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Abstract In robust optimization, double-looped structures
are often adopted where the outer loop is used to seek for
the optimal design and the optimization performed in the inner
loop is for the robustness assessment of the candidate solu-
tions. However, the double-looped techniques usually will
lead to a significant increase in computational efforts.
Therefore, in this paper, a new robustness index is developed
to handle bounded constraints on performance variation where
no optimization run is required for the robustness evaluation
work in the inner loop. The computation of this new index is
based on the sensitivity Jacobian matrix of the system perfor-
mances with respect to the uncertainties and it can quantita-
tively measure the maximal allowable magnitude of system
variations. By introducing this index, the robust design prob-
lem can be reformulated as a deterministic optimization with
robustness indices requirements. Two numerical examples are
tested to show the effectiveness and efficiency of the proposed
approach, whose solutions and computational efforts are com-
pared to those from a double-looped approach proposed in
previous literature.

Keywords Robust optimization . Uncertainty . Convex
model . Hyper-ellipsoid . Bounded constraint . Unilateral
constraint

1 Introduction

In the design of engineering structures, there are many system
uncertainties inherent in the material properties, geometrical
dimensions, loading conditions and so on. Since these uncer-
tainties may cause significant variability in structural perfor-
mances, they should be considered in the mathematical
modeling of the structural optimization problem. Many re-
searches have been carried out to reduce the sensitivity of a
solution with respect to the system input variations, which is
the so-called robust design.

Since Taguchi (1978) proposed the concept of robust de-
sign, it has been an active research topic in the past several
decades and many methods have been developed (Bacarreza
et al. 2015; Doltsinis et al. 2005; Guo et al. 2013; Hashimoto
and Kanno 2015; Sun et al. 2014;Wu et al. 2015; Zaman et al.
2011). Two categories of uncertainty description are mainly
considered in this area: one is probabilistic models and the
other is non-probabilistic models, including the convex
models and interval models. The probabilistic models are
mostly widely used to quantify the uncertainty based on the
statistic information, such as the mean and variance of the
uncertainties (Doltsinis et al. 2005; Gaspar-Cunha et al.
2014; Medina and Taflanidis 2015; Venanzi 2015).
However, the methods with probabilistic model need the pre-
cise data of the probability distribution of the random vari-
ables which is usually difficult to obtain (Ben-Haim and
Elishakoff 1990; Ellishakoff 1995). In the application of prob-
abilistic approach, certain assumptions of the probabilistic
model may be necessary, which, as pointed out by
Ellishakoff (1995), can lead to large errors in the estimation
of failure probabilities.

Non-probabilistic models, as new and appealing supple-
ments to conventional probabilistic models, have received
considerable attentions since the pioneering work by Ben-
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Haim and Elishakoff (1990). In the convex model or interval-
model-based approaches, only the bounds of the uncertain
parameters are needed and they can be obtained from a small
number of samples (Jiang et al. 2007, 2011). In practical en-
gineering design problems, the bounds of the uncertain param-
eters can be more easily determined as compared to their pre-
cise statistical distribution (Kang and Bai 2013). Due to these
advantages over the probabilistic approach, the non-
probabilistic approaches have attracted growing attentions.

There have been several interval-based methods proposed
for robust optimization. Zhou et al. (2012) introduced a se-
quential quadratic programming for robust optimization
(SQP-RO) under interval uncertainties with both objective
robustness and feasibility robustness. A sensitivity-region-
based method was developed to get the maximum allowable
variation of uncertain parameters or variables (Gunawan and
Azarm 2004, 2005a, b; Li 2007). Generally, most existing
robust optimizationmethods have the so-called double-looped
structure where the robustness assessment work is performed
in the inner loop through optimization procedure. This
double-looped structure usually tends to decrease the compu-
tational efficiency of robust optimization significantly (Zhou
and Li 2014).

For robust optimization with convex model, Kang and Bai
(2013) defined a robustness measurement as the minimal dis-
tance from the origin to the limit-state surface. This is similar
to the definition of non-probabilistic reliability measure (Cao
and Duan 2005; Kang et al. 2011) and the design objective is
to maximize the minimum one of the robustness indices. The
work by Kang and Bai (2013) dealt with the robustness in-
duced by unilateral constraints on structural performance var-
iation, just as shown in (1):

f X;Pð Þ ¼ f X;P0ð Þ þΔ f ≤ f ð1Þ

P∈Ω ð2Þ

Then,

Δ f ≤ f − f X;P0ð Þ ð3Þ
where X is the vector of design variables, P represents the
uncertain parameters whose values can varywithin the convex
domain Ω and P0 is the vector of nominal values of P. Δf is
the performance variation with respect to its nominal value

and f is the prescribed upper bound for performance f. The
performance could be the structural displacement, stress,
weight, and so on.

