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Abstract
We employ a large ensemble of Regional Climate Models (RCMs) from the COordinated Regional-climate Downscaling 
EXperiment to explore two questions: (1) what can we know about the future precipitation characteristics over Africa? and 
(2) does this information differ from that derived from the driving Global Climate Models (GCMs)? By taking into account 
both the statistical significance of the change and the models’ agreement on its sign, we identify regions where the projected 
climate change signal is robust, suggesting confidence that the precipitation characteristics will change, and those where 
changes in the precipitation statistics are non-significant. Results show that, when spatially averaged, the RCMs median 
change is usually in agreement with that of the GCMs ensemble: even though the change in seasonal mean precipitation 
may differ, in some cases, other precipitation characteristics (e.g., intensity, frequency, and duration of dry and wet spells) 
show the same tendency. When the robust change (i.e., the value of the change averaged only over the land points where it is 
robust) is compared between the GCMs and RCMs, similarities are striking, indicating that, although with some uncertainty 
on the geographical extent, GCMs and RCMs project a consistent future. Potential added value of downscaling future climate 
projections (i.e., non-negligible fine-scale information that is absent in the lower resolution simulations) is found for instance 
over the Ethiopian highlands, where the RCM ensemble shows a robust decrease in mean precipitation in contrast with the 
GCMs results. This discrepancy may be associated with the better representation of topographical details that are missing in 
the large scale GCMs. The impact of the heterogeneity of the GCM–RCM matrix on the results has been also investigated; 
we found that, for most regions and indices, where results are robust or non-significant, they are so independently on the 
choice of the RCM or GCM. However, there are cases, especially over Central Africa and parts of West Africa, where results 
are uncertain, i.e. most of the RCMs project a statistically significant change but they do not agree on its sign. In these cases, 
especially where results are clearly clustered according to the RCM, there is not a simple way of subsampling the model 
ensemble in order to reduce the uncertainty or to infer a more robust result.
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1  Introduction

Africa, the second-largest continent on Earth and with the 
fastest population growth, is most vulnerable to weather and 
climate variability (Niang et al. 2014). For instance, over the 
past century, West Africa has been affected by significant 
climate anomalies, which have led to the severe droughts 
of the 1970s and 1980s. Other areas, such as the Horn of 
Africa, have also suffered serious droughts, particularly 
since the end of the 1960s. The city of Cape Town in South 
Africa has recently suffered, during 2015–2017, one of the 
worst multi-year droughts in decades (Otto et al. 2018). On 
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the other hand, severe floods, which can result in substantial 
economic and human losses in both rural and urban areas 
(e.g., Tarhule 2005; Douglas et al. 2008) have even affected 
countries located in dry areas, such as Algeria, Tunisia, 
Egypt and Somalia (Niang et al. 2014).

As future climate change and low adaptive capacity are 
likely to lead to even more severe impacts on many vital 
sectors (Niang et al. 2014), Africa was selected as the first 
target region for the World Climate Research Programme 
CORDEX (COordinated Regional-climate Downscaling 
EXperiment, Giorgi et al. 2009). CORDEX aims at foster-
ing international collaboration to generate high-resolution 
historical and future climate projections, relevant to appli-
cations at regional scale, by downscaling the global climate 
models (GCMs) participating in the Coupled Model Inter-
comparison Project (e.g. CMIP5, Taylor et al. 2012).

Since then, much research has evaluated the ability of the 
CORDEX Regional Climate Models (RCMs), forced either 
by the ERA-Interim reanalysis (Dee et al. 2011) or GCMs, 
to reproduce present African climatology (e.g., Nikulin et al. 
2012; Endris et al. 2013; Kalognomou et al. 2013; Kim et al. 
2013; Krähenmann et al. 2013; Gbobaniyi et al. 2014; Panitz 
et al. 2014; Dosio et al. 2015; Favre et al. 2016; Endris et al. 
2016; Klutse et al. 2016). This shows that RCMs simulate 
the precipitation seasonal mean and annual cycle quite accu-
rately, but large differences and biases exist amongst models 
in some regions and seasons. In addition, although RCMs 
are not always able to improve the simulation skills of the 
driving GCMs, especially for the general characteristics of 
the mean climatology, added value is found especially in 
the fine scales and in the ability of the RCMs to simulate 
extreme events (e.g., Giorgi et al. 2014; Dosio et al. 2015).

