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Abstract
There is a need for solutions which assist users to understand long time-series data by observing its changes over time,
finding repeated patterns, detecting outliers, and effectively labeling data instances. Although these tasks are quite distinct
and are usually tackled separately, we present an interactive visual analytics system and approach that can address these
issues in a single system. It enables users to visualize, understand and explore univariate or multivariate long time-series
data in one image using a connected scatter plot. It supports interactive analysis and exploration for pattern discovery and
outlier detection. Different dimensionality reduction techniques are used and compared in our system. Because of its power
of extracting features, deep learning is used for multivariate time-series along with 2D reduction techniques for rapid and
easy interpretation and interaction with large amount of time-series data. We deploy our system with different time-series
datasets and report two real-world case studies that are used to evaluate our system.

Keywords Time-series data · Visual analytics · Sliding window · Dimension reduction · Time-series graph · 2D projection ·
Repeated patterns · Outliers · Labeling

1 Introduction

Due to the growing amount of collected time-series data and
the increase in the complexities involved in its understanding
in practice, processing and analyzing such data have become
more substantial procedures to understand the characteristics
of the data and obtain meaningful insights and knowledge
from it. Different approaches have been developed to extract
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useful information from raw time-series data including data-
mining. In many situations, however, automated techniques
do not achieve satisfactory results, so experts rely on visual
analytics tools to perform their tasks [17]. Visual analyt-
ics [23] combines the strengths of machine capabilities with
human capabilities to facilitate exploration, analysis, under-
standing, and providing insights. The visual analytics process
aims to tightly couple automatic analysis methods and inter-
active visualization to gain knowledge from raw data and
present a possible chance for analysts, through interaction
tasks, to analyze, explore and understand data.

The time-series data are commonly represented as a time-
series graph. When dealing with a small data space, time-
series graphs are effective, but performing common tasks
such as anomaly detection, extracting frequently occurring
patterns, classifying time-series subsequences into clusters of
similar patterns, or getting an overview of an uncompressed
or compressed time-series graph for large time-series data
become more challenging.

There is a considerable amount of works in information
visualization which examine alternative visual encodings,
such as color-fields [3,16,47] and horizon graphs [22,38].
They have focused on elementary visual tasks that evalu-
ate estimation, such as, point comparison and discrimination
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tasks, or estimation of averages. Thus, the results say very
little about how the users assess the similarity of two or
more time-series when utilizing various time-series visu-
alizations [17]. Such tasks usually involve the notion of
similarity between time-series which is sometimes ineffi-
cient [31]. Dimensionality reduction also is used to enhance
the efficiency of finding repeated patterns by extracting fea-
tures which usually require a discrete representation of the
time-series [31]. Thus, locating such patterns is not easy and
requires the user to have a better understanding of where
repeated patterns (clusters) or outliers (anomalies) occur
especially for the data that have long periods, and how rela-
tionships between data change over time.

In this paper, we investigate a methodology for visu-
alization and interaction with large time-series. The tasks
of anomaly discovery and discovery of frequent patterns
are quite distinct and are usually tackled separately. Our
approach addresses these issues in a single system. The pro-
posed approach uses a sliding window and dimensionality
reduction techniques which aim to depict a large time-series
data as points into a 2D connected scatter plot. The sliding
window moves along the time axis and relies on two main
factors: stride between the existingwindowandnextwindow;
and the window size. Each vector derived from the sliding
window will be considered as a point in high-dimensional
space representing the phenomenon under consideration. To
enable analysis and exploration, we apply dimensionality
reduction techniques to project the points to two dimensions.
The two-dimensional projections are used to simplify navi-
gation techniques and prevent clutter. Ultimately, the whole
time-series data are presented in one image. From the result-
ing projections, selecting any points should allow the user
to know why they are similar or different, where outliers
(anomalies) occur, where clusters (repeated patterns) occur,
and how the relations between points evolve (connected lines
between points). The methodology applies to univariate and
multivariate time-series data and demonstrates how it aids
the user to label patterns in time-series dataset.

The proposed visual analytics system and approach assists
users to understand and visualize a large time-series data
using both connected scatter plots which represent the entire
dataset after the projection to the new space simultaneously
with time-series graph. It provides novel interactive solutions
to many pattern discovery issues such as anomalous or fre-
quent patterns. It also assists to display how the form of data
develops over time helping researchers to see, understand,
and compare the phenomena under consideration over time.
Dense clusters allow the rapid labeling of similar patterns.
Also, selecting subsets of data in the original time series view
allows them to be located in the connected scatter view.

Overall, our contributions in this work are that we:

1. Demonstrate a visual analytics system that aids identi-
fication of patterns, repeated patterns (clusters), outliers
(anomalies), and transitions between states in large time-
series data.

