
Vol.:(0123456789)

Engineering with Computers (2024) 40:2807–2817 
https://doi.org/10.1007/s00366-023-01940-6

ORIGINAL ARTICLE

Reinforcement learning for block decomposition of planar CAD 
models

Benjamin C. DiPrete1 · Rao Garimella2   · Cristina Garcia Cardona3 · Navamita Ray4

Received: 20 April 2023 / Accepted: 25 December 2023 / Published online: 14 February 2024 
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024

Abstract
The problem of hexahedral mesh generation of general CAD models has vexed researchers for over 3 decades and analysts 
often spend more than 50% of the design-analysis cycle time decomposing complex models into simpler blocks meshable 
by existing techniques. The decomposed blocks are required for generating good quality meshes (tilings of quadrilaterals or 
hexahedra) suitable for numerical simulations of physical systems governed by conservation laws. We present a novel AI-
assisted method for decomposing (segmenting) planar CAD (computer-aided design) models into well shaped rectangular 
blocks. Even though the simple examples presented here can also be meshed using many conventional methods, we believe 
this work is proof-of-principle of a AI-based decomposition method that can eventually be generalized to complex 2D and 
3D CAD models. Our method uses reinforcement learning to train an agent to perform a series of optimal cuts on the CAD 
model that result in a good quality block decomposition. We show that the agent quickly learns an effective strategy for 
picking the location and direction of the cuts and maximizing its rewards. This paper is the first successful demonstration of 
an agent autonomously learning how to perform this block decomposition task effectively, thereby holding the promise of a 
viable method to automate this challenging process for more complex cases.

Keywords  Quadrilateral and Hexahedral Mesh generation · Block decomposition · Reinforcement learning

1  Introduction

Many numerical methods compute approximate solutions 
over a mesh of topologically simpler elements (tetrahe-
dra, hexahedra) representing the computational domain. 
In highly non-linear problems (e.g. fluid dynamics with 
shocks), hexahedra are preferred, or even required, over tet-
rahedra because of their superior accuracy and directional 
control of the solution [1]. In spite of 30+ years of research, 
however, there are no reliable algorithms that can automati-
cally generate hexahedral meshes for general CAD models 
[2, 3]). Contrast this with tetrahedral meshing which has 
long been automatic at scale for realistic industrial problems 
[4, 5].

In an early paper, Thompson [6] proposed a multi-block 
grid generation method to generate hexahedral meshes for 
geometric model naturally composed of 6-sided blocks that 
are topologically cubical but with general geometry. Each 
block in the domain is meshed by mapping a structured 
mesh of cube to the general geometry using transfinite map-
ping [7] while also ensuring that the meshes are continu-
ous across block boundaries. Another early paper by White 
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et al. [8] proposed the reverse process by which realistic 3D 
geometric models were virtually decomposed into 6-sided 
blocks and then tiled with hexahedra (Fig. 1). This process, 
called Block Decomposition, is guided by human intuition 
and acquired domain expertise that readily “sees” how to 
subdivide a model for a particular application. Attempts to 
automate this process have not proven generalizable to arbi-
trary shapes [9, 10].1

1.1 � Previous work

There have been sustained efforts [5] to develop automatic 
algorithms to generate hexahedral meshes for complex geo-
metric models since 3D Finite Element Methods became 
popular. An elementary method (ca. 1980) called mapped 
meshing uses transfinite interpolation to map the structured 
mesh of a canonical cube to topologically equivalent but 
geometrically different domains [11]. For roughly tubular 
geometric models, an algorithm called multi-sweeping [12, 
13] extrudes a quadrilateral mesh on one set of faces to form 
stacks of elements that reach an opposite set.

The Block Decomposition [8] method targeted here gen-
eralizes these techniques by decomposing complex geomet-
ric models into parts that are amenable to mapped meshing 
or multi-sweeping. Block decomposition is favored by sea-
soned analysts for its superior control of mesh quality and 
directionality despite the fact that it must be done manually. 
While there have been significant efforts to devise automatic 
decomposition algorithms of complex models based on the 
model characteristics directly [8–10, 14–16] or on alternate 
model representations like the medial-axis transform [17, 
18], most methods have remained experimental or work on 
a limited class of problems.

