
Archive for Mathematical Logic (2021) 60:771–781
https://doi.org/10.1007/s00153-021-00762-x Mathematical Logic

Infinite decreasing chains in the Mitchell order

Omer Ben-Neria1 · Sandra Müller2

Received: 1 October 2019 / Accepted: 22 January 2021 / Published online: 4 March 2021
© The Author(s) 2021

Abstract
It is known that the behavior of the Mitchell order substantially changes at the level
of rank-to-rank extenders, as it ceases to be well-founded. While the possible partial
order structure of the Mitchell order below rank-to-rank extenders is considered to
be well understood, little is known about the structure in the ill-founded case. The
purpose of the paper is to make a first step in understanding this case, by studying
the extent to which the Mitchell order can be ill-founded. Our main results are (i) in
the presence of a rank-to-rank extender there is a transitive Mitchell order decreasing
sequence of extenders of any countable length, and (ii) there is no such sequence of
length ω1.

Keywords Mitchell order · Rank-to-rank extender · Infinite decreasing chain

Mathematics Subject Classification 03E55 (Large cardinals) · 03E20 (Other classical
set theory)

1 Introduction

Extenders are combinatorial objects which play a fundamental role in capturing the
strength of various large cardinal axioms, and specifically in capturing the strength of
elementary embeddings. Given an elementary embedding j : V → M with critical
point κ , and an ordinal λ > κ , the (κ, λ)-extender E derived from j is a system of
ultrafilters E = (Ea | a ∈ [λ]<ω), where each Ea is given by
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X ∈ Ea iff X ⊆ [ξ ]|a| ∧ a ∈ j(X),

where ξ ≥ κ is the least ordinal such that λ ≤ j(ξ). For a ∈ [λ]<ω, μa denotes the
least μ such that a ⊆ j(μ). Suppose that a ⊆ b are elements of [λ]<ω, where |b| = n
and I ⊆ n is the set of indices (given by the canonical order on λ) for which b � I = a.
We note that the map πb,a : [μb]|b| → [μa]|a| given by πb,a(x) = x � I satifies that
for every X ∈ Ea , π

−1
b,a(X) ∈ Eb. Each ultrafilter Ea is κ-complete, and the system

of ultrafilters naturally gives rise to a canonical system of ultrapowers Ult(V , Ea).
The manner we derived each Ea from j implies that Ult(V , Ea) is isomorphic to
the subclass Xa of M given by Xa = { j( f )(a) | f : [μa]|a| → V }. The functions
πb,a allow us to form a natural direct limit of the system of ultrapowers, denoted by
Ult(V , E), which is isomorphic to the subclass XE = ⋃

a∈[λ]<ω Xa of M . We denote
the transitive collapse of Ult(V , E) (which is the same as the transitive collapse of
XE ) and the resulting ultrapower embedding by iE : V → ME . It follows from
the description of XE that if the original embedding j : V → M is λ-strong (i.e.,
Vλ ⊆ M) then Vλ ⊆ ME . In that sense, we see that the ultrapower of V by the
extender E captures the strength of j : V → M up to λ. The properties of an
extender E = (Ea, πb,a | a ⊆ b ∈ [λ]<ω) as a system of ultrafilters with suitable
connectingmaps can be formulated directly,without the need of an ambient embedding
j : V → M . We refer the reader to [9, Section 26] for an extensive introduction to
the theory of extenders.

A fundamental notion in the study of extenders is the one of the Mitchell order.

Definition 1.1 Let E, E ′ be two extenders. We write E 	 E ′ if E is represented in the
(well-founded) ultrapower of V by E ′.

The Mitchell order 	 was introduced by Mitchell in [10] to construct canonical
inner models with many measurable cardinals. TheMitchell order, which was initially
introduced as an ordering on normal measures, has been extended to extenders and
plays a significant role in inner model theory. As a prominent notion in the theory of
large cardinals, the study of the Mitchell order and its structure has expanded in recent
decades. The behaviour of the Mitchell order on extenders depends on the type of
extenders in consideration and naturally becomes more complicated when restricted
to stronger types of extenders. A fundamental dividing line in the behaviour of the
Mitchell order is its well-foundedness: Mitchell [11] has shown that 	 is well-founded
when restricted to normal measures. The question of the well-foundedness of 	 was
further studied by Steel [13], and Neeman [12], who showed that it fails exactly at the
level of rank-to-rank extenders.

