, based on results
from [FHK+]. We note that

xi+ j+1− xi+ j = aj (xi+1− xi) modm.

From this it follows that all vectorsWi belong to the latticeL(a) generated by the
columns of the following matrix:

1 0 · · · 0
a m · · · 0
a2 0 m · · · 0
...

...

at−1 0 0 · · · m

 .

It is easily seen that the determinant of this lattice ismt−1, hence the expected size of
short vectors is aroundm(t−1)/t . SinceU belongs toL(a) and is of sizeO(mβ+δ), for
anyδ > 0, U is unusually short as soon asβ < (t − 1)/t , which meansα > 1/t . Such
a vector has to be zero.

Now that we know thatU = 0, we notice that

n∑
i=1

λi Wi = (x1− x0)

n∑
i=1

λi a
i modm.

As soon asx1− x0 is prime tom, we get that the polynomialP(x) =∑ λi xi vanishes at
a modulom. This is precisely what we wanted from the first step. Again we ignore bad
luck: in Appendix B we prove that exceptional values forx1− x0 appear with negligible
probability.

3.1.2. Second Step of the Algorithm

If we apply part 1 of our algorithm several times, we come out with a sequence

P1, . . . , Pr

of polynomials of degreen, each of these vanishing ata modulom. Now, if we identify
polynomials of degreen with elements ofZn+1, we see that the polynomials that vanish
ata modulom form a latticeL generated by the sequence

Qi (x) = xi − ai , 1≤ i ≤ n,

Lattice Reduction: A Toolbox for the Cryptanalyst 173

and by the constant polynomialm. This lattice is generated by the columns of the
following matrix: 

m −a −a2 · · · −an

0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1

 .
The determinant of the lattice ism. Now, if the Pi ’s generate the lattice, then one can
apply lattice reduction, output a basis of the lattice, and compute the determinant. Based
on experiments, we claim that such an algorithm actually disclosesm. Unfortunately,
we cannot prove this fact mathematically, but, as already observed throughout the paper,
the lack of proof is only a minor nuisance for the cryptanalyst. In its place, we offer
heuristic arguments that should convince the reader that:

• The dimension on the subspace spanned by thePi ’s very quickly increases ton+1.
• Once a full dimensional lattice has been reached, the determinant of the lattice

generated by thePi ’s, which is, a priori, a multiplẽm of m, very quickly decreases
to m.

We first justify the first statement: recall that the output of the first part of the algorithm
provides anactualrelation ∑

λi (xi+1− xi)

(as opposed to a relation modulom). If the successive relations found did not span the
entire space, the vectorsWi ’s would live in a proper subspace and, hence, there would
exist at least one nontrivial linear relation between their components which holds true
(and not only modulom). Such a relation would, in turn, provide a fixed linear recurrence
relation satisfied by the sequence(xi). However, the behavior of the sequences defined
by linear recurrence relations is well known: except under exceptional circumstances
they quickly tend over to zero or infinity and therefore cannot consist of integers modm.

We now turn to the second statement. Remember that the coefficients of each output
polynomialPi are bounded above byB, with

log B =
√
αt logm

2
+ o(

√
logm).

By Hadamard inequality, it follows that the determinantm̃of the lattice spanned byn+1
linearly independentPi ’s is at most(

√
n+ 1B)n+1. As n is equivalent to

√
2αt logm,

this bound is 2αt logm+o(logm), i.e.,mαt+o(1). Now, if we assume that each extra polynomial
Pi is somehow uncorrelated to the previous ones, then, with probability 1−m/m̃, it is
not a member of the lattice generated by these previous polynomials, hence, when added,
it decreases the determinant of the resulting lattice by some multiplicative factor. Thus,
it should not take long to reachm. In Appendix C, using the heuristic hypothesis that the
output polynomials are random element ofL with coefficients bounded byB, we bound
the number of polynomials needed byO(αt logm).

