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Abstract It is well known that the linear stability of solutions of 1 + 1 partial dif-
ferential equations which are integrable can be very efficiently investigated by means
of spectral methods. We present here a direct construction of the eigenmodes of the
linearized equation which makes use only of the associated Lax pair with no ref-
erence to spectral data and boundary conditions. This local construction is given in
the general N x N matrix scheme so as to be applicable to a large class of inte-
grable equations, including the multicomponent nonlinear Schrédinger system and
the multiwave resonant interaction system. The analytical and numerical computa-
tions involved in this general approach are detailed as an example for N = 3 for the
particular system of two coupled nonlinear Schrodinger equations in the defocusing,
focusing and mixed regimes. The instabilities of the continuous wave solutions are
fully discussed in the entire parameter space of their amplitudes and wave numbers.
By defining and computing the spectrum in the complex plane of the spectral variable,
the eigenfrequencies are explicitly expressed. According to their topological proper-
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ties, the complete classification of these spectra in the parameter space is presented
and graphically displayed. The continuous wave solutions are linearly unstable for a
generic choice of the coupling constants.

Keywords Nonlinear waves - Integrable systems - Wave coupling - Resonant
interactions - Modulational instability - Coupled nonlinear Schrodinger equations

Mathematics Subject Classification 37K10 - 37K40 - 37K45 - 35Q51 - 35Q55

1 Introduction

The problem of stability is central to the entire field of nonlinear wave propagation and
is a fairly broad subject. Here, we are specifically concerned with the early stage of
amplitude modulation instabilities due to quadratic and cubic nonlinearities, and we
consider in particular dispersive propagation in a one-dimensional space, or diffraction
in a two-dimensional space.

After the first observations of wave instability (Benjamin and Feir 1967; Rothenberg
1990, 1991; see also e.g. Zakharov and Ostrovsky 2009), the research on this subject
has grown very rapidly because similar phenomena appear in various contexts such as
water waves (Yuen and Lake 1980), optics (Agrawal 1995), Bose—Einstein condensa-
tion (Kevrekidis et al. 2007) and plasma physics (Kuznetsov 1977). Experimental
findings were soon followed by theoretical and computational works. Predictions
regarding short time evolution of small perturbations of the initial profile can be
obtained by standard linear stability methods (see e.g. Skryabin and Firth 1999 and
references therein). Very schematically, if u(x, ) is a particular solution of the wave
equation, evolving in time #, and if u+§u is the perturbed solution of the same equation,
then, at the first order of approximation, §u satisfies a linear equation whose coefficients
depend on the solution u(x, ¢) itself, and therefore, they are generally non-constant.
Consequently, solving the initial value problem §u(x, 0) — Su(x, t) in general is not
tractable by analytical methods. It is only for special solutions u(x, t), such as nonlin-
ear plane waves or solitary localized waves, see e.g. Skryabin and Firth (1999), that
this initial value problem can be approached by solving an eigenvalue problem for an
ordinary differential operator in the space variable x. In this way, the computational
task reduces to constructing the eigenmodes, i.e. the eigenfunctions of an ordinary
differential operator, while the corresponding eigenvalues are simply related to the
proper frequencies. For very special solutions u(x, t), this procedure exceptionally
leads to a linearized equation with constant coefficients which can be solved therefore
via Fourier analysis. A simple and well-known example of this case is the linearization
of the focusing nonlinear Schrédinger (NLS) equation iu; + uyy +2|u |2u = (0 around
its continuous wave (CW) solution u(x, t) = e2’. Here and thereafter, subscripts x
and ¢ denote partial differentiation, unless differently specified. The computation of
all the complex eigenfrequencies, in particular of their imaginary parts, yields the
relevant information about the stability of u(x, ¢), provided the set of eigenmodes be
complete in the functional space characterized by the boundary conditions satisfied by
the initial perturbation du(x, 0). Since the main step of this method is that of finding
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the spectrum of a differential operator, the stability property of the solution u(x, ) is
also referred to as spectral stability. It is clear that this method applies to a limited
class of solutions of the wave equation. Although herein we are concerned with linear
stability only, quite a number of studies on other forms of nonlinear waves stability
have been produced by using different mathematical techniques and aimed at various
physical applications. For instance, variational methods to assess orbital stability have
been applied to solitary waves and standing waves (e.g., see Maddocks and Sachs
1993; Georgiev and Ohta 2012).

An alternative and more powerful approach to stability originated from Ablowitz
et al. (1974) shortly after the discovery of the complete integrability and of the spec-
tral method to solve the Korteweg—de Vries (KdV) and NLS equations (e.g. see the
textbooks Ablowitz and Segur 1981; Calogero and Degasperis 1982; Novikov et al.
1984). This method stems from the peculiar fact that the so-called squared eigenfunc-
tions (see next section for their definition) are solutions of the linearized equation
solved by the perturbation §u(x, ¢). Indeed, depending on boundary conditions, this
technique yields a representation of the perturbation §u(x, t) in terms of such squared
eigenfunctions. With respect to the spectral methods in use for non-integrable wave
equations, the squared eigenfunctions approach to stability shows its power by for-
mally applying to almost any solution u(x, t), namely also to cases where standard
methods fail. Moreover, this method, with appropriate algebraic conditions, proves to
be applicable (see Sect. 2) to a very large class of matrix Lax pairs and, therefore,
to quite a number of integrable systems other than KdV and NLS equations (e.g.
sine-Gordon, mKdV, derivative NLS, coupled NLS, three-wave resonant interaction,
massive Thirring model and other equations of interest in applications). Its evident
drawback is that its applicability is limited to the very special class of integrable wave
equations. Notwithstanding this condition, it remains of important practical interest
because several integrable partial differential equations have been derived in various
physical contexts as reliable, though approximate, models (Dodd et al. 1982; Ablowitz
and Segur 1981; Dauxois and Peyrard 2006). Moreover, the stability properties of par-
ticular solutions of an integrable wave equation provide a strong insight about similar
solutions of a different non-integrable, but close enough, equation. Among the many
properties defining the concept of integrability the one that we consider here is the exis-
tence of a Lax pair of two linear ordinary differential equations for the same unknown,
one in the space variable x and the other in the time variable ¢ (see next Section),
and whose compatibility condition is just the wave equation. Thus, a spectral problem
with respect to the variable x already appears at the very beginning of the integrability
scheme. With appropriate specifications, as stated below, this observation leads to the
construction of the eigenmodes of the linearized equation, in terms of the solutions
of the Lax pair. Moreover, via the construction of the squared eigenfunctions one is
able to compute the corresponding eigenfrequency w, which gives the (necessary and
sufficient) information to assess linear stability by the condition Im(w) > 0. Explicit
expressions of such eigenmodes have been obtained if the unperturbed wave amplitude
u is a cnoidal wave (e.g. see Kuznetsov and Mikhailov 1974; Sachs 1983; Kuznetsov
et al. 1984 for the KdV equation and Kuznetsov and Spector 1999 for the NLS equa-
tion), or if it is a soliton solution (Yang 2000) or, although only formally, an arbitrary
solution (Yang 2002). Therefore, the computational strategy amounts to constructing
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the set of eigenmodes and eigenfrequencies. It should be pointed out that the integra-
bility methods, in an appropriate functional space of the wave fields u(x, t), provide
also the way of deriving the closure and completeness relations of the eigenmodes,
see e.g. Kaup (1976a), Yang (2000, 2002) for solutions which vanish sufficiently fast
as |x| — 0. In this respect, a word of warning is appropriate. The boundary conditions
imposed on the solutions u(x, ¢) play a crucial role in proving that the wave evolution
be indeed integrable. Thus, in particular for the NLS equation, integrability methods
have been applied so far to linear stability of wave solutions which, as |x| — oo, either
vanish as a localized soliton (Yang 2000), or go to a CW solution (see the lecture notes
Degasperis and Lombardo 2016), or else are periodic, u(x, t) = u(x + L, t) (Bottman
et al. 2009). In these cases, by solving the so-called direct spectral problem, to any
solution u(x, t) one can associate a set of spectral data, the spectral transform, say the
analogue of the Fourier transform in a nonlinear context. This correspondence allows
to formally solve the initial value problem of the wave equation. As a by-product,
this formalism yields also a spectral representation of the small perturbations du (x, t)
in terms of the corresponding small change of the spectral data. This connection is
given by the squared eigenfunctions (see Ablowitz et al. 1974; Kaup 1976a; Yang
and Kaup 2009 for the NLS equation and Calogero and Degasperis 1982 for the KdV
equation) which play the role which the Fourier exponentials have in the linear con-
text. Indeed, the squared eigenfunctions, which are computed by solving the Lax pair,
are the eigenmodes of the linearized equation for §u(x, ¢). This result follows from
the inverse spectral transform machinery. However, as we show below, the squared
eigenfunctions’ property of being solutions of the linearized equation is a local one, as
it follows directly from the Lax pair without any need of the spectral transform. More
than this, integrability allows to go beyond the linear stage of the evolution of small per-
turbations. This is possible by the spectral method of solving the initial value problem
for the perturbed solution u 4 éu which therefore yields the long time evolution of §u
beyond the linear approximation (see, for instance, Zakharov and Gelash 2013; Bion-
dini and Mantzavinos 2016). However, this important problem falls outside the scope
of the present work and it will not be considered here (for the initial value problem and
unstable solutions of the NLS equation, see Grinevich and Santini 2017, 2018a,b)
The stability properties of a given solution u (x, ) may depend on parameters. These
parameters come from the coefficients of the wave equation and from the parameters
(if any) which characterize the solution u (x, ¢) itself. This obvious observation implies
that one may expect the parameter space to be divided into regions where the solution
u(x,t) features different behaviours in terms of linear stability. Indeed, this is the
case, and crossing the border of one of these regions by varying the parameters, for
instance a wave amplitude, may correspond to the opening of a gap in the instability
frequency band, so that a threshold occurs at that amplitude value which corresponds
to crossing. The investigation of such thresholds is rather simple when dealing with
scalar (one-component) waves. For instance, the KdV equation has no frozen coef-
ficient, for a simple rescaling can set them equal to any real number, so that it reads
Ur + Uyxx + uuy = 0. On the other hand, after rescaling, the NLS equation comes
with a sign in front of the cubic term, distinguishing between defocusing and focusing
self-interaction. These two different versions of the NLS equation lead to different phe-
nomena such as modulation stability and instability of the continuous wave solution
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(for an introductory review, see Degasperis and Lombardo 2016). Wave propagation
equations which model different physical systems may have more structural coeffi-
cients whose values cannot be simultaneously, and independently, rescaled. This is the
case when two or more waves resonate and propagate while coupling to each other. In
this case, the wave equations do not happen to be integrable for all choices of the coef-
ficients. A well-known example, which is the focus of Sect. 3, is that of two interacting
fields, u;, j = 1, 2, which evolve according to the coupled system of NLS equations

iwjr e — 2 (sl + saluz|Hu; =0, j=1,2, (1)