Definition 1.2 Let E be an extender. We say E is a rank-to-rank extender iff assuming
λ > crit(E) is least such that iE (λ) = λ, then Vλ ⊆ ME .

Due to their similarity with embeddings j : V → M with Vλ+2 ⊆ M , which have
been shown by Kunen to be inconsistent with ZFC, the large cardinal strength wit-
nessed by rank-to-rank extenders is considered to be located near the top of the large
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cardinal hierarchy. More precisely, rank-to-rank extenders naturally arise from the
large cardinal axiom I2.

The known dividing line of well-foundedness naturally breaks the question of the
general possible behaviour into two (i) which well-founded partial orderings can be
isomorphic to the Mitchell order on measures/extenders below the rank-to-rank level?
and (ii) which ill-founded partial orderings can be isomorphic to the Mitchell order
on a set of rank-to-rank extenders?1

Concerning question (i), the possible structure of the Mitchell order on normal
measures has been extensively studied in [1–5,11,14]. It has been shown in [2] that it
is consistent for every well-founded partial ordering to be isomorphic to the restriction
of	 to the set of normalmeasures on somemeasurable cardinal κ (the exact consistency
strength of this property has not been discovered).

In this work, we make a first step towards expanding the study of the Mitchell order
in the ill-founded case, and address question (ii). Specifically, we focus on the extent
to which the well-foundedness of the Mitchell order fails on rank-to-rank extenders,
by considering possible ordertypes of infinite decreasing chains in 	. The main results
of this paper are the following two theorems.

Theorem 1.3 Assume there exists a rank-to-rank extender E. Then for every countable
ordinal γ there is a sequence of rank-to-rank extenders of length γ , (Eα | α < γ ), on
which the Mitchell order is transitive and strictly decreasing.

Theorem 1.4 There is no ω1-sequence of extenders which is strictly decreasing and
transitive in the Mitchell order.

Our presentation of the proof of Theorem 1.4 goes through a proof of a weak
version of Steel’s conjecture, which addresses transitive ω-sequences of extenders.2

This presentation replaces a previous ad-hoc proof. The authors would like to thank
Grigor Sargsyan for pointing out the connection with Steel’s conjecture, which led to
the current concise proof of Theorem 1.4. The (full) conjecture was recently proved
by Goldberg ( [7]) building on his remarkable study of the internal relation.

2 Basic definitions and observations

For notational clarity it will be sometimes convenient for us to use the notation
Ult(V , E) for ME , the transitive collapse of Ult(V , E). For an extender E in a tran-
sitive class N , write MN

E for the transitive collapse of Ult(N , E) and i NE : M → MN
E

for the corresponding ultrapower embedding. For a rank-to-rank extender E we write
λE for the least λ > crit(E) such that iE (λ) = λ. Moreover, we write κE

0 = crit(E)

and κE
n+1 = iE (κE

n ) for n < ω, and call (κE
n | n < ω) the critical sequence of E . For

any rank-to-rank extender E , λE = supn<ω κE
n = lh(E).

1 Beyond the possible (partial) ordering structure of the Mitchell order, the investigation can be further
extended to non-transitive relations, as the Mitchell order need not be transitive in general (see [13]). This
direction is not developed in this paper.
2 See Sect. 4 for a formulation of Steel’s conjecture.
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For every n < ω let E � κE
n be the cutback of E to the measures Ea , a ∈ [κE

n ]<ω.
We have that ME = ⋃

n Xn where

Xn = {iE ( f )(a) | a ∈ [κE
n ]<ω, f : [μa]|a| → V }.

By taking f = id, it is clear that κE
n ⊆ Xn . Let Nn denote the transitive collapse of Xn

for each n < ω. We have that Nn is isomorphic to ME�κE
n
. Moreover, for each n < ω,

Nn+1 contains VκE
n+1

and in particular iE“κE
n ∈ Nn+1. It follows from a standard

argument that κE
n Nn+1 ⊆ Nn+1. As the critical point of the inverse of the collapse map

Nn+1 → Xn+1 is > κE
n , this implies κE

n Xn+1 ⊆ Xn+1.
The following observations will be useful in comparing extenders in different ultra-

powers.