In Kang and Bai’s work, (3) is used as the limit-state func-
tion and the robustness index is defined by SQP, which is still
an optimization procedure.

In practical engineering, the restrictions on system perfor-
mance variation under parameter uncertainties may appear in

the form of bounded constraints. For example, as shown in
Fig. 1, the two structures are going to be assembled at point A
and B. The blue lines represent part of the deformed structure,
and A ′ and B ′ are the deformed locations of A and B, respec-
tively. The displacements of A and B in the y direction are dA
¼ yA0−yA and dB ¼ yB0−yB, respectively. In order to ensure
the accuracy of the assembly under uncertainty, the two dis-
placements should be smaller than certain values. Obviously,
these are bounded (bilateral) constraints on displacements, as
shown in (4).

−d≤d≤d ð4Þ

where d is a positive prescribed performance variation
tolerance.

This constraint in (4) can be converted to a unilateral con-

straint by taking square of d, i.e., dð Þ2≤d2. Thus, the bounded
constraint on d is transformed into a unilateral constraint, just
like shown in (3). In this situation, an optimization procedure
is usually adopted to deal with this unilateral constraint, which
will lead to a double-looped optimization problem. As far as
the authors’ knowledge, when the uncertainty is modelled
with convex model, there are few publications concerning
the efficiency improvement for bounded restrictions on per-
formance variation.

To overcome the issue of the low computational efficiency
of double-looped robust optimization approaches, in this pa-
per, a new robustness index for bounded restrictions on per-
formance variation is proposed based on non-probabilistic
convex model. This index can be easily computed by the
sensitivity Jacobian matrix instead of an optimization
procedure.

The rest of this article is arranged as follows.
Section 2 presents a general formulation of robust opti-
mization with both unilateral constraint and bounded
constraint on performance variations. In section 3, the
definition of the proposed robustness index for bounded
restriction on performance variation is detailed. This
part is the main contribution of our work. Also, the
existing robustness index definition for unilateral con-
straints on performance variations in literature is briefly
introduced. In section 4, a new robust optimization
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Fig. 1 Assembly of two structures
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model is established with two robustness indices (i.e.,
the robustness indices for unilateral and bounded con-
straints for performance variations) constraints. Then,
two truss structures are provided to demonstrate the ef-
fectiveness of the presented method in section 5.
Section 6 gives a discussion about the application scope
of the new method. Finally, the conclusions are given.

2 Robust optimization model with constraints
on performance variations

A robust optimization with both unilateral constraints and
bounded constraints on performance variation can be formu-
lated in the following equation:

Min f ob j X;P0ð Þ
s:t: f uð Þ

i X;Pð Þ≤ f
uð Þ
i ; i ¼ 1; 2;…; k

−Δ f *j ≤ f
bð Þ
j X;Pð Þ− f bð Þ

j X;P0ð Þ≤Δ f *j ; j ¼ 1; 2;…; q
lb≤X≤ub
P∈Ω

ð5Þ

where fobj(X,P0) is the objective performance. The design
objective is to minimize the objective performance when the
uncertainties P take their nominal values P0. f

(u) and f(b) are the
system performances involved in unilateral and bounded de-
sign constraints, respectively and the superscript u and b rep-
resent unilateral and bounded, respectively. The robustness

represented by f uð Þ
i X;Pð Þ≤ f uð Þ

i , i=1, 2,…, k can be called
robustness for the unilateral constraint on performance varia-

tion (RUC) and f
uð Þ
i is the prescribed upper bound of the ith

performance involved in unilateral constraint. The robustness
of −Δfj

* ≤ fj(b)(X,P) − fj(b)(X,P0) ≤Δfj
*, j = 1, 2,…, q is for

bounded constraint on performance variation (RBC) and
Δfj

* >0 is the upper bound of the variation for the jth perfor-
mance involved in bounded constraint, i.e., the performance
tolerance.

3 Definition of the indices of RBC and RUC

In this section, the concept of convex model for uncertainties
is presented and the definitions of the indices of RBC and
RUC are shown. The indices are used to quantitatively mea-
sure the maximum allowable magnitude of the system varia-
tions. By defining the robustness indices, the robust design
problem can be transformed into a deterministic optimization
which can be solved easily with existing optimization
algorithms.