where (s1|u; |2 +s2|up |2) is the self- and cross-interaction term. This is integrable only
in three cases (Zakharov and Shulmann 1982), namely (after appropriate rescaling):
s1 = s2 = 1 (defocusing Manakov model), s; = s» = —1 (focusing Manakov model)
(Manakov 1973) and the mixed case s; = —s2 = 1. These three integrable systems of
two coupled NLS (CNLS) equations are of interest in few special applications in optics
(Menyuk 1987; Evangelides et al. 1992; Wang and Menyuk 1999) and in fluid dynam-
ics (Onorato et al. 2010), while, in various contexts (e.g. in optics (Agrawal 1995) and in
fluid dynamics (Yuen and Lake 1980; Ablowitz and Horikis 2015)), the coupling con-
stants s, 57 take different values and the CNLS system happens to be non-integrable.
Yet the analysis of the three integrable cases is still relevant in the study of the (suffi-
ciently close) non-integrable ones (Yang and Benney 1996). The linear stability of CW
solutions, |u;(x, )| = constant, of integrable CNLS systems is of special interest not
only because of its experimental observability, but also because it can be analysed via
both standard methods and the squared eigenfunctions approach. As far as the standard
methods are concerned, the linear stability of CW solutions has been investigated only
for the focusing and defocusing regimes, but not for the mixed one (s; = —s2), and
only in the integrable cases, by means of the Fourier transform (Forest et al. 2000). Con-
versely, as far as the integrability methods are concerned, it has been partially discussed
in (Ling and Zhao 2017) to mainly show that instability may occur also in defocusing
media, in contrast to scalar waves which are modulationally unstable only in the focus-
ing case. In the following we approach the linear stability problem of the CW solutions
of (1) within the integrability framework to prove that the main object to be computed
is a spectrum (to be defined below) as a curve in the complex plane of the spectral
variable, together with the eigenmodes wave numbers and frequencies defined on it. In
particular, we show that the spectrum which is relevant to our analysis is related to, but
not coincident with, the spectrum of the Lax equation for V. In addition, if X is the spec-
tral variable, the computational outcome is the wave number k(1) and frequency w (1),
so that the dispersion relation and also the instability band are implicitly defined over
the spectrum through their dependence on A. Since spectrum and eigenmodes depend
on parameters, we explore the entire parameter space of the two amplitudes and cou-
pling constants to arrive at a complete classification of spectra by means of numerically
assisted, algebraic-geometric techniques. Our investigation in Sect. 3 illustrates how
the linear stability analysis works within the theory of integrability. Our focus is on
x- and ¢-dependent CWs, a case which is both of relevance to physics and is compu-
tationally approachable. This case is intended to be an example of the general method
developed in Sect. 2. It is worth observing again that the linear stability of the CW
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solutions can indeed be discussed also by standard Fourier analysis, e.g., see Forest
et al. (2000) for the CNLS systems in the focusing and defocusing regimes. However,
such analysis is of no help to investigate the stability of other solutions. On the contrary,
at least for the integrable CNLS system (1), our method relies only on the existence of
a Lax pair, and as such, it has the advantage of being applicable also to other solutions
as well. In particular, it can be applied to the CW solutions in all regimes (as we do it
here), as well as to solutions such as dark—dark, bright—dark and higher-order solitons
travelling on a CW background, to which the standard methods are not applicable.

This article is organized as follows. In the next section (Sect. 2), we give the general
(squared eigenfunctions) approach together with the expression of the eigenmodes of
the linearized equation for the N x N matrix scheme, so as to capture a large class
of integrable systems. There we define the x-spectrum in the complex plane of the
spectral variable. In Sect. 3, we provide an example of application of the theory by
specializing the formalism introduced in Sect. 2 to deal with the CNLS equations. We
characterize the x-spectrum in the complex plane of the spectral variable according
to their topological features, and we cover the entire parameter space according to
five distinct classes of spectra. This characterization of the spectrum holds under the
assumption that the small perturbation of the background CW solution is localized.
Sect. 3.3 is devoted to discussing the classification of spectra and the corresponding
stability features in the focusing, defocusing and mixed coupling regimes, in terms of
the physical parameters, while a conclusion with open problems and perspectives of
future work is the content of Sect. 4. Details regarding computational and numerical
aspects of the problem are confined in Appendices.

2 Integrable Wave Equations and Small Perturbations

The integrable partial differential equations (PDEs) which are considered here are
associated with the following pair of matrix ordinary differential equations (ODEs),
also known as Lax pair (e.g. see Calogero and Degasperis 1982; Novikov et al. 1984;
Ablowitz and Clarkson 1991),

U, =XV, ¥, =TV, 2)

where W, X and T are N x N matrix-valued complex functions. The existence of a
fundamental (i.e. non singular) matrix solution W = W(x, t) of this overdetermined
system is guaranteed by the condition that the two matrices X and T satisfy the
differential equation

X —T,+[X,T]=0. 3)

We recall here that, unless differently specified, a subscripted variable means partial
differentiation with respect to that variable, and [A, B] stands for the commutator
AB — BA. In order to identify this condition (3) as an integrable partial differential
equation for some of the entries of the matrix X, it is essential that both matrices X and
T parametrically depend on an additional complex variable A, known as the spectral
parameter. In order to make this introductory presentation as simple as possible, we
assume that X (1) and 7 (1) be polynomial in A with degrees n and m, respectively. As
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a consequence, the matrix X; — Ty 4+ [X, T]is as well polynomial in A with degree
n + m, and therefore, compatibility Eq. (3) yields n + m + 1 equations for the matrix
coefficients of the polynomials X and 7.

If the pair X and T is a given solution of (3), we consider a new solution X —
X+ 68X, T — T + 8T, which differs by a small change of the matrices X and T,
with the implication that the pair of matrices § X and §7, at the first order in this small
change, satisfies the linearized equation

X)) —@BT)x +[6X, TI+[X,éT]=0. 4)

Again, the left-hand side of this linearized equation has a polynomial dependence on A
and the vanishing of all its coefficients results in a number of algebraic or differential
equations. These obvious observations lead us to focus on matrix linearized Eq. (4)
itself, which reads, by setting A = 6X, B =67,

A;— By +[A, T]+I[X, B]=0, 5)

and to search for its solutions A(x, ¢, 1) and B(x, ¢, A). Our main target is to find those
solutions which are related to the fundamental matrix solution W (x, ¢, 1) of Lax pair
(2). To this purpose, we first note that the similarity transformation

MO) — ®(x,1,0) =W, 1, ) M)W (x, 1, 1), (6)

of a constant (i.e. x, f-independent) matrix M (}) yields the transformed matrix &
which, for any given arbitrary matrix M, satisfies the pair of linear ODEs

¢, =[X,®], & =[T,P]. (N

Equation (7) are compatible with each other because of (3). Then, for future reference,
we point out the following observations.

Proposition 1 Ifthe pair A, B solves linearized Eq. (5), then also the pair
F=[A, ®], G=[B, 9] ®)
is a solution of the same linearized Eq. (5), namely
Fr—Gy+[F, T]+[X,G]=0. C)

This is a straight consequence of the Jacobi identity and of the assumption that the
matrix ¢ be a solution of (7).

Proposition 2 The following expressions

F = ox P G = or P 10
[5e] =[5 e o

provide a solution of linearized Eq. (9).
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The validity of this statement follows from the fact that the matrices

A= X , B= or , (11)
o o
obviously solve linearized Eq. (5) and from Proposition 1.

At this point, we go back to the nonlinear matrix PDE which follows from condition
(3). In view of the applications within the theory of nonlinear resonant phenomena that
we have in mind (which include the multicomponent nonlinear Schrédinger system
and the multiwave resonant interaction system), we assume that the polynomials X (1)
and T (1), see (2), have degree one and, respectively, two, namely

XM =ilZ4+ 0, T =MD +AT1+Tp. (12)

where X, Q, Tp, T1 and T, are matrix-valued functions of x and ¢. The extension to
higher degree polynomials results only in an increased computational effort.

Moreover, before proceeding further, few preliminary observations and technicali-
ties are required. First, we assume that the N x N matrix X, see (12), be constant and
Hermitian. Therefore, without any loss of generality, X is set to be diagonal and real,
namely, in block-diagonal notation,

¥ =diag{ai1y,...,0r1}, 2<L <N, (13)

where the real eigenvalues o, j = 1, ..., L, satisfy aj # oy if j # k, while 1 is the
n;j X n; identity matrix where n; is the (algebraic) multiplicity of the eigenvalue «;.
Of course, ZJL:I n; = N. Note that this matrix ¥ induces the splitting of the set of
N x N matrices into two subspaces, namely that of block-diagonal matrices and that
of block-off-diagonal matrices. Precisely, if M is any N x N matrix, then we adopt
the following notation

M =MD+ M, (14)
where
I S B
O e 0 0
MD = 0 o [ - ] o0 0 (15a)
0 0 0 . 0
0 0 0 0 ny Xny
is the block-diagonal part of M and
O TR S e | TEAT
ny X ny 0 R -
MO = - : 0 l . ‘ (15b)
l | 0
npxm (- - - ] 0
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is its block-off-diagonal part. Consistently with this notation, the entries M j; of an
N x N matrix M are meant to be matrices themselves of dimension n; x n; with the
implication that the “matrix elements” M ;; may not commute with each other (i.e.
the subalgebra of block-diagonal matrices, see (15a), is non-commutative). Moreover,
one should keep in mind that the off-diagonal entries M j; are generically rectangular.
We also note that the product of two generic N x N matrices A and B follows the
rules: (A(d) B(d))(o) =0, (A(d) B("))(d) = 0 while, for N > 2, the product A© B
is neither block-diagonal nor block-off-diagonal.

Next the matrix Q(x, t) in (12) is taken to be block-off-diagonal, whose entries are
assumed to be functions of x, ¢ only. Its required property is just differentiability up
to sufficiently high order, while no relation among its entries is assumed.

The matrix T, see (12), satisfies compatibility condition (3), which entails the
following expression of the coefficients

T, =Cy,
Th=Ci—ili —iDxQ),
To =Co + Ip — 2[D2(Q), T(Q)] D+
—T(D2(Qx)) — T(ID2(Q), Q1) —i Di(Q) — [, T'(Q)],

(16)

with the following comments and definitions. The matrices C;, j = 0, 1, 2, are con-
stant and block-diagonal, C;o) = 0. In the following, we set Co = 0, because this
matrix is irrelevant to our purposes. The notation I'(-) stands for the linear invertible
map acting only on the subspace of the block-off-diagonal matrices (15b) according
to the following definition and properties

M
O{j—

[, TM)] =TI, M)=M, MD=o,

a7
which show that also the matrix I"(M) is block-off-diagonal. Also the maps D;(-),
Jj =1, 2, act only on block-off-diagonal matrices according to the definitions

(CM) jk =

Di(M)=[C;, TIM)I=T(C;, M]),, MD=0, j=12. (8

Finally, the matrices /;, j = 1, 0, are block-diagonal and take the integral expression

X
11<x,z>=/ OIOG. 1), Da(Q NP, (19)
! 1 )
Io<x,z>=/ dy{—5[62,[F(Qy(y,m,r(Q(y,z))] |+
©) (d)
[0, rapae. ). 0 1) ]+

() (d)
—i[ow.n, piew.m ] = [ew.n. h®), TG, ] }
(195)
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Because of (19), the matrix Q(x, t) evidently satisfies an integro-differential, rather
than a partial differential, equation as a consequence of compatibility condition (3).
Incidentally, we note that this kind of non-locality generated by Lax pair (2) has
been already pointed out (Degasperis 2011), while its solvability via spectral methods
remains an open question. Here, however, we focus our attention on local equations
only. Therefore, the condition that Q(x, f) evolves according to a partial differential
equation is equivalent to the vanishing of the matrices 7;, j = 1, 0, which ultimately
implies restrictions on the constant matrices C; and C», as specified by the following

Proposition 3 The matrices I and Iy identically vanish if, and only if, the blocks of
C1 and C3 are proportional to the identity matrix, namely

C) =diag{Bi1y,..., 8.1}, Cp=diag{yi1y,...,yL1.}. (20)

Through the rest of the paper, we maintain these locality conditions so that the resulting
evolution equation for the matrix Q reads

0 = — I'(D2(Qxx)) — [T(D2(Qy)), 01 —T([D2(Q)), Q1)+
— [(D2AQT(OND, 0]
— [[(D2(Q), 1), 012 —i D1(Qy) —i[D1(Q), Q1. (1)

This equation can be linearized around a given solution Q(x, t) by substituting Q
with Q + 8§ Q and by neglecting all nonlinear terms in the variable § Q. In this way,
we obtain the following linear PDE

8Q; = — N(D2(8Qxy)) — [T(D2(8Qx)) . Q1 — [M([D2(Qx), §017+
— T([D2(8Q), 01 +[D2(Q), 801, — [(D2Q)T(ON'?D | 801+
— [(D2Q) TN, Q1 - [(DQ) TGN, 01+
— [T(D2(Q), 1), 801" — [N([D2(8Q) . 01), 01+
— [T(ID2(Q), $01)), Q1) —i D1(8Q:)+
— i[D1(Q), 801 —i[D(5Q). Q1. (22)

We are now in the position to formulate our next proposition which is the main result
of this section.