Lemma 2.1 Assume that N = ⋃
n<ω Xn is an increasing union of classes Xn, N is

transitive, and there exists a sequence of cardinals 〈κn | n < ω〉, such that κn Xn+1 ⊆
Xn+1 for all n < ω. Let E ∈ N be a rank-to-rank extender of height lh(E) = λ =⋃

n κn.

(1) For every a ∈ [λ]<ω and f : [μa]|a| → N a function in V , there exists a function
fN ∈ N such that {ν ∈ [μa]|a| | f (ν) = fN (ν)} ∈ Ea.

(2) Let iE : V → ME and i NE : N → MN
E be the ultrapower embeddings by E of V

and N, respectively. For every set x ∈ N, iE (x) = i NE (x).

Proof (1) As N = ⋃
n Xn is an increasing union, and Ea is σ -complete, there exists

some n such that the set An = {ν ∈ [μa]|a| | f (ν) ∈ Xn} belongs to Ea and
μa < κE

n . Since Xn+1 is closed under κE
n -sequences, it follows that f � An :

[μa]|a| → Xn belongs to Xn+1 ∈ N . The claim follows.
(2) Let π : Ult(V , E) → ME and πN : Ult(N , E) → MN

E denote the transitive
collapse embeddings. We have that in fact for any [a, f ]E and [a, fN ]E for a ∈
[λ]<ω, f : [μa]|a| → x in V and fN : [μa]|a| → x in N with {ν ∈ [μa]|a| |
f (ν) = fN (ν)} ∈ Ea ,

π([a, f ]E ) = πM ([a, fN ]E ).

This follows from a straightforward induction on the rank of [a, f ]E using that for
any [b, g]E ∈ [a, f ]E , g takes values in N , as N is transitive and we may assume
that g ∈ N by the first part of the lemma. Now this implies iE (x) = i NE (x).

�

Lemma 2.2 Suppose E2, E1, E0 are three rank-to-rank extenders of the same length
λ = λEi , i = 0, 1, 2, such that E2 is Mitchell order below E1, and both E2, E1 are
Mitchell order below E0. Then ME0 also witnesses that E2 is Mitchell order below
E1.

Proof The fact E2 	 E1 means that E2 is represented in the V -ultrapower by E1, by a
function f and a generator a of E1. Take k < ω such that a ∈ [κE1

k+1]<ω.
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The reason it is not immediate that the relation E2�E1 also holds in ME0 is that the
function f need not belong to ME0 . However, we can argue that ME0 does see some
witnessing function f ∗ by using approximations. Assume without loss of generality
that f (ν) is an extender for every ν ∈ dom( f ). Indeed, notice that for every n < ω,
the function fn with dom( fn) = dom( f ) such that for every ν, fn(ν) is the restriction
of the extender f (ν) to length κ

E1
n . Clearly, [a, fn]VE1

represents the cut back of E2 to

length κ
E1
n+1. Moreover, fn belongs to ME0 for every n < ω since Vλ ⊆ ME0 .

Let E(η) for some ordinal η denote the set of all (κ, η)-extenders. Now, working in
ME0 and utilizing the fact that both E1, E2 belong to the model, we consider the tree

T of all pairs (τ, n) such that τ : [κE1
k ]|a| → E(κ

E1
n ) satisfies that [a, τ ]ME0

E1
represents

the restriction of E2 to length κ
E1
n+1. The tree order<T is given by (τ, n) <T (τ ′, n′) if

n < n′ and τ ′(ν) extends τ(ν) for all ν ∈ dom(τ ). It is clear that a cofinal branch in T
translates to a function F for which [a, F]E1 represents E2, and vice versa. Therefore
f ∈ V witnesses that T has a cofinal branch in V , and thus, by absoluteness of
well-foundedness, it must also have one in ME0 . �


Steel gives in [13] a folklore example that for rank-to-rank extenders the Mitchell
order need not be well-founded. We recall it here because some of the ideas will be
used later.

Proposition 2.3 (Folklore) Let E be a rank-to-rank extender. Then there is a strictly
decreasing sequence of length ω in the Mitchell order on which 	 is transitive.

Proof Consider the following sequence of rank-to-rank extenders (En : n < ω). Let
E0 = E and En+1 = iEn (En), where iEn : V → MEn is the canonical embedding
associated to En . Then it is straightforward to check that every En is a V -extender
and En+1 � En for all n < ω.