3.1 Convex model of uncertainties

Assume that there exist n uncertain-but-bounded parameters
Pi, i=1,2,…,n which constitute a n dimensional parameter
space PT={P1,P2,…,Pn}.P

c = {P1
c,P2

c,…,Pn
c} is the mid-

points set in which Pi
c is the nominal value of the ith uncertain

parameter. Assuming that the uncertainty of P falls into a
multidimensional ellipsoid, the uncertainty set Ωp in p space
can be given (Ben-Haim and Elishakoff 1990) as

P∈Ωp ¼ Pj P−Pcð ÞTW P−Pcð Þ≤1
n o

ð6Þ

whereW is a real symmetric positive definite matrix known as
the characteristic matrix of the convex model and defines the
principal axes of the ellipsoid.

In practical applications, the uncertainty of parameters of-
ten arise from different sources, and then they may in different
orders of magnitude. To overcome this problem and whereby
ensure the numerical precision, the uncertain parameters P (p
space) can be transformed into a set of regularized variablesU
(u space)

Ul ¼ Pl−Pc
l

Pc
l

; l ¼ 1; 2;…; n ð7Þ

Then,

U ¼ Q P−Pcð Þ ð8Þ
where Q=diag(1/P1

c, 1/P2
c,…, 1/Pn

c).
Based on the linear transformation in (8), Ωp can be

changed into another convex set Ωu in the u space

U∈Ωu ¼ UjUTWuU≤1
� � ð9Þ

where Wu denotes the characteristic matrix of the convex
model in the u space.

Then the eigenvalue decomposition is utilized for the ma-
trix Wu

ΦTWuΦ ¼ Λ; ΦTΦ ¼ I ð10Þ

where Φ is an orthogonal matrix formed by the normalized
eigenvectors and Λ is a diagonal matrix consisting of the
eigenvalues ofWu. I is an identity matrix. Then another linear
transformation is introduced as

δ ¼ Λ1=2ΦU ð11Þ

Ωu can be transformed into the δ space

δ∈Ωδ ¼ δjδTδ≤1
� � ð12Þ

By means of these two linear transformations in (7) and
(11), a multiple sphere with a unit radius can be obtained in
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δ space. The definitions of the indices of RUC and RBC in the
following sections are both performed in this δ space.

3.2 Index of RUC

In this paper, the index of RUC ξ is obtained from the work of
Kang and Bai (2013), which is shown in (13). The procedure
is carried out in the δ space which has been mentioned in the
previous section. It should be noted that this sub-optimization
is performed when the design variables X of design problem
(5) are at their nominal values and the design variables in (13)
are uncertain parameters in δ space. In Fig. 2, a two-
dimensional case is shown. The index ξi is defined as the

smallest distance from the critical curve (i.e., f i
uð Þ δð Þ− f uð Þ

i
¼ 0 ) to the origin of δ space. The indices are used as the
optimization constraints in the final robust optimization prob-
lem shown in section 4.

Min ξi ¼
ffiffiffiffiffiffiffiffiffi
δTδ

p
s:t: f i

uð Þ δð Þ− f
uð Þ
i ¼ 0

ð13Þ

3.3 Index of RBC—the proposed approach

This section is the main contribution of our proposed method.
According to the work by Zhu and Ting (2001), the perfor-
mance variations caused by parameter uncertainties can be
approximated by the linear expansion:

Y¼J⋅ΔP ð14Þ

where, J ¼ ∂ f bð Þ
1 ; f bð Þ

2 ;…; f bð Þ
qð Þ

∂ p1;p2;…;pnð Þ is the sensitivity Jacobian matrix

evaluated at the nominal dimensions. fj
(b), j=1,2,…,q and p-

l, l=1, 2,…,n are the performance functions and uncertain
parameters, respectively. Y= (Δf1

(b),Δf2
(b),…, Δfq

(b))T and

ΔP= (Δp1,Δp2,…, Δpn)
T are the variation vectors of the

performance functions and uncertain parameters, respectively.
By taking a norm of the vector Y,

Yk k22 ¼ Δ f bð Þ
1

� �2
þ Δ f bð Þ

2

� �2
þ⋯þ Δ f bð Þ

q

� �2
¼ YTY ¼ ΔPT JT JΔP ¼ ΔPTAΔP ð15Þ

where ΔP=P−Pc. When each performance tolerance is giv-
en as Δfj

*, j=1, 2,…,q, each of the design candidates will
associate with a subspace in which the system will satisfy
the constraint shown in (16).