We finally say a word on recoveringa from m. We twist the latticeL by multiplying
all coefficients of degree≥ 2 by a large constantK and we apply lattice reduction. If

174 A. Joux and J. Stern

K is large enough (sayK ≥ m2n/2), then, by Fact 2, it follows that the sublattice of
L generated by polynomialsm andx − a will be disclosed: this is because the second
minimum ofL is of sizemand any polynomial of the lattice with degree≥2 exceeds this
size by a factor≥2n/2. By linear algebra, one can find an elementA(x) of the sublattice
with leading coefficient one; thena is exactlyA(0) modm.

We close the section with various remarks.

Remarks. (1) As has been noticed repeatedly in the paper, reduction algorithms behave
much more nicely than what was expected from the worst-case proved bounds. This has
practical consequences that may speed up our attack: for example, one can undertake this
attack with less observed data than that suggested from the formulan ' √2αt logm.
Also, one can try to keep more than one relation from the output of the lattice reduction
used in step one.

(2) The case where the trailing bits of the successivexi ’s are announced in place of
the leading bits can be attacked by a similar technique, at least ifm is odd.

(3) Paper [FHK+] includes an idea which can be used to adapt our techniques to the
case wherem is prime and a window of successive bits of thexi ’s is announced. We find
the details too technical to be included in this paper.

3.2. Cryptanalysis of Damg̊ard’s Hash Function

In [D], Damgård proposed to base a hash function on a knapsack compression function
using 256 (nonmodular) numbersai of size 120 bits. His idea was to divide the message
to be hashed into blocks of 128 bits, and to apply the following process:

• Start with a fixed initial value on 128 bits. Appending the first 128-bit block of the
message, one gets a blockB of 256 bits.
• (Compression phase.) Compute the knapsack transform of these 256 bits, i.e., start-

ing from zero, add up allai ’s whose index corresponds to the position of a one bit
of B. The resulting number can be encoded using 128 bits.
• Append the next block, to get 256 bits and iterate the compression phase.

In order to find a collision for this hash function, it is clearly enough to find two different
128-bit blocks that, when appended to the initial value, yield the same hash value. This
clearly corresponds to finding a collision in a knapsack transform based on 128 numbers
of 120 bits. In what follows we study how collisions in such a knapsack transform can
be found using lattice reduction, and we show that it is feasible to build collisions for
Damgård’s hash function. A completely different kind of attack against this hash function
has already appeared in the work of Camion and Patarin [CP]. Still, it has never been
implemented, and, besides, it could only find collisions for the compression function
rather than for the hash function itself. In contrast with this approach, our attack runs
on a computer and actually outputs collision for the size of the parameters suggested by
Damgård.

Unfortunately, our attack cannot be proved, even in the lattice oracle setting described
in Section 2.4. Nevertheless, for a slightly weaker notion of a collision, which we call a
pseudocollision, a correct mathematical analysis can be carried through. Apseudocolli-
sion for Damgård’s hash function consists of two messages whose hash value coincide

Lattice Reduction: A Toolbox for the Cryptanalyst 175

except for the eight leading bits. The practical significance of pseudocollisions is obvious
since pseudocollisions have a nonnegligible chance of being actual collisions.

3.2.1. The Basic Strategy

In this section we associate a lattice to any given knapsack-based compression function
in such a way that collisions correspond to short vectors. Before describing the reduction,
we make our definitions and notations a bit more precise: we fix a sequence of integers,
a= a1, . . . , an. The knapsack compression functionSa, which we simply denote byS,
takes as input any vectorx in {0,1}n and computes

S(x) =
n∑

i=1

ai xi .

A collision for this function consists of two valuesx andx′ such thatS(x) = S(x′).
In order to search collisions, we reduce the following lattice:

B =


Ka1 Ka2 · · · Kan

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Note that this lattice is exactly the lattice used in the original Lagarias–Odlyzko attack
for solving knapsack problems (see [LO]). We consider the possible output of lattice
reduction. SinceK is large, it is clear that the first coordinate of a short vector is 0. As
for the other coordinates, we expect them to be all 0, 1, or−1. Indeed, if this happens
we clearly get a collision: from an element of the lattice

e=


0
ε1

ε2
...

