
Vol.:(0123456789)

Engineering with Computers (2024) 40:2807–2817
https://doi.org/10.1007/s00366-023-01940-6

ORIGINAL ARTICLE

Reinforcement learning for block decomposition of planar CAD
models

Benjamin C. DiPrete1 · Rao Garimella2  · Cristina Garcia Cardona3 · Navamita Ray4

Received: 20 April 2023 / Accepted: 25 December 2023 / Published online: 14 February 2024
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024

Abstract
The problem of hexahedral mesh generation of general CAD models has vexed researchers for over 3 decades and analysts
often spend more than 50% of the design-analysis cycle time decomposing complex models into simpler blocks meshable
by existing techniques. The decomposed blocks are required for generating good quality meshes (tilings of quadrilaterals or
hexahedra) suitable for numerical simulations of physical systems governed by conservation laws. We present a novel AI-
assisted method for decomposing (segmenting) planar CAD (computer-aided design) models into well shaped rectangular
blocks. Even though the simple examples presented here can also be meshed using many conventional methods, we believe
this work is proof-of-principle of a AI-based decomposition method that can eventually be generalized to complex 2D and
3D CAD models. Our method uses reinforcement learning to train an agent to perform a series of optimal cuts on the CAD
model that result in a good quality block decomposition. We show that the agent quickly learns an effective strategy for
picking the location and direction of the cuts and maximizing its rewards. This paper is the first successful demonstration of
an agent autonomously learning how to perform this block decomposition task effectively, thereby holding the promise of a
viable method to automate this challenging process for more complex cases.

Keywords  Quadrilateral and Hexahedral Mesh generation · Block decomposition · Reinforcement learning

1  Introduction

Many numerical methods compute approximate solutions
over a mesh of topologically simpler elements (tetrahe-
dra, hexahedra) representing the computational domain.
In highly non-linear problems (e.g. fluid dynamics with
shocks), hexahedra are preferred, or even required, over tet-
rahedra because of their superior accuracy and directional
control of the solution [1]. In spite of 30+ years of research,
however, there are no reliable algorithms that can automati-
cally generate hexahedral meshes for general CAD models
[2, 3]). Contrast this with tetrahedral meshing which has
long been automatic at scale for realistic industrial problems
[4, 5].

In an early paper, Thompson [6] proposed a multi-block
grid generation method to generate hexahedral meshes for
geometric model naturally composed of 6-sided blocks that
are topologically cubical but with general geometry. Each
block in the domain is meshed by mapping a structured
mesh of cube to the general geometry using transfinite map-
ping [7] while also ensuring that the meshes are continu-
ous across block boundaries. Another early paper by White

 *	 Rao Garimella
	 rao@lanl.gov

	 Benjamin C. DiPrete
	 bendiprete@gmail.com

	 Cristina Garcia Cardona
	 cgarciac@lanl.gov

	 Navamita Ray
	 nray@lanl.gov

1	 College of Computing, Georgia Institute of Technology,
Altanta, GA, USA

2	 Applied Computational Physics Division, XCP‑4,
Los Alamos National Laboratory, Los Alamos 87544,
New Mexico, USA

3	 Computer, Computational and Statistical Sciences
Division, CCS‑3, Los Alamos National Laboratory,
Los Alamos 87544, New Mexico, USA

4	 Computer, Computational and Statistical Sciences
Division, CCS‑7, Los Alamos National Laboratory,
Los Alamos 87544, New Mexico, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01940-6&domain=pdf
http://orcid.org/0000-0002-3812-2105

2808	 Engineering with Computers (2024) 40:2807–2817

et al. [8] proposed the reverse process by which realistic 3D
geometric models were virtually decomposed into 6-sided
blocks and then tiled with hexahedra (Fig. 1). This process,
called Block Decomposition, is guided by human intuition
and acquired domain expertise that readily “sees” how to
subdivide a model for a particular application. Attempts to
automate this process have not proven generalizable to arbi-
trary shapes [9, 10].1

1.1 � Previous work

There have been sustained efforts [5] to develop automatic
algorithms to generate hexahedral meshes for complex geo-
metric models since 3D Finite Element Methods became
popular. An elementary method (ca. 1980) called mapped
meshing uses transfinite interpolation to map the structured
mesh of a canonical cube to topologically equivalent but
geometrically different domains [11]. For roughly tubular
geometric models, an algorithm called multi-sweeping [12,
13] extrudes a quadrilateral mesh on one set of faces to form
stacks of elements that reach an opposite set.

The Block Decomposition [8] method targeted here gen-
eralizes these techniques by decomposing complex geomet-
ric models into parts that are amenable to mapped meshing
or multi-sweeping. Block decomposition is favored by sea-
soned analysts for its superior control of mesh quality and
directionality despite the fact that it must be done manually.
While there have been significant efforts to devise automatic
decomposition algorithms of complex models based on the
model characteristics directly [8–10, 14–16] or on alternate
model representations like the medial-axis transform [17,
18], most methods have remained experimental or work on
a limited class of problems.