Yk k22 ¼ ΔPTAΔP≤
Xq
j¼1

Δ f *j
2 ð16Þ

For matrix A of the quadratic, it must be either positive or
semi-positive definite. If A is positive definite, the (16) repre-
sents a n dimensional hyper-ellipsoid with a parameter ‖Y‖2

2.
If A is semi-positive definite, the domain which (16) repre-
sents is a hyper-cylindroid. A modified method (Zhu and Ting
2001) is used to adjust the infinite principal axes to finite
lengths.

Therefore, the hyper-ellipsoid is called the feasible el-
lipsoid. The feasible ellipsoid represented by (16), as we
can see, is the subspace where the gross performance but
not necessarily every individual performance is acceptable
(Zhu and Ting 2001). This method in this section aims to
develop a more efficient way to handle robust bounded
constraints, which may result in some constraints viola-
tions. This problem will be discussed in section 5 with
numerical examples.

Transformed into the δ space, the index of RBC is defined
as the length of the smallest semi principal axis of it, as shown
in (17). λi is the length of ith semi principal axis. A 2-
dimensinal robustness index is shown in Fig. 3.
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Fig. 2 Robustness index for a unilateral constraint (Kang and Bai 2013)
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Fig. 3 Proposed index of RBC in 2-dimensional
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η ¼ min λ1;λ2;…;λnf g ð17Þ

When η ≥ 1, all of the uncertain sphere (circle in 2-
dimensional) is located in the feasible ellipsoid and when
η<1, some part of the uncertain sphere is not enclosed by
the feasible ellipsoid, which may lead to a violation of restric-
tion. The larger the η value, the more robust the design, and
vice versa.

An aggregate function (Kang and Bai 2013; Luo et al.
2013; Kreisselmeier and Steinhauser 1983; Poon and
Martins 2007) is used to convert the minimum operator in
(17) into a smooth function which make it easier to adopt

gradient-based optimization. With the aggregate function,
the η is defined as

η ¼ −
1

ρ
ln
Xn
l¼1

e−ρλl
 !

ð18Þ

where the ρ is 10 in this paper.
The relevant flowchart is shown in Fig. 4 and the explana-

tions can be stated as:

1. Evaluate the derivatives ∂ f i /∂pj , i = 1, 2,… , m ,
j=1,2,…,n.

2. Form the Jacobian matrix J.
3. Give the tolerances for performances Δfi

*, i=1,2,…,m.
4. Generate the feasible ellipsoid by (16)
5. Transfer the feasible ellipsoid into δ space. Firstly, theΔP

in (16) is transformed into u space by (8), and then second
transformation in (11) is adopted. Therefore, after the two
linear transformations, the feasible ellipsoid shown in (16)
is transferred into δ space.

6. Define the index of RBC η. 1) The eigenvalue decompo-
sition is utilized for the matrix A and the eigenvalues
ω1,ω2,…, ωn are obtained. 2) If A is semi-positive

Index

Evaluate

Form Jacobian Matrix

(b) /j lf p

J

Obtain Feasible ellipsoid

by Eq. (16)

Coordinate transformation

to space

Fig. 4 Flowchart for obtaining the index for RBC

Start

Evaluate

M=1

Evaluate

Updating design

variables

Converge

End

M=M+1

i
HL-RF

method

Proposed

method in

section 3.3

X

Evaluate obj
f

N

Y

Fig. 5 Flowchart for solving the double-looped optimization problem
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Fig. 6 Samples for MCS for the computation of yield level

Fig. 7 A five-bar planar truss
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definite, the modification method by Zhu and Ting (2001)
is used to adjust the infinite principal axes to finite
lengths. 3) The lengths of the semi principal axis are cal-
culated by λl ¼ Yk k2=

ffiffiffiffiffi
ωl

p
; l ¼ 1; 2;…; n. 4) Finally, the

η is defined by (18).

4 Formulation of robust optimization with the two
robustness indices

In the last section, the indices for RUC and RBC are defined
and then the robust design problem (5) can be reformulated as
follows:

Min f ob j X;P0ð Þ
s:t: ξi≥ξi;t; i ¼ 1; 2;…; k

η≥ηt
P∈Ω

ð19Þ

where ξi,t and ηt are the target indices of the ith RUC and RBC,
respectively. When the values of these two kinds of indices
equal 1, it implies that the designer allows no robust con-
straints violations. Therefore, in this paper, the levels of the
robustness, i.e., the indices, are defined as requirements of the
design. Several examples with different target indices are per-
formed in the next section. It should be noted that if there are

variations in some of the design variables, a subset of X be-
longs to P.