εn


with all coordinates 0, 1, or−1, we get that

n∑
i=1

εi ai = 0

and thus ∑
εi=1

ai =
∑
εi=−1

ai .

3.2.2. Practical Results in Small Size

As was stated above, finding a collision for Damg˚ard’s hash function amounts to com-
puting collisions for a knapsack compression function based on 128 numbers with 120

176 A. Joux and J. Stern

bits each. We develop this approach in Appendix E where we show that actual lattice re-
duction programs disclose such collisions. Thus, Damg˚ard’s hash function can be broken
using lattice reduction.

3.2.3. The Size of Pseudocollisions

Pseudocollisions are collisions for the function obtained by replacing the original knap-
sack compression function by reducing it modulo some power of two. This means that
we will be working with modular knapsacks instead of usual knapsacks. In this sub-
section and the next one, we use the same approach as in the Lagarias–Odlyzko attack.
More precisely, we fix a valueτ < 1, we letm = bτne and assume that theai ’s are
random integers between 0 and 2m−1. Our aim is to compute collisions for the resulting
knapsack function, where reduction modulo 2m is performed:

S(x) =
n∑

i=1

xi ai mod 2m.

Before applying lattice reduction techniques, we need to estimate the minimum size
of a collision, i.e., the minimum size ofx − x′, whereS(x) = S(x′). The following
lemma provides a bound.

Lemma 2. Letρ be a fixed constant such that

ρ + H2(ρ) > τ > ρ.

With probability tending exponentially to1when n tends to infinity, there exists a relation

n∑
i=1

εi ai = 0,

where allεi ’s are0, 1,or −1 and where∑
|εi | ≤ ρn.

In the aboveH2(α) denotes, as usual,−α logα − (1− α) log(1− α).

Proof. Consider the family of all possible vectors withn coordinates, all of them 0, 1,
or−1, with sizeρn. This family hasN members where

N = 2ρn

(
n
ρn

)
which, by classical estimates, is roughly 2ρn2H2(ρ)n. For any such vectorε, let S(ε) =∑n

i=1 εi ai . S(ε) is a random variable depending on the random numbersai . Whenε
varies, we get (roughly) 2(ρ+H2(ρ))n random variables and it is easily seen that, provided
one discards one vector out of each pair{ε,−ε}, these variables are pairwise independent
and uniformly distributed over the integers{0, . . . ,2m− 1}. Consider the characteristic
functionχε of the eventS(ε) = 0. We getN/2 pairwise independent random variables

Lattice Reduction: A Toolbox for the Cryptanalyst 177

with mean valueδ = 1/2m and standard deviation
√
δ(1− δ). By Chebychev’s inequality

the probability that ∑
ε

χε <
Nδ

4

is bounded by 8/Nδ. Now if ∑
ε

χε ≥ Nδ

4
,

then a suitable collision is obtained. To see this, observe that some valueS(ε) is zero
and therefore ∑

εi=1

ai =
∑
εi=−1

ai .

We get that a collision exists with probability≥ 1−8/Nδ. As Nδ is exponentially small,
this concludes the proof of the lemma.

Remarks. (1) The careful reader will have noticed that the above proof is (consciously)
flawed. Due to the fact that 2m is even,S(ε) andS(ε′) are not independent whenε and
ε′ have the same domain. This involves a correction term for the standard deviationσ of∑

ε

χε.

The correction forσ 2 is bounded by

δ22H2(ρ)n22ρn ≤ Nδ2(ρ−τ)n.

This gives an opportunity to use the hypothesisτ > ρ in order to conclude that the
correction is negligible.

(2) Let L(τ) be the real number< 1
2 defined by

L(τ)+ H2(L(τ)) = τ.