Future climate projections have been analyzed in several 
studies (Laprise et al. 2013; Haensler et al. 2013; Teichmann 
et al. 2013; Vizy et al. 2013; Giorgi et al. 2014; Buontempo 
et al. 2014; Mariotti et al. 2014; Vizy et al. 2015; Dosio and 
Panitz 2016; Pinto et al. 2016; Diallo et al. 2016; Fotso-
Nguemo et al. 2017; Akinsanola and Zhou 2018; Endris 
et al. 2018), although most of these are based on the results 
of a single RCMs downscaling an ensemble of GCMs, or on 
a small ensemble of RCMs downscaling a small ensemble of 
GCMs. Projections based on large ensembles of CORDEX-
Africa RCMs are presented by e.g., Dosio (2017) for tem-
perature extremes and heat waves at the end of the century, 
Abiodun et al. (2017) for extreme precipitation over four 
coastal cities. More recently, a series of studies investigated 
the effect of climate change under 1.5 °C and 2 °C global 
warming levels over specific African regions (Déqué et al. 
2017; Abiodun et al. 2018; Klutse et al. 2018; Lennard et al. 
2018; Maure et al. 2018; Muthige et al. 2018; Nikulin et al. 
2018; Osima et al. 2018; Parkes et al. 2018; Pokam Mba 
et al. 2018; Tamoffo et al. 2019b).

It is important to note that discrepancies have been found 
when comparing the results of a single RCM to those of the 
driving GCMs (e.g. Mariotti et al. 2014; Laprise et al. 2013; 
Teichmann et al. 2013; Bouagila and Sushama 2013; Cop-
pola et al. 2014; Buontempo et al. 2014) including projected 
future precipitation changes in the RCMs having opposite 
sign to that of their driving GCMs (Saeed et al. 2013; Teich-
mann et al. 2013; Dosio and Panitz 2016).

In addition, it also worth noting that even when using a 
single RCM, the impact on the results of different parameter-
izations (e.g. convention), land surface schemes and internal 
variability can be as large as that of the boundary condition 
(driving GCM) (Crétat et al. 2011a, b; Crétat and Pohl 2012; 
Ramarohetra et al. 2015).

Here, for the first time to our knowledge, we employ the 
large CORDEX-Africa RCM ensemble to investigate, at pan-
Africa level, if and where the change projected by the RCMs 
at the end of the century is consistent with that inherited 
through the boundary conditions, and where differences are 
more striking.

In particular, we assess the robustness and statistical sig-
nificance of the change projected by the RCM and GCM 
ensembles to specifically address two questions:

1.	 What are the future characteristics of precipitation over 
Africa as projected by a large ensemble of RCMs?

2.	 Does this information differ from that derived from the 
driving GCMs?

The paper is structured as follows: Sect. 2 describes the 
data used and the statistical analysis performed; in Sect. 3 
results are shown and discussed; an analysis of the impact of 
the heterogeneity of the GCM–RCM matrix is performed in 
Sect. 4; concluding remarks are presented in Sect. 5.

2 � Data and methods

2.1 � Climate data

Daily precipitation data for the period 1981–2100 was 
obtained from a large ensemble of models listed in Table 1. 
Five different RCMs were used to downscale the results of 
ten CMIP5 GCMs for a total of 23 simulations. All RCMs 
were run over the same numerical domain covering conti-
nental Africa at a resolution of 0.44° following the COR-
DEX protocol (http://www.corde​x.org/wp-conte​nt/uploa​
ds/2017/10/corde​x_gener​al_instr​uctio​ns.pdf). Historical 
simulations, forced by observed natural and anthropogenic 
atmospheric composition, covered the period until 2005; in 
order to maximize the projected climate change signal, only 
the projections (2006–2100) forced by the Representative 

http://www.cordex.org/wp-content/uploads/2017/10/cordex_general_instructions.pdf
http://www.cordex.org/wp-content/uploads/2017/10/cordex_general_instructions.pdf
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Concentration Pathways 8.5 (RCP8.5, Van Vuuren et al. 
2011) are analyzed in this study.