In recent years, there has been an sharp uptick in research 
into using artificial intelligence (AI) or machine learning 
(ML) with deep neural networks (NN) for solving meshing 
related problems. Much of the work has focused on using AI/
ML for generating or tweaking 2D triangular meshes with 
point densities suited for a particular PDE (partial differ-
ential equation) solution bypassing mesh adaptation using 
a posteriori error estimation [19–25]. Pan et al. [26, 27] 
describe an actual ML-based quadrilateral mesh generation 
method. A more recent paper by Tong et al. [28] uses a 
combination of supervised learning and reinforcement learn-
ing to assist the advancing front method for generating high 
quality quadrilateral meshes without the need for complex 
checks like front intersection. There are some older papers 
claiming to use “knowledge-based methods” to generate 
meshes [29, 30], recognize model features [31, 32], or even 
decompose geometric models [14, 33] but none of them used 
ML as we know it. Recent papers on CAD and ML have 
focused mainly on Shape Matching [34–36] and to a lesser 
extent on CAD model generation [37, 38] and cleanup [39, 
40].

1.2 � Our approach

This article presents a proof-of-principle demonstration 
of a novel AI-assisted method for decomposing complex 
geometric models into blocks by applying it to planar 
shapes with straight, axis-aligned edges. Our approach 
uses reinforcement learning (RL)  [41] to let an agent 
learn a good sequence of steps to take in order to cut the 
input model into meshable blocks. In RL, an agent learns 
by taking actions in an environment based on the state 
of the environment. Each action moves the environment 
into a new state and grants a reward to the agent. With a 
targeted balance of exploration vs exploitation, the agent 
learns a policy that maximizes the cumulative reward over 
a sequence of actions. RL closely mimics how human ana-
lysts learn to decompose complex shapes into blocks and 

Fig. 1   a CAD model that can-
not be automatically meshed 
entirely with hexahedra b model 
is subdivided into 6-sided 
blocks using cuts c each block 
is meshed by mapping a regular 
hexahedral mesh of a unit cube 
onto the block

1  In general we will use the word model or shape to implicitly mean 
a geometric model and explicitly point out when we use it to mean a 
machine learned approximation of reality.
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in recent years, RL, combined with deep neural networks 
(DNN), has matched or surpassed human-level skill in 
several fields [42]. It is worth noting that this study is 
different from the use of reinforcement learning for image 
segmentation in medicine [43] or in video processing [44, 
45] or segmentation of 3D point clouds [46].

There are many challenges in applying reinforcement 
learning to the problem of block decomposition of complex 
geometric models. Unlike common scenarios like learning 
to play a game or navigate a warehouse where the environ-
ment is fixed, our environment is dynamically changing as 
we make cuts. Thus a naively formulated global observation 
set (i.e. the data about the evolving geometric configuration 
that we can feed to the agent) will vary in size as the epi-
sode progresses making it unsuitable for traditional neural 
networks. The agent itself has multiple types of decisions 
to make - where to perform a modification and what type 
of modification to make (full cut, partial cut, etc.). Addi-
tionally, the parameters of the modification are continuous 
(for example, the angle of a cut) and the agent must learn a 
distribution of expected rewards over the continuous param-
eter space. Finally, the task of the agent is not to master the 
decomposition of one particular geometric model - rather 
the ultimate goal is to learn a generalizable policy that can 
be applied to new configurations.

To tackle this problem, we devise an RL agent to pro-
cess an input geometric model that is planar with straight, 
axis-aligned edges. The agent recursively subdivides it into 
simpler parts using axis-aligned cuts. The environment is a 
custom setup that can read a geometric model and answer 
queries about it (e.g. how many vertices, how many edges 
connected to a vertex, the angle formed by two edges at a 
vertex). The agent also uses the capabilities of the geometric 
modeler to make modifications to the shape - in this particu-
lar study, the modification is slicing the geometric model 
into two or more pieces from a model vertex. The quality 
of the resulting parts (reduced complexity, low aspect ratio) 
determines the reward the agent receives. An episode ends 
when the input is decomposed into all quadrilateral blocks. 
In the results section, we demonstrate that our RL agent 

quickly learns which cuts to make and where to make them 
to maximize its rewards.