Proposition 4 The matrix
F=[%, o], (23)

defined by (10), together with (12), satisfies the same linear PDE (22) satisfied by § Q
if and only if the block-diagonal matrices C1 and C» satisfy the same conditions (20)
which guarantee the local character of evolution Eq. (21).

Sketch of a Proof The proof of this result is obtained by straight computation,
which is rather long and tedious. Therefore, we skip detailing plain steps, but, for
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the benefit of the reader, we point out here just a few hints on how to go through the
calculation which is merely algebraic.

The guiding idea is to eliminate the variable A while combining two ODEs (7) so
as to obtain a PDE with A-independent coefficients for the matrix F = [X, ®]. To
this purpose, one starts by rewriting the first of ODEs (7) for the block-diagonal &)
and block-off-diagonal ®®) = I'(F)) components of ®, namely

AF =T(F) - [0, @Y1 —[0, T(F)?, oY =[0, (F)ID. (4

Next, one considers the time derivative F; by using expression (23), along with the
right-hand-side commutator of the second relation in (7), namely F; = [X, [T, ®]],
and one replaces the matrix 7' (A) with its expression as in (12) and (16). Then, all
terms of the form A F', wherever they appear, should be replaced by the right-hand-side
expression given in the first equation in (24), in order to eliminate the spectral variable
.. The outcome of this substitution is that all terms containing the matrix ®@ do
indeed cancel out, provided conditions (20) are satisfied. The remaining terms of the
expression of F; can be rearranged as to coincide with those which appear in the right-
hand-side expression of the linearized PDE (22), by making use of algebraic matrix
identities. |
Few remarks are in order to illustrate these findings. The matrix

F=[2, UMV (25)

[see (23) and (6)], which has the same block-off-diagonal structure (15b) of the matrix
3 Q, turns out to be a A-dependent solution of linearized Eq. (22). Its A-dependence
originates possibly from the (still arbitrary) matrix M and certainly from the matrix
solution W of Lax pair (2). Indeed, F plays the same role as the exponential solution
of linear equations with constant coefficients; namely, by varying A over a spectrum
(see below), it provides the set of the “Fourier-like” modes of linear PDE (22). In
this respect, we note that the property of the matrix F of satisfying linearized PDE
(22) does not depend on the boundary values of Q(x, r) at x = F00. In other words,
this result applies as well to solutions Q (x, t) of integrable PDE (21) with vanishing
and non-vanishing boundary values, or to periodic solutions, as required in various
physical applications. This statement follows from the fact that Proposition 4 has been
obtained by algebra and differentiation only. It is, however, clear that the boundary
conditions affect the expression of the matrix F' through its definition (25) in terms
of the solution W of the Lax pair of ODEs (2). Moreover, with appropriate reductions
imposed on the matrix Q (x, ), integrable matrix PDE (21) associated with Lax pair (2)
with (12) includes, as special cases, wave propagation equations of physical relevance.
Indeed, the PDE corresponding to L = 2, N = 2 and C; = 0 yields the nonlinear
Schrodinger equation, while for its multicomponent versions (such as the vector or
matrix generalizations of the NLS equation) one may set L =2, N > 2 and C; = 0.
By setting instead L = N > 2 and C, = 0, one obtains the three-wave resonant
interaction system for N = 3 (Kaup 1976b) and many-wave interaction type equations
for N > 3 Ablowitz and Segur (1981) (e.g. see Calogero and Degasperis 2004;
Degasperis and Lombardo 2007, 2009).
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2.1 x-Spectrum S, of the Solution Q(x, ¢)

The result stated by Proposition 4 in the previous section implies that any sum and/or
integral of F(x,t, 1) over the spectral variable X is a solution §Q of linear Eq.
(22). Here and in the following, we assume that such linear combination of matri-
ces F(x,t, A), which formally looks as the Fourier-like integral representation

s0(x,1) = /dk F(x, 1, 0), (26)

is such to yield a solution § Q of (22) which is both bounded and localized in the x
variable at any fixed time ¢ (periodic perturbations § Q (x, t) are not considered here).
The boundedness of §Q implies that the matrix F(x, ¢, A) be itself bounded on the
entire x-axis for any fixed value of ¢ and for any of the values of A which appear
in integral (26). This boundedness condition of F'(x, #, A) defines a special subset of
the complex A-plane, over which the integration runs, which will be referred to as
the x-spectrum S, of the solution Q(x, ). This spectrum obviously depends on the
behaviour of the matrix Q(x) for large |x|. Indeed, if Q(x,t) vanishes sufficiently
fast as |x| — oo (like, for instance, when its entries are in L"), then S, coincides
with the spectrum of the differential operator d/dx — iX ¥ — Q(x) defined by the
ODE W, = X W (i.e. the x-part of Lax pair (2)). However, if instead Q(x, t) goes to a
non-vanishing and finite value as |x| — oo, this being the case for continuous waves,
the spectrum S, associated with the solution Q(x, t) does not coincide generically
with the spectrum of the differential operator d/dx — i A ¥ — Q(x). In the present
matrix formalism, this happens for N > 2, and it is due to the fact that the spectral
analysis applies to the ODE &, = [X, ], see (7), rather than to the Lax equation
V. = XV itself. We illustrate this feature for N = 3 in the next section, where
we consider the stability of CW solutions. The spectrum S, consists of a piecewise
continuous curve and possibly of a finite number of isolated points. Note that at any
point A of the spectrum S, the matrices F'(x, ¢, A), for any fixed ¢, span a functional
space of matrices whose dimension depends on A. Here, we do not take up the issue of
the completeness and closure of the set of matrices F (x, ¢, A) and we rather consider
solutions of (22) which have integral representation (26) and vanish sufficiently fast
as |x| — oo, this being a requirement on the matrix M (1) which appears in definition
(23) with (6). As in the standard linear stability analysis, the given solution Q(x, t) is
then linearly stable if any initially small change § O (x, #p) remains small as time grows,
say t > to. Thus, the basic ingredient of our stability analysis is the time dependence
of the matrices F(x, t, 1) for any A € S,. As we show below, getting this information
requires knowing the spectrum S, whose computation therefore is our main goal.

3 Wave Coupling and Spectra: An Example

In order to illustrate the results of the previous section and to capture, at the same time,
a class of nonlinear wave phenomena of physical relevance (including the system of
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two coupled NLS equations), the rest of the paper will focus on the matrix case N = 3,
L =2, with

¥ =diag{l, —1, —1} 27
and
0 vfv;
O=|u 00 ]. (28)
up 0 0

Here and below, the asterisk denotes complex conjugation and the four field variables
ui, uz, v1, v2 are considered as independent functions of x and ¢ and are conveniently
arranged as two two-dimensional vectors, that is

() (1)

While we conveniently stick to this notation in this section, these formulae will be
eventually reduced to those which lead to two coupled NLS equations as discussed in
Sect. 3.3. Indeed, we note that adopting non-reduced formalism (28), as we do it here,
makes this presentation somehow simpler. In the present case, all matrices are 3 x 3,
and T -matrix (16), with C, = 2i %, C1 = Co = 0, specializes to the expression

T(W) =2AS +200 +i%(0%> - 0,). (30)
Then, matrix PDE (21) becomes

Qi = —i%(Qxx — 20V, (31)
which is equivalent to the two vector PDEs

u; = ifuy, — 2(VTU)U]

V; = i[Ver — 2(uV)V]. (32)

Here, the dagger notation denotes the Hermitian conjugation (which takes column
vectors into row vectors). In this simpler setting, if Q(x, ¢) is a given solution of Eq.
(31), linearized Eq. (22) for a small change § O (x, ¢) reads

8Q; = —i2[8Qx —2(6Q0* + Q500 + 0% 0)]. (33)

Moreover, Proposition 4 guarantees that the matrix F (x, ¢, 1) satisfies this same linear
PDE, namely
F, = —i%[Fex —2(FQ*+ QFQ + Q*F)] (34)

and, for A € S, these solutions should be considered as eigenmodes of the linearized
equation.

The spectral analysis based on Proposition 4 applies to a large class of solutions
QO (x, t) of nonlinear wave equation (31). However, analytic computations are achiev-
able if the fundamental matrix solution W (x, 7, A) of the Lax pair corresponding to the
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solution Q(x, t) is explicitly known. Examples of explicit solutions of the Lax pair are
known for particular Q(x, t), for instance multisoliton (reflectionless) solutions (see
the stability analysis in Kapitula 2007), cnoidal waves and continuous waves. Here,
we devote our attention to the stability of the periodic, continuous wave (CW) solution
of (31), or of equivalent vector system (32),

u(x, 1) = @3 a  y(x, 1) =PV y=g¢2+2bTa.  (35)

In these expressions a and b are arbitrary, constant and, with no loss of generality, real

2-dim vectors:
(@ (b
a—(az), b—<b2). (36)

The interest in system (32), or rather in its reduced version (see also Sect. 3.3), is
motivated by both its wide applicability and by the fact that its NLS one-component
version, for uy = vo = 0, v1 = —uj, turns out to be a good model of the Benjamin—
Feir (or modulational) instability which is of great physical relevance (Benjamin and
Feir 1967; Hasimoto and Ono 1972). This kind of instability of the plane wave solution
of the NLS equation occurs only in the self-focusing regime. In contrast, in the coupled
NLS equations the cross-interaction and the counterpropagation (¢ # 0) introduce
additional features (e.g. see Forest et al. 2000; Baronio et al. 2014) which have no
analogues in the NLS equation. This is so if the instability occurs even when the self-
interaction terms have defocusing effects (see Sect. 3.3). Moreover, and by comparing
the coupled case with the single field as in the NLS equation, we observe that this CW
solution (35) depends on the real amplitudes ay, a», b1, by and, in a crucial manner (see
below), on the real parameter g which measures the wave number mismatch between
the two wave components #1 and u (or vy and v»).