Claim 1 The Mitchell order is transitive on (En : n < ω).

Proof Let n < ω. We show that En+2 � En , the rest follows analogously. By con-
struction En+2 ∈ MEn+1 and En+1 ∈ MEn , we argue that En+2 ∈ MEn . Argue that

iEn+1(En+1) = i
MEn
En+1

(En+1), where i
MEn
En+1

: MEn → M
MEn
En+1

. By Lemma 2.1, applied

to E = En+1 and MEn , we see that En+2 = iEn+1(En+1) = i
MEn
En+1

(En+1), and hence
En+2 ∈ MEn . �


�


3 Countable decreasing sequences in theMitchell order

In this section we prove Theorem 1.3 and show that there can be strictly decreasing
transitive sequences in the Mitchell order of any countable length.

Before we turn to the proof, we would like to emphasize why we cannot simply
extend the construction in Proposition 2.3 to obtain decreasing sequences of extenders
in the Mitchell order of arbitrary (countable) length. Let E be a rank-to-rank extender
and let (En : n < ω) be the corresponding sequence of extenders constructed in the
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proof of Proposition 2.3. The critical points of the extenders En are strictly increasing
with supremum λE . A natural next extender to consider is the image of E under the
direct limit embedding obtained by successively applying the En’s (internally, i.e., E1
is applied to ME0 and so forth). This, however, does not work outright as this direct
limit embedding moves κ , the critical point of E , to λ. Instead, we will construct a
sequence of extenders (E ′

n : n < ω) such that the direct limit embedding j obtained by
successively applying the E ′

n ’s (again, internally) has critical point strictly above κ .
Now j(E) is a rank-to-rank extender with critical point κ and λ j(E) = λ. Moreover,
j(E) 	 E ′

n for all n < ω, so if we let E ′
ω = j(E), (E ′

n : n ≤ ω) is a decreasing
sequence of length ω + 1 in the Mitchell order. The proof of Theorem 1.3 elaborates
on this idea.

Proof of Theorem 1.3 Let E be a rank-to-rank extender with critical sequence (κn |
n < ω) and λE = λ. In what follows, all extenders will have the same length λ. We
start by introducing some notation for sequences of extenders as constructed in the
proof of Proposition 2.3. For a rank-to-rank extender F , write S1(F) = iF (F) and
Sn+1(F) = iSn(F)(Sn(F)). Now, the decreasing sequences in the Mitchell order we
construct will be of the following form.

Definition 3.1 Let �E = (Eα | α < γ ) be a sequence of rank-to-rank extenders. Then
we say that �E is guided by an internal iteration iff there are well-founded models
(Mα | α ≤ γ ), (M∗

α | α ≤ γ ) with M0 = M∗
0 = V and elementary embeddings

j∗α,β : M∗
α → M∗

β for all α < β ≤ γ such that

(1) Eα+1 = Sn(Eα) for some n ≥ 1 and all α + 1 < γ ,
(2) Mν = M∗

ν for all limit ordinals ν ≤ γ is given as the direct limit of the directed
system 〈M∗

α, j∗α,β | α ≤ β < ν〉.
(3) Mα+1 = MEα andM

∗
α+1 is the transitive collapse ofUlt(M

∗
α, Eα). For notational

convenience (see the diagram below) we will use MN
α+1 to denote the transitive

collapse of Ult(N , Eα), therefore M∗
α+1 = M

M∗
α

α+1.
(4) for all limit ordinals ν < γ , Eν = j∗0,ν(E0) and Ult(V , Eν) is well-founded, and
(5) the followingdiagramcommutes and allmaps in the diagramare givenby internal

ultrapowers.

V M∗
1 M∗

2 M∗
3 · · · Mω M∗

ω+1 M∗
ω+2 · · · M∗

γ

V M2 MM2
3 Mω MMω

ω+2
· · · · · ·

V M3 Mω· · · · · ·

V

. . . . . .

The term guided by an internal iteration refers to the fact that the iteration
〈M∗

α, j∗α,β | α ≤ β < γ 〉 is internal, as shown by the next claim.
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Claim 1 For each α < γ , Eα ∈ M∗
α .