In recent years, there has been an sharp uptick in research
into using artificial intelligence (AI) or machine learning
(ML) with deep neural networks (NN) for solving meshing
related problems. Much of the work has focused on using AI/
ML for generating or tweaking 2D triangular meshes with
point densities suited for a particular PDE (partial differ-
ential equation) solution bypassing mesh adaptation using
a posteriori error estimation [19–25]. Pan et al. [26, 27]
describe an actual ML-based quadrilateral mesh generation
method. A more recent paper by Tong et al. [28] uses a
combination of supervised learning and reinforcement learn-
ing to assist the advancing front method for generating high
quality quadrilateral meshes without the need for complex
checks like front intersection. There are some older papers
claiming to use “knowledge-based methods” to generate
meshes [29, 30], recognize model features [31, 32], or even
decompose geometric models [14, 33] but none of them used
ML as we know it. Recent papers on CAD and ML have
focused mainly on Shape Matching [34–36] and to a lesser
extent on CAD model generation [37, 38] and cleanup [39,
40].

1.2 � Our approach

This article presents a proof-of-principle demonstration
of a novel AI-assisted method for decomposing complex
geometric models into blocks by applying it to planar
shapes with straight, axis-aligned edges. Our approach
uses reinforcement learning (RL) [41] to let an agent
learn a good sequence of steps to take in order to cut the
input model into meshable blocks. In RL, an agent learns
by taking actions in an environment based on the state
of the environment. Each action moves the environment
into a new state and grants a reward to the agent. With a
targeted balance of exploration vs exploitation, the agent
learns a policy that maximizes the cumulative reward over
a sequence of actions. RL closely mimics how human ana-
lysts learn to decompose complex shapes into blocks and

Fig. 1   a CAD model that can-
not be automatically meshed
entirely with hexahedra b model
is subdivided into 6-sided
blocks using cuts c each block
is meshed by mapping a regular
hexahedral mesh of a unit cube
onto the block

1  In general we will use the word model or shape to implicitly mean
a geometric model and explicitly point out when we use it to mean a
machine learned approximation of reality.

2809Engineering with Computers (2024) 40:2807–2817	

in recent years, RL, combined with deep neural networks
(DNN), has matched or surpassed human-level skill in
several fields [42]. It is worth noting that this study is
different from the use of reinforcement learning for image
segmentation in medicine [43] or in video processing [44,
45] or segmentation of 3D point clouds [46].

There are many challenges in applying reinforcement
learning to the problem of block decomposition of complex
geometric models. Unlike common scenarios like learning
to play a game or navigate a warehouse where the environ-
ment is fixed, our environment is dynamically changing as
we make cuts. Thus a naively formulated global observation
set (i.e. the data about the evolving geometric configuration
that we can feed to the agent) will vary in size as the epi-
sode progresses making it unsuitable for traditional neural
networks. The agent itself has multiple types of decisions
to make - where to perform a modification and what type
of modification to make (full cut, partial cut, etc.). Addi-
tionally, the parameters of the modification are continuous
(for example, the angle of a cut) and the agent must learn a
distribution of expected rewards over the continuous param-
eter space. Finally, the task of the agent is not to master the
decomposition of one particular geometric model - rather
the ultimate goal is to learn a generalizable policy that can
be applied to new configurations.

To tackle this problem, we devise an RL agent to pro-
cess an input geometric model that is planar with straight,
axis-aligned edges. The agent recursively subdivides it into
simpler parts using axis-aligned cuts. The environment is a
custom setup that can read a geometric model and answer
queries about it (e.g. how many vertices, how many edges
connected to a vertex, the angle formed by two edges at a
vertex). The agent also uses the capabilities of the geometric
modeler to make modifications to the shape - in this particu-
lar study, the modification is slicing the geometric model
into two or more pieces from a model vertex. The quality
of the resulting parts (reduced complexity, low aspect ratio)
determines the reward the agent receives. An episode ends
when the input is decomposed into all quadrilateral blocks.
In the results section, we demonstrate that our RL agent

quickly learns which cuts to make and where to make them
to maximize its rewards.

While the method is currently demonstrated on simple
problems that may be solved using procedural algorithms
such as the art gallery algorithm [47], the purpose of this
paper is not necessarily to demonstrate superior quality or
performance in the decomposition of these simple shapes.
Rather it is to introduce an AI framework that encapsulates
most of the principles required to apply it to more complex
2D and 3D shapes and demonstrate that we can effectively
tackle diverse planar configurations without needing to adapt
the formulation on a case-by-case basis. We believe this is
the first time such a reinforcement learning approach has
been used to tackle the problem of block decomposition.

2 � Methodology

We have developed a customized RL framework that learns
how to effectively decompose geometric models into blocks
by exploring the effect of different geometric model modi-
fications. While most components of our RL framework
are set up for general problems in 2D and 3D, this study is
limited to decomposing planar shapes with straight, axis-
aligned edges. The CAD model is described using a full-
featured 3D geometric modeler called OpenCascade [48] but
for the purposes of this discussion, it can be considered to
be one or more planar shapes, each of which is described by
a sequence of model vertices and model edges. During each
step of the training phase, the agent picks a vertex of the
geometric model, observes the state and makes a geometric
modification. Currently, the only geometric modification the
agent can make is a full cut, i.e., slice the geometric model
into two or more parts using an infinite line (See Fig. 2).
While we use an RL technique that allows for a continuous
action space (e.g. cuts originating at any location and angled
arbitrarily), we restrict the cuts in this study to only originate
from a model vertex and be aligned with the X- or Y-axis.
Since the geometric model evolves as the agent makes cuts,
the size of a global observation set for the full model, e.g.