The main focus of this section is understanding how the spectrum S, changes by
varying the parameters ay, az, by, by and g. The results we obtain here will be spe-
cialized to the CNLS system in Sect. 3.3. In matrix notation, see (28), this continuous
wave solution (35) reads

O=RER', E=|a; 0 0|, R, 1)=e@ro—a’+p (37

where the matrix ¥ has expression (27), while the matrix o is
o =diag{0, 1, — 1} (38)
and we conveniently introduce the real parameters

p = biay + bay (39a)
r = b1a1 - bzaz (39b)
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which will be handy in the following. Next we observe that a fundamental matrix
solution W (x, ¢, A) of the Lax equations has the expression

W(x,1,A) = R(x, t)e! EWH—12G) (40)
where the x, 7-independent matrices W and Z are found to be

A —iby  —iby
W) =\ —iar =2 —q 0 =AY —qo—iE, 41
—iap 0 —X+4g

—222 i1 — q)by i1+ q)ba

Z) = | i@r —q)ay 242 — g — axbs aibs
i1+ q)az arby 202 — g% — apby
=12 2AWQ) — W) — p?, (42)

with the property that they commute, [W, Z] = 0, consistently with compatibility
condition (3). In order to proceed with plain arguments, we consider here the eigen-
values w;(A) and z;(A), j = 1,2, 3, of W(X) and, respectively, of Z(1) as simple,
as indeed they are for generic values of A. In this case, both W(A) and Z(A) are
diagonalized by the same matrix U (1), namely

W) =UMWpU 'Ry, Wp = diag{wy, wa, w3}
ZOW) =UMNZpMWU W), Zp = diag{z1, 22, z3}. (43)

Next we construct the matrix F(x, t, A) via its definition, see (23) and (6),
F(x,t,0) =[Z, Wx,r, VMWW (x, 1, )], (44)
which, because of explicit expression (40), reads
F(x.1.2) = R(x. 1) [E , e’“WW—’Z(WM(,\)e—“xwm—fz(“)] Rx.1). (45)

As for the matrix M (1), it lies in a nine-dimensional linear space whose standard basis
is given by the matrices BU™, whose entries are

Blgrlzm) :8jk8m,1 Js k,m,n=1,2,3, (46)

where § j is the Kronecker symbol (§ jx = 1if j = kand § jz = 0 otherwise). However,
the alternative basis VU™ which is obtained via the similarity transformation

viUm oy =UuBY™U~ (), (47)
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where U ()\) diagonalizes W and Z (see (43)), is more convenient to our purpose.
Indeed, expanding the generic matrix M (A) in this basis as

3
M) = Y wimGVI™0), (48)
j.m=1

the scalar functions u j,, being its components, and inserting this decomposition into
expression (45), leads to the following representation of F

3
F(x,,2) = R(x, 1) Y pjn)e/lcsmmm=t@=l pUm Gy R (x, 1), (49)
j.m=1

where we have introduced the x, #-independent matrices
FUM () = [z , yum (A)] . (50)

The advantage of expression (49) is to explicitly show the dependence of the matrix
F on the six exponentials ¢/l =wm)=1(zj=zm)],

Proposition 4 stated in the previous section guarantees that, for any choice of the
functions w j, (1), expression (49) be a solution of linearized Eq. (33), see (34). It is
plain (see (26)) that the requirement that such solution § Q (x, #) be localized in the
variable x implies the necessary condition that the functions u j,, (1) be vanishing for
J =m, ujj =0,j = 1,2,3. The further condition that the solution §Q(x, t) be
bounded in x at any fixed time ¢ results in integrating expression (49) with respect to
the variable A over the spectral curve S, of the complex A-plane (see (26)):

5Q(x,t)=f dA F(x,t,)). ShH
S«

Here, according to Sect. 2.1, S, can be geometrically defined as follows:

Definition 1 The x-spectrum S,, namely the spectral curve on the complex A-plane,
is the set of values of the spectral variable A such that at least one of the three complex
numbers k; = w41 — wjt2, j = 1,2, 3 (mod 3), or explicitly

ki) = wa(M)—w3 (), k(A = w3(M)—wi(d), k) = wi(M)—w2(d), (52)

is real.

Observe that the k;’s play the role of eigenmode wave numbers (see (49)).

To the purpose of establishing the stability properties of continuous wave solution
(35), we do not need to compute integral representation (51) of the solution §Q of
(33). Indeed, it is sufficient to compute the eigenfrequencies

w1(A) =z22(0) —z3(A), @) =z30) —z1(A), w3(A) =z21(A) —22(2), (53)
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as suggested by the exponentials which appear in (49). Their expression follows from
matrix relation (42)

zjzkz—Zij—w?—p, 54

and read
wj=—kjCr+wjr1 +wjy), j=1,2,3(mod3). (55)
This expression looks even simpler by using the relation w| + w» + w3 = —A implied

by the trace of the matrix W (1) (see (41)) and finally reads
wjzkj(wj—k), j=1,2,3. (56)

The consequence of this expression (56), which is relevant to our stability analysis, is
given by the following

Proposition 5 Continuous wave solution (35) is stable against perturbations §Q
whose representation (26) is given by an integral which runs only over those val-
ues of . € Sy which are strictly real.

Proof 1If the spectral variable A is real, then all coefficients of the characteristic poly-
nomial of the matrix W(X) (41),

Py (w; 3) = det[wl = W()] = w’ + 2w’ +(p—q* = 2w =22+ (p+q*)r—qr,

(57
are real. Indeed, these coefficients depend on the real parameters of CW solution (35),
namely the wave number mismatch ¢, and the parameters p and r defined by (39).
Therefore, the roots w; of Py (w; A) are either all real, or one real and two complex
conjugate. In the first case, three wave numbers k; (52) are all real, and thus, the
corresponding A is in the spectrum Sy, A € S,. In the second case, the three k; are all
complex, i.e. with non-vanishing imaginary part, and thus A lies in a forbidden interval
of the real axis which does not belong to the spectrum Sy, A ¢ S;. In the following,
we refer to one such forbidden real interval as a gap, see Sect. 3.1. Consequently, in
the first case, since A, w;, wy, w3 and therefore, ki, k>, k3, are all real, then also wj,
w2, w3, see (56), are all real, with the implication of stability. Indeed, all eigenmode
matrices (49) remain small at all times if they are so at the initial time.

On the other hand, let us assume now that A is complex, A = u + i p, with non-
vanishing imaginary part, p # 0. Let w; = «; +i 8; be the (generically complex)
roots of Py (w; A). With this notation, we have that one of the wave numbers, say
k3, will be real only if 81 = B> = B. Then, from (56), we have that w3 will also be
real only if 3 = p. Writing the polynomial Py (w; A) as Py (w; A) = H3=1(w —
aj — i f;), and comparing the real and imaginary parts of the coefficients of same
powers of w from this expression with those obtained from (57), we get a system of
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six polynomial equations for the six unknowns o1, a2, @3, 8, i and p, each equation
being homogeneous and of degree 1, 2 or 3 in the unknowns:

Bp(ar+a)+a3 > —ajaras =p <P+6]2—M2+3P2)—ﬁ
p (;32_0510{2) —Bas (@1 +a)=p (p+q2—3u2+p2) :

oy +araztoza —B(B+2p)=p—q° —put+p°,
B(ar+ar+2a3)+p (a1 +o)=-2up,

— (1 +o+a3)=pu,

- @2B+p)=p.

Then, it is immediate to show by means of elementary algebraic manipulations that the
above system has real solutions for o1, a2, 3, 8, i and p, only if p = —8 = 0 (unless
the non-physical and non-generic condition p = r = 0 be met). This contradicts the
original assumption p # 0. Therefore, for a representation (26) of a perturbation § Q
to be bounded (and thus for the corresponding CW solution to be stable), the integral
in (26) must run only on those values of A € S, which are strictly real. O

This Proposition 5 implies that a real part of the spectrum S, is always present, and
this part may or may not have gaps (see the next Sect. 3.1). On the contrary, as it will
be proved (see Sect. 3.2), a complex component of the spectrum, namely one which
lies off the real axis of the A-plane, may occur and it always leads to instabilities. This
important part of the spectrum S, is made of open curves, which will be referred to as
branches, and/or closed curves of the complex A-plane which will be termed loops.

Before proceeding further, we observe that the effect of the cross- interaction is
crucially influent on the stability only if the phases of two continuous waves (35)
have different x-dependence, namely if ¢ # 0 (see (35)). Indeed, if ¢ = O the stability
property of the continuous wave is essentially that of the NLS equation. This conclusion

results from the explicit formulae w| = /A% — p, wy = —/A%2 — p, w3 = —A, and
therefore

ki=Ar—JAZ—p, ky=—1— /A2 —p, k3 =2x2—p,

w1 =224+ p+20/A2 —p,wr =20 — p+24/A2 — p, w3 = —4r/A2 — p,
(58)
which show thatif p > 0 (see (39a)), the spectrum S, is the real axis with the exclusion
of the gap {—,/p < A < /p}, while, if p < 0, the spectrum S, is the entire real axis
with the addition of the imaginary branch A = ip, {—/—p < p < /—p }. Therefore,
the stability for p > 0 follows from the reality of the frequencies w;, w>, w3 over the
whole spectrum S,, see (58). The modulational instability occurs only if p < 0 since,
for X in the imaginary branch of the spectrum S,, the frequencies w1, @, and w3 have
a non- vanishing imaginary part.
In the following, while computing the spectrum S, we consider therefore only the
case g # 0 and, with no loss of generality, strictly positive, g > 0. In this respect, we
also note that the assumption that ¢ be non-vanishing makes it possible, without any
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loss of generality, to rescale it to unit, g = 1, while keeping in mind that, by doing so,
A, w;j rescale as ¢, while p, r, z; rescale as qz, i.e.

A gh, weqw, prgip, reqgir, ¢z,

However, we deem it helpful to the reader to maintain the parameter ¢ in our formulae,
here and in the following, to have a good control of the limit as ¢ vanishes. In addition,
here and thereafter, our computations and results will be formulated for non-negative
values of the parameter r according to the following

Proposition 6 With no loss of generality, the relevant parameter space reduces to the
half (r, p)-plane with r > Q.

Indeed, the change of sign A +— —A, r +— —r takes the characteristic polynomial
Pw (w; A) (57) into — Py (—w; A) and this implies that our attention may be confined
to non-negative values of r only.

3.1 Gaps

Although computing the position of the gaps of Sy on the real A-axis is not strictly
relevant to the issue of stability because of Proposition 5, this information is essential to
the construction of soliton solutions corresponding to real discrete eigenvalues which
lie inside a gap. With this motivation in mind, we devote this subsection to this task.
Using the Cardano formulae for finding workable explicit expressions of the three
roots w;(A) of Py (w; A) for each value of p, r and ¢ is not practical. To overcome
this difficulty, we will adopt here an algebraic-geometric approach.

We begin by computing the discriminant Dy = A, Py (w; A) of the polynomial
Pw (w; A) (57) with respect to w, obtaining thus a polynomial in A, with parameters
q, p,r,

Dw(x; q, p.r) = 64g*2* —32gri3 + 4(p* — 20¢°p — 8¢HA> + 3691 (29> + p)A
—4(p — ¢»° —27¢%r%, (59)

which is positive whenever the three roots w; are real, and it is negative if instead
only one root is real. Consequently, for any given value of the parameters ¢, p and
r, the discriminant is negative, Dy < 0, for those real values of A which belong
to a gap of Sy, while its zeros are the end points of gaps. Here and hereafter, the
notation Ay P(x, y, z) stands for the discriminant of the polynomial P with respect
to its variable y.

In the exceptional case r = 0, computing the roots of the discriminant Dy as a
polynomial in the variable A reduces to the factorization of a quadratic polynomial,
allowing the formulation of the following
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Proposition 7 For r = 0, the gaps depend on the parameter p as follows:

—o0o<p<0 no gap
0<p<q? two gaps, —g4 <A < -—g_andg_ <A <gy
q> <p<+4oo  onegap, —g+ <) < gt

The border values g+ are

V2
8+ =%, 8¢* +20q%p — p> £/ p(p +8¢%)° . (60)

The thresholdvalues p = 0and p = q* correspond to the opening and the coalescence
of two gaps, respectively.