While the method is currently demonstrated on simple 
problems that may be solved using procedural algorithms 
such as the art gallery algorithm [47], the purpose of this 
paper is not necessarily to demonstrate superior quality or 
performance in the decomposition of these simple shapes. 
Rather it is to introduce an AI framework that encapsulates 
most of the principles required to apply it to more complex 
2D and 3D shapes and demonstrate that we can effectively 
tackle diverse planar configurations without needing to adapt 
the formulation on a case-by-case basis. We believe this is 
the first time such a reinforcement learning approach has 
been used to tackle the problem of block decomposition.

2 � Methodology

We have developed a customized RL framework that learns 
how to effectively decompose geometric models into blocks 
by exploring the effect of different geometric model modi-
fications. While most components of our RL framework 
are set up for general problems in 2D and 3D, this study is 
limited to decomposing planar shapes with straight, axis-
aligned edges. The CAD model is described using a full-
featured 3D geometric modeler called OpenCascade [48] but 
for the purposes of this discussion, it can be considered to 
be one or more planar shapes, each of which is described by 
a sequence of model vertices and model edges. During each 
step of the training phase, the agent picks a vertex of the 
geometric model, observes the state and makes a geometric 
modification. Currently, the only geometric modification the 
agent can make is a full cut, i.e., slice the geometric model 
into two or more parts using an infinite line (See Fig. 2). 
While we use an RL technique that allows for a continuous 
action space (e.g. cuts originating at any location and angled 
arbitrarily), we restrict the cuts in this study to only originate 
from a model vertex and be aligned with the X- or Y-axis. 
Since the geometric model evolves as the agent makes cuts, 
the size of a global observation set for the full model, e.g. 

Fig. 2   Recursive slicing of the 
model. The left figure shows 
the original model and a vertex 
at which the agent is poised to 
act along with the two cuts it 
can make. The middle figure 
shows the two shapes from the 
first action and the choices for 
the next action. The right figure 
shows the shapes arising from 
the second cut
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the list of vertices, also changes and cannot be used directly 
as input to a traditional neural network. Therefore, follow-
ing the idea of Pan [27], we have designed a fixed size local 
observation set at each model vertex to feed to the neural 
networks in the RL framework. The iterative application of 
this sequence of steps - select vertex, construct local obser-
vations, make a cut, evaluate the quality - allows the agent to 
learn to block decompose the geometric model. In order to 
learn a policy to efficiently perform such a decomposition, 
the agent is trained via feedback from the environment: cuts 
that produce a good partition, e.g. resulting in quadrilateral 
blocks with good aspect ratios are rewarded, while cuts that 
produce a bad partition, e.g. high aspect ratios in its decom-
posed parts, high variance in the areas of its decomposed 
parts or cuts that do not affect the model (cutting along a 
side) are penalized. The policy learned in this way can then 
be applied to perform block decomposition of other planar 
axis-aligned shapes.

2.1 � Soft actor‑critic‑based RL architecture

Our framework uses the soft actor-critic (SAC) reinforce-
ment learning algorithm introduced in  [49]. The SAC 
method provides a sample efficient (i.e. moderate data col-
lection demands) and stable, model-free,2 deep RL algo-
rithm for continuous state and action spaces. While it may 
be argued that this problem might be tackled with a deep 
Q-network, the reason for using a SAC-type algorithm is to 
build a framework that can be generalized to more complex 
2D and 3D models that require arbitrarily angled or partial 
cuts from any boundary location.

There are three main components in the SAC algorithm: 

1.	 An actor-critic architecture with separate policy and 
value function networks,

2.	 An off-policy formulation that enables reuse of previ-
ously collected data for efficiency, and

3.	 Entropy maximization to enable stability and explora-
tion.

The implementation of the soft actor-critic architecture 
includes three separate networks: an actor network, a critic 
network and a value function network that are optimized 
jointly during training. As discussed by [49], this not only 
provides flexibility to handle large continuous domains, but 
can also help to stabilize training.