Fig. 2   Recursive slicing of the
model. The left figure shows
the original model and a vertex
at which the agent is poised to
act along with the two cuts it
can make. The middle figure
shows the two shapes from the
first action and the choices for
the next action. The right figure
shows the shapes arising from
the second cut

2810	 Engineering with Computers (2024) 40:2807–2817

the list of vertices, also changes and cannot be used directly
as input to a traditional neural network. Therefore, follow-
ing the idea of Pan [27], we have designed a fixed size local
observation set at each model vertex to feed to the neural
networks in the RL framework. The iterative application of
this sequence of steps - select vertex, construct local obser-
vations, make a cut, evaluate the quality - allows the agent to
learn to block decompose the geometric model. In order to
learn a policy to efficiently perform such a decomposition,
the agent is trained via feedback from the environment: cuts
that produce a good partition, e.g. resulting in quadrilateral
blocks with good aspect ratios are rewarded, while cuts that
produce a bad partition, e.g. high aspect ratios in its decom-
posed parts, high variance in the areas of its decomposed
parts or cuts that do not affect the model (cutting along a
side) are penalized. The policy learned in this way can then
be applied to perform block decomposition of other planar
axis-aligned shapes.

2.1 � Soft actor‑critic‑based RL architecture

Our framework uses the soft actor-critic (SAC) reinforce-
ment learning algorithm introduced in [49]. The SAC
method provides a sample efficient (i.e. moderate data col-
lection demands) and stable, model-free,2 deep RL algo-
rithm for continuous state and action spaces. While it may
be argued that this problem might be tackled with a deep
Q-network, the reason for using a SAC-type algorithm is to
build a framework that can be generalized to more complex
2D and 3D models that require arbitrarily angled or partial
cuts from any boundary location.

There are three main components in the SAC algorithm:

1.	 An actor-critic architecture with separate policy and
value function networks,

2.	 An off-policy formulation that enables reuse of previ-
ously collected data for efficiency, and

3.	 Entropy maximization to enable stability and explora-
tion.

The implementation of the soft actor-critic architecture
includes three separate networks: an actor network, a critic
network and a value function network that are optimized
jointly during training. As discussed by [49], this not only
provides flexibility to handle large continuous domains, but
can also help to stabilize training.

2.1.1 � Actor network

The actor network outputs a probability distribution over the
action space A and is also in charge of executing actions.
In our case, it is implemented as a traditional neural net-
work that receives as input a local observation (described
below). Its output determines the probability for each of the
two directions allowed for cuts from a given vertex: along
the X-axis or Y-axis. Note that training uses a stochastic
actor, where the selection of a cutting direction is made ran-
domly weighted by the estimated probabilities, while, during
deployment, the actor behaves deterministically selecting
the action with the maximum estimated probability. The
stochasticity is useful to maximize the entropy of the actor
network and encourage exploration of the environment in
the training phase.

2.1.2 � Critic network

The critic network qualifies how good the allowed actions
are for a given state. It is similar to a Q-network in Deep-Q
learning [42] in that it learns to approximate the Q-value
of actions in a given state, i.e. it learns to approximate the
reward for a given state-action pair,3 along with all future
rewards along the expected trajectory. In our case, it is also
implemented as a traditional neural network that receives as
input a local observation and determines the Q-value (qual-
ity) of X-axis and Y-axis cuts.

2.1.3 � Local observation

The actor and critic networks are represented as traditional
neural networks that expect a fixed input structure and, thus,
are not able to handle the varying size and complexity of
the evolving environment (i.e. the changing collection of
vertices and edges as the geometric model is sliced repeat-
edly). Hence, we construct a special fixed structure to cap-
ture important local shape information observed at a chosen
model vertex. The features included in this structure are:

•	 Vectors to the two neighboring vertices
•	 Type of interior angle formed by the two vectors (acute,

right, obtuse, reentrant, etc)
•	 Vector to the centroid of the shape being processed
•	 Aspect ratio of the shape being processed

A schematic of the local observation features can be found
in Fig. 3. As explained later, the complexity of observations

2  Here we are talking of a model of a general environment for RL,
not a geometric model.

3  In reinforcement learning terminology, an action-state pair refers to
the selection of a particular action from all possible actions in a par-
ticular state of the environment.

2811Engineering with Computers (2024) 40:2807–2817	

at model vertices in our study remains fixed because the two
parts resulting from a cut are treated as independent parts for
the next cut - thus every model vertex remains connected to
two adjacent vertices.

2.1.4 � Value network

The value network qualifies how good a particular state is. In
other words, this network learns to approximate the expected
reward and future rewards the actor will receive in a given
state. In our case, this network allows the actor to choose
the next vertex to perform a cut. Thus, it is more appropri-
ate to regard this network as being able to approximate the
expected reward and future rewards the actor will receive for
making a cut from a specific vertex. For efficiently capturing
all the relevant vertex-level information for the full model,
this network must be able to handle the varying collection of
vertices produced during shape decomposition. Hence, we
implement this network as a graph neural network (GNN),
specifically as a SplineCNN network [50]. The network
receives as input a triangular mesh of the planar model. We

can control the resolution of this triangular mesh, usually
preferring coarse meshes to avoid excessive computational
burden. We tag the mesh vertices as being coincident with
model vertices, lying on a model edge or lying in the interior
of the model as shown in Fig. 4b. Furthermore, notice that
the GNN not only allows us to work with a changing num-
ber of vertices, it also enables the incorporation of spatial
geometric information of the current decomposition state,
information that would be much more difficult to encode
using a traditional NN.