In the generic case r > 0, we find that the number of gaps of the real part of the
spectrum Sy is either zero, or one, or two. Gaps appear at double zeros of the dis-
criminant Dw (X; ¢, p, 1), thus at zeros of its own discriminant A, Dw (A; g, p,r) =
Ay Ay Pw (w; X), namely when

Ay Dw(r; q, p,r) = —1048576(]2 (p—r)(p+r) [(p — qz) (p + 8q2)2 - 27q2 r2:|3 =0.

(61)
The three polynomial factors appearing in (61) bound the regions of the (r, p)-plane
characterized by different numbers of gaps.

By varying the values of the parameters g, p and r, we expect the double zeros to
open and form the gaps, namely intervals where Dy < 0. In order to find the number
of gaps from expression (59) of the discriminant Dy (}; ¢, p, r), it is convenient to
plot the dependence of the parameter p = p(A) on the spectral variable X at the zeros
of this discriminant for fixed values of the parameters » and ¢. This function p(}) is
therefore implicitly defined by the equation Dw (A; g, p(1), r) = 0. For a fixed value
of g, inthe (A, p)-plane the p()) curve has always one cusp (a double singular point),
and either two minima, or one minimum and one maximum, depending on the value
of r (see “Appendix A” for details). The position of the cusp (As, ps) as a function
of r and g is

3 1/3 —1/3
k() =5 {[(qr/m +/q + <qr/2>2} —q° [(qrm +4/q8 + <qr/2>2] } :
4
ps(r) = %>+ gxé(n. (62)

Furthermore, ps(r) seen as an algebraic curve in the (7, p)-plane satisfies the fol-
lowing implicit relation

(P—q*) (p+8¢H*=27r*¢* =0, p=rpsr). (63)

The transition between the two regimes (two minima, or one minimum and one max-
imum) takes place at the special threshold value rr = 4q2 where ps(r7) = rr (see
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“Appendix A”). If 0 < r < rr, the cusp is also a local maximum. Equipped with these
findings, we formulate

Proposition 8 For real A and r > 0, Sy has the following gap structure.
Ifr <rr =4q?

—oco<p<-—r no gaps
—-r<p<r one gap
r<p<psr) two gaps

ps(r) < p <+4oo  one gap

The threshold values p = —r, p = r and p = ps(r) correspond to the opening of
one gap, the opening of two gaps and the coalescence of two gaps, respectively.
Ifr > rr =4q?

-0 < p<-—r no gaps
—r <p<ps(r) onegap
psr)y<p<r two gaps
r<p<-+4oo one gap

The threshold values p = —r, p = ps(r) and p = r correspond to the opening of
one gap, the opening of two gaps and the coalescence of two gaps, respectively.

As implied by (61) and Proposition 8, we identify three threshold curves in the
(r, p)-half-plane; they are
p=px(r)==r (64)

and the curve p = pg(r) which is explicitly expressed by (62) and plotted in Fig. 1.
Note that, according to Proposition 6, we will focus only on the half-plane r > 0.
These curves will play a role also in the next subsection where we give a complete
classification of branches and loops of the spectrum.

3.2 Branches and Loops

In the previous subsection, we have described the gaps of the spectrum S, namely
those values of the spectral parameter A which are real but do not belong to the spec-
trum. Here, we face instead the problem of finding the subset of the A-plane which is
off the real axis but belongs to S,.. This subset is made of smooth and generically finite,
open (branches) or closed (loops), continuous curves (with the possible exception of
the case r = 0, see Fig. 3h and Degasperis et al. 2018). By Definition 1, A € S, if
at least one of the corresponding three wave numbers k; (1), j = 1,2, 3 is real, see
(52). Going back to the characteristic polynomial Py (w; 1) (57), we look now at its
roots w, and at the wave numbers k;, j = 1, 2, 3, see (52). If A is not real, the roots
w; cannot be all real themselves since the coefficients of Py (w; A) are not real. As a
consequence, the requirement that one of the wave numbers (52) be real implies that at
least two roots of Py (w; 1), for instance w1 and w;, have the same imaginary part. In
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Fig. 1 The three threshold 16 T T T T T T T
curves p4(r) = £ r (solid 2
black) and pg(r) (solid red) for [ 1
g = 1, as parametrically defined 121
by (64) and (63) or explicitly by 1
(62), are plotted. They are H
boundaries of regions of the
(r, p)-plane, r > 0, where the 8
number of gaps, either O or 1, or
2, is shown. It is also shown that Q,
ps(r) > r for r < 4 and that 4
ps(r) < rforr > 4 (see
Proposition 8) (Color figure 1 [
online) 0 : 1
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fact, branches and loops of S, may exist only in this case: indeed, if the three roots w
have all the same imaginary part, it can be shown that no smooth branch or loop exists.
Hence, here and below, we name k3 = w; — w the only real wave number, while k
and kp are complex (note that k1 + k2 4+ k3 = 0). The complex part of the spectrum
S, is therefore defined as the set of the A-plane such that Im(k3(A)) = 0. In order to
compute this component of the spectrum, we introduce the novel polynomial P(¢),

PE@) =3 +dig* + dot + ds, (65)

defined by the requirement that its roots are the squares of the wave numbers, ¢; = k?.
It is plain that its coefficients d; are completely symmetric functions of the roots w ;
of the characteristic polynomial Py (w; 1). This is evidently so because dy, d3, d3 are
symmetric functions of ¢; = (wy — w3)?, & = (w3 — wi)?, 3 = (w) — w»)?, and
therefore of wi, wa, w3, with the implication that the coefficients dy, da, d3 of P(¢)
are polynomial functions of the coefficients c1, ¢2, ¢3 of characteristic polynomial
(57), Py (w) = w3 + cw? + cw + 3,

cr=A, czzp—q2—)»2, Cg:—)»3+(p+q2))\—qr. (66)
These relations, which read

dy =2@cy — 7).,
1
dy = (3cy — cD)? = Zd%,

ds = (4cy — ) (3 — deres) + e3(27e3 — 2¢1¢2) (67)
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combined with the expressions of the coefficients c;, see (66), yield the dependence
of the coefficients d; of P({) on the parameters r, p, g and on the spectral variable
A, sothat P(¢) = P(¢; A, g, p, r). This dependence turns out to be

di =20=42+3(p—g")], do=[-4>+3(p—¢" I, d3=—-Dw(hiq.p.r),

(68)
where Dy is the discriminant of Py, see its expression (59), with the implication
that P(¢; A, q, p,r) is of degree 4 in the spectral variable A. As explained at the
beginning of this section, we recall that, for an arbitrary complex A, at most one wave
number (named k3) is real. Therefore, our task of computing the complex part of the
spectrum Sy, for a given value of the parameters r, p, reduces to finding the curve
in the A-plane along which the root ¢3(A) = k%()\) of P(¢; A, q, p,r) remains real
and positive, {3 = k% > 0. However, it is in general much more convenient, from
both the analytical and computational points of view (and indeed this is what we will
be doing in the following) to reverse the perspective and regard the x-spectrum S, as
the locus in the A-plane of the A-roots of P(¢; A, g, p, r) seen as a real polynomial
in A, for ¢ spanning over the semi-line [0, +00). In other words, for a fixed value of
¢ > 0, we compute the four A-roots of the real polynomial P(¢; A, g, p, r), which
are the values of A (irrespective of being complex or purely real) such that the wave
number k3 = 4/ is real. In this way, the two cases of Im(A) = 0 and Im(A) # O can
be treated at once (allowing to retrieve and confirm all the results about gaps in the
spectra presented in the previous subsection).

From the algebraic-geometric point of view, the locus of the roots of P(¢; A, ¢, p, 1)
in the A-plane is an algebraic curve; this can be given implicitly as a system of two
polynomial equations in two unknowns by setting A = @ + i p and then separating
the real and the imaginary parts of P(¢; A, ¢, p, r).

In order to explain how the spectrum changes over the parameter space, we apply
Sturm’s chains (e.g. see Demidovich and Maron 1981, Hook and McAree 1990) to
the polynomial Q(¢; g, p,r) = Ay P(&; A, q, p, r), thatis, to the discriminant of the
polynomial P(¢; A, g, p, r) with respect to A. Indeed, it turns out that the nature and
the number of the components of the x-spectrum S, seen as a curve in the A-plane, are
classified by the number of sign changes of Q(¢; ¢, p, r), for ¢ > 0. This procedure
requires some technical digression; thus, in order to avoid breaking the narrative here,
we refer the reader to “Appendix B” for all details.

Our findings provide a complete classification of the spectra over the entire param-
eter space, i.e over the (r, p)-plane, r > 0. First we note that the number of branches
(B) can only be 0, 1, or 2, while there may occur either 0 or 1 loop (L). Moreover, in
addition to the three threshold curves p4 (r) (64) and ps(r) (62) introduced in Sect.
3.1, one more threshold curve, p = pc(r), is found, which, for a given non-vanishing
value of g, is implicitly defined as

(P> = 16¢")° +432¢*r*(p* = r?) =0, p=pc(r), withp <0,  (69)

or, explicitly, as

pe(r) = —164* — 1247 2qr)*3 +3(2gr)*. (70)
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Fig. 2 The structure of the spectrum Sy in the (r, p) plane, g = 1 (see Proposition 9). In red, the curve
ps; in blue, the curve pc;in grey, the curves p = £r.ar < 4q2. br> 4q2 (Color figure online)

It is now convenient to combine these results with those we obtained in the previous
subsection on the gaps (G) on the real A-axis of the complex A-plane, obtaining a
complete classification of the spectra. We find that only five different types of spectra
exist according to different combinations of gaps, branches and loops. These are the
following:

0G2BOL, 0G2BI1L, 1G1BOL, 1G1BIL, 2GOBIL,

where the notation nX stands for n components of the type X, with X either G, or B,
or L.

In Fig. 2, the four threshold curves p+, ps, pc (with g = 1) are plotted to show the
partition of the parameter half-plane according to the gap, branch and loop components
of the spectrum, for both » < r7 =4 ¢ and r > rp = 4 ¢>. This overall structure of
the spectrum S, in the parameter space can be summarized by the following

Proposition 9 Forr > 0, the spectrum Sy has the following structure in the parameter

plane (r, p).
Ifr <rp =4q?

—00 < p < pc(r) 0G 2B OL

pc(r) <p<-—r 0G 2B 1L
—-r<p<r 1G 1B OL
r<p<ps(r) 2G OB 1L
ps(r) < p <+o0 1G 1B OL
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Ifr > rp = 4q?

—oco<p<-—r 0G 2B OL
—r <p<pc(r) 1G 1B 1L
pc(r) < p < ps(r) 1G 1B OL
psry<p<r 2G 0B 1L
r<p<-+oo 1G 1B OL

At the threshold values, the dynamics of the transitions between the five types of
spectra can be very rich, and phenomena such as the merging of a branch and a loop
to form a single branch can be observed; however, in the simplest cases (which are
the majority), gaps, branches and loops open up from, or coalesce into points. An
important threshold case is p = r (entailing a; = 0, and as such non-generic): this is
the only choice of the parameters p, and r for which the spectrum is entirely real (and

thus the CW solution is stable), with one gap in the interval (—M+J’q, 2*/»% .

Examples of different spectra have been computed numerically by calculating the
zeros of P(¢; A, q, p, r) as a polynomial in A (see “Appendix C” for details) and are
displayed in Fig. 3. They are representative of the five types and correspond to various
points of the parameter (», p)-space as reported in Proposition 9.