2.2 � ETCCDI indices

Several indices (Table 2) from the Expert Team on Climate 
Change Detection and Indices (ETCCDI, Zhang et al. 2011) 
were calculated on every land point of each model along 
with seasonal mean precipitation. These include precipita-
tion intensity (simple daily intensity, SDII, and maximum 
daily precipitation, RX1 day) and frequency (number of wet 
days, RR1), the duration of wet and dry spells (number of 
consecutive wet and dry days, CWD and CDD), and two 
heavy precipitation indices (total number of days with pre-
cipitation greater than 10 mm and 20 mm, R10 mm and 
R20 mm).

2.3 � Statistical analysis

The robustness of the change of an index, on the basis of the 
models’ ensemble, is assessed with a methodology similar to 
that proposed by Tebaldi et al. (2011) and applied to Europe 
by Dosio and Fischer (2018). First, for each land grid box 
and for each model run, we test the statistical significance 
of the change between the reference period (1981–2010) 
and the end of the century (2070–2099), by means of a two-
sample Kolmogorov–Smirnov test with the null hypothesis 
that the discrepancies between the two distributions are only 
due to sampling error. A significance level of 5% indicates 
that the null hypothesis can be rejected statistically.

Second, we classify the change as follows:

•	 the change is considered robust if more than 50% of the 
runs show a statistically significant change and, at the 
same time, more than 80% of them agree on its sign,

•	 the change is considered uncertain, or unreliable, if more 
than 50% of the runs show a statistically significant 
change but less than 80% of them agree on its sign.

Table 1   List of RCMs and driving GCMs used in this study

Simulations are those available through the Earth System Grid Fed-
eration (ESGF) server at the time of this study

Institute RCM Driving GCM

CLMcom CCLM4.8-17 CNRM-CM5
EC-EARTH
HadGEM2-ES
MPI-ESM-LR

DMI HIRHAM5 EC-EARTH
Nor-ESM1-M

GERICS REMO HadGEM2-ES
IPSL-CM5A-MR
MIROC5

MPI-M REMO EC-EARTH
MPI-ESM-LR

KNMI RACMO22E EC-EARTH
HadGEM2-ES

SMHI RCA4 CanESM2
CNRM-CM5
CSIRO-MK3
GFDL-ESM2M
EC-EARTH
HadGEM2-ES
IPSL-CM5A-MR
MIROC5
MPI-ESM-LR
Nor-ESM1-M

Table 2   List of climate change indices analyzed in this study

For a complete list and definitions, see e.g., Zhang et al. (2011). Note that SM (seasonal mean) is not an ETCCDI index. Here, the indices are 
calculated on a seasonal basis, and the reference period is defined as 1981–2010

Acronym Name Description Units

ETCCDI precipitation indices
 SM Seasonal mean Average over the season mm/day
 SDII Simple day intensity Mean daily precipitation over wet days (i.e., when precipitation > 1 mm) mm/day
 RX1 day Max 1 day precipitation (maximum 

precipitation intensity)
Maximum daily precipitation in a given period mm/day

 RR1 Number of wet days Total number of days when precipitation > 1 mm Days/season
 CWD Consecutive wet days (dry spells) Largest number of consecutive days where precipitation > 1 mm Days/season
 CDD Consecutive dry days (wet spells) Largest number of consecutive days where precipitation < 1 mm Days/season
 R10 mm Heavy precipitation days Total number of days when precipitation > 10 mm Days/season
 R20 mm Very heavy precipitation days Total number of days when precipitation > 20 mm Days/season
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In addition to these two classes, and in accordance with 
e.g., Knutti and Sedláček (2012), we also distinguish the 
case where more than 80% of models’ runs show a non-
significant change (independently of the agreement on the 
sign): this is a meaningful and useful information, often 
overlooked, as it indicates areas where there is a robust 
indication that any apparent change simulated by most 
of the models is small compared to the variability, i.e. 
non-significant.