Although the value network produces an output at every
mesh node, only the outputs at the model vertices (i.e. red
points in Fig. 4b) are considered. As stated above, the output
value of the value network at a model vertex is an approxi-
mation to the expected reward and future rewards if a cut
is made at that vertex. With this structure in place, we can
chose a vertex to perform a cut at every step of an episode.
Mimicking the stochastic actor concept, the set of values
produced by the value network on the model vertices is used
during training as probability weights and the vertex to per-
form a cut is randomly selected using these weights with the
goal of encouraging exploration. In contrast, the selection
is deterministic during deployment and the vertex with the
highest output of the value network is selected to perform
a cut.

2.2 � Off‑policy formulation

The SAC algorithm uses off-policy actor-critic training,
combined with a stochastic actor as described before, which
results in a more stable and scalable algorithm. Such a strat-
egy allows it to reuse past experience to train the models
and increases the sample efficiency. It is implemented by
storing a distribution D of previously sampled states, actions
and rewards, and using it as a replay buffer during training.
We follow this approach during training which alternates
between collecting experience from the environment by
applying the current policy, and updating the networks via

Fig. 3   Features included in the local observation: Vectors to neigh-
boring vertices ( V

1
 , V

2
 ) and vector to centroid of the shape ( V

c
 ), angle

of the vertex corner ( � ), aspect ratio of full shape (H/W)

Fig. 4   Example planar shape
and corresponding triangula-
tion input to the value network.
In the triangulation input, red
mesh vertices lie on model
vertices (vertex type 2), green
mesh vertices lie on model
edges (vertex type 1), blue
mesh vertices lie in the interior
(vertex type 0)

(a) Example planar shape. (b) Triangulation input.

2812	 Engineering with Computers (2024) 40:2807–2817

stochastic gradients computed from batches sampled from
the replay buffer.

2.3 � Entropy Maximization

Unlike the regular actor-critic framework, SAC rewards
entropy in its actions by optimizing policies to maximize
both the expected return and the expected entropy of the
policy. This encourages exploration of the environment and
makes the algorithm more robust and capable of general
learning, rather than just memorization. The maximum
entropy policies are also robust to estimation errors and
improve exploration by allowing the acquisition of diverse
behaviors.

2.4 � Reward Function

The reward function is a critical component of the RL frame-
work and contributes to the effectiveness with which the
agent carries out the task at hand. In our case, we devise a
reward function to

•	 Encourage creating quadrilateral parts
•	 Discourage cuts that do not affect the geometric model

(e.g. cutting along a side)
•	 Discourage high variance in the areas of its decomposed

parts
•	 Discourage high aspect ratios in its decomposed parts

Once the geometric model is fully decomposed into blocks,
the agent gets a bonus reward and the episode concludes.
The exact form of the rewards used for this study are given
in the results section.

2.5 � Training Phase

The training phase is composed of a collection of episodes,
each episode consisting of all the steps needed for decom-
posing a given geometric model. During a training episode,
the agent uses the value network output to select a vertex
to cut, and the actor network output to select the particular
action to take. Both of these are done stochastically to ensure
a higher level of exploration during training.

The steps listed below are iterated during a training
episode

	 1.	 Triangulate the shape being processed
	 2.	 Run the value network on the triangulation to generate

weights at mesh vertices
	 3.	 Stochastically select a model vertex based on value

network outputs
	 4.	 Compile a local observation at the vertex

	 5.	 Stochastically choose a direction for a cut at the vertex
based on actor network probability outputs

	 6.	 Split the geometric model into two or more parts along
the chosen direction

	 7.	 Compute the new state and reward
	 8.	 Store sampled states, actions and rewards in the replay

buffer
	 9.	 Update parameters for every network following the

gradient step
	10.	 Pick another non-quadrilateral part from the geometric

model decomposition and repeat from step 1

Geometric models are loaded repeatedly from the training
set, one per episode. A set number of episodes is run during
training. The training of all the networks uses the Adam opti-
mization algorithm. The functions optimized in each case
are the same as in the SAC original work. There is, however,
a slight difference in the value network: when calculating the
loss, the network only propagates loss for the node that was
chosen to make a cut from.

Note that a cut goes fully through the shape and splits it
into two or more parts (see Fig. 2). Instead of keeping the
model as a collection of generated parts, we treat each part
as a new shape to explore. Thus at each step we split the
model, set aside quadrilateral parts, and put the remaining
parts in a processing queue. This approach sacrifices the
full model view, but makes it simpler and more robust since
the agent does not encounter a local state of ever increasing
complexity and there is no need to accumulate the knowl-
edge of how the parts build up. An additional benefit of this
approach is that each new part generated is a training data
sample for the agent.