Finally, the limit case r = 0 of the parameter half-plane » > 0 deserves a special
mention. In fact, four different limit spectra are found for » = 0, namely in the four
intervals —oo < p < —4¢2, —4¢%* < p <0,0 < p < g% and ¢* < p < +o0. After
meticulous analysis (see Degasperis et al. 2018), we find that these limit spectra are
consistent with those depicted by Proposition 9. However, they have to be carefully
dealt with as, in this limit, two gaps may coalesce in one, or a loop may go through
the point at infinity of the A-plane, thereby covering the whole imaginary axis. These
spectra are displayed in Fig. 3f~h. We should also point out that the condition » = 0
allows for analytic computations, and explicit formulae, since, as already noted in
Sect. 3.1 for the discriminant Dy (X; g, p, r), the coefficients d; (1) of the relevant
polynomial P(¢; A, ¢, p, r) (65) reduce to polynomials of degree 2 in the variable A2.

3.3 Modulational Instability of Two Coupled NLS Equations

In this section, we discuss the consequences of the results obtained so far in the
framework of the study of the instabilities of a system of two coupled NLS equations.
In the scalar case, the focusing NLS equation

up = iUy — 2sul’u), s=-—1 (71)

has played an important role in modelling modulational instability of continuous waves
(Benjamin and Feir 1967; Hasimoto and Ono 1972). This unstable behaviour is pre-
dicted for this equation by simple arguments and calculations. It is therefore rather
remarkable that, on the contrary, a nonlinear coupling of two NLS equations makes
the unstable dynamics of two interacting continuous waves fairly richer than that of
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Fig. 3 Examples of spectra for different values of r and p, with g = 1. a Sy forr = 15, p = — 17, i.e.
s1 =82 = —1,a; = 1, ap = 4, as an example of a 0G 2B OL spectrum. b Sy forr = 1, p = — 1.5,
ie. sy = s = —1,a; = 0.5, ap = 1.118, as an example of a 0G 2B 1L spectrum. ¢ Sy for r = 1,

p =238, ie. 51 =53 =1,a; = 1.3784, ap = 0.94868, as an example of a 1G 1B OL spectrum. d S, for
r=15p=—1345ie.51 = 1,50 = —1,a; = 0.88034, ap = 3.7716, as an example of a 1G 1B 1L
spectrum. e Sy forr = 1, p = 1.025,i.e. s1 = sp = 1, a; = 1.0062, ap = 0.1118, as an example of a
2G OB 1L spectrum. f Sy forr =0, p = 0.1, 1.e. 51 = 50 = 1, a; = ap = 0.22361, as an example of a
degenerate case of a 2G 0B 1L spectrum: the imaginary axis in the spectrum is a loop passing through the
point at infinity. g Sy forr =0, p = —14,1ie. 51 = 5o = — 1, a] = ap = 2.6458, as an example of a
degenerate case of a 0G 2B OL spectrum: both branches are entirely contained on the imaginary axis; one
branch passes through the point at infinity, whereas the other branch passes through the origin; for r = 0,
two symmetrical gaps open on the imaginary axis for p < — 8, as explained in Degasperis et al. (2018).
hS, forr =0,p=—47,ie 51 =50 = —1,a; = ap = 1.533, as an example of a degenerate case
of a 0G 2B OL spectrum: this case (which also appears in Ling and Zhao 2017) when projected back onto
the stereographic sphere, can be completely explained in terms of the classification scheme provided in
Proposition 9 (see Degasperis et al. 2018) (Color figure online)
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a single wave. Since the method of investigating the stability of two coupled NLS
equations that we have presented in the previous sections requires integrability, we
deal here with integrable system (1), also known as generalized Manakov model, that
we recall here for convenience:

. 2 2
uy = ilurxx — 2(s1lur]” + saluz|“)u1]

. 2 2
uy = iluey — 2(s1|url|” + s2luz|“)uz] .

This system is obtained by setting v = Su in (32), where

S:(sl()), 2=1. (72)

0 s

The system of two coupled NLS equations is of interest in various physical contexts
and the investigation of the stability of its solutions deserves special attention.

Once a solution u1(x, t), ua(x, t) has been fixed, linearized equation (33) around
this solution are

Sut=i{Suicx — 2[2s1|u1|® + s2|u2|>)du; + slu%SuT + souuzduy + sougudu’l}

Suny=i{dunyx — 2[(s1lurl? + 2s2]ua?)dus + sousdu’y + siusuduy + sjusurdutl} .
(73)
The two coupling constants s1, s3, if non-vanishing, are just signs, sl2 = sg =1,
with no loss of generality. Thus, CNLS system (1) models three different processes,
according to the defocusing or focusing self- and cross-interactions that each wave
experiences. These different cases are referred to as (D/D) if 51 = s, = 1, as (F/F) if
s1 = s2 = —1 and as (D/F) in the mixed case s1sp = —1.
Hereafter, our focus is on the stability of the CW solution (see (35), (36) with
bj = sjaj)

i(gx—vt) , —i(gx+vt) . V= qz + 2p , (74)

ui(x,t) =aye ux(x,t) = are
where the parameter ¢ is the relative wave number, which may be taken to be non-
negative ¢ > 0, and ayp, ay are the two amplitudes, whose values, with no loss of
generality, may be real and non-negative, a; > 0. As for the notation, the parameter

p is defined by (39a) which, in the present reduction, reads
p= sm% + sza% . (75a)

To make contact with the stability analysis presented in the two preceding sections, we
introduce also the second relevant parameter r (39b) whose expression, in the present
context, is

r= sla% — sza% . (75b)

At this point, we show in Fig. 4 the (r, p)-plane as divided into octants, according to
different values of amplitudes and coupling constants.
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Fig. 4 The (r, p)-plane divided 1
according to amplitudes a; and (D/D) (D/D)
coupling constants sj-,j =1,2 s1=8,=1 s1 =8 =1
(Color figure online) as > ay a; > as
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We note that, as pointed out by Proposition 6, it is sufficient to confine our discussion
to the half-plane » > 0, where four different experimental settings are represented, one
in each of these four octants. These four states of two periodic waves can be identified
either by the parameters p and r or by amplitudes and coupling constants according
to the relations

2 1 2 1
siay = E(p +r), sa;=—(p—r), (76)

)
each octant being characterized as shown in Fig. 4. In particular, the octantr > p > 0
will be referred to as (D > F), whereas the octant —r < p < 0 as (D < F), to indicate
the wave with larger amplitude. Moreover, we observe again that setting ¢ = 0,
which characterizes two standing waves with equal wavelength, makes the stability
properties of the CW solution very similar to that of the NLS equation. Indeed, in
this case solution (74) is stable if both waves propagate in a defocusing medium,
s1 = sp = 1, and is unstable in the opposite case s; = s» = —1. However, this
solution remains stable even if the wave u, feels a self-focusing effect, i.e. s, = —1,
provided the other wave u in the defocusing medium, s; = 1, has larger amplitude
aj > ap. Similarly, when g = 0, the CW solution is unstable if s = 1 and 5o = —1,
and if the larger amplitude wave is the one which propagates in the focusing medium,
az > ap. These remarks follow from explicit formulae (58) and (75a), and they are
clearly evident in Fig. 4 where, for » > 0, the upper two octants correspond to p > 0
and the lower two to p < 0.

The limit ¢ — 0O of the results presented in the previous sections should be con-
sidered as formally singular. Indeed, the behaviour of CW (74) against small generic
perturbations becomes significantly different from that reported above if the wave
number mismatch 2¢ is non-vanishing. For one aspect, this is apparent from our first
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Remark 1 If g # 0, then for no value of the amplitudes a, a; with ajay # 0, and for
no value of the coupling constants sy, s2, the spectrum S, is entirely real.

This follows from Proposition 9 and from our classification of the spectra in the
parameter space into five types, all of which have a non-empty complex (non-real)
component. The condition ajas # 0 for this statement to be true coincides with the
condition that the point (r, p) neither belongs to the threshold curve p = p4(r), nor
to the threshold curve p = p_(r), see (75). In particular, in the case p = r > 0,
which is equivalent to setting a» = 0 and s = 1, the roots of Py (w; ), (57), can be
given in closed form,

wi =—(1/2)g +/ (A +q/2? —aj, wr=—(1/2)g =/ (G- +q/2)? a7,

w3=_)‘+Q»

so that

3
ki=w—ws=1-3q—/(G+q/2~af,
3 2 2
ky = w3 — wy =—)\+§q— (A+q/2)* —aj,
k3 =w; —wy =2,/(A+¢/2)* —a},

with the implication that A has to be real to be in S;. In this case, the spectrum is not
immediately identifiable as one of the five types of spectra described in Proposition 9,
for it corresponds to a threshold case between two of such types, and features one gap,
no branches and no loops. Moreover, this spectrum coincides with that obtained for
the defocusing NLS equation via a Galilei transformation. In a similar fashion, if the
point (r, p) is taken on the curve p = p_(r), namely p = —r < 0 or, equivalently,
a; = 0,55 = —1, the corresponding spectrum is that of the CW solution of the
focusing NLS equation modulo a Galilei transformation, namely with no gap on the
real axis, one branch on the imaginary axis and no loop. Remark 1 has a straight
implication on the stability of solution (74). This can be formulated as

Remark 2 If g ajay # 0, then CW solution (74) is unstable.

The relevant point here is the dependence on A of the frequencies w;(A) over the
spectrum Sy. As we have shown in the previous section, if g ajaz # 0, the spectrum
S, consists of two components: one, RSy, is the real axis Im(A) = 0, with possibly
one or two gaps (see Proposition 8), and the second one, CSy, consists of branches
and/or loops where XA runs off the real axis (see Proposition 9). Therefore, spectral
representation (51) of the perturbation

[ duy
su = ( M) (77)
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takes the form
Su = el(@xos—vi) { / dny 3, [ei(xk.f—fwﬂff)(x) itk —topgy )(A)] +
RS,

+/ d I:ei(XkS_th)ff)()‘) +€_i(Xk3_lw3)f(3)()\,):|} ,

CS,

(78)
which is meant to separate the contribution to du due to the real part of the spectrum
from that coming instead from the complex values of the integration variable X, this
being the integration over branches and loops. The 2-dim vector functions ff_L] ) (&) do
not play a role here and are not specified. On the contrary, the reality property of the
frequencies w; over the spectrum is obviously essential to stability. Since the reality
of the frequencies w1, wy, w3z for A real has been proved in Proposition 5, it remains
to show that indeed w3(}) is not real if A belongs to branches or loops. This follows
from explicit expression (56), namely

w3 =k3(wz — 1) =Q+ill, (79)

where k3 is real but w3 and A cannot be real and cannot have same imaginary part as
proved in Proposition 5, (see Sect. 3.2). Here, the imaginary part I' of w3 defines the
gain function over the spectrum. This (possibly multivalued) function of k3 plays an
important role in the initial stage of the unstable dynamics. Precisely, its dependence
on the wave number k3 gives important information on the instability band and on
timescales (Degasperis et al. 2018).