In (19), the index η concerns the robustness of RBC and it
is defined by the proposedmethod in this paper. The definition
of ξ is based on the work by Kang and Bai (2013) and it deals
with robustness of RUC. These two indices handle different
types of robustness and form a general form of robust
optimization.

In this paper, the outer optimization is solved by the
fmincon function of the Matlab Optimization Toolbox
(2012b Release) optimization toolbox. In the inner level, the
index of RUC ξ is obtained by HL-RF method, which is often
used in reliability analysis (Hasofer and Lind 1974; Jiang et al.
2013; Rackwitz and Flessler 1978). The index of RBC η is
acquired with the proposed algorithm. The flowchart for solv-
ing the double-looped optimization problem is shown in
Fig. 5. As we can see from the figure, in each iteration of
the outer optimization, the ξ and η should be calculated.

In order to verify the effectiveness of the proposed
method for RBC, Monte Carlo simulation (MCS) is ex-
ecuted to compute the yield level β of solutions
concerning the bounded constraints on performance var-
iations. The yield level, i.e., the qualification rate of the
structure under parameter uncertainty, represents the
possibility that a qualified product occurs when the pa-
rameters are uncertain. In this circumstance, the word
“qualification” means (16) is satisfied. The MCS for
the yield level can be outlined as follows:

1. In δ space, make the n uncertain parameter as independent
random variables under uniform distributions within the
unit box and whereby obtain m1 samples. As shown in
Fig. 6, all the obtained samples are uniformly distributed
in an n-dimensional box.

2. Sequentially substitute them1 samples into the unit hyper-
sphere function δTδ≤1 and get m2 ones satisfying this
function. Through this, we can obtain a pile of samples

Table 1 Optimization constraints for the five-bar truss optimization

u3 (in) v3 (in) ξ1,t ξ2,t Δfj
* (in) ηt

Deterministic
optimization

1.6 2.8 / / / /

Robust
optimization

Case 0 1.6 2.8 1 1 / /

Case 1 1.6 2.8 1 1 0.05 0.5

Case 2 1.6 2.8 1 1 0.05 0.7

Case 3 1.6 2.8 1 1 0.05 1

Table 2 Optimal solutions for
the five-bar truss Member number Initial design Deterministic optimization Case 0 Proposed method

Case 1 Case 2 Case 3

1 35.00 8.61 9.21 13.46 18.76 26.68

2 35.00 8.61 9.34 13.31 18.53 26.35

3 35.00 0.01 0.01 0.01 0.01 0.01

4 35.00 0.02 0.01 0.32 0.37 0.43

5 35.00 0.01 0.01 0.30 0.35 0.40

ξ1 9.82 2.75 3.22 5.37 6.68 7.66

ξ2 10.70 0.00 1.00 4.75 7.35 7.79

η 1.23 0.16 0.16 0.50 0.70 1.00

β 100.00% 48.62% 55.74% 77.71% 94.52% 100.00%

Volume 20399 2084 2244 3306 4584 6496
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uniformly distributed in the n-dimensional unit hyper-
sphere.

3. The m2 samples are transformed into x space, and then
substitute all of them into the performance evaluation and
obtain m3 samples satisfying the performance bounded
constraint in (16).

4. The final yield level is β=m3/m2.

5 Numerical examples

For illustrating the validity of the proposed robust design for-
mulation, two examples are given in this section. The first one
copes with the problem with bar cross-section areas uncertain-
ty and the second one regards the material property fluctua-
tion. The aforementioned two kinds of robustness indices are
both involved. The physical quantities are in the imperial sys-
tem of units. The length unit is inch (in), the unit of elastic
modulus is kilo pounds per square inch (ksi), the area unit is
square inch (in2), and the force unit is kilo pounds-force (kip).

5.1 A five-bar planar truss structure design

The five-bar truss problem fromKang and Bai (2013) is tested
in this paper, which is shown in Fig. 7. Uncertain cross-section

areas are considered and the convex model is expressed as
Ωu = {U|U

TWuU ≤ 1}, where Wu= 100 × diag(1, 1, 1, 1, 1).
The truss is subjected to a horizontal force P1 =10 kip and a
vertical force P2=10 kip at node 3. The design objective is to
minimize the total volume of the structure while the nominal
values of cross-section areas are design variables. Their lower/
upper bound limits are xi

L=0.01 in2, xi
U=40 in2, i=1,2,..., 5.