2.6 � Deploying the Trained Framework

After the framework is trained, the combination of value
network and actor network constitute the learned policy. The
decomposition of new geometric model proceeds as follows
(with similarities to the training phase):

1.	 Triangulate the shape being processed
2.	 Run the value network on the triangulation to generate

weights at mesh vertices
3.	 Deterministically select a model vertex with highest

value output by the value network
4.	 Compile a local observation at the vertex
5.	 Deterministically choose the cut direction with the high-

est probability as predicted by the actor network
6.	 Split the geometric model into two or more parts along

the chosen direction
7.	 Compute the new state and reward
8.	 Pick another non-quadrilateral part from the geometric

model decomposition and repeat from step 1

2813Engineering with Computers (2024) 40:2807–2817	

Crucially, at the end of the decomposition, all the shapes
are merged backed together while retaining the boundaries
between them. Thus vertices that appear on the boundary
of one block are also reflected in the boundary of adjacent
blocks. The merged model is then meshed using well-
known procedures. In our case, we import the parts into
the CUBIT geometric modeling and meshing package [51],
use its imprint-and-merge functionality to recreate a single
geometric model (with internal cuts) and apply a mapped
meshing algorithm.

3 � Numerical Experiments

3.1 � Data Sets

Our training and testing data set includes 49 planar shapes
with straight, axis-aligned edges. These were generated
using our python script that invokes the CUBIT package
[51] to randomly generate and combine 2 to 10 rectangles.
The training and test data sets consist of 37 models and 12
independent models respectively (Figs. 5a, 5b).

3.2 � Network Architecture

All networks are implemented using PyTorch [52] and
PyTorch Geometric [53]. The architectures used are
described next.

3.2.1 � Actor and Critic Networks

These networks are traditional feed-forward NN composed
of 4 fully connected layers, with 256, 128, 64 and 2 neurons,
respectively (the last of these layers is the output layer). We
use rectified linear unit (ReLU) activation functions after
each of these layers, except for the last layer in the critic

network4 that uses a linear activation function. The input
dimension is 9, corresponding to the size of the local obser-
vation: 2 dimensional (2D) vector for each of the 2 neigh-
boring vertices, 2D vector to centroid, 1 value for angle at
vertex and 2 components to represent the aspect ratio. The
networks have 2 outputs which correspond to the dimension
of the action space (i.e. 2 cut directions: X-axis or Y-axis).

3.2.2 � Value Network

This network is a GNN. It contains 1 SplineCNN layer, fol-
lowed by 7 residual blocks and 1 final SplineCNN output
layer. Each residual block is composed of 2 SplineCNN lay-
ers. There are batch normalization layers after all the Spli-
neCNN layers except the output layer. We use exponential
linear unit (ELU) activation functions except in the output
layer. Every SplineCNN layer has a kernel size of 5, mean-
ing the 2D B-spline function for the continuous kernel has
25 defining points, with 5 points on each axis. The number
of nodes in the graph is arbitrary and depends on the triangu-
lation of the shape. Each node in the graph input layer has 3
features because each node has one-hot encoded vector fea-
tures: (1, 0, 0) represents interior point, (0, 1, 0) represents
boundary point and (0, 0, 1) represents model vertex. Each
node in the graph output layer has 1 feature corresponding to
the value function for that node, but only nodes correspond-
ing to model vertices are taken into account. The first Spli-
neCNN layer has 64 features. The residual blocks have 128,
256, 128, 64, 32, 16 and 8 features, respectively. Note that
if the number of features does not change through a residual
block, the input features to the residual block are simply
summed with the output features. However, if the number
of features does change through a block, the skip connec-
tion contains 1 SplineCNN layer, with as many features as
the features in the block. All our residual blocks change the
number of features.

Fig. 5   Samples from the (a)
training data set containing 37
models and (b) test data set
containing 12 models

4  We actually use two equally parameterized critic networks as in the
original SAC work, see [49] for details.

2814	 Engineering with Computers (2024) 40:2807–2817

3.2.3 � Reward Function

Assume that a splitting action on a shape results in N new
shapes, with N

q
 of them being quadrilaterals. Let the areas

of the shapes be A
i
, i = 1,N , and aspect ratios R

i
, i = 1,N

(where the aspect ratio of a shape is defined as the ratio of
the longest side to the shortest side of its bounding box).
Also, let the average area of all the shapes be Ā.

The reward R is defined as

Note that minimum possible aspect ratio is 1 and therefore
the leading term (reciprocal of the root mean square of
aspect ratios) takes a maximum value of 1 when all shapes
are squares. The second term which measures variance in
the areas of the shapes takes a minimum value of 0 when
all the areas are equal. The third term is a maximum if the
action results in all quads ( N

q
= N ). The fourth term serves

as a penalty for actions that result in no new shapes ( N = 1) .
Thus the maximum reward is obtained when the action cuts
the shape into squares of equal area.

(1)3

��

N
∑

i
R
2

i

�

1

2

−

�
∑

i
(A

i
− Ā)2

�
1

2

∑

i
A
i

− 1

�

+ 10

N
q

N
− 5𝛿

1N

3.3 � Testing and Reward Convergence

As the model learns using the training set, the RL frame-
work’s learning is periodically checked against the test
set. In a testing episode, the vertex at which to act and the
action to take are chosen deterministically to maximize the
reward - a vertex with the highest output from the value
network is chosen, and the action with the highest prob-
ability from the actor network is applied at that vertex.