Many different methods exist to define the robustness 
of the climate change signal (see, e.g., Collins et al. 2013). 
For instance, Donnelly et al. (2017) compared the value 
of the ensemble mean change to the standard deviation of 
the changes of the individual models. However, in the case 
of very small changes (as may happen for precipitation) if 
models give very similar results (so that the standard devi-
ation is smaller than the mean change) this criterion may 
be fulfilled even if the change is non-significant. Haensler 
et al. (2013) investigated the change of precipitation over 
central Africa defining the robustness of the signal based 
on the agreement on the sign of change for at least 66% of 
models; however, this method alone is not sufficient, as it 
does not take into account the magnitude of change. As a 
result, they consider also a “likely range” that is defined 
as a range of 66% around the median projected change.

Note that all definitions of robustness (ours included) 
are subjective; in particular, none of these methods attempt 
to link the projected change (hence its robustness) to its 
dynamic and thermodynamic drivers.

In the following, results are presented either as maps 
of the RCMs’ ensemble median, or as aggregated statis-
tics over sub-regions (Fig. 1), defined as North-Africa 
(NAF, which includes also the Arabian peninsula), West-
Africa (WAF), Central Africa (CAF), East-Africa (EAF) 
and Southern-Africa (SAF), similar to those in the IPCC 
atlas of global and regional climate projections (IPCC 
2013). Seasons are defined as December–January–Febru-
ary (DJF), March–April–May (MAM), June–July–August 
(JJA) and September–October–November (SON).

As an example, Fig. 1 shows the various steps of the 
methodology applied to the seasonal mean precipitation 
change in SON. We note that, for instance, over SAF most 
models project a reduction in precipitation, including areas 
such as Zimbabwe where more than 90% agree on the sign 
of the change (Fig. 1, top-left). In contrast, over part of 
EAF (Somalia) and WAF (e.g., Cote d’Ivoire) more than 
80% of projections are for an increase in seasonal pre-
cipitation (Fig. 1, top-left). This change, however, is not 
always statistically significant, such as over Cote d’Ivoire, 
where less than 40% of models show significant change 
(Fig.  1, top-right). As a result, the projected positive 
(negative) change over Somalia (Zimbabwe) is considered 
robust, but that over Cote d’Ivoire is not. With the same 

methodology we can highlight regions where the multi-
model signal is non-significant (e.g. Sahara) or uncertain 
(e.g. Gabon). Regions that are neither ‘uncertain’ nor 
marked by hatching represent areas where evidence for 
change is limited (see also Knutti and Sedláček 2012).

It must be noted, however, that a robust change does not 
necessarily mean that the inter-model variability (as meas-
ured by e.g. the inter-quartile range) is small (whereas this 
is true by definition for the regions where the signal is non-
significant). Over Somalia, for instance, the inter-quartile 
range can be as large as the models’ median (Fig. 1, bottom 
row): this means that although the signal is robust (i.e. sta-
tistically significant and equal in sign for most of the runs), 
its value can vary greatly amongst different models.

3 � Results

3.1 � Evaluation of present mean climatology

CORDEX-Africa RCMs have been extensively evaluated in 
the past not only for mean climatology, but also for extreme 
events (temperature and precipitation), land–atmosphere 
coupling, circulation patterns, and added value of downs-
caling. Several previous works investigated the ERA-interim 
driven runs (e.g., Nikulin et al. 2012; Dosio et al. 2015 and 
references within; Akinsanola et al. 2015; Shongwe et al. 
2015; Sarr et al. 2015; Klutse et al. 2016; Favre et al. 2016; 
Kisembe et al. 2018; Careto et al. 2018; Warnatzsch and 
Reay 2019), as well as GCM-driven runs (e.g., Laprise et al. 
2013; Teichmann et al. 2013; Dosio et al. 2015; Endris et al. 
2016; Pinto et al. 2016; Dosio 2017; Fotso-Nguemo et al. 
2017; Gibba et al. 2018; Pinto et al. 2018; Tamoffo et al. 
2019a).