Then, forρ slightly greater thanL(τ), the hypotheses of the lemma hold. Hence we may
sum up the lemma by stating that collisions of sizeL(τ)+ o(1) almost always exist.

3.2.4. A Provable Mildly Exponential Attack for Pseudocollisions

For the rest of the paper we assume that we are granted access to a lattice reduction
oracle. As has already been pointed out in Section 2.4, this approach provides a way to
focus on the reduction of a given problem (here collision search) to a lattice problem,
without needing to worry about the state of the art in lattice reduction algorithms. Recall
that a lattice oracle outputs at no computing cost a shortest vector of a given lattice. In
practice, any call to the oracle will be replaced either by the LLL algorithm [LLL] or by
a blockwise Korkine–Zolotarev algorithm.

178 A. Joux and J. Stern

In order to search for collisions in the modular case, we could try to reduce the
following lattice, which is a variant of the one used above:

B =


Ka1 Ka2 · · · Kan K2m

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Unfortunately, a lattice oracle is not guaranteed to output a vector with all coordinates
0, 1, or−1, even given the known bound for such a vector that comes from the previous
lemma. In order to take advantage of this known bound, we fix a subsetY of {1, . . . ,n}
with αn elements together with a functionσ from Y into {−1,+1}. We then coalesce
thoseai ’s with index inY by setting

b0 =
∑
i∈Y

σ(i)ai mod 2m.

Reindexing the otherai ’s asb1, . . . , b(1−α)n, we thus obtain a modular knapsack contain-
ing (1− α)n+ 1 random modular numbersb0, b1, . . . , b(1−α)n. We can now associate
the following lattice to the knapsack problem:

B′ =


Kb0 Kb1 · · · Kb(1−α)n K2m

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

We know that the lattice generated byB contains a short vector of size(L(τ)+o(1))n
with coordinates 0, 1, or−1, whereL(τ) has been defined in the previous section. If the
restriction of this vector toY matches up withσ , then, grouping the indices inY, we
get a short vector ofB′ of size(L(τ)+ ε − α)n with coordinates 0, 1, or−1. Using an
argument similar to those in the Lagarias–Odlyzko paper [LO], we can prove that, with
probability tending exponentially to 1, a lattice oracle will output such a vector, provided
α exceeds some value depending onτ . Details of the proof appear in Appendix D. It
turns out that, even though we cannot give a closed form for the minimum value ofα,
we obtain thatα stays bounded by 1/3000.

We can now derive a provable mildly exponential algorithm, where we pick at random
a subset of sizeαn and try all functionsσ from such a subset into 1’s and−1’s. This
algorithm requestsO(2αn) calls to the lattice reduction oracle. Its probability of success
can be estimated as 2−µn with

µ = −(1− α) log(1− α)− ρ logρ + (ρ − α) log(ρ − α).

Computations show that the expected number of oracle calls 2(α+µ)n remains bounded
by 2n/1000. Albeit exponential, this is much more efficient than exhaustive search.

Lattice Reduction: A Toolbox for the Cryptanalyst 179

Appendix A

In Section 3.1.1 we had to consider a latticeL(a) generated by the columns of the
following matrix: 

1 0 · · · 0
a m · · · 0
a2 0 m · · · 0
...

...

at−1 0 0 · · · m

 .
We then claimed that a vectorU belonging toL(a) and of sizeO(mβ+o(1)) was pre-

sumably equal to zero. Whenm is a square-free integer, this is justified by the following:

Theorem 1. Let t andε be given.There exist constants K(t),c(ε, t),and an exceptional
set E(m, ε, t) of values of the multiplier a, such that:

(i) |E(m, ε, t)| ≤ m1−ε.
(ii) For any m> c(ε, t) and a taken outside the exceptional set E(m, ε, t), λ(L) is

bounded from below by K(t)m(t−1)/t−ε.