The physical interpretation is more transparent if these considerations are stated
in terms of the amplitudes of CW solution (74) for the three choices of the coupling
constants s1, s corresponding to integrable cases. In this respect, it is convenient to
translate the classification of the spectra in the (a; , az)-plane, in particular, and with
no loss of generality, in the quadrant a; > 0, a> > 0. The four threshold curves p4(r),
ps(r), pc(r) which have been found in the (r, p)-plane, see Fig. 2, are reproduced
below in the (a1, ap)-plane, see Fig. 5, according to coordinate transformations (75)
and (76). The outcome of this analysis is summarized by the following

3 3
r<0 r>0 1(1;L1B >0
9 1G 1B oL 9 0G 2B 0L
g Va2 g 1G 1B oL
2
% 0G
| e 2B 1L 2G
0B 1L r>0 r<o0
0 0 0 0B 1L
0 % 2 3 0 V2 o2 3 0 2 5
ay a; a1
(a) (b) (c)

Fig. 5 The (a1, ap)-plane (see Proposition 10). In Fig. 5a and 5b, grey portions correspond to r < 0. a
(D/D) sy =52 =1.b(F/F)s; =sp =—1.¢(D/F)s; =1, sp = — 1 (Color figure online)
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Proposition 10 For each of the three integrable cases of two coupled NLS equations
(1), the spectrum is of the following types.

(D/D) s1 =52 = 1 (see Fig. 5a)
The lower octant (a1 > a»), which corresponds tor > 0, gets divided into two
parts by the threshold curve ps which intersects the line a, = ay at the point
(1/+/2, 1/3/2). In the lower, finite, part of this octant, the spectrum S, is of
type 2G OB 1L, while in the other part it is of type 1G 1B OL.

(F/F) s1 = 50 = —1 (see Fig. 5b)
The upper octant (ay > ay), which corresponds to r > 0, gets divided into
two parts by the threshold curve pc which intersects the line ap = ap at the
point (v/2,\/2). In the lower, finite, part of this octant, the spectrum Sy is of
type 0G 2B 1L, while in the other part it is of type 0G 2B OL.

(D/F) s1 =1, s = —1 (see Fig. 5¢)
The whole quadrant corresponds to r > 0. It is divided into three infinite por-
tions by the two threshold curves pc, in the upper octant, and pgs in the lower
one. The spectrum is of type 1G 1B 1L in the upper part, of type 1G 1B OL
in the middle part and of type 2G 0B 1L in the lower part.

These statements are straight consequences of Proposition 9 via transformation (76).

We conclude by mentioning the limit case r = 0, see the end of the previous section.
This concerns only the (D/D) and (F/F) cases of Proposition 9, and it coincides with
the limit a; = a;, namely with the case in which the two wave amplitudes are strictly
equal. On this particular line of the (aj, az)-plane, i.e. r = 0 in the (7, p)-plane, the
spectra are of four types, according to numbers of gaps, branches and loops, as it has
been shortly discussed in Sect. 3.2.

4 Summary and Conclusions

A sufficiently small perturbation of a solution of a (possibly multicomponent) wave
equation satisfies a linear equation. If the wave equation is integrable, the solution of
this linear equation is formulated in terms of a set of eigenmodes whose expression is
explicitly related to the solutions of the Lax pair. We give this connection in a general
N x N matrix formalism, which is local (in x) and does not require specifying the
boundary condition nor the machinery of the direct and inverse spectral problem. A
by-product of our approach is the definition of the spectrum S, associated with the
unperturbed solution of the wave equation. It is worth stressing that the spectrum S,
for N > 2 does not coincide with the spectrum of the Lax equation ¥, = (iAX 4 Q)W
in the complex A-plane. This result is explicitly shown for N = 3 in the instance of
continuous wave solutions of two CNLS equations. In this case, we define as functions
of A on the spectrum S, the set of wave numbers k; (1) and frequencies w; (1) with
the implication that the dispersion relation is given in parametric form, the parameter
being the spectral variable A which appears in the Lax pair. In general, the spectrum is a
complicated piecewise continuous curve. It obviously changes in the parameter space
which is the set of values of the amplitudes of the two CWs, the mismatch ¢ of their
wave numbers, and the values of the coupling constants s, s7. Apart from particular
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values of the parameters, the computation of the spectrum is not achievable in analytic
form and has to be done numerically. The knowledge of the spectrum is sufficient
to assess the stability of the CW solution. Generally, the spectrum consists of the
real A-axis with possibly one or two forbidden bands (gaps) and few additional finite
curves which may be open (branches) or closed (loops). According to these topological
properties, spectra can be classified in five different types to completely cover the entire
parameter space. Only few marginal cases require separate consideration. Physically
relevant information comes from the A dependence of the eigenfrequency on branches
and loops. In particular, one can read out of this dependence on A the instability band,
whether at large (as in the Benjamin—Feir instability) or at small wavelengths, and the
time scale of the exponential growth in time of the perturbation. This is characterized
by the imaginary part of the complex frequency, namely by the gain function. However,
the investigation of this interesting aspect of the stability analysis is not reported here
as it requires further analysis and computations. This part of our work will be reported
elsewhere (Degasperis et al. 2018).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Structure of the Gaps of the Spectrum S,

The aim of this section is to provide additional details of the gap structure of the
spectrum S, and to give a proof of Proposition 8 in Sect. 3.1, which states that the real
part of the spectrum Sy has either one, two or no gaps in the (r, p)-plane with r > 0.
The no gap case occurs if the three eigenvalues w ; (A) are real on the entire A-axis. This
happens if discriminant (59) is positive for any real value of A. By varying the value of p
and/or r a gap may open up at the double zeros of the discriminant Dy (X; ¢, p(X), r).
Inside a gap, the discriminant is negative and the three wave numbers k; (1) (52) have
a non-vanishing imaginary part. We define implicitly the function p = p(}) as those
values of the parameter p such that the discriminant Dy (A; g, p(A), r) = O.

In order to compute the number of gaps from expression (59) of the discriminant
Dw(A; q, p,r), we plot p(A) as a function of A real, for few fixed values of r, and
q = 1. Four such plots of p(L) are shown in Fig. 6 for four different values of r. The
intersections of this plotted curve with the straight line corresponding to a constant
value of p provide the endpoints of those gaps which occur at the given value of p
(and at the fixed values of r and ¢). For instance, the analytical results presented above
for r = 0, see Proposition 7, can be clearly read out of the left plot in Fig. 6a. The
two local minima at A = 0.5, p = 0 show the opening of the two gaps that we have
analytically found for 0 < p < 1. For future reference, we also note that the local
maximum of p(A) is taken at A = Ag = 0, namely p(Ls) = ps = 1, and that the
function p(A) has a cusp (a double singular point), namely is not analytic, at Ag. If
the parameter r increases, r > 0, this plot gets asymmetrically deformed as shown
in Fig. 6b—d. Figure 6b shows that no gap exists for p < —r = —0.5, while for
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Fig. 6 p(%) defined by Dy (%; g, p(1), r) = 0; the grey area corresponds to Dy <0.ar =0,g=1.b
r=054¢g=1cr=4,q9g=1.dr =25,q =1 (Color figure online)

—0.5=—r < p <r = 0.5 only one gap occurs. Instead, for 0.5 =r < p < pg
two distinct gaps appear. Finally, for ps < p < 400 again only one gap is present.
As in the previous plot, here pg denotes the local maximum and singular point of
p(X). Moreover, we observe that this graph is consistent with the following alternative
expression of discriminant (59) for p = —r,

Dw(h,q, —r,r) = (4gh + 2¢* — r)*[(2h — q)* +4r],

which is clearly positive definite for any non-negative r, and any real A with the
exception of A = 4L — % where p()) takes its minimum value.

By increasing further the value of », Fig. 6b changes and eventually looks different
as the local maximum pg becomes a local minimum. The transition is illustrated in

Fig. 6¢c computed at r = 4, with ¢ = 1. After the transition, the curve p(A) takes the
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form shown in Fig. 6d computed at r = 25, with ¢ = 1. Again, p = —r is still the
minimum of p(A), while p = r is instead a local maximum. The singularity at A = Ag
is such that now pg = p(Ag) is a local minimum with pg < r. Indeed, Ag is the only
singularity of p(A) and its dependence on the parameter r, A.s = Ag(r), is implicitly
expressed by its inverse relation r = r(Ag),

As (2, 4.5
=2— —A . A.l
r p (q + TR (A.1)

This yields a one-to-one correspondence between any non-negative real r and a real
As(r) since we prove that, for any » > 0, cubic Eq. (A.1) has two complex conjugate
roots. Moreover, we find also the following useful relations associated with the singular
value Ag:

2 4 1 2, 2. .
Ps =4q"+ 3455 wj=—§ks, zj=—q +§A . kj=w;=0, j=1,2,3.
(A.2)
The transition between the two regimes with pg(r) > r and pg(r) < r takes place at
the special threshold value r = rr, where ps(rr) = rr. With self-evident notation,
we find that 3
rr=pr=pstr) =44>, Ar=3q. (A3)
The implicit expressions of As(r) (A.1) is made explicit in (62). The function pg(r)
is plotted in Fig. 1.

B Analysis of the x-Spectrum

As pointed out in Sect. 3.2, the nature and the number of the components of the x-
spectrum Sy, seen as a curve in the A-plane, are classified by the number of sign changes
of the discriminant of P(¢; A, g, p, r) with respect to A, i.e. AyP(; A, q, p,r) =
Q(¢; q, p,r), for £ > 0 (see also (B.1a) in the following). The aim of this section is
to give details of this result. Without loss of generality, from now on we will assume
qg=1.

Given the (cubic) polynomial Py (w; A, g, p,r), we would like to describe the
geometrical locus in the A-plane constituted by the complex values of A such that, for
each value of X in the locus, the polynomial Py (w; A, g, p, r) has at least two w-roots
such that their difference is real. As discussed in Sect. 3.2, since we are interested in the
differences of the roots, it is convenient to introduce the polynomial P(¢; A, g, p, 1),
see (65), whose ¢-roots are the squares of the differences of the original w-roots of
Pw (w; A, q, p, r). The polynomial P(¢; A, g, p, r) can be conveniently rewritten as

1
P&ih g, por)=(1222232%) - 52
;—3
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with
4(p—1¥3+27r2 9(p-1D?* 6(p—-1 1
=36(p+2)r 0 0 0
N=0(p,r)=| 4@8+20p—p?) —24(p—-1) -8 0
32r 0 0 0
—64 16 0 0

Observe that { = ka. for some j. As in Sect. 3.2, let j = 3. The polynomial

P(¢; k. q, p,r) can be regarded as a 3" degree polynomial in ¢, as well as a 40
degree polynomial in A. Hence, our problem translates into finding the complex val-
ues of A for which P(¢; A, g, p, r), seen as a polynomial in ¢, admits at least one real,
positive root { = k%. The x-spectrum S, then coincides with the locus of the roots of
P(; X, q, p,r) regarded as a polynomial in A for all values of { > 0, namely for ¢
considered as a real, positive parameter.

From the algebraic-geometric point of view, the locus of the roots of P(¢; A, ¢, p, 1)
in the A-plane is an algebraic curve; this can be given implicitly as a system of two
polynomial equations in two unknowns by setting . = w + i p and then separating
the real and the imaginary parts of P(¢; A, g, p, r). In the following, we will apply
Sturm’s chains (e.g. see Demidovich and Maron 1981; Hook and McAree 1990) on
Q(¢; q, p,r), the discriminant of P(¢; A, g, p, r), and invoke Sturm’s theorem to
study its roots, in order to obtain a classification of the different loci S, .