Proof The claim is immediate when α is a limit ordinal or α = 0. Let α = β + 1 be a
successor ordinal and assume inductively that Eβ ∈ M∗

β .
Suppose first that Eα = Sn(Eβ) for n = 1. Then Eα = iEβ (Eβ), where

iEβ : V → MEβ is the V -ultrapower embedding given by Eβ . Recall thatM∗
α = M

M∗
β

Eβ
.

By applying Lemma 2.1 toM = M∗
β and E = Eβ , we conclude that Eα = i

M∗
β

Eβ
(Eβ) ∈

M
M∗

β

Eβ
= M∗

α . We now know that S1(Eβ) ∈ M∗
α , and so for n > 1, we can further com-

pute (Sn−1)M
∗
α (S1(Eβ)) insideM∗

α , which by applying Lemma 2.1 (n−1) consecutive
times, results in

(Sn−1)M
∗
α (S1(Eβ)) = Sn(Eβ) = Eα.

�

Before we prove the existence of sequences of extenders guided by internal itera-

tions, we show an abstract claim which will allow us to extend any such sequence by
one further element. This is shown as in the proof of Theorem 2.2 in [13] (where this
particular argument is attributed to Martin). We sketch the proof here for the reader’s
convenience.

Claim 2 Let N ∼= Ult(V , E ′) for some rank-to-rank extender E ′ of length λ, and
E�F rank-to-rank extenders of length λwith E, F ∈ N . Then the following diagram
commutes and all maps are given by internal ultrapowers.

MN
F Ult(MN

F , E) = Ult(MN
E , iE(F ))

N MN
E

Proof First, we note that Ult(MN
E , iE (F)) = iE (MN

F ), where we consider MN
F as a

class of N . Second, we assume E 	 F in V , which by Lemma 2.2 implies that E 	 F
in N as well, i.e., E ∈ MN

F . We can therefore form the internal ultrapower of MN
F

by E . Let i
MN

F
E : MN

F → Ult(MN
F , E) be the resulting ultrapower embedding. Finally,

we have that every x ∈ iE (MN
F ) can be identified with equivalence classes [a, f ]E ,

where a ∈ [λ]<ω and f : [μa]|a| → MN
F , and by Lemma 2.1, [a, f ]E = [a, g]E for

some function g ∈ MN
F . It follows that iE (MN

F ) identifies with the internal ultrapower

Ult(MN
F , E), and iE � MN

F with i
MN

F
E . �


Next, we argue that sequences as in Definition 3.1 are in fact as desired.

Claim 3 If a sequence �E = (Eα | α < γ ) of extenders is guided by an internal
iteration, the embeddings in the diagram witness that Eβ � Eα for all α < β < γ . In
particular, �E is a decreasing transitive sequence in 	.
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Proof Given a finite ordinal n < ω and a countable ordinal α > n, Claim 1 implies
that Eα � En . This is since all maps in the diagram witnessing that �E is guided by an
internal iteration, are internal ultrapowers, and therefore there are internal iterations
from Mn+1 (the ultrapower of V by En) to M∗

n+1 (i.e., vertical maps), and from M∗
n+1

to M∗
α , from which Eα is taken.

More generally, given countable ordinals β < α, we see that Eα � Eβ by moving
first to the last limit ordinal η ≤ β (i.e., β = η + n for some n < ω), and apply the
proof of Claim 2 to show that the following diagram commutes and its top row is given
by an internal iteration of MEη+n = Ult(V , Eη+n).

Ult(V,Eη+n) Ult(M∗
1 , Eη+n) Ult(M∗

2 , Eη+n) · · · Ult(M∗
η , Eη+n)

V M∗
1 M∗

2 · · · M∗
η

The extenders used to obtain the bottom row of the diagram are E0, E1,
E2, . . . , while the extenders used to obtain the top row of the diagram are

iEη+n (E0), i
M∗

1
Eη+n

(E1), i
M∗

2
Eη+n

(E2), . . . .

Finally, we get from M∗
η to M∗

η+n using the same argument described above, for
n < α. This suffices to show that Eα � Eη+n = Eβ . �


Wenow turn to proving the following claim, which immediately yields the theorem.