2. Use a deep convolutional auto-encoder (DCAE) to apply
our approach to multivariate time-series data. Thus, our
approach will be suitable for both univariate and multi-
variate time-series data.

3. Provide visual comparisons of the different approaches
to dimension reduction in our accompanying video.

4. Evaluate our approach and system with two case studies
utilizing two different time-series datasets.

In the following sections, we present a review of the chal-
lenges, approaches, and systems that are relevant to ourwork,
as well as present and evaluate our approach.

2 Background and related work

In this section, we discuss the prior works that are pertinent
to our work.We divide the related work into three categories:
(1) pattern discovery, (2) labeling time-series data, (3) dimen-
sionality reduction techniques. A brief description of each
category and some works that are related to it will be dis-
cussed.

2.1 Pattern discovery

Pattern discovery is utilized to detect interesting patterns
in the data. The presence of interesting patterns is discov-
ered without any prior assumptions. Under this group, there
are two main sub-tasks which are: (a) Identifying outliers
(anomalies) in time-series which aims to extract data that
deviates from other data and does not conform to an expected
pattern in the data. (b) Identifying common patterns (motifs)
in time-series that aims to find frequently occurring patterns
in a large dataset.

VizTree [30] uses symbolic aggregate approximation
(SAX) to discretize time-series data into a sequence of sym-
bols. A suffix tree encapsulates the global and local structures
of time-series data. Patterns are generated by moving a slid-
ing window along the time-series data which are represented
by a horizontal tree visualization. Performing different pat-
tern discovery tasks is available in VizTree such as finding
frequently occurring patterns (motif discovery) by selecting
the thickest branches across the tree and surprising patterns
(anomaly detection) by selecting the thinnest branches across
the tree.

The Viztree algorithm is fast and effective but it assumes
prior knowledge of the length of themotif to be found. There-
fore, motifs with lengths other than the pre-defined length
would remain undetected. However, if the algorithm re-runs
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TimeCluster: dimension reduction applied to temporal data for visual analytics 1015

multiple times using different motif lengths, motifs could be
detected, but would reduce its efficiency [56,57].

To overcome fixed pattern length, Li et al. [29] intro-
duced a system for detecting variable length motifs by
grammar induction on symbolic representations. Senin et al.
[42] extend GrammarViz [29] to incorporate the parameter-
less discovery of anomalies in time-series data. However,
processing multi-dimensional data [34] is unavailable in
GrammarViz.

Ordonez et al. [37] add radial representations to their line
graphs to simplify the motif analysis process; however, this
could create an overlapping problem because multiple lines
are drawn along the circular axes [10]. TimeSeer [36] uses
scagnostics to identify scatter plots of data attributes at each
time index. Using the statistical summaries lets the user to
explore pairs of variables which helps detecting outliers in
the time-series data. The interface of TimeSeer has lots of
details which may require user training for data exploration
[45]. Legg et al. [26] employ a sketch-based system for query-
by-example search for similar patterns.

TimeSearcher2 [11] allows pattern discovery through
query by example. Filtering is utilized to decrease the size of
the search and allow users to explore multi-dimensional data
using graphs and coordinated tables. The rubberband selec-
tion is also applied allowing users to perform a pattern search
utilizing Euclidean distance. At least, one pattern must be
provided to start the matching process. Similarly, TimeClas-
sifier [53] requires the user to select one behavioral instance
in order to perform the matching process. Therefore, both
systems demand the user to have an overall notion of what
constitutes intriguing or repeating patterns to be selected.

2.2 Labeling time-series data

Labeling is the task of providing labels y to given input
instances x; thus, labels can be utilized to find functions
f that map instances to labels, for example, f (x1, x2) =
y where x1 and x2 are instances and y is the label [8].
Bernard et al. [7] conduct a study to compare and assess
the performance of various labeling strategies using machine
learning and visual analytics. Both fields have individ-
ual strengths and weaknesses. Machine learning follows
a model-centered approach while visual analytics employs
user-centered approaches. They conclude that visual ana-
lytics (visual-interactive labeling) can perform better than
machine learning (active learning) provided that dimen-
sion reduction successfully separates the class distributions.
Alsallakh et al. [5] introduce a visual analytics approach
which supports the user with automated segmentation results
and assists domain experts to inspect the results, to iden-
tify segmentation problems, and correctmislabeled segments
accordingly. Rohlig et al. [39] propose a visual analyt-
ics system to help the user to comprehend the influence

of parameters on the resulting segmentation and labeling.
Thus, it supports subsequent decision making and enhances
higher accuracy as well as confidence in the results. For the
exploration of time-series data, Walker et al. [53] introduce
TimeClassifier a visual analytics system for the classification
of time-series to facilitate in labeling smart sensor data. They
also introduce TimeNotes [52] which supports interactive
selection, hierarchical navigation, exploration, and compar-
ison of time-series data. Similar to our use case, sequences
are labeled with overlaid colored regions illustrating labeled
animal behavior.