In this example, both the design variables and the uncertain
parameters are the cross-section areas.

The horizontal and vertical displacements of node 3
are restricted by u3≤ 1.6 in and v3≤ 2.8 in, which are
the unilateral constraints. Also, the bounded constraints
are that the two displacement variations should be no
more than 0.05 in from their nominal values,
respectively.

Four cases of performance requirements and robustness
index constraints are listed in Table 1. Case 1, 2 and 3 are
with both RUC and RBC and Case 0 represents the opti-
mization with only RUC. The Case 0 is carried out for
comparison. A deterministic optimization is also carried
out for comparison, which includes no robustness con-
straint but the two displacement limitations under no
uncertainty.

The initial design and optimal results for the four cases are
listed in Table 2. The values in bold mean that this constraint
value of the optimal design reaches its boundary and it means
the same in the following tables in this paper. From the opti-
mization results the following conclusions can be drawn.

(1) Better robustness can be achieved with larger material
volume. (2) It is a direct proportional relationship between the
indices of RUC ξ1, ξ2 and the index of RBC η, which means
the larger the ξ, the larger the η, and vice versa. (3) In the
optimal design results of the deterministic optimization and
case 0, the values of η shows that the bound constraints on the
displacement variations are not satisfied. (4) The RBC index η
is able to represent the yield level, i.e., a larger η can guarantee
a higher yield level and when η reaches 1, the yield level is
100%.

It should be noted that, η in deterministic optimiza-
tion and Case 0 are the same 0.16, but the yield levels
differ slightly. This is because the definition of η only
concerns the smallest semi-axis length and the optimal
solutions for these two designs are different in other
axis lengths, which will lead to a different yield level.
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Fig. 8 Iteration histories of the five-bar truss optimization

Table 3 Comparison of optimal solutions by Case 3 and Kang and Bai’s method for the five bar truss

Member
number

1 2 3 4 5 Volume β̂ Number of
function calls

Case 3 26.68 26.35 0.01 0.43 0.40 6496 96% 83395

Kang and Bai’s method 24.50 35.67 0.92 0.85 0.92 7898 100% 465874
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The iteration histories of the optimization in case 1, 2 and 3
are shown in Fig. 8, which shows a stable convergence with a
steady decrease of the structure material volume from the first
iteration step.

Table 2 has shown the effectiveness of the proposed meth-
od. In order to show the high-efficiency of the proposed algo-
rithm, another optimization procedure is carried out based on
the work by Kang and Bai (2013) as a comparison. The two
bounded constraints (two displacement variations should be
no more than 0.05 in from their nominal values) are trans-
formed into unilateral constraints by square operator and
therefore the optimization procedure has four indices of
RUC (the other two are from u3≤1.6 and v3≤2.8). These four
indices are obtained by the HL-RF method and therefore the
whole design problem is a double-looped structure.

Due to the fact that the proposed method deals with the
performance tolerance with norm operator which is shown
in (16), and therefore it cannot be guaranteed that the optimal
solutions satisfy every individual performance. In order to
investigate to what extent the optimal solutions obtained by
the proposed method satisfy every individual performance, a

new yield level β̂ is developed byMCS. The computation of β̂
is the same as β except that the gross performance restriction is
replaced by every individual performance restriction.

As shown in Table 3, the Kang’s method achieves a solu-

tion whose β̂ equals 100% with 465874 function calls while
the number of function calls of Case 3 is 83395, which is only

17.9% of that of Kang and Bai’s method. The β̂ of Case 3 is
96% that is almost 100%. It can be concluded that the

proposed method can produce a relatively good solution with
considerably less computational time. It should also be noted
that the main contribution of this paper is the development of
the new index of RBC. Therefore the sensitivity information
of the constraints (indices) with respect to the design variables
have not been offered by the authors to the optimizer in the
outer loop. This may lead to more function calls.
Nevertheless, the two cases in the Table 3 are still
comparative.