Claim 4 Assume there is a rank-to-rank extendere E . For every countable ordinal
γ < ω1 and an ordinal κ < λ = λE , there is a sequence of rank-to-rank extenders
�E = (Eα | α ≤ γ ) which is guided by an internal iteration, such that the induced
embedding j∗0,γ : V → M∗

γ satisfies κ < crit( j∗0,γ ) < λ and j∗0,γ (λ) = λ.

Proof We prove the claim by induction on γ < ω1. There is nothing to show for
γ = 0. Suppose that γ = 1. Let κ < λ be arbitrary and fix some n < ω such that
κ < κE

n . Then E0 = Sn+1(E) and E1 = S1(E0) giving rise to j∗0,1 : V → ME0 are
as desired.

Now, suppose γ = α+1 and the claim holds for α witnessed by (Eν | ν ≤ α). Let n
be such that κ < κ

Eα
n , the n-th element of Eα’s critical sequence, and Eα+1 = Sn(Eα).

Then crit(Eα+1) ≥ κα
n and hence, using that inductively crit( j∗0,α) > κ , we have

crit( j∗0,α+1) > κ . Using Claim 2 the extended sequence (Eν | ν ≤ α + 1) is as
desired.

Finally, suppose γ < ω1 is a limit ordinal and fix an increasing sequence 〈αn | n <

ω〉, cofinal in γ , with α0 = 0. We also fix a well-ordering <w of Hλ+ in V .
By the inductive hypothesis applied to α1, there is a sequence �E0 of rank-to-rank

extenders which is guided by an internal iteration and an elementary embedding
j∗0,α1 : V → M∗

α1
with critical point ν0 > κ and j∗0,α1(λ) = λ. We pick �E0 to be

the minimal such sequence with respect to <w. By elementarity of j∗0,α1 , we can

apply the inductive hypothesis again inside M∗
α1

to get a sequence �E1 of rank-to-
rank extenders which is guided by an internal iteration and an elementary embedding
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Infinite decreasing chains in the Mitchell order 779

j∗α1,α2 : M∗
α1

→ M∗
α2

with critical point ν1 > j∗0,α1(ν0) and j∗α1,α2(λ) = λ. We take
�E1 to be the minimal such sequence in M∗

α1
, with respect to j∗0,α1(<w). Repeating

this procedure yields a sequence (( �En, j∗αn ,αn+1
) | n < ω) of sequences of extenders

together with elementary embeddings.
Let (Eα | α < γ ) be the concatenation of the sequences �En , n < ω. The choice

of �En+1 to be minimal in M∗
αn

with respect to the well ordering j∗0,αn (<w) guarantees

that the sequence 〈 �Em | m > n〉 belongs to M∗
αn
, and thus also the tail of the iteration

〈M∗
α, j∗α,β | αn < α ≤ β < γ 〉. Note that crit( j∗0,γ ) > κ since crit( j∗αn ,αn+1

) > κ for
all n < ω. Let j∗0,γ : V → M∗

γ = Mγ be the direct limit embedding of the system.
The reflecting a minimal counterexample argument used to show that internal iter-

ations by normal ultrafilters are well-founded (see e.g., [8, Theorem 19.7] for normal
ultrafilters or [6, Proposition 5.8] for rank-to-rank extenders), can also be used to show
that Mγ is well-founded.

Subclaim 1 j∗0,γ (λ) = λ.

Proof Suppose not. Then there is some η < λ such that j(η) ≥ λ. But for every
η < λ, there is by choice of the embeddings j∗αn ,αn+1

some n < ω such that νn =
crit( j∗αn ,αn+1

) > η, i.e. j∗αn ,γ (η) = η. �

Moreover, it is clear from the construction that, letting Eγ = j∗0,γ (E), the resulting

sequence (Eα | α ≤ γ ) of rank-to-rank extenders is guided by an internal iteration.
The only condition that needs a small argument is the following.

Subclaim 2 Ult(V , Eγ ) is well-founded.

Proof As Mγ is well-founded and Eγ is an extender in Mγ , Ult(Mγ , Eγ ) is well-
founded.We prove the subclaim by defining an elementary embeddingπ : Ult(V , Eγ )

→ Ult(Mγ , Eγ ) as follows. For [a, f ]VEγ
∈ Ult(V , Eγ ), let

π([a, f ]VEγ
) = [a, j∗0,γ ( f ) ◦ j∗0,γ ]Mγ

Eγ
.