The proof of this theorem is implicit in [FHK+]: since it is doubtful that the present
appendix will be of any use to readers not familiar with this paper, we simply indicate
how to extract the above result from the proof of Lemma 3.2 of [FHK+]. Our latticeL(a)
is exactly obtained from a lattice denotedL∗a in this proof by multiplying all vectors by
m and our variablet stands fork. With these minor notational changes in mind, one can
see that it is proved in [FHK+] that, form exceeding some constantc(ε, t), the following
holds:

λ(L∗a) ≥
1

2t
3−(t−1)m−1/t−ε.

This is precisely what we need.
Following [FHK+], the theorem can be extended to the case whenm is δ-square-free,

i.e., when

m=
f∏

i=1

pei
i and

f∏
i=1

pei−1
i ≤ mδ.

The resulting bound becomes

K (t)m(t−1)/t−δ−ε.

Following [FHK+], again, the condition onm can be dropped whent = 3. We simply
state the result.

Theorem 2. Let ε be given. There exist constants K(t), c(ε), and an exceptional set
E(m, ε) of values of the multiplier a, such that:

(i) |E(m, ε, t)| ≤ c(ε)m1−ε/2.
(ii) For any m and any a taken outside the exceptional set E(m, ε), λ(L) is bounded

from below by Km2/3−ε.

180 A. Joux and J. Stern

Appendix B

In this appendix we investigate the probability thatx1 − x0 is not prime tom. This
appears in the analysis of our algorithm against Knuth’s truncated linear congruential
generator. If this happens, a part of our argument fails: the part by which we showed that
the polynomialP(x), found at the end of the first step, vanishes ata modm. Fortunately,
this is not too likely as shown by the following.

Theorem 3. Assume m isδ-square-free, then, if a and x0 are chosen independently and
uniformly from the integersmodm, the probability that m and x1− x0 are not relatively
prime is bounded by2mδ−1.

Proof. We have

x1− x0 = (a− 1)x0 modm.

Now, it is easily seen thatx1 − x0 is not prime tom if either x0 or a− 1 has nontrivial
gcd withm. Each event happens with probability

∏ f
i=1 pei−1

i /m≤ mδ−1.

Appendix C

In this appendix we show that ifL and L̃ are full dimensional lattices,̃L a sublattice of
L, and if random elements ofL, sayP1, . . . , Pq, are taken from a ball of fixed (large)
radius, then, as soon asq is large enough, with high probability, a basis ofL̃ together
with P1, . . . , Pq spans all ofL. This is related to the second part of our algorithm against
Knuth’s truncated linear congruential generator, where we use a bunch of polynomials
obtained from step one in order to disclose the values ofm anda. Although, this offers
no proof of the success of our attack, this gives strong evidence that the algorithm will
disclose the correct secret values. Repeated experiments confirm this heuristic analysis.

We letLi be the lattice generated bỹL andP1, . . . , Pi . By volume estimates, we can
see that the probability thatPi is taken withinLi−1 is essentially equal to1(L)/1(Li−1)

(the word essentially coming from the fact that the ball from which thePi ’s are drawn
does not consist of an exact number of parallelepiped generated by a basis ofL). In
any case, since both determinants are integers, this is bounded byτ = 1

2 + ε, unless
L = Li−1. WhenPi lies in Li−1 or, equivalently,Li = Li−1, we say thati is a stationary
index. We letk = log(1(L̃)/1(L)). If, at leastk indices are nonstationary, then, since for
every such index the determinant ofLi decreases by a multiplicative integer ratio, we get
1(Lq) ≤ 1(L̃)/2k and therefore1(Lq) < 21(L). This, in turn, implies1(Lq) = 1(L)
since1(Lq) is a multiple of1(L) and finallyLq = L. The following lemma bounds
the probability that this equality does not hold.

Lemma 3. There exists a constant3(ε) such that whenever q is at least3(ε)k, the
probability that Lq 6= L is exponentially small with respect to k.