2.1.1 � Actor network

The actor network outputs a probability distribution over the 
action space A and is also in charge of executing actions. 
In our case, it is implemented as a traditional neural net-
work that receives as input a local observation (described 
below). Its output determines the probability for each of the 
two directions allowed for cuts from a given vertex: along 
the X-axis or Y-axis. Note that training uses a stochastic 
actor, where the selection of a cutting direction is made ran-
domly weighted by the estimated probabilities, while, during 
deployment, the actor behaves deterministically selecting 
the action with the maximum estimated probability. The 
stochasticity is useful to maximize the entropy of the actor 
network and encourage exploration of the environment in 
the training phase.

2.1.2 � Critic network

The critic network qualifies how good the allowed actions 
are for a given state. It is similar to a Q-network in Deep-Q 
learning [42] in that it learns to approximate the Q-value 
of actions in a given state, i.e. it learns to approximate the 
reward for a given state-action pair,3 along with all future 
rewards along the expected trajectory. In our case, it is also 
implemented as a traditional neural network that receives as 
input a local observation and determines the Q-value (qual-
ity) of X-axis and Y-axis cuts.

2.1.3 � Local observation

The actor and critic networks are represented as traditional 
neural networks that expect a fixed input structure and, thus, 
are not able to handle the varying size and complexity of 
the evolving environment (i.e. the changing collection of 
vertices and edges as the geometric model is sliced repeat-
edly). Hence, we construct a special fixed structure to cap-
ture important local shape information observed at a chosen 
model vertex. The features included in this structure are:

•	 Vectors to the two neighboring vertices
•	 Type of interior angle formed by the two vectors (acute, 

right, obtuse, reentrant, etc)
•	 Vector to the centroid of the shape being processed
•	 Aspect ratio of the shape being processed

A schematic of the local observation features can be found 
in Fig. 3. As explained later, the complexity of observations 

2  Here we are talking of a model of a general environment for RL, 
not a geometric model.

3  In reinforcement learning terminology, an action-state pair refers to 
the selection of a particular action from all possible actions in a par-
ticular state of the environment.



2811Engineering with Computers (2024) 40:2807–2817	

at model vertices in our study remains fixed because the two 
parts resulting from a cut are treated as independent parts for 
the next cut - thus every model vertex remains connected to 
two adjacent vertices.

2.1.4 � Value network

The value network qualifies how good a particular state is. In 
other words, this network learns to approximate the expected 
reward and future rewards the actor will receive in a given 
state. In our case, this network allows the actor to choose 
the next vertex to perform a cut. Thus, it is more appropri-
ate to regard this network as being able to approximate the 
expected reward and future rewards the actor will receive for 
making a cut from a specific vertex. For efficiently capturing 
all the relevant vertex-level information for the full model, 
this network must be able to handle the varying collection of 
vertices produced during shape decomposition. Hence, we 
implement this network as a graph neural network (GNN), 
specifically as a SplineCNN network [50]. The network 
receives as input a triangular mesh of the planar model. We 

can control the resolution of this triangular mesh, usually 
preferring coarse meshes to avoid excessive computational 
burden. We tag the mesh vertices as being coincident with 
model vertices, lying on a model edge or lying in the interior 
of the model as shown in Fig. 4b. Furthermore, notice that 
the GNN not only allows us to work with a changing num-
ber of vertices, it also enables the incorporation of spatial 
geometric information of the current decomposition state, 
information that would be much more difficult to encode 
using a traditional NN.

Although the value network produces an output at every 
mesh node, only the outputs at the model vertices (i.e. red 
points in Fig. 4b) are considered. As stated above, the output 
value of the value network at a model vertex is an approxi-
mation to the expected reward and future rewards if a cut 
is made at that vertex. With this structure in place, we can 
chose a vertex to perform a cut at every step of an episode. 
Mimicking the stochastic actor concept, the set of values 
produced by the value network on the model vertices is used 
during training as probability weights and the vertex to per-
form a cut is randomly selected using these weights with the 
goal of encouraging exploration. In contrast, the selection 
is deterministic during deployment and the vertex with the 
highest output of the value network is selected to perform 
a cut.