2.3 Dimensionality reduction techniques

An efficient motif discovery algorithm for time-series would
be beneficial to summarize and visualize large datasets.
Dimensionality reduction is a way to enhance the efficiency
of extracting patterns in data [31]. Utilizing dimension reduc-
tion in combination with further visual encodings that reveal
the internal state of the learning model enhances the perfor-
mance of visual-interactive labeling [7].

Principal component analysis (PCA), as a feature extrac-
tion method, is applied to time-series data [27,46,59,60]. It is
used to decrease the dimensions of ad-dimensional dataset by
decreasing it to a k-dimensional subspace (where k < d). t-
Distributed Stochastic Neighbor Embedding (t-SNE) is used
[13,28,48,58]which helps to visualize high-dimensional data
by giving each datapoint a location in a two- or three-
dimensional map. Huang et al. [21] use deep convolutional
auto-encoder (DCAE), based on deep convolutional neural
network (CNN), to hierarchically model tfMRI time-series
data in an unsupervisedmanner. DCAE is a powerful method
for learning high-level and mid-level abstractions from low-
level raw data. It has the ability to extract features from
complex and large time-series in an unsupervised manner.

In this work, dimension reduction visually clusters sim-
ilar patterns removing the need for length matching com-
putation. Previous works [4,48] also use sliding window
approach and PCA, but here we introduce the option to
switch between different dimensionality reduction tech-
niques (t-SNE,UMAPandPCA) and also deep convolutional
auto-encoder (DCAE). We develop the methodology further
to incorporate DCAE work with multivariate time-series,
provide a thorough consideration of parameters in the accom-
panying video, and discuss the results.

3 Overview of themethodology

Our method is designed for detecting, exploring and inter-
preting outlier patterns (anomalous) and repeated patterns
(clusters) in large time-series data. In this section, we intro-
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Fig. 1 An overview of our proposed visual analytics approach. It starts
from raw time-series data and ends allowing users to interact with the
system and changing the parameters which help to improve and fit
the users tasks. Transforming time-series data into a 2D space (points)
passing through a multi-step process including preprocessing (the time-
series data are in high-dimensional space after this step), dimensionality
reduction techniques are used to project each sliding window into a 2D

space (if the number of time-dependent variables is univariate PCA,
t-SNE, or UMAP are applied directly on the sliding window matrix,
but if it is multivariate, DCAE is applied to extract important features
which are then projected into a 2D space using PCA, t-SNE, or UMAP),
visualizing the data into a 2D space, assisting users to detect outliers
and frequent patterns in large time-series data, and allowing users to
interact with the system and customize views

duce our pipeline (Fig. 1) which helps users to visualize,
understand, explore, and validate large time-series data.

3.1 Preprocessing

Data preprocessing transforms the raw data. In this step,
we, respectively, apply normalization and sliding window
approach.

3.1.1 Normalization

In our case, we use unity-based normalization Eq. (1) to set
all values into the range [0,1].

x
′ = x − min(x)

max(x) − min(x)
(1)

3.1.2 Sliding window approach

Define a continuousmultivariate time-series dataDof dimen-
sion d with n time-steps, D = X1, X2, . . . , Xn , where each
Xi = {

x1i , . . . , x
d
i

}
. Letw be the window width, s the stride,

and t the start time of a sliding window in the data.

Define a new matrix Zk where each row is a vector of size
w of data extracted from the kth dimension.

Zk(w, s, t)

=

⎡

⎢⎢⎢
⎣

xkt xkt+1 . . . xkt+w−1
xkt+s xkt+s+1 . . . xkt+s+w−1
...

...
. . .

...

xkt+(r−1)s xkt+(r−1)s+1 . . . xkt+(r−1)s+w−1

⎤

⎥⎥⎥
⎦

where r is the number of desired rows, and t + (r − 1)s +
w − 1 ≤ n

When more than one dimension of the multivariate data
is used, the data are interleaved as depicted in (Fig. 1). As a
default setting, the values of the window size (width) w and
stride (offset) s have their default values where w = 60 and
s = 1. However, they can be interactively changed using a
slider in the system interface which gives the user control
over the parameters w and s and helps to get insight into
behaviors at different resolutions. These values are explored
in the accompanying video. The overlapping between win-
dows is very useful for avoiding lost data and facilitating
the smooth transition between time-steps after reducing the
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dimensionality of the features. Also, it helps to capture local
temporal patterns in the datasets.