As a consequence, here, we perform only a basic evalu-
ation of the RCMs performances in simulating present day 
precipitation climatology. Results are shown in Fig. 2, where 
model biases are averaged according to the RCM. Previous 
works (e.g. Dosio et al. 2015; Fotso-Nguemo et al. 2017) 
showed that when analyzing precipitation characteristics 
over Africa, the effect of the errors inherited through the 
boundary conditions (e.g., position of the high seasonal 
rainfall band simulated by the driving GCM) is small com-
pared to the structural bias of the downscaling RCM, as local 
effects and model parameterization are the main drivers of 
the simulated precipitation. This is confirmed by our analy-
sis that shows that the bias of the RCM is scarcely affected 
by the lateral boundary conditions for all seasons and over 
most of the continent, even when a large number of GCMs is 
downscaled; for instance, RCA-RACMO shows a consistent 
(i.e. independent of the driving GCM) dry bias over equato-
rial Africa, whereas CCLM shows a dry bias over the eastern 
coast of the Guinea Gulf.
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Although large differences exist amongst RCMs in the 
simulated position, extension and intensity of the band of 
high rainfall, it is interesting to note that a wet (dry) bias on 
the present climate does not necessarily imply a tendency 
towards wetter (dryer) future precipitation characteristics 
(discussed later), making any attempt to select a ‘best-per-
forming’ RCM, or even linking future projections to simula-
tion skills over the present climate, very challenging.

3.2 � RCMs‑based projections

Figures 3 and 4 show the projected change in mean pre-
cipitation (SM) and ETCCDI indices at both annual and 
seasonal scales.

Models results show a robust increase in both annual 
and seasonal mean precipitation over part of EAF, espe-
cially Kenya in DJF and Somalia in SOM (up to more than 
1 mm/day), whereas a robust decrease in precipitation is 
projected over the Atlas region (through all year), over the 
western coasts of SAF in MAM (and at annual time scale), 
and a large fraction of southern Africa, including Mada-
gascar, in JJA and SON. Apart from the Sahara desert, a 

Fig. 1   Example of the methodology used to define robustness, non-
significance, and uncertainty in the climate signal of the RCMs’ 
ensemble. Top left panel: percentage of models showing the same 
positive (negative) sign in the precipitation signal (left panel). Top 
right panel: percentage of models showing a statistical significant 

change. Bottom left: models’ median seasonal mean precipitation 
change (mm/day). Areas where the change is non-significant, robust 
and uncertain are highlighted. Bottom right: uncertainty in the pre-
cipitation signal as represented by the models’ interquantile range 
(mm/day)
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non-significant change in precipitation is projected over the 
Gulf of Guinea in DJF (which is a dry season), and part of 
Zimbabwe and Mozambique both in DJF and MAM (nota-
bly, both countries receive the largest amount of rainfall 

between December and March). These findings are con-
sistent with those of e.g., Niang et al. (2014), showing a 
non-significant change in mean precipitation during Octo-
ber–March over Southern Africa, under RCP4.5, and Maure 

Fig. 2   Evaluation of seasonal mean precipitation over the reference 
period (1981–2010) for the CORDEX RCM simulations. For each 
RCM, the bias against observed precipitation (GPCP, 1997–2010) is 
shown as average of the respective GCM driven runs. The blue line 
shows high seasonal rainfall band defined as precipitation > 4  mm/
day. For each RCM, regions where the standard deviation (across 