2.2 � Off‑policy formulation

The SAC algorithm uses off-policy actor-critic training, 
combined with a stochastic actor as described before, which 
results in a more stable and scalable algorithm. Such a strat-
egy allows it to reuse past experience to train the models 
and increases the sample efficiency. It is implemented by 
storing a distribution D of previously sampled states, actions 
and rewards, and using it as a replay buffer during training. 
We follow this approach during training which alternates 
between collecting experience from the environment by 
applying the current policy, and updating the networks via 

Fig. 3   Features included in the local observation: Vectors to neigh-
boring vertices ( V

1
 , V

2
 ) and vector to centroid of the shape ( V

c
 ), angle 

of the vertex corner ( � ), aspect ratio of full shape (H/W)

Fig. 4   Example planar shape 
and corresponding triangula-
tion input to the value network. 
In the triangulation input, red 
mesh vertices lie on model 
vertices (vertex type 2), green 
mesh vertices lie on model 
edges (vertex type 1), blue 
mesh vertices lie in the interior 
(vertex type 0)

(a) Example planar shape. (b) Triangulation input.
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stochastic gradients computed from batches sampled from 
the replay buffer.

2.3 � Entropy Maximization

Unlike the regular actor-critic framework, SAC rewards 
entropy in its actions by optimizing policies to maximize 
both the expected return and the expected entropy of the 
policy. This encourages exploration of the environment and 
makes the algorithm more robust and capable of general 
learning, rather than just memorization. The maximum 
entropy policies are also robust to estimation errors and 
improve exploration by allowing the acquisition of diverse 
behaviors.

2.4 � Reward Function

The reward function is a critical component of the RL frame-
work and contributes to the effectiveness with which the 
agent carries out the task at hand. In our case, we devise a 
reward function to

•	 Encourage creating quadrilateral parts
•	 Discourage cuts that do not affect the geometric model 

(e.g. cutting along a side)
•	 Discourage high variance in the areas of its decomposed 

parts
•	 Discourage high aspect ratios in its decomposed parts

Once the geometric model is fully decomposed into blocks, 
the agent gets a bonus reward and the episode concludes. 
The exact form of the rewards used for this study are given 
in the results section.

2.5 � Training Phase

The training phase is composed of a collection of episodes, 
each episode consisting of all the steps needed for decom-
posing a given geometric model. During a training episode, 
the agent uses the value network output to select a vertex 
to cut, and the actor network output to select the particular 
action to take. Both of these are done stochastically to ensure 
a higher level of exploration during training.

The steps listed below are iterated during a training 
episode 

	 1.	 Triangulate the shape being processed
	 2.	 Run the value network on the triangulation to generate 

weights at mesh vertices
	 3.	 Stochastically select a model vertex based on value 

network outputs
	 4.	 Compile a local observation at the vertex

	 5.	 Stochastically choose a direction for a cut at the vertex 
based on actor network probability outputs

	 6.	 Split the geometric model into two or more parts along 
the chosen direction

	 7.	 Compute the new state and reward
	 8.	 Store sampled states, actions and rewards in the replay 

buffer
	 9.	 Update parameters for every network following the 

gradient step
	10.	 Pick another non-quadrilateral part from the geometric 

model decomposition and repeat from step 1

Geometric models are loaded repeatedly from the training 
set, one per episode. A set number of episodes is run during 
training. The training of all the networks uses the Adam opti-
mization algorithm. The functions optimized in each case 
are the same as in the SAC original work. There is, however, 
a slight difference in the value network: when calculating the 
loss, the network only propagates loss for the node that was 
chosen to make a cut from.

Note that a cut goes fully through the shape and splits it 
into two or more parts (see Fig. 2). Instead of keeping the 
model as a collection of generated parts, we treat each part 
as a new shape to explore. Thus at each step we split the 
model, set aside quadrilateral parts, and put the remaining 
parts in a processing queue. This approach sacrifices the 
full model view, but makes it simpler and more robust since 
the agent does not encounter a local state of ever increasing 
complexity and there is no need to accumulate the knowl-
edge of how the parts build up. An additional benefit of this 
approach is that each new part generated is a training data 
sample for the agent.