5.2 A ten-bar planar truss structure design

A practical ten-bar planar truss with material property
uncertainty is investigated in this example, which is
shown in Fig. 9. This example is originally formulated
by Kang and Bai (2013) and we slightly modified this

Fig. 9 A ten-bar planar truss

Table 4 Optimization constraints for the ten-bar truss optimization

u3 (in) v6 (in) ξ1,t ξ2,t Δfj
* (in) ηt

Deterministic
optimization

2.0 5.0 / / / /

Robust
optimization

Case 0 2.0 5.0 1 1 / /

Case 1 2.0 5.0 1 1 0.05 0.7

Case 2 2.0 5.0 1 1 0.05 0.8

Case 3 2.0 5.0 1 1 0.05 1

Table 5 Optimal solutions for the ten-bar truss

Member
number

Initial
design

Deterministic
optimization

Case 0 Proposed method

Case 1 Case 2 Case 3

1 35.00 13.06 13.35 15.07 17.22 21.51

2 35.00 0.01 0.01 0.01 0.01 0.01

3 35.00 9.04 9.24 9.66 11.05 13.82

4 35.00 6.48 6.62 6.91 7.90 9.87

5 35.00 0.01 0.01 0.01 0.01 0.01

6 35.00 0.01 0.01 0.01 0.01 0.01

7 35.00 0.71 0.72 0.77 0.82 0.92

8 35.00 10.44 10.66 12.59 14.35 17.88

9 35.00 10.24 10.45 10.67 12.18 15.20

10 35.00 0.01 0.01 0.01 0.01 0.01

ξ1 27.82 3.34 4.20 9.71 13.59 18.56

ξ2 26.76 0.00 1.00 4.78 10.02 16.81

η 2.44 0.62 0.64 0.70 0.80 1.00

β 100.00% 75.41% 75.92% 80.74% 85.10% 99.82%

Volume 146876 21195 21648 23641 26963 33598
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Fig. 10 Monte Carlo simulation results for the ten-bar robust
optimization in case 3

66 N. Hu et al.



problem by assuming a different uncertainty characteristic
matrix. The structure is subjected to two vertically con-
centrated forces P1 =P2 = 100 kip at node 4 and 6, respec-
tively. The total 10 bars are classified into two groups and
the bars within each group have the same Young’s mod-
ulus. As shown in Fig. 9, the bars from number 1 to 6 are
with an elastic modulus E1 whose nominal value is 10,000
ksi. The other bars are with an elastic modulus E2 whose
nominal value is 8000 ksi. The design objective is to
minimize the total volume of the structure and the nomi-
nal values of the cross-section areas are the design vari-
a b l e s . T h e i r l ow e r / u p p e r b o u n d l i m i t s a r e
xi
L = 0.01 in2, xi

U = 40 in2, i= 1, 2,..., 10. In this problem,
the uncertain parameters P are the elastic modulus and
the design variable X are cross-section areas. Therefore,
from the two examples, the uncertainties can be from
either design variables or parameters.

The vertical displacement of node 3 and node 6 are restrict-
ed by u3≤2.0 in and v6≤2.8 in respectively. Also, the accept-
able performance variations of these two displacements are
both 0.05 in.

The Young’s modulus E1 and E2 are uncertain parameters
and the characteristic matrix of ellipsoid model is

Wu ¼ 1000 1:21
1:21 1210

� �
ð20Þ

The initial design and optimal results for the five cases are
listed in Table 4. Obviously, the initial design satisfies all the

three robustness constraints. A deterministic optimization is
carried out for comparison, which includes no robustness con-
straints but the two displacement limitations. The results of the
optimizations are listed in Table 5. The zero-valued robustness
index ξ2 of the deterministic optimization indicates that any
fluctuation around the nominal values will lead to violation of
displacement requirement. The result of the robust optimiza-
tion with only RUC (i.e., Case 0) can get a yield level of
75.92% and Case 4 can get a yield level of almost 100%.

The results of MCS for Case 3 are given in Fig. 10. The
declining ellipses in blue are the feasible ellipse and the unit-
radius circle in red is uncertain sphere in 2-dimensional. From
the results, we can see that no violation is observed in the
whole uncertain circle, i.e., the yield level is almost 100%.
The iteration histories of the optimization in case 1, 2 and 3
are shown in Fig. 11.

In this circumstance, as shown in Table 6, the optimal so-

lution of Case 3 achieves a β̂ of 88% with only 11% function
calls compared with Kang and Bai’s method. Due to the fact
that the Kang and Bai’s method handles the bounded con-

straints with each individual performance restriction, the β̂ it
obtained is naturally 100%.