π is well-defined since for a ∈ [λ]<ω, μa < λ. Therefore, j∗0,γ � [μa]|a| ∈ Vλ ⊆ Mγ .
In addition, j∗0,γ ( f ) ◦ j∗0,γ = j∗0,γ ◦ f , so π is elementary. �


�

This finishes the proof of Theorem 1.3. �


4 A bound on the length of decreasing sequences in theMitchell
order

Steel proved in [13] that in a Mitchell order decreasing sequence of rank-to-rank
extenders, the extenders cannot all have the same critical point. He conjectured the
following stronger statement.

Conjecture 1 Suppose that (Em | m < ω) is a sequence of rank-to-rank extenders
which is strictly decreasing in �. Let λ be the unique ordinal such that λ = λEm for
all sufficiently large m. Then supm<ω crit(Em) = λ.
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Theorem 4.1 below establishes Steel’s Conjecture for the special case that the
Mitchell order is transitive on the sequence (Em | m < ω).

Theorem 4.1 Suppose that (Em | m < ω) is a sequence of rank-to-rank extenders,
which is strictly decreasing and transitive in �. Let λ be the unique ordinal such that
λ = λEm for all sufficiently large m. Then supm<ω crit(Em) = λ.

Proof Suppose otherwise, and let γ0 be the minimal ordinal for which there exists a�-
decreasing and transitive sequence �E = (Em | m < ω) such that γ0 = supm<ω κ

Em
0 <

λ
�E = supm<ω λEm . We assume without loss of generality that λ

�E = λEm for all
m < ω. Let n < ω be the integer for which κ

E0
n ≤ γ0 < κ

E0
n+1. We move to the

ultrapower ME0 . By our assumption, Em ∈ ME0 for everym > 0, and by Lemma 2.2,
ME0 sees that Em is Mitchell order below Ek for every 0 < k < m < ω. Since ME0 is
not closed under ω-sequences of its elements (in V ) the sequence (Em | 1 ≤ m < ω)

need not belong to ME0 . Nevertheless, we may define in ME0 the tree T
∗ of all finite

sequences of rank-to-rank extenders (E∗
m | m < N ), which are strictly Mitchell order

decreasing, transitive, have length λ
�E , and satisfy γ0 ≥ maxm<N κ

E∗
m

0 . The sequence
(Em | 1 ≤ m < ω) witnesses that T ∗ has a cofinal branch in V . So by absoluteness
of well-foundedness there is a cofinal branch in ME0 as well. We can now reflect this
from ME0 back to V . Using the fact that κE0

n ≤ γ0 < κ
E0
n+1 = iE0(κ

E0
n ), we conclude

that in V , there exists some γ−1 < κ
E0
n ≤ γ0, and a sequence �E∗ = (E∗

m | m <

ω) of rank-to-rank extenders which is strictly �-decreasing and transitive such that

supm<ω κ
E∗
m

0 ≤ γ−1 < λ
�E∗
. This is a contradiction to the minimality of γ0. �


Now we can obtain Theorem 1.4 as a corollary.

Proof of Theorem 1.4 Suppose otherwise. Let �E = (Eα | α < ω1) be a sequence of
extenders which is strictly decreasing and transitive in the Mitchell order. We may
assume that all Eα are rank-to-rank extenders and that there exists some λ

�E such that
λEα = λ

�E for all α < ω1. In particular, cf(λ �E ) = ω and we may choose a cofinal
sequence (ρn | n < ω) in λ

�E . By a straightforward pressing down argument, we can
find an uncountable set I ⊆ ω1 and some n∗ < ω such that κEα

0 < ρn∗ for all α ∈ I .
Taking (αn | n < ω) to be the firstωmanyordinals of I , it follows that (Eαn | n < ω) is

strictly decreasing and transitive in theMitchell order, with supn<ω κ
Eαn
0 ≤ ρn∗ < λ

�E .
This contradicts Theorem 4.1. �


5 Questions

After studying the length of the Mitchell order for rank-to-rank extenders, a natural
question that arises is about the structure this order can have.

Question 5.1 Suppose there is a rank-to-rank extender. Can the tree order on the
infinite binary tree 2<ω be realized by a Mitchell order?

We can even ask the following more general question.
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Question 5.2 Suppose there is a rank-to-rank extender. Can any tree order on ω be
realized by a Mitchell order?
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