2.6 � Deploying the Trained Framework

After the framework is trained, the combination of value 
network and actor network constitute the learned policy. The 
decomposition of new geometric model proceeds as follows 
(with similarities to the training phase): 

1.	 Triangulate the shape being processed
2.	 Run the value network on the triangulation to generate 

weights at mesh vertices
3.	 Deterministically select a model vertex with highest 

value output by the value network
4.	 Compile a local observation at the vertex
5.	 Deterministically choose the cut direction with the high-

est probability as predicted by the actor network
6.	 Split the geometric model into two or more parts along 

the chosen direction
7.	 Compute the new state and reward
8.	 Pick another non-quadrilateral part from the geometric 

model decomposition and repeat from step 1
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Crucially, at the end of the decomposition, all the shapes 
are merged backed together while retaining the boundaries 
between them. Thus vertices that appear on the boundary 
of one block are also reflected in the boundary of adjacent 
blocks. The merged model is then meshed using well-
known procedures. In our case, we import the parts into 
the CUBIT geometric modeling and meshing package [51], 
use its imprint-and-merge functionality to recreate a single 
geometric model (with internal cuts) and apply a mapped 
meshing algorithm.

3 � Numerical Experiments

3.1 � Data Sets

Our training and testing data set includes 49 planar shapes 
with straight, axis-aligned edges. These were generated 
using our python script that invokes the CUBIT package 
[51] to randomly generate and combine 2 to 10 rectangles. 
The training and test data sets consist of 37 models and 12 
independent models respectively (Figs. 5a, 5b).

3.2 � Network Architecture

All networks are implemented using PyTorch  [52] and 
PyTorch Geometric  [53]. The architectures used are 
described next.

3.2.1 � Actor and Critic Networks

These networks are traditional feed-forward NN composed 
of 4 fully connected layers, with 256, 128, 64 and 2 neurons, 
respectively (the last of these layers is the output layer). We 
use rectified linear unit (ReLU) activation functions after 
each of these layers, except for the last layer in the critic 

network4 that uses a linear activation function. The input 
dimension is 9, corresponding to the size of the local obser-
vation: 2 dimensional (2D) vector for each of the 2 neigh-
boring vertices, 2D vector to centroid, 1 value for angle at 
vertex and 2 components to represent the aspect ratio. The 
networks have 2 outputs which correspond to the dimension 
of the action space (i.e. 2 cut directions: X-axis or Y-axis).

3.2.2 � Value Network

This network is a GNN. It contains 1 SplineCNN layer, fol-
lowed by 7 residual blocks and 1 final SplineCNN output 
layer. Each residual block is composed of 2 SplineCNN lay-
ers. There are batch normalization layers after all the Spli-
neCNN layers except the output layer. We use exponential 
linear unit (ELU) activation functions except in the output 
layer. Every SplineCNN layer has a kernel size of 5, mean-
ing the 2D B-spline function for the continuous kernel has 
25 defining points, with 5 points on each axis. The number 
of nodes in the graph is arbitrary and depends on the triangu-
lation of the shape. Each node in the graph input layer has 3 
features because each node has one-hot encoded vector fea-
tures: (1, 0, 0) represents interior point, (0, 1, 0) represents 
boundary point and (0, 0, 1) represents model vertex. Each 
node in the graph output layer has 1 feature corresponding to 
the value function for that node, but only nodes correspond-
ing to model vertices are taken into account. The first Spli-
neCNN layer has 64 features. The residual blocks have 128, 
256, 128, 64, 32, 16 and 8 features, respectively. Note that 
if the number of features does not change through a residual 
block, the input features to the residual block are simply 
summed with the output features. However, if the number 
of features does change through a block, the skip connec-
tion contains 1 SplineCNN layer, with as many features as 
the features in the block. All our residual blocks change the 
number of features.

Fig. 5   Samples from the (a) 
training data set containing 37 
models and (b) test data set 
containing 12 models

4  We actually use two equally parameterized critic networks as in the 
original SAC work, see [49] for details.
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3.2.3 � Reward Function

Assume that a splitting action on a shape results in N new 
shapes, with N

q
 of them being quadrilaterals. Let the areas 

of the shapes be A
i
, i = 1,N , and aspect ratios R

i
, i = 1,N 

(where the aspect ratio of a shape is defined as the ratio of 
the longest side to the shortest side of its bounding box). 
Also, let the average area of all the shapes be Ā.