B.1 Sturm Chains and Spectra Classification in the (7, p)-Plane

Let P(x) be a polynomial in x with real coefficients, and let deg(P) be its degree. A
Sturm’s chain (Demidovich and Maron 1981; Hook and McAree 1990)

POx) = P(x),
POy = 4 POy
dx

P® (x) = —Remainder(P© (x), PV (x)),

P(j)(x) = —Remainder(P(j_z) (x), P(j_l)(x)),

is a sequence of polynomials associated with a given polynomial P (x), and its deriva-
tive, where the notation Remainder(P;, P») stands for the remainder of the polynomial
division between P; and P,. By Sturm’s theorem, the sequence allows to find the num-
ber of distinct real roots of P (x), in a given interval, in terms of the number of changes
of signs of the values of the Sturm sequence at the end points of the interval, which
can even be taken to be +00. When applied to the whole real line, it gives the total
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number of real roots of P(x). Since deg(P*D) < deg(P®) for 0 < i < j, the
algorithm terminates and it contains in general deg(P) + 1 polynomials. The final
polynomial, P/ (x), is the greatest common divisor of P(x) and its derivative. For
instance, suppose that we would like to find the number of distinct real roots of P (x)
in the real interval [x;, x¢]; let ¢(x;) and ¢(xr) be the number of changes of sign
of the Sturm chain at x; and x y, respectively; then, Sturm’s theorem states that the
number of real roots of P(x) in [x;, x r] is simply given by ¢(x;) — ¢ (x ).

For each value of ¢ > 0, we have four values of A, as P(¢;A,q, p,r) is
a 4™ degree polynomial in A. For all p, r real, there always exist four values
of A such that Pw(w; A, q, p,r) has at least one double w-root. The nature of
these four points can be classified in terms of the sign of Ay Ay Pw(w; A, g, p,r).
Observe that P(0; A, g, p, r) coincides with Ay, Py (w; A, g, p, r), the discriminant
of Pw(w; A, q, p,r) with respect to w, with reversed sign. Furthermore, the dis-
criminant of P(0; X, g, p, r) with respect to A, A, P(0; A, q, p, r), coincides with
Ay Ay Py (w; A, g, p,r). Thus, a first classification of S, can be achieved by impos-
ing

3
APO3 3,q, por) = 1048576 (p = 1) (p +1) [(p = D (p+82 =2777| =0,

see Proposition 8.

In order to obtain a complete classification of S, for all ¢, we observe that, by moving
¢ inthe interval (0, +00), we move the four A-roots of the polynomial P(¢; A, g, p, 1)
(regarded as a polynomial in A). Two of such roots will collide if A, P(¢; A, g, p, 1) =
Q(¢; q, p,r) = Q(¢) vanishes. Since

AP b g, por) = Q) = 65536 QF(£) Q2(¢) (B.la)
Q)= p* =21 =3p* (¢ -5 - 12p(¢ —H+4¢ - D& —4*, (B.lb)
Q&)= 4p° (C —4) + p* (L —4) (¢ +60)+16p3 (3¢ +r2 — 48)

+8p2 [( =@ +36)=32¢ — 4 +r2 84— 150)]

132p [4{({—4)({—2)—3r2§(§—4)+24r2]

+16 [¢2 ¢ =42 =2 =9~ +4—27r] | (B.10)

and, because Q;(¢) appears squared in the expression of Q(¢), the sign of Q(¢)
depends solely on the sign of Q>(¢). Moreover, we observe that the real, positive
roots of Q1 (¢) are not associated with any change in the behaviour of X, as Q(¢) does
not change sign if ¢ passes through one of those roots: indeed, if ¢ passes through one
of the roots of Q1(¢), then two A-roots will collide, but after the collision they will
remain on the branches that they occupied before the collision.
Itis easy to see, by isolating the leading term in ¢ of Q(¢), that Q(¢) > 0 forlarge ¢.
In particular, all the A-roots of P(¢; A, g, p, r) arereal if ¢ is larger than the maximum
of the real, positive roots of Q,(¢). After that point, there are no complex branches in
the A-plane, and this provides a simple limit for the largest value of k3 = /¢ for which
the gain function is defined (see (79)). This also proves that the real axis or part of it is
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always included in the locus on the A-plane. On the other hand, if Q(¢) < 0, then two
of the A roots are real and two of the A-roots form a pair of complex conjugate values.
By changing the value of ¢ and keeping Q(¢) negative, two of the A-roots will move
on the real axis and the other two will move in the complex plane. When Q(¢) = 0,
then two of the A-roots collide in one point. Finally, if Q(¢) > 0 for ¢ > 0 and smaller
than the maximum of the real roots of Q,(¢), we can have either four real roots or
two pairs of complex conjugate roots.

Based on what we have seen so far, it is clear that the structure of the algebraic
curves in the A-plane (i.e. the x-spectrum S, ) is related to the number of changes of
sign of Q(¢) for ¢ > 0, that is the number of changes of sign of Q>(¢) for ¢ > 0.
In turn, as one varies p and r, the number of changes of sign of Q»(¢) for ¢ > 0
can be obtained by counting the number of positive roots of Q,(¢). In particular, as
p and r vary, the number of positive roots of Q»(¢) changes in two possible ways:
either two roots collide on the real ¢ axis and then move onto the complex plane as a
pair of complex conjugate roots (or vice versa), or a positive root passes through the
origin and becomes negative (or vice versa). Therefore, in order to provide a complete
classification of all the algebraic curves (i.e. the spectra) in the A-plane, not only we
need to understand the number of changes of sign of Q»(¢) for ¢ > 0 (which is the
number of its positive zeros), but also the general structure of the zeros of Q»(¢)
(namely, the nature of the its non-positive roots).

To this end, we compute the Sturm chain {Q;j )}‘}:0 = {Qg)), Qg), ng), QS),
Qg‘)} of Q5(¢) at ¢ = 0 and the leading terms of the Sturm chain as { — 400, with
V() = %(0),
d
Q) = EQ&’)@),
o (¢) = —Remainder (@Y ¢). & (©)) .
Y (¢) = —Remainder (04" (), 05 (©)) .
0" (¢) = —Remainder (25" ¢). 0" (©)) .

Because of the parametric dependence on p and r, the expressions of these quantities
are rather large and we prefer not to write the terms of the sequence explicitly here.
Just to give the reader an idea, the constant term of the sequence reads

Num(Q(4))
o) = — 2
e Den(Q5")

with Num(Qg‘)) equal to

r2(—p +r)(p +r)(256 + 160p> + p* — 12p%r? + 12r*)2 (4096 — 768 p> + 48p*
— p% —432p%r? + 432743
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and Den(Qg‘)) equal to

4(1048576 p* — 262144 p* + 24576 p° — 1024p® + 16p'° + 4063232 p*r?
+ 126976 p*r? — 8448 p°®r? — 944 p3r2 — p10r24063232r* — 126976 p*r*
+ 77568 p*r* + 4400p°r* + p¥r* — 138240p%r° — 6912 p*r6
+ 6912018 4 3456 pr%)2 .

If ¢(0) is the number of changes of sign for the Sturm chain {Qé’ )}‘j‘.:0 at¢s =0
and ¢ (o0o) the number of changes of sign of the leading terms of the Sturm chain as
¢ — 400, then, by Sturm’s theorem, the number of positive roots of Q5(¢) is simply
given by ¢(0) — ¢(00). Using this approach, we obtain that, for all r, p real, Q>(¢)
has always at least one real, positive root. Moreover, in this way we obtain a set of ten
algebraic curves in the (r, p)-plane, whose intersection defines a set of regions where
either ¢ (0), or ¢(00), or both change value, namely where the structure of the zeros
of Q»(¢) is expected to vary.

Finally, by checking carefully each one of these regions and using some elementary,
classical invariant theory (Rees 1922), after a long and tedious analysis, we verify that
the following four curves (see (63), (64) and (70))

p—r=0,

p+r=0,

(P—D(p+8)?—-27r*=0, p=ps@),

(p* — 16)3 + 4322 (pz—r2>=0, p=pc(r), withp <0,

determine the regions where Q> (¢) changes the number of positive and negative roots
and hence the structure of its roots. In particular, we have the following

Proposition 11 Forr > 0and g = 1, the polynomial Q2(¢; q, r, p) has the following
structure of zeros.
Ifr <4

—00 < p < pc(r) 2 positive, 0 negative and 2 complex conjugate roots
pc(r) <p<-—r 4 positive, 0 negative and 0 complex conjugate roots
—r<p<r 1 positive, 1 negative and 2 complex conjugate roots
r<p<ps(r) 2 positive, 2 negative and 0 complex conjugate roots
ps(r) < p < —pc(r) 1 positive, 3 negative and 0 complex conjugate roots
—pc(r) < p <+o0 1 positive, 1 negative and 2 complex conjugate roots
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Ifr >4
—oo<p<-—r 2 positive, 0 negative and 2 complex conjugate roots
—r <p<pc(r) 3 positive, 1 negative and 0 complex conjugate roots
pc(r) < p < —pc(r) 1 positive, 1 negative and 2 complex conjugate roots
—pc(r) < p < ps(r) 1 positive, 3 negative and 0 complex conjugate roots
ps(r)<p<r 2 positive, 2 negative and 0 complex conjugate roots
r<p<-4oo 1 positive, 1 negative and 2 complex conjugate roots

At the threshold values, either Q2(¢; q, r, p) features a double root, or a positive root
passes through the origin.

Itis not difficult to verify that, forg = 1, when Q2(¢; g, r, p) has 2 positive, 0 negative
and 2 complex conjugate roots, then Sy has 0 gaps, 2 branches and 0 loops (0G 2B
OL); when Q»(¢; g, r, p) has 4 positive, 0 negative and 0 complex conjugate roots,
then S, has 0 gaps, 2 branches and 1 loop (0G 2B 1L); when Q»(¢; g, r, p) has 1
positive, 1 negative and 2 complex conjugate roots or 1 positive, 3 negative and 0
complex conjugate roots, then S, has 1 gap, 1 branch and 0 loops (1G 1B OL); when
02(¢; q, r, p) has 3 positive, 1 negative and 0 complex conjugate roots, then S, has
1 gap, 1 branch and 1 loop (1G 1B 1L); finally, when Q2(¢; ¢, r, p) has 2 positive, 2
negative and 0 complex conjugate roots, then S, has 2 gaps, 0 branches and 1 loop 2G
0B 1L). Consequently, four curves (63), (64) and (70) determine the regions where
the number and the nature of the components of the algebraic curve S, change. The
regions are those described in Proposition 9 and reported in Fig. 2 in Sect. 3.2.

C Numerical Computation of the Spectra

In this section, we briefly illustrate how the spectra can be computed numerically. Let
Ej >0,j=1,...,a,with | <n <4, be the real, positive roots of the polynomial
92(2) (B.1c). Werecall that Q5 (¢) has always at least one real, positive root. Moreover,
the non-real part of the spectrum Sy is the locus on the A-plane of the A-roots of
Pii,q,p,r)for0 < ¢ < max; Z'j. Thus, to numerically compute a spectrum for
a given choice of r and p, with ¢ = 1, it suffices to solve P(¢; A, g, p,r) = 0 for
the same choice of the parameters, for a convenient set of values of ¢ in the interval
[0, max ;C ;1. These values will be referred to as £-nodes. As zeros of Q> (¢) are zeros
of the discriminant of P(¢; A, g, p, r), with respect to A, we expect that when ¢ is
close to one of the E ;’s the algebraic curve S, undergoes rapid changes. This implies
that in order to capture all features of the spectrum, and optimize the root-extracting
procedure, it is expedient to distribute the ¢-nodes according to a Chebyshev—Gauss—
LAobaAtto distrAibutiorAl (Quarteroni et al. 2000) between each one of the intervals [0, 2 11,
(1, S2loes [G521s Gal

The simultaneous computation of all the roots of all polynomials has been per-
formed via the standard technique of evaluating the eigenvalues of a companion matrix,
as per implemented in MATLAB R2017a. Note also that all spectra have been verified
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using an objective-function technique over the imaginary part of the differences of the
w;’s, computed by solving directly Pw (¢; A, q, p,r) = 0.
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