The nominal displacements for the optimal designs of the
two examples are listed in Table 7. As we can see, the dis-
placements of optimal result of deterministic optimization
reach the constraint boundary, i.e., this design cannot endure
any uncertaity. The displacements of Case 1 to Case 3 are
smaller than that obtained by Case 0 because Case 0 only
takes RUC into account. From Case 1 to Case 3, with the
increasement of requiement of index of RBC, the nominal
values get smaller.
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Fig. 11 Iteration histories of the ten-bar truss optimization

Table 6 Comparison of optimal solutions by Case 3 and Kang and Bai’s method for ten bar truss

Member
number

1 2 3 4 5 6 7 8 9 10 Volume β̂ Number of
function calls

Case 3 21.51 0.01 13.82 9.87 0.01 0.01 0.92 17.88 15.20 0.01 33598 88% 20847

Kang and Bai’s method 28.91 0.01 20.11 14.35 0.01 0.01 1.01 22.02 21.73 0.01 45618 100% 188067

Table 7 The nominal displacements for the optimal designs of the two
examples (in)

Five-bar truss design Ten-bar truss design

u3 v3 u3 v6
Unilateral constraints 1.60 2.80 2.00 5.00

Deterministic
optimization

1.16 2.80 1.85 5.00

Case 0 1.09 2.60 1.81 4.89

Case 1 0.74 1.80 1.55 4.49

Case 2 0.53 1.29 1.35 3.93

Case 3 0.37 0.91 1.08 3.14
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6 Discussions on the application scope
of the proposed method

The application scope of the proposedmethod in section 3.3 is
an important issue, especially when we consider it for engi-
neering applications. Due to the fact that the assessment meth-
od is based on Jacobianmatrix, which only uses the first–order
derivatives, the proposed method may only be applicable in
small uncertainty situation. Some investigations (Lee et al.
1999; Parkinson 1995) have found that if the component var-
iations are less than 3–5% of the nominal dimensions, the
linear relationship would hold. The uncertainty level may vary
in different engineering problems and in this paper, the ten bar
truss is used to demonstrate the application scope of the pro-
posed method.

The MCS is used to compute the approximation error con-
tour. The relative approximation error is defined as

εi ¼
f i− f 0;i þ Yi
	 


f i
� 100%; i ¼ 1; 2 ð21Þ

where εi is the ith approximation error and ε1 is for u3 and ε2 is
for v6. fi is the actual displacement and f0,i is the nominal
displacement without uncertainty. The contours and the uncer-
tain ellipses defined by (20) are shown in Fig. 12. The readers

can get such information. a) For these two displacements,
when uncertainty level reaches around 12–18% (the maximal
absolute deviation of two elastic modulus divided by their
nominal values, respectively), the approximation errors are
around 1–2%, which is considered as acceptable in practical
engineering. b) The approximation errors in the uncertain el-
lipses adopted in the ten bar truss example are much smaller
than 1%.

Therefore, it is concluded that for truss problem, when the
variations of the parameter are smaller than 18% of their nom-
inal values, the method of section 3.3 can be employed. For
other engineering problems, the parameter variation is usually
far below 18%. Nevertheless, when the relation between pa-
rameters and performances is relatively nonlinear, a MCS is
recommended before the adoption of the proposed method.
Only several examples are required in the MCS to yield a
general view of the approximation errors in the uncertainty
region for the designers to see if it is acceptable in the partic-
ular engineering problem. If the approximation errors are ac-
ceptable within the uncertainty domain, then the presented
method can be applied.

7 Conclusions

In this paper, a new robustness index is developed to handle
bounded constraints on performance variation with convex
uncertainty. The index can quantitatively measure the maxi-
mal allowable magnitude of system variations. By means of
the proposed algorithm, the inner loop for the robustness eval-
uation of the bounded constraints of the traditional double-
looped robust design problem can be replaced by a procedure
without any optimization run and the robust design problem
can be converted into a deterministic optimization with indi-
ces requirements. Two examples of truss structures design
problem are investigated and the results show the validity of
the proposed method.

Based on the numerical results, the following conclusions
are drawn out.

1. The proposed method can directly handle the bounded
constraints for performance variation in robust design
without any optimization procedure. Compared with the
traditional double-looped algorithm, the proposedmethod
can achieve relatively good solutions withmuch less com-
putational efforts.

2. In this method, the levels of the robustness, i.e., the indi-
ces, are defined as requirements of the design. This will
allow the designers to decide the robustness of the system.

3. In the presented method, the gross performance but not
necessarily every individual performance is acceptable.
However, by the numerical examples, we can find that
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Fig. 12 The contours of relatively approximation error for the two
displacements of the ten bar truss
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the proposed method can also obtain solutions with high
possibilities that satisfy every performance tolerance.

4. For the uncertainty level in the two truss examples shown
in this paper, the effectiveness of the proposedmethod has
been testified. For other engineering problems with high
nonlinearity, a MCS with not too many examples is rec-
ommended before the adoption of the proposed method.
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