The reward R is defined as

Note that minimum possible aspect ratio is 1 and therefore 
the leading term (reciprocal of the root mean square of 
aspect ratios) takes a maximum value of 1 when all shapes 
are squares. The second term which measures variance in 
the areas of the shapes takes a minimum value of 0 when 
all the areas are equal. The third term is a maximum if the 
action results in all quads ( N

q
= N ). The fourth term serves 

as a penalty for actions that result in no new shapes ( N = 1) . 
Thus the maximum reward is obtained when the action cuts 
the shape into squares of equal area.
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3.3 � Testing and Reward Convergence

As the model learns using the training set, the RL frame-
work’s learning is periodically checked against the test 
set. In a testing episode, the vertex at which to act and the 
action to take are chosen deterministically to maximize the 
reward - a vertex with the highest output from the value 
network is chosen, and the action with the highest prob-
ability from the actor network is applied at that vertex.

Figure 6a shows a moving average of rewards (over 10 
episodes) obtained by the RL framework during the train-
ing phase. Figure 6b shows the convergence of a moving 
average of rewards during the periodic testing episodes. 
We observe that after only around 1500 episodes of train-
ing (an hour or so of training time) the model learned to 
obtain consistently high rewards on its training set, but 
also on the test set of shapes it has never trained on. The 
oscillations in the reward plot of the training set indicate 
that the agent is continuing to favor exploration rather than 
exploitation. The good reward convergence seen on the test 
set implies that the agent is steadily gathering generaliz-
able knowledge about the decomposition problem for this 
category of shapes.

Fig. 6   Reward convergence 
obtained by the training

(a) Rewards obtained by the agent on the
training dataset as it trained.

(b) Rewards obtained by the agent on the
test dataset as it trained.

Fig. 7   The block decomposition 
(middle) returned by the agent 
for the test shape shown on the 
left and its mesh from CUBIT 
(right)
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3.4 � Decomposition Examples

Finally, in Figs. 7 and 8, we present two examples of block 
decompositions obtained for test shapes (i.e. shapes that the 
agent never trained on). It showcases the learned knowledge 
of the agent after it was trained. The block decompositions 
were then meshed using CUBIT to generate quadrilateral 
meshes of the decomposed shape.

4 � Conclusions

We have demonstrated a novel reinforcement learning-based 
AI method to decompose input CAD shapes into well shaped 
blocks that can be meshed for numerical simulations. The 
results show that an agent using the SAC reinforcement 
learning framework can learn a block decomposition policy 
that generalizes to new planar, axis-aligned shapes.

While this proof-of-principle demonstration is restricted 
to simple 2D shapes and elementary geometric model 
modifications, it contains most of the principles required 
to generalize it to more complex shapes in 2D and 3D. The 
environment is based on geometric modelers which regu-
larly handle complex 3D shapes with curved boundaries. 
The agent’s actions are modeled on the types of operations 
a human agent decomposing a shape will execute using 
a geometric modeler (e.g. planar model cuts). The use of 
Soft-Actor-Critic framework allows for continuous actions 
(e.g. cuts at an angle) in the future. Similarly, the rewards 
are based on the quality evaluation of the blocks used by 
meshing algorithms and analysts. The issue of variability 
in the starting environment and the dynamic evolution of 
the environment are already addressed in this simple prob-
lem using a graph-based value neural network. Thus, we 
can reasonably surmise that the method can eventually be 
generalized to address the real problem of decomposing 3D 
shapes thereby alleviating one of the long standing problems 
in meshing.

5 � Future Work

In the future, we will expand this research to tackle more 
complex 2D and 3D shapes. We will extend this method to 
non-axis aligned 2D shapes by first cutting along edges and 
eventually at arbitrary angles. Expanding to more complex 
curved geometric models will require expansion of the 
types of actions to include partial cuts or some other tem-
plated subdivision (like making a square internal boundary 
inside a circular part). The reward function definitions may 
also have to be refined further. Expanding the method to 
3D requires tetrahedral meshes for the value network, an 
expanded set of observations, generalized reward functions 
and more types of geometric modifications.
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