Figure 6a shows a moving average of rewards (over 10
episodes) obtained by the RL framework during the train-
ing phase. Figure 6b shows the convergence of a moving
average of rewards during the periodic testing episodes.
We observe that after only around 1500 episodes of train-
ing (an hour or so of training time) the model learned to
obtain consistently high rewards on its training set, but
also on the test set of shapes it has never trained on. The
oscillations in the reward plot of the training set indicate
that the agent is continuing to favor exploration rather than
exploitation. The good reward convergence seen on the test
set implies that the agent is steadily gathering generaliz-
able knowledge about the decomposition problem for this
category of shapes.

Fig. 6   Reward convergence
obtained by the training

(a) Rewards obtained by the agent on the
training dataset as it trained.

(b) Rewards obtained by the agent on the
test dataset as it trained.

Fig. 7   The block decomposition
(middle) returned by the agent
for the test shape shown on the
left and its mesh from CUBIT
(right)

2815Engineering with Computers (2024) 40:2807–2817	

3.4 � Decomposition Examples

Finally, in Figs. 7 and 8, we present two examples of block
decompositions obtained for test shapes (i.e. shapes that the
agent never trained on). It showcases the learned knowledge
of the agent after it was trained. The block decompositions
were then meshed using CUBIT to generate quadrilateral
meshes of the decomposed shape.

4 � Conclusions

We have demonstrated a novel reinforcement learning-based
AI method to decompose input CAD shapes into well shaped
blocks that can be meshed for numerical simulations. The
results show that an agent using the SAC reinforcement
learning framework can learn a block decomposition policy
that generalizes to new planar, axis-aligned shapes.

While this proof-of-principle demonstration is restricted
to simple 2D shapes and elementary geometric model
modifications, it contains most of the principles required
to generalize it to more complex shapes in 2D and 3D. The
environment is based on geometric modelers which regu-
larly handle complex 3D shapes with curved boundaries.
The agent’s actions are modeled on the types of operations
a human agent decomposing a shape will execute using
a geometric modeler (e.g. planar model cuts). The use of
Soft-Actor-Critic framework allows for continuous actions
(e.g. cuts at an angle) in the future. Similarly, the rewards
are based on the quality evaluation of the blocks used by
meshing algorithms and analysts. The issue of variability
in the starting environment and the dynamic evolution of
the environment are already addressed in this simple prob-
lem using a graph-based value neural network. Thus, we
can reasonably surmise that the method can eventually be
generalized to address the real problem of decomposing 3D
shapes thereby alleviating one of the long standing problems
in meshing.

5 � Future Work

In the future, we will expand this research to tackle more
complex 2D and 3D shapes. We will extend this method to
non-axis aligned 2D shapes by first cutting along edges and
eventually at arbitrary angles. Expanding to more complex
curved geometric models will require expansion of the
types of actions to include partial cuts or some other tem-
plated subdivision (like making a square internal boundary
inside a circular part). The reward function definitions may
also have to be refined further. Expanding the method to
3D requires tetrahedral meshes for the value network, an
expanded set of observations, generalized reward functions
and more types of geometric modifications.

Funding  This work was supported by the U.S. Department of
Energy for Los Alamos National Laboratory (LANL) under contract
89233218CNA000001. This publication is approved for release as
LANL report number LA-UR-23-29571. The authors have no relevant
financial or non-financial interests to declare regarding the topic of
research in this article.

Data availability  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Fig. 8   The block decomposition
(middle) returned by the agent
for the test shape shown on the
left and its mesh from CUBIT
(right)

http://creativecommons.org/licenses/by/4.0/

2816	 Engineering with Computers (2024) 40:2807–2817

References

	 1.	 Wang E, Nelson T, Rauch R (2004) Back to elements - tetra-
hedra vs hexahedra. In: Proceedings of the 2004 International
Ansys Conference. https://​www.​ansys.​com/-/​media/​ansys/​corpo​
rate/​resou​rceli​brary/​confe​rence-​paper/​2004-​int-​ansys-​conf-9.​
pdf

	 2.	 Pietroni N, Campen M, Sheffer A, Cherchi G, Bommes D, Gao X,
Scateni R, Ledoux F, Remacle J-F, Livesu M (2022) Hex-mesh
generation and processing: a survey. ACM Transactions on Graph-
ics 42(2):1–44

	 3.	 Sarrate, J., Ruiz-Gironés, E., Roca, X.: Unstructured and semi-
structured hexahedral mesh generation methods. Computational
Technology Reviews 10 (2017)

	 4.	 Shephard MS, Georges MK (1991) Automatic three-dimensional
mesh generation by the finite octree technique. International Jour-
nal for Numerical Methods in Engineering 32(4):709–749

	 5.	 Owen S (2016) An Introduction to Automatic Mesh Generation
Algorithms. Short Course Notes International Meshing Roundta-
ble, Washington, D.C. . https://​www.​osti.​gov/​servl​ets/​purl/​13941​
07

	 6.	 Thompson JF (1987) A general three-dimensional elliptic grid
generation system on a composite block structure. Computer
Methods in Applied Mechanics and Engineering 64:377–411

	 7.	 William G, Hall C (1973) Construction of curvilinear coordinate
systems and their application to mesh generation. International
Journal of Numerical Methods in Engineering 7(4):461–477