3.2 Dimensionality reduction (DR)

The resultant matrix from the sliding window approach is
treated as points in high-dimensional space. Each such point
represents the phenomena that occur at a different time-
interval. We use DR techniques to provide an alternative
view for users to visually analyze and explore the time-series
data. The aim is to reduce the feature space to two dimen-
sions using DR techniques. A higher-level abstraction is also
generated which represents the data while preserving the
shape characteristics of the original data during the reduc-
tion process. In general, choosing a particular DR technique
is important in our approach because the visualization phase
is dependent on it.

There are several linear and nonlinear DR techniques
have been proposed which aim at decreasing the number of
variables that describe the data [50]. The data attributes of
the features in the lower-dimensional subspace are therefore
approximated to the geometric attributes of the data in the
original high-dimensional space. In our work, different lin-
ear and nonlinearDR techniques are applied such as Principal
Component Analysis (PCA), t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [49], Uniform Manifold Approxi-
mation and Projection (UMAP) [33], and deep convolutional
auto-encoder (DCAE). The target of using these techniques
is to differentiate and visualize high-dimensional data by giv-
ing each data point a location in a two-dimensionalmap, thus,
different perceptions of the phenomenon under consideration
will be presented which help to visualize, analyze, and facil-
itate exploration of large time-series datasets. To overcome
the complexity of multivariate time-series, DCAE is used to
reduce the features to a certain value, then PCA, t-SNE, or
UMAP is applied to the reduced features to obtain a 2D visu-
alization while univariate time-series is straightway reduced
to a 2D using PCA, t-SNE, or UMAP (Fig. 1).

We choose PCA as an initial DR technique. As nonlinear
techniques, t-SNE and UMAP are available in the system
using source code provided by the authors [33,49]. Nonlinear
DR techniques could help to avoid overcrowding issues [6].
Both t-SNE andUMAP use as default the standard Euclidean
distance between data points.

While t-SNE is currently the most commonly used
technique, the new algorithm UMAP shows its high com-
petitiveness compared to t-SNE [6]. t-SNE suffers from
some limitations such as loss of large-scale information (the
inter-cluster relationships). UMAP has a faster runtime and
provides better scaling which helps to gain a meaningful
organization of clusters, outliers and the preservation of con-
tinuums compared to t-SNE [6,33,51] (Fig. 2 and discussion
in the case studies).

Fig. 2 Top: (all) a selected part of the time-series graph which contains
12000 flow data points of breathing (exhalation and inhalation for one
person). Bottom: connected scatter plot of the data after applying our
methodology, a PCA, b t-SNE, and c UMAP. The yellow highlight in
the time-series graph with the corresponding yellow points are shown
in the connected scatter plot indicates the breathing at that moment
was completely distinct which is clearly obvious once it is labeled in
time-series graph

3.3 Deep convolutional auto-encoder (DCAE)

One of the practical applications of auto-encoders is dimen-
sionality reduction for data visualization. It can learn data
projections that are more interesting than other basic tech-
niques [15]. Deep convolutional auto-encoder (DCAE) is
a strong nonlinear dimensionality reduction method [14].
Compared to the conventional auto-encoder, DCAE has
fewer parameters than the conventional auto-encoder which
means less training time. Also, DCAE uses local information
to reconstruct the signal while conventional auto-encoders
utilize fully connected layers to globally do the reconstruc-
tion. DCAE is an unsupervised model for representation
learning which maps inputs into a new representation space.
It has two main parts which are the encoding part that is used
to project the data into a set of feature spaces and the decod-
ing part that reconstructs the original data. The latent space
representation is the spacewhere the data lie in the bottleneck
layers.

Reducing the dimensionality is achieved by unsupervised
training of an encoder and a decoder neural network, mini-
mizing the reconstruction error [19,32]. The latent features
resulting from the encoder are flattened, and one of PCA,
UMAP, or t-SNE is then used to reduce them to 2D for visu-
alization.

3.3.1 Architecture

The loss function of theDCAE is defined as the error between
the input and the output. DCAE aims to find a code for each
input by minimizing the mean squared error (MSE) between
its input (original data) and output (reconstructed data). The
MSE is used which assists to minimize the loss; thus, the
network is forced to learn a low-dimensional representation
of the input [14,19].
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Table 1 Architecture of the
deep convolutional auto-encoder
with the dense layer highlighted
in bold

Layers Shape Filter size Number of kernels Number of units Activation

Input 60 × 3

Convolution 60 × 64 10 64 ReLu

MaxPool 30 × 64 2

Convolution 30 × 32 5 32 ReLu

MaxPool 15 × 32 2

Convolution 15 × 12 5 12 ReLu

MaxPool 5 × 12 3

Flatten

Dense 60 Linear

reshape 5 × 12

Convolution 5 × 12 5 12 ReLu

Upsample 15 × 12 3

Convolution 15 × 32 5 32 ReLu

Upsample 30 × 32 2

Convolution 30 × 64 10 64 ReLu

Upsample 60 × 64 2

Output 60 × 3 10 3 Linear

For convenience, all layers input and output shape, fil-
ters size, number of kernels, number of units, and activation
functions of the DCAE are summarized in Table 1 and can
be explained as detailed below:

The network architecture consists of three main parts
which are encoding part, encoded representation or bottle-
neck (compressed representation), and decoding part. The
shape of the input and output layers are 60 × 3. In the
encoding part, there are three convolutional layers, and each
layer is followed by pooling layer. The max pooling is
used which is a down-sampling operation on feature maps.
Using max pooling has two main benefits which are: it
obtains translation-invariant features [40]. Second, it ulti-
mately reduces the computational cost for the upper layer
[21]. It is followed by fully connected layers, which take
the output of the last convolution layer and flattens it to
60neurons. In the decoding part, it has three convolutional
layers, and each layer is followed by the upsampling layer
which is a process that is mainly used to increase the size
of the input data. It works by repeating each temporal step
n times along the time axis. In our case n = 3 after the first
convolutional layer, and n = 2 after the second and third
convolutional layers in the decoding part. The upsampling
process does not apply any particular function, just iterates
the contents of the input. The last convolutional layer has
output shape which is of the same shape as the input. As
activation function, a Rectified Linear Unit activation func-
tion (Relu) [35], defined as ReLU(x) = max(0, x), is used
in all of the convolutional layers except the hidden layer and
the final layer of the decoder part where linear activation
function is used.

Using the Relu activation function has some advantages
which have been discussed in previous studies [25,35] for
example, it reduces the probability of vanishing gradient
which often occurredwhen themodel is deep.Another exam-
ple is that it adds nonlinearity and guarantees the robustness
of the system against noise in the input signals [2]. The out-
put of the last layer in the decoding part is the reconstructed
data of the original input where linear activation is used.
Also, linear activation is used on the latent space layer (fully
connected layer or hidden layer) to preserve the extracted
features from the last conventional layer in the encoding part
which will be used as input to the decoding part. It should
be noted here that the features from the hidden layer are the
features that we are looking for, so we use linear activation
to ensure that they are not modified to be ready for the next
process (2D visualization). The number of feature maps, size
of filter and depth of the model are set based on the recon-
struction error on validation set.

3.3.2 Training

The proposed model was implemented using the libraries
TensorFlow [1] andKeras [15] for building, training, and pro-
cessing theDCAE.Using all queries as a preprocessing stage,
the model is trained end-to-end in an unsupervised manner
before the visualization starts. Adam optimizer [24] is used
which is computationally efficient, requires little memory,
and appropriate for problems with noisy data. Each batch
contains 100 random shuffled windows from the time-series
data. The DCAE is trained to transform the time-series data
into latent representation and then reconstruct the original
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Fig. 3 DCAE followed by a PCA, b t-SNE, and c UMAP to create
the 2D visualization. This figure also shows the Auto-Labeling process.
From the time-series graph (top), the user chooses a portion of data.
Based on Euclidean distance, all windows that match below a threshold
are labeled with the same color in both graphs. In this example, the
selected cluster is corresponding to the Descent Phase of Dive

input or get an optimal approximation of the implicit data rep-
resentation by minimizing the reconstruction error. DCAE is
trained to perform the feature extraction process. After that,
the features in the latent space (bottleneck) are projected into
a 2D space using the previous DR techniques (Fig. 3).

4 Visualization and interaction techniques

The widely referenced mantra “overview first, zoom and fil-
ter, and then details-on-demand” by Shneiderman [44] is
employed. As we show in this paper, our system fits neatly
into these principles. In one image, the overview of the large
dataset is obtained after applying the proposed approach
using 2D connected scatter plot (Fig. 4). The user can zoom
in a particular area, and the detail on demandwill be provided
for identified patterns. Sedlmair et al. [41] suggest using 2D
scatter plots, as the most promising approach, to explore

the output of different dimensionality reduction techniques.
They also advocate avoiding interactive 3D scatter plots for
dimension reduction data, especially for cluster verification
tasks.

The time-series graph (Fig. 4A) displays the original data
rendered on the time axis. To simplify navigation techniques
and prevent clutter, the connected scatter plot (Fig. 4B) is
used which displays the transformed points after applying
dimension reduction using any of the described techniques.
While the connected scatter plot is a simple visualization
technique, it has very specific functions in our approach.
Every sliding window is represented as a dot in the plot
after the projection process (Fig. 4C, D). Before labeling, all
points have the same color and transparency, and when they
are concentrated in one area, the densities are accumulated.
Lines are used to connect consecutive points preserving the
temporal ordering of the data and allowing the user to see
temporal connections (Fig. 4B). Thus, the point is linked to
the previous point (inner) and to the posterior point (outer)
as an indication of the flow of time. Lines can be omitted as
one of the options provided in the system. Another option
that is available is path extractions (Fig. 4E). It helps the user
to track the transition between points or clusters. The size
and stride of the sliding window can be also modified. If the
stride has a bigger value than the window size, there will be
some data uncovered, so the system limits the stride option
to be less than the window size (see accompanying video).