Proof. If Lq 6= L, then, for eachi ≤ q, Li is different fromL and the number of
nonstationary indices is less thank. For a fixed subsetS of {1, . . . ,q}, the probability

Lattice Reduction: A Toolbox for the Cryptanalyst 181

that this situation happens withSbeing the set of nonstationary indices is at mostτq−|S|.
This gives for the requested probabilityπ the upper bound

k∑
i=0

(
q
i

)
τq−i .

Using the classical upper estimate

αq∑
i=0

(
q
i

)
≤ 2q H2(α),

whereH2(α) = −α logα − (1− α) log(1− α), and writingg = λk, we get that

π ≤ 2k[λH2(1/λ)+(λ−1) logτ] .

Since the coefficient ofk in the exponent is equivalent toλ logτ whenλ tends to infinity,
the exponent is≤ −k whenλ exceeds some constant3(ε).

Appendix D

In this appendix we clarify the link between the Lagarias–Odlyzko attack against low-
density knapsacks and our cryptanalysis of knapsack hash functions. The Lagarias–
Odlyzko scenario deals with elements of a given knapsack together with a target sum,
which is obtained from a proportionp of the elements. Thus, we know that in the
Lagarias–Odlyzko lattice, there exists a short vector of size roughly

√
pn. The question

amounts to the following: Is this vector the shortest one? If the answer is yes, then an
oracle for lattice reduction successfully decrypts the cipher, otherwise the proof fails.
We now follow the analysis of the Lagarias–Odlyzko attack that appears in [F] and refer
to this paper. The basic method of [F] is to count the number of integer points lying in
the sphere of radius

√
pn centered at the origin and to claim that, for each such integer

point, the probability that it provides a short vector of the Lagarias–Odlyzko lattice
is 2−n/d whered is the density of the knapsack. From this analysis, one can derive a
sufficient condition ensuring that a call to a lattice oracle inverts the cipher with very
high probability. The condition is written as

c(p) ≤ 1

d
,

wherec(p) is defined byc(p) = log2(h(z0)/z
p
0), with h(z) = 1+2

∑∞
k=1 zk2

andz0 the
unique solution in]0,1[of

z
h′

h
(z) = p.

In our attack against hash functions, the analysis is similar but the parameters differ.
More precisely, once we have guessedαn correct bits of a collision, as explained in
Section 3.2.4, we obtain a short vector of size(L(τ) + ε − α)n which belongs to the

182 A. Joux and J. Stern

Fig. 1. α as a function ofτ .

Fig. 2. µ as a function ofτ .

Lattice Reduction: A Toolbox for the Cryptanalyst 183

lattice built from a knapsack consisting of(1− α)n numbers withτn bits. Thus the
values of the parameters are

p = L(τ)+ ε − α
1− α

and

d = 1− α
τ

.

The inequalityc(p) ≤ 1/d can accordingly be written as

α ≥ Gε(τ).

Sinceε is as small as we want, we setε = 0, and computeG0.
Clearly,

α < L(τ) < 1,

thusp as well asc(p) are decreasing functions ofα. Also, 1/d is an increasing function
of α so that, for fixedτ , the curvesy = c(p) andy = 1/d with α ranging in the interval
[0, L(τ)] cross at a single point. The corresponding value ofα at the cross point is the
required real numberG0(τ). There is no closed form forG0(τ). Still, we have made
numerical computations, and computed the curveα = G0(τ) as shown in Fig. 1.

In order to bound the expected number of oracle calls 2(α+µ)n, we also computedµ
as a function ofτ for the limit caseε = 0. The resulting curve is shown in Fig. 2.