GCM driven runs) of the bias is larger than its mean, are marked as 
‘inconsistent’ (shown, for clarity, only where the bias is larger than 
1 mm/day). This means that, over non hatched regions, the intrinsic 
bias of the RCM is scarcely affected by the lateral boundary condition 
(driving GCM)
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et al. (2018) showing similar results for DJF under 1.5 °C 
and 2 °C warming. It is worth remembering that, accord-
ing to our methodology, non-significant change means that 
the large majority (80% or more) of projections exhibit this 
property. This is remarkable considering that, under the most 

extreme emission scenario (RCP8.5), one would expect a 
substantial change in many climate statistics at the end of 
the century: under these conditions, for instance, Engelbre-
cht et al. (2015) and Dosio (2017) showed that RCMs pro-
ject warming of more than 3.5 °C in DJF over most of the 

Fig. 3   Projected RCMs ensemble median seasonal change of some ETCCDI indices. Areas where the change is robust, non-significant and 
uncertain, as defined in the methodology, are highlighted
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continent, and up to more than 5 °C over parts of Southern 
Africa.

Finally, the annual mean change over most of central 
and West Africa is uncertain, as is the seasonal mean 
change over parts of central Africa in DJF, the Gulf of 

Guinea in MAM and SON, and a large fraction of north-
equatorial Africa in JJA. Crucially, these are the areas 
affected by the passage of the West African Monsoon (see 
e.g., Panitz et al. 2014). Our results show that over these 
regions, most of the models show a statistically significant 

Fig. 4   Similar to Fig. 3 for ETCCDI indices related to the duration of wet and dry spells, and frequency of extreme precipitation events
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change in precipitation, but they do not always agree on 
its sign.

By comparing the different ETCCDI indices, we can ana-
lyze the change in several characteristics of the projected 
precipitation. Some illustrative examples are listed below:

1.	 Although the change in annual and seasonal (SON) 
mean precipitation over Democratic Republic of Congo 
is not robust, the changes in both frequency (RR1) and 
daily mean intensity (SDII) are, with a tendency towards 
less frequent but more intense precipitation.

2.	 Over Botswana, Zimbabwe and Mozambique, in SON, 
RCMs project a robust decrease in both mean precipita-
tion and frequency (RR1), with a consequent increase 
in the number of consecutive dry days (CDD) up to 
more than 12 days/season; however, both the mean and 
maximum precipitation intensity (RR1 and RX1 day) 
are projected to not change significantly.

3.	 Over the Horn of Africa (Somalia), a robust increase in 
annual and SON mean precipitation is accompanied by 
an increase in both maximum daily intensity (RX1 day) 
and frequency of extreme events (R10 mm).

4.	 Although the change in annual and seasonal (JJA) mean 
precipitation over the Gulf of Guinea is uncertain, the 
change in other indices is not; for instance, a robust 
increase in precipitation intensity (SDII) is accompanied 
by a robust reduction in its frequency (RR1) and wet 
spell duration (CWD, up to 5 days/season), and a slight 
increase in the length of dry spells.

Although the GCMs downscaled in this analysis rep-
resent only a fraction of the entire CMIP5 ensemble, the 
analysis by e.g. Sonkoué et al. (2018), shows that our 
results over Central Africa are consistent with those from 
the large CMIP5 ensemble, projecting a tendency for less 
frequent but more intense rainfall, longer dry spells and 
shorter wet spells. The wetting of the Horn of Africa is 
also consistent with CMIP5 results (e.g. Otieno and Anyah 
2013; Tierney et al. 2015) as is the drying of Southern 
Africa (Sillmann et al. 2013; Hoegh-Guldberg et al. 2018). 
Although large uncertainties in CMIP5 results exist (e.g., 
Sillmann et al. 2013; Seth et al. 2013), works based on 
both GCMs and RCMs (Vizy et al. 2013; Cook and Vizy 
2015; Hoegh-Guldberg et al. 2018; Klutse et al. 2018) 
project an increase in rainfall intensity especially over 
the Sahel in July–September accompanied, however, by 
longer dry spells, qualitatively consistent with our results. 
Note that the intensification of hydrological extremes, with 
increasing mean intensity and higher frequency of heavy 
rainfall, has also been observed in the past decades (e.g., 
Taylor et al. 2017; Panthou et al. 2018).