For navigating large information spaces, filtering and
zooming are important tasks which support panning or
scrolling through the data. Selecting and zooming could be
utilized to facilitate fast and interactive exploration of large
datasets which help to define the level of detail the user
requires (Fig. 4C). In the time-series graph, the width of the
graph is expanded as the zoom is increased, and the scroll bar
allows the user to scroll smoothly through the expanded time-
series. In the connected scatter plot, scrolling and zooming
display the visualization at different levels of abstraction.
The user can zoom in on regions of interest to emphasize
interesting data for instance, clusters, outliers, etc. That will
give the user direct control over the mapped data and aid for
quickly locating and a close-up visual displaying of clusters.
Smooth zooming is applied to assist the user tomaintain their
sense of context and position. In the connected scatter plot,
the smooth zooming is achieved through three levels: zoom-
ing into the whole image, zooming into a specific cluster, and
zooming inside the specific cluster.

For details-on-demand, the idea of linking and brushing is
implemented to connect the two visualization techniques, so
the change to the representation in one view affects the rep-
resentation in the other. Linking and brushing techniques are
beneficial for instance, assisting to overcome the shortcom-
ings of a single visualization technique, combining different
visualization techniques, providing more information, etc.
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Fig. 4 The overview of the system (also see video) (A) Time-series
graph for raw data (multivariate time-series). (B) Connected scatter
plot for the time-series data after applying the proposed approach which
reveals six clusters and transitions between them. The DCAE following
by a dimension reduction technique (UMAP) is applied on the data that
is collected from a Cormorant bird using a sensor. Various colors reveal
various clusters were: cluster A, B, C, D, E, and F are, respectively,
Descent Phase of Dive, Bottom Phase of Dive, Surface Swimming,

Ascent Phase of Dive, Flight, and the beginning and the end of the
dataset. (C) Zooming in an area of interest (cluster A), (D) Drawing
time-series graph for the selected point in connected scatter plot, (E)
Zooming of the transitions (connected lines) from cluster C to clus-
ter A, and (F) X, Y, and Z acceleration during a single cormorant dive
where the changing in posture during descent, swimming, and ascent
are obvious as shifts in the time-series graph

In our system, both time-series graph and connected scat-
ter plot are linked. The desired data can be chosen in either
view, and the highlighted color is automatically reflected
on both graphs to distinguish selected data, hence, patterns,
relationships, clusters, or outliers could be easily visualized,
inspected, and differentiated. The selecting and highlighting
could be performed in both graphs, and the selected data will
be colored in the graph concurrently with the corresponding
items in the other graph which is helpful to demonstrate a
labeling task for repeated patterns, outliers, etc (Figs. 4, 6).

Query by example is also provided by the system to
achieve automatic labeling, where the user selects the inter-
esting data by applying rubber band brushing. Thus, a
timebox as a rectangular region will highlight the interesting
pattern (Fig. 3) (top time series graph). Thematching process
will be executed to find similar occurrences in the data using
Euclidean distance (other similarity measures can be intro-
duced). The threshold is set by the user, where 0 means the
patterns are completely identical. Euclideandistance is calcu-
lated between the selected instance and the remaining of the
series data; therefore, all windows that match below a thresh-
old are labeled with the same color in both graphs (Fig. 3).

5 Case study

The capabilities of the system are demonstrated by analyz-
ing real-world data from two domains: medicine and biology.

We collaborated with experts who provided us with datasets
and offered several suggestions and opinions to improve the
system performance giving the user more control over explo-
ration and analysis.

Two time-series datasets are presented.One of the datasets
is univariate time-series (breathing patterns), and the second
is multivariate time-series (triaxial accelerometers recording
animal activity).

5.1 Case study 1: breathing patterns

The respiratory rate is an important vital sign to the health
status of the human. There are various kinds of normal and
abnormal respiration. Evaluating breathing patterns is impor-
tant and helps the clinician in understanding the patient’s
current status [55]. Inspection of the pattern of breathing
will yield clues of the disease process, independent of the
rate measurement. Abnormal patterns of breathing suggest
the possibility of diseases [55,61]. In preparation for analy-
sis anomalies in the dataset should be removed. These are:
a participant may sigh on inspiration or swallow or cough
on expiration which interrupts the normal breathing pat-
terns.