Appendix E

In this section we report on practical results showing that collisions in knapsack com-
pression functions with compression rateτ = 1 can be actually found, at least up to
dimension 120. In order to obtain these results, we have devised a specific lattice reduc-
tion algorithm that is very efficient for the kind of lattices involved. This algorithm is
a variation of Schnorr and Euchner’s (see [SE]) pruned blockwise Korkine–Zolotarev
reduction. There are two slight changes in the algorithm, which we briefly discuss for the
cognoscenti. Firstly, whenever the first vector in the lattice consists only of 0, 1, and−1,
the program stops since it has found a collision. The second change is in the so-called
enumeration step: during this enumeration, the program searches through the same space
as in the original algorithm but instead of searching the whole space and choosing the
new vector at the current position as the vector with shortest possible projection, the
enumeration stops as soon as an improvement for the current position has been found.
The following table gives the success rate and average running time for blocksize 50
and dimension varying from 50 to 95. The experiments were made on an IBM RS6000
model 590.

184 A. Joux and J. Stern

Average time
Dimension Success rate (seconds)

50 10/10 3.7
55 10/10 8.9
60 10/10 11.5
65 10/10 19.4
70 10/10 26.9
75 10/10 44.6
80 10/10 76.5
85 10/10 225.2
90 8/10 234.2
95 8/10 461.4

Dealing with dimension 120 is more difficult since unsuccessful trials can appear that
waste a lot of time. We have bypassed this problem by limiting the running time for each
trial. Using this technique, we have obtained the following results:

Time limit Number of Number of
(hours) trials successes Rate

1 100 3 0.03
4 20 3 0.15

≈ 12 30 8 0.27

Remark. The experiments with time limit≈ 12 h were not made on the IBM, but on a
Sun Sparc 10 model 51, which is roughly twice as slow. The actual time limit was 24 h.

References

[A] L. M. Adleman. On breaking generalized knapsack public key cryptosystems. InProceedings of the
15th ACM Symposium on Theory of Computing, pages 402–412, 1983.

[Bo] J. Boyar. Inferring sequences produced by a linear congruential generator missing low-order bits.
J. Cryptology, 1(3):177–184, 1989.

[Br1] E. F. Brickell. Solving low density knapsacks. In D. C. Chaum, editor,Proceedings of CRYPTO83,
pages 25–37. Plenum, New York, 1984.

[Br2] E. F. Brickell. Breaking iterated knapsacks. In G. R. Blakley and D. C. Chaum, editors,Proceedings
CRYPTO84, pages 342–358. Lecture Notes in Computer Science, volume 196. Springer-Verlag,
Berlin, 1985.

[CJL+] M. J. Coster, A. Joux, B. A. LaMacchia, A. Odlyzko, C.-P. Schnorr, and J. Stern. Improved low-density
subset sum algorithms.Comput. Complexity, 2:11–28, 1992.

[CJS] Y. M. Chee, A. Joux, and J. Stern. The cryptanalysis of a new public-key cryptosystem based on
modular knapsacks. In J. Feigenbaum, editor,Advances in Cryptology: Proceedings of Crypto ’91,
pages 204–212. Lecture Notes in Computer Science, volume 576. Springer-Verlag, Berlin, 1991.

[Co] D. Coppersmith. Finding a small root of a univariate modular equation. In U. Maurer, editor,Pro-
ceedings of EUROCRYPT96, pages 155–165. Lecture Notes in Computer Science, volume 1070.
Springer-Verlag, Berlin, 1996.

[CP] P. Camion and J. Patarin. The knapsack hash-function proposed at Crypto ’89 can be broken. In
D. W. Davies, editor,Advances in Cryptology, Proceedings of Eurocrypt ’91, pages 39–53. Lecture
Notes in Computer Science, volume 547. Springer-Verlag, Berlin, 1991.

Lattice Reduction: A Toolbox for the Cryptanalyst 185

[CS] D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In W. Fumy, editor,Proceedings of
EUROCRYPT97, pages 52–61. Lecture Notes in Computer Science, volume 1233. Springer-Verlag,
Berlin, 1997.

[D] I. Damgård. A design principle for hash functions. InAdvances in Cryptology, Proceedings of Crypto
’89, pages 25–37. Lecture Notes in Computer Science, volume 435. Springer-Verlag, Berlin, 1989.