	 8.	 White, D.R., Mingwu, L., Benzley, S.E., Sjaardema, G.D.: Auto-
mated hexahedral mesh generation by virtual decomposition. In:
Proceedings of the 4th International Meshing Roundtable, pp.
165–176 (1995)

	 9.	 White DR, Saigal S, Owen SJ (2004) Ccsweep: automatic decom-
position of multi-sweep volumes. Engineering with Computers
20:222–236

	10.	 Wang R, Shen C, Chen J, Wu H, Gao S (2017) Sheet operation
based block decomposition of solid models for hex meshing.
Computer-Aided Design 85:123–137

	11.	 Gordon WJ, Thiel LC (1982) Transfinite mappings and their appli-
cation to grid generation. Applied Mathematics and Computation
10–11:171–233

	12.	 Mingwu, L., Benzley, S.E., Sjaardema, G., Tautges, T.: A multiple
source and target sweeping method for generating all hexahedral
finite element meshes. In: Proceedings of 5th International Mesh-
ing Roundtable, pp. 165–176 (1996)

	13.	 Shepherd, J.F., Mitchell, S.A., Knupp, P.M., White, D.R.: Methods
for multisweep automation. In: Proceedings of the 9th Interna-
tional Meshing Roundtable, pp. 77–87 (2000)

	14.	 Lu, Y., Gadh, R., Tautges, T.J.: Volume decomposition and feature
recognition for hexahedral mesh generation. In: 8th International
Meshing Roundtable, Lake Tahoe, CA, pp. 269–280 (1999)

	15.	 White DR, Tautges TJ (2000) Automatic scheme selection for
toolkit hex meshing. International Journal of Methods in Engi-
neering 49(1):127–144

	16.	 Lu JH-C, Quadros WR, Shimada K (2017) Evaluation of user-
guided semi-automatic decomposition tool for hexahedral mesh
generation. Journal of Computational Design and Engineering
4(4):330–338

	17.	 Blum, H.: A transformation for extracting new descriptors of
shape. In: Models for the Perception of Speech and Visual Forms,
pp. 362–380 (1967)

	18.	 Price MA, Armstrong CG, Sabin MA (1995) Hexahedral mesh
generation by medial surface subdivision: part i. solids with con-
vex edges. International Journal of Numerical Methods in Engi-
neering 38(19):3335–3359

	19.	 Zhang, Z., Wang, Y., Jimack, P.K., Wang, H.: Meshingnet: A new
mesh generation method based on deep learning. Computational
Science – ICCS 2020. Lecture Notes in Computer Science 12139
(2020)

	20.	 Huang, K., Krügener, M., Brown, A., Menhorn, F., Bungartz,
H.-J., Hartmann, D.: Machine Learning-based optimal mesh gen-
eration in computational fluid dynamics. arXiv preprint arxiv:​
2102.​12923 (2021)

	21.	 Dielen, A., Lim, I., Lyon, M., Kobbelt, L.: Computing direction
fields for quad mesh generation. In: Eurographics Symposium on
Geometry Processing, vol. 40 (2021)

	22.	 Pak, D., Liu, M., Kim, T., Liang, L., McKay, R., Sun, W., Duncan,
J.: Distortion energy for deep learning-based volumetric finite ele-
ment mesh generation for aortic valves. Medical Image Comput-
ing and Computer Assisted Intervention – MICCAI 2021. Lecture
Notes in Computer Science 12906, 485–494 (2021)

	23.	 Bohn J, Feischl M (2021) Recurrent neural networks as optimal
mesh refinement strategies. Computers & Mathematics with
Applications 97:61–76

	24.	 Yang, J., Dzanic, T., Petersen, B., Kudo, J., Mittal, K., Tomov, V.,
Camier, J.-S., Zhao, T., Zha, H., Kolev, T., et al.: Reinforcement
learning for adaptive mesh refinement. In: International Con-
ference on Artificial Intelligence and Statistics, pp. 5997–6014
(2023)

	25.	 Wu T, Liu X, An W, Huang Z, Lyu H (2022) A mesh optimization
method using machine learning technique and variational mesh
adaptation. Chinese Journal of Aeronautics 35(3):27–41

	26.	 Pan J, Huang J, Wang Y, Cheng G, Zeng Y (2021) A self-learning
finite element extraction system based on reinforcement learn-
ing. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 35:180–208

	27.	 Pan, J., Huang, J., Cheng, G., Zeng, Y.: Reinforcement learning
for automatic quadrilateral mesh generation: a soft actor-critic
approach. arXiv report (2022). https://arxiv.org/abs/2203.11203

	28.	 Tong H, Qian K, Halilaj E, Zhang YZ (2023) SRL-assisted AFM:
Generating planar unstructured quadrilateral meshes with super-
vised and reinforcement learning-assisted advancing front method
72:102109

	29.	 Manevitz LM, Yousef M, Givoli D (2002) Finite-element mesh
generation using self-organizing neural networks. Computer-
Aided Civil and Infrastructure Engineering 4(12):233–250

	30.	 Çinar, A., Arslan, A.: Neural networks based mesh generation
method in 2-d. Lecture Notes in Computer Science 2510 (Eur-
Asia-ICT 2002: Information and Communication Technology),
395–401 (2002)