Looking for patterns, such as repeated patterns or abnor-
mal tidal breathing patterns, is important, but when using
time-series graph, revealing such patterns becomes a com-
plex process. Each of the 48 participants have about 12,000
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Fig. 5 Nine breathing patterns
for nine different participants
where the abnormal patterns
could be easily evidenced
through the connected scatter
plot after applying the proposed
approach (PCA)

inspiratory and expiratory flow readings. The two main
issues arising are: the comparing of all the individual breaths
against each other is difficult while looking for abnormalities
because of a long time-series data. Second, comparing one
person with several others is complicated using time-series
graphs.

After applying our approach, every inspiratory and expi-
ratory breath are represented as one loop by applying PCA
and UMAP (Fig. 2a, c). Using our approach allows users to
see all breaths in one view which facilities finding irregular
patterns (Fig. 5). Visual outliers correspond to problemati-
cal breaths (Fig. 6), which can be confirmed by brushing the
outlier points in the connected scatter plot, e.g., the outlier in
(Fig. 6) is highlighted in yellow and is found to correspond
to an interrupted breath (see time-series graph). It is bene-
ficial to eliminate abnormal patterns so they do not impact
in any of the further statistical analysis. As (Fig. 2) shows,
we found that outliers corresponding to breathing anomalies
were visually obvious when using PCA or UMAP, but were
not easy to detect when using t-SNE. Including the option
to switch between dimension reduction techniques within a
visual analytics system can lead to improved interaction with
the data.

Another functional requirement is to be able to compare
patterns far apart within the time-series. Identifying repeated
patterns is a hard task specially with long time-series. After
applying the proposed approach, similar patterns are clus-
tered in the same area in the connected scatter plot. Thus,
identifying such patterns becomemore simple. Repeated pat-
terns can be confirmed by brushing the dense area (points),
e.g., the repeated patterns in Fig. 6 are highlighted in green
and orange are found to correspond to similar patterns (see
time-series graph). As Fig. 2 shows, when using PCA or
UMAP, repeated patterns are obvious, but they are hard to be
located when using t-SNE.

Fig. 6 Top: time-series graph with overlaid colored regions indicating
to the selected clusters in the connected scatter plot. Bottom: connected
scatter plot where frequent patterns (orange and green) and outlier pat-
terns (yellow) can be allocated with a distinct color that supports the
identification and comparison of the data

5.2 Case study 2: imperial Cormorant bird

One of the attractive solutions to measure behavior in wild
animals is using accelerometers [54]. The attachment of tri-
axial accelerometer provides quantitative data which assists
biologists to monitor and determine animals behavior in
their natural environment over long periods of time [9].
The three axes are corresponding to the dorsoventral (Y),
anterior-posterior (Z) and lateral axes (X) [43]. The biologists
sometimes use directly measured attributes such as pressure
or temperature to be compared with derived attributes help-
ing them in the validation of the animal activities.

Accelerometer data are presented on three separated time-
series graphs, and each graph component of the signal
describes the behavior over the time (Fig. 4F). Using this
type of visualization is not easy to look into the triaxial
nature of the data, and the correlation among axes is hard to
be followed which is important to be considered during the
searching process[18]. Simple visual inspection of three-line
graphs in acceleration to locate behaviors is difficult because
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Fig. 7 This figure shows the main user interface of our system operat-
ing on an Imperial Cormorant dataset. Top: a time series graph of the
whole dataset where accelerator [respectively, X, Y, and Z (black, blue,
and red)] and pressure (purple). The pressure is only plotted for the val-
idation purpose and is not included in any process. Bottom: connected
scatter plot where descent phase of dive (green color), ascent phase of
dive (yellow color), and the rest of the behaviors (gray color). The high
correlation between pressure and channels of the triaxial sensors are
evident for example, during descent and ascent phases the changing
of the pressure can be observed in the time-series graph supports the
decision-making process

patterns may occur in different variables over a long period
of time, such as repeated patterns (Fig. 4A).

Biologists from our university provided us with datasets
for a device attached to an Imperial Cormorant bird. It
records parameters such as triaxial acceleration, triaxial local
magnetic field intensity, pressure, and temperature. Animal
behavior can be derived and quantified from the triaxial
accelerometer data because particular behaviors can be iden-
tified via animal posture and changes in body velocity which
are extracted from accelerometers [53]. The dataset contains
173,256 multivariate measurements for the three axes of the
accelerometer. Another dataset for the Imperial Cormorant
bird is provided with the pressure measurements which is
used for validation (Fig. 7)

The manual labeling of such data can take many days. As
the video demonstrates, thismethodology enables interactive
labeling of the data in minutes. A major component of this
is the clustering of similar features such that the user can
select similar but temporally disparate features easily in the
interface (see video). After applying the proposed approach,
the dataset is converted to a connected scatter plot which
clearly reveals six main clusters and the transitions between
them. Each point in the plot represents the animal behavior
for a particular duration.