[F] A. M. Frieze. On the Lagarias–Odlyzko algorithm for the subset sum problems.SIAM J. Comput.,
15(2):536–539, 1986.

[FHK+] A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, and A. Shamir. Reconstructing truncated integer
variables satisfying linear congruences.SIAM J. Comput., 17(2):262–280, 1988.

[G] C. F. Gauss.Disquisitiones arithmeticae. Leipzig, 1801.
[GJ] L. Granboulan and A. Joux. A practical attack against knapsack based hash functions. InProceedings

of EUROCRYPT94, pages 58–66. Lecture Notes in Computer Science, volume 950. Springer-Verlag,
Berlin, 1995.

[H] C. Hermite. Extraits de lettres de M. Hermite `a M. Jacobi sur diff´erents objets de la th´eorie des
nombres, deuxi`eme lettre.J. Reine Angew. Math., 40:279–290, 1850.

[J] A. Joux. La Réduction de R´eseaux en Cryptographie. Ph.D. thesis, Ecole Polytechnique, Palaiseau,
1993.

[JS] A. Joux and J. Stern. Cryptanalysis of another knapsack cryptosystem. InAdvances in Cryptology:
Proceedings of AsiaCrypt ’91, pages 470–476. Lecture Notes in Computer Science, volume 739.
Springer-Verlag, Berlin, 1991.

[K1] D. E. Knuth.The Art of Computer Programming, volume 2. Addison-Wesley, Reading, MA, 1969.
[K2] D. E. Knuth. Deciphering a linear congruential encryption. Technical Report 024800, Stanford Uni-

versity, 1980.
[KZ] A. Korkine and G. Zolotarev. Sur les formes quadratiques.Math. Ann., 6:336–389, 1873.
[La] L. Lagrange.Recherches d’arithḿetique, pages 265–312. Nouv. M´em. Acad., Berlin, 1773.
[Le] H. W. Lenstra. Integer programming with a fixed number of variables.Math. Oper. Res., 8:538–548,

1983.
[LLL] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov´asz. Factoring polynomials with rational coefficients.

Math. Ann., 261:513–534, 1982.
[LO] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems.J. Assoc. Comput.

Mach., 32:229–246, 1985. Preliminary version inProceedings of the24th IEEE Symposium on
Foundations of Computer Science, pages 1–10, 1983.

[M] H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1910.
[MH] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks.IEEE Trans.

Inform. Theory, IT-24:525–530, 1978.
[P] J. Plumstead. Inferring a sequence generated by a linear congruence. InProceedings of the23rd

IEEE Symposium on Foundations of Computer Science, pages 153–159. IEEE, New York, 1982.
[Sc1] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.Theoret. Comput.

Sci., 53:201–224, 1987.
[Sc2] C.-P. Schnorr. A more efficient algorithm for lattice basis reduction.J. Algorithms, 9:47–62, 1988.
[SE] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving

subset sum problems. In L. Budach, editor,Proceedings of Fundamentals of Computation Theory
91, pages 68–85. Lecture Notes in Computer Science, volume 529. Springer-Verlag, Berlin, 1991.

[Sh] A. Shamir. A polynomial-time algorithm for breaking the basic Merkle–Hellman cryptosystem. In
Proceedings of the23rd IEEE Symposium on Foundations of Computer Science, pages 145–152.
IEEE, New York, 1982.

[St] J. Stern. Secret linear congruential generators are not cryptographically secure. InProceedings of
the28th IEEE Symposium on Foundations of Computer Science, pages 421–426. IEEE, New York,
1987.

[ST] J. Stern and P. Toffin. Cryptanalysis of a public-key cryptosystem based on approximations by rational
numbers. InAdvances in Cryptology: Proceedings of Eurocrypt ’90, pages 313–317. Lecture Notes
in Computer Science, volume 473. Springer-Verlag, Berlin, 1990.