	31.	 Kim YS (1992) Recognition of form features using convex decom-
position. Computer-Aided Design 24(9):461–476

	32.	 Wu H, Gao S, Wang R, Chen J (2018) Fuzzy clustering based
pseudo-swept volume decomposition for hexahedral meshing.
Computer-Aided Design 96:42–58

	33.	 Takata O et al (1999) A knowledge-based mesh generation system
for forging simulation. Applied Intelligence 11(2):149–168

	34.	 Qin, F., Li, L., Gao, S., et. al.: A deep learning approach to the
classification of 3d cad models. Journal of Zhejiang Univ. - Sci-
ence C 15, 91–106 (2014)

	35.	 Bronstein, M.M., et.al.: Geometric deep learning: Going beyond
euclidean data. IEEE Signal Processing Magazine 34(4) (2017)

	36.	 Boussuge, F., Tierney, C.M., Robinson, T.T., Armstrong, C.G.:
Application of tensor factorisation to analyse similarities in cad
assembly models. In: Proceedings of the 28th International Mesh-
ing Roundtable (2019)

	37.	 Wu, R., X., C., , Zheng, C.: DeepCAD: A deep generative network
for computer-aided design models. In: Proceedings of the IEEE/
CVF International Conference on Computer Vision (2021)

	38.	 Lin, C., Fan, T., Wang, W., Nießner, M.: Modeling 3d shapes
by reinforcement learning. In: Computer Vision – ECCV 2020.

https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/conference-paper/2004-int-ansys-conf-9.pdf
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/conference-paper/2004-int-ansys-conf-9.pdf
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/conference-paper/2004-int-ansys-conf-9.pdf
https://www.osti.gov/servlets/purl/1394107
https://www.osti.gov/servlets/purl/1394107
http://arxiv.org/abs/2102.12923
http://arxiv.org/abs/2102.12923

2817Engineering with Computers (2024) 40:2807–2817	

Lecture Notes in Computer Science(), vol. 12355 (2020). https://
doi.org/10.1007/978-3-030-58607-2_32

	39.	 Danglade F, Pernot J-P, Véron P (2014) On the use of machine
learning to defeature cad models for simulation. Computer-Aided
Design and Applications 11(3):358–368

	40.	 Owen, S., Shead, T.M., Martin, S.: CAD defeaturing using
machine learning. In: Proceedings of the International Meshing
Roundtable (2019)

	41.	 Sutton RS, Barto AG (2018) Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA

	42.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-
mare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G,
Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–533.
https://​doi.​org/​10.​1038/​natur​e14236

	43.	 Sahba, F., Tizhoosh, H.R., Salama, M.M.A.: A reinforcement
learning framework for medical image segmentation. In: The 2006
IEEE International Joint Conference on Neural Network Proceed-
ings, pp. 511–517 (2006). doi: 10.1109/IJCNN.2006.246725

	44.	 Han, J., Yang, L., Zhang, D., Chang, X., Liang, X.: Reinforce-
ment cutting-agent learning for video object segmentation. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

	45.	 Wang, Y., Dong, M., Shen, J., Wu, Y., Cheng, S., Pantic, M.:
Dynamic face video segmentation via reinforcement learning. In:
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2020)

	46.	 Tiator, M., Geiger, C., Grimm, P.: Point cloud segmentation with
deep reinforcement learning. In: 24th European Conference on
Artificial Intelligence 2020, pp. 2768–2775 (2020)

	47.	 Mukherjee N (2014) An art gallery approach to submap meshing.
Procedia Engineering 82:313–324

	48.	 OpenCascade: OpenCascade Technology, 7.7.0dev. OpenCascade.
com, Moulineaux, France (2022). OpenCascade.com. https://dev.
opencascade.org/doc/overview/html/

	49.	 Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. CoRR abs/1801.01290 (2018) 1801.01290

	50.	 Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: Fast
geometric deep learning with continuous B-spline kernels. CoRR
abs/1711.08920 (2017) 1711.08920

	51.	 CUBIT: The Cubit Geometry and Mesh Generation Toolkit. San-
dia National Laboratories, Albuquerque, NM, USA (2022). Sandia
National Laboratories. https://cubit.sandia.gov/files/cubit/16.06/
help_manual/WebHelp/cubithelp.htm

	52.	 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmai-
son, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning
library. In: Proceedings of the 33rd International Conference on
Neural Information Processing Systems, pp. 8024–8035 (2019)

	53.	 Fey, M., Lenssen, J.E.: Fast graph representation learning with
PyTorch Geometric. In: ICLR Workshop on Representation
Learning on Graphs and Manifolds (2019)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nature14236

	Reinforcement learning for block decomposition of planar CAD models
	Abstract
	1 Introduction
	1.1 Previous work
	1.2 Our approach

	2 Methodology
	2.1 Soft actor-critic-based RL architecture
	2.1.1 Actor network
	2.1.2 Critic network
	2.1.3 Local observation
	2.1.4 Value network

	2.2 Off-policy formulation
	2.3 Entropy Maximization
	2.4 Reward Function
	2.5 Training Phase
	2.6 Deploying the Trained Framework

	3 Numerical Experiments
	3.1 Data Sets
	3.2 Network Architecture
	3.2.1 Actor and Critic Networks
	3.2.2 Value Network
	3.2.3 Reward Function

	3.3 Testing and Reward Convergence
	3.4 Decomposition Examples

	4 Conclusions
	5 Future Work
	References