The expert informs us that the dataset has fivemain behav-
iors which are Descent Phase of Dive, Bottom Phase of
Dive, Ascent Phase of Dive, Surface Swimming, and Flight.
After applying the proposed approach to the dataset, six clus-
ters have been appeared. Five clusters correspond with five
behaviors that are reported by the expert, and one cluster
represents the beginning and the end of the dataset when the
sensor was attached and detached (Fig. 4). Instead of looking
for the behavior in the time-series graph which may take a
long time, our approach increases the ability to detect animal
postures (connected scatter plot) and behaviors (overlays—
repeated patterns). Comparing between PCA, t-SNE, and

UMAP which are applied after DCAE (Fig. 3), the clusters
in PCA and UMAP are clear while t-SNE is more outspread.
Also, the transitions between clusters are differentwhere they
are harmonious in UMAP and follow the same or near paths
while in PCA they follow near paths and twisted which cause
some dispersion. In t-SNE, the transitions are less clear than
PCA and UMAP.

Interaction The selection and zooming tasks are avail-
able in either view to determine or zoom areas of interest
(Fig. 4C, D). The brushing and rubberband selection tools
are efficiently used in the system where the user can select
an interesting area which is automatically reflected with the
same color in both graphs for example, if the user selects a
particular cluster in the scatter plot, the selected data will be
highlighted by the same color, and all data that are associated
with that cluster in time-series graph will be also highlighted
with the same color (Fig. 4). For the remaining clusters, each
cluster is selected in turn, is colored in the connected scatter
plot where the highlighted color is automatically reflected on
the line view. Thus, the expert can confirm that each cluster
represents one of the behaviors in the raw data.

Edges between clusters can be selected (Fig. 4E). The
user can employ region growing on a selection. Because a
source point is not part of the already highlighted clusters,
it can be selected which will be grown until it reaches a
point that is part of an existing cluster. The source selec-
tion may have multiple points. A whole bundle of edges
can be selected using this approach which is represented
the transitional paths between two clusters. For example, the
transitions (Fig. 4E) are selected which represent the domi-
nant changebetween clusterC (SurfaceSwimming) to cluster
A (Descent Phase of Dive). Also, dominant transitions can
be obviously observed of cluster A (Descent Phase of Dive)
to cluster B (Bottom Feeding), cluster B (Bottom Feeding) to
cluster D (Ascent), and cluster D (Ascent) to cluster C (Sur-
face). Cluster F (when the sensor was attached and detached)
only occurs in the start and the end of the dataset which
is obvious by looking to the connected lines to the cluster.
Cluster E (flight) is dominating in the outset and end of the
dataset. It also happens at several shorter intervals throughout
the data, so some activity between those clusters can be seen.
Thewell-defined edges between clusters can be explicated as
repeated behavior which moves through those statuses with
a high frequency while weaker edges indicate less frequent
behavior. Our interface helps to quickly observe these types
of transitions which can be labeled for further analysis.

For validation purpose, we also compare an automatic
clustering approach.Ahierarchical clusteringmethod (HDB-
SCAN) [12,20] is used to generate the most significant
clusters as a density-based clustering algorithm. It requires
only one parameter which represents the minimum size of
the cluster. We use the sklearn package, and we use the hdb-
scan package as available on PyPi in order to determine the
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Fig. 8 (A) HDBSCAN is used
to color clusters after applying
UMAP. Six clusters are clearly
shown which are compatible
with our system view (B)

number of clusters. It is able to correctly identify the sepa-
rate clusters (six clusters) in the cormorant bird dataset after
applying the UMAP (Fig. 8). Other methods, such as K-
means clustering algorithm requires the users the number of
clusters which are difficult to be known in advance especially
in large datasets.

6 Conclusion

For time-series analysis, the sliding window approach
together with dimension reduction techniques including
auto-encoders are becoming popular. TimeCluster combines
these approaches with user interaction to achieve a fast
pattern identification, labeling and outlier detection. The
user may vary the pipeline by choosing between different
dimension reduction techniques, window and step size, and
using 1D deep convolutional auto-encoder. For multivari-
ate data, 1D deep convolutional auto-encoder has the ability
to learn appropriate features resulting in less information
loss. This transforms the points for 2D visualization allow-
ingTimeCluster to summarize thewhole dataset in one image
and allowing interaction through multiply linked visualiza-
tions. For time-series data, we find that t-SNE over-clusters
the data and presents a rather disjointed view that makes
it difficult to locate outliers, or to brush similar features.
Using deep learning to combine information from all chan-
nels using appropriate feature representation at the latent
layer is a very effective method to find repetitive patterns
or interesting anomalies that were previously unknown.
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