Figure 5 shows, for each sub-region and season, the 
fraction of land projected to face robust, non-significant, 

and uncertain change in the selected ETCCDI indices. 
As explained earlier, the confidence for change over the 
remaining fraction (white) is limited.

Over NAF, most of the indices show a non-significant 
change over large parts of the region, although smaller 
fractions (usually between 5 and 25%), mostly located over 
the Atlas region (see Figs. 2, 3) are projected to face a 
robust reduction in seasonal mean precipitation and its 
frequency (RR1), with consequent reduction in CWD and 
increase in CDD.

Over WAF, the change in all precipitation indices is 
projected to be non-significant for about 80% of the land 
in DJF. During MAM a robust decrease in RR1 and CWD 
is projected over more than 20% of the land; this frac-
tion becomes substantial in JJA, with neatly 70% facing 
a robust reduction in RR1, around 45% a reduction in 
CWD, and more than 30% an increase in CDD. How-
ever, although the precipitation frequency is projected 
to decrease (with consequent change in the length of dry 
and wet spells), its mean intensity (SDII) is projected to 
increase over more than 50% of the land. We also note 
that the change in mean precipitation and frequency of 
extreme events is uncertain over more than 50% of land. 
Finally, in SON, there is a low evidence for the change of 
all the precipitation indices over most of the land.

Central Africa shows a consistent decrease in precipita-
tion frequency throughout all seasons, together with increas-
ing dry spell and decreasing wet spell durations. However, 
part of CAF (between 8% in MAM and 34% in SON) is 
projected to face an increase in mean precipitation inten-
sity, and, over smaller fractions of land, a robust increase 
of maximum daily precipitation intensity, and frequency of 
extreme events (R20 mm, in DJF and SON).

Between 10 and 20% of East Africa in DFJ and SON 
is projected to face a robust increase in precipitation fre-
quency and intensity, including extreme events (especially 
over Somalia, see Figs. 2, 3). However, most of the precipita-
tion indices show a robust negative change in JJA, with more 
than 20% of the land affected by less frequent precipitation, 
longer dry spells and shorter wet spells.

Southern Africa is the region showing the largest (in 
terms of fraction of land affected) and more consistent (a 
part from SDII in DJF) trend towards drier future conditions, 
with around 40% of the land projected to face a robust reduc-
tion in mean precipitation in JJA and SON, and up to nearly 
80% affected by less frequent rain and longer dry spells in 
JJA. Given the severe drought that part of South Africa has 
recently suffered during 2015–2017 (see e.g. Otto et al. 
2018), this may have profound and worrying implications.

The expected robust change in precipitation characteris-
tics is shown in Fig. 6. Here, i.e., for each index, only the 
land points where the change is robust are used to compute 
the spatial average.
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Fig. 5   Fraction (%) of land area affected by robust (colored), non-
significant (hatched) and uncertain (gray) change. Blue color indicate 
positive change and red color negative, apart from CDD, where red 

color indicates robust increase and blue decrease. White areas repre-
sent the fraction of land where the evidence of change in the index is 
low
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Fig. 6   Absolute value of the change over land points where it is 
robust. For each index, the figure shows the RCMs ensemble median 
and the inter-quartile range. As in Fig.  5, red colors indicate nega-
tive changes and blue positive ones, a part for CDD, where the colors 

are inverted. Full colors indicate that fraction of area undergoing the 
change is larger than 10%, shaded colors between 5% and 10%, and 
white less than 5% (see Fig. 5). Units depend on the index
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Over NAF, substantial changes throughout all year are 
projected for CDD (with increase up to 10 days/season in 
JJA) and RR1, projected to decrease up to 4 days/season in 

MAM. Other indices show either smaller values, or, as for 
RX1 day in DJF, the area where they are robust is relatively 
modest (less than 5%, see Fig. 5).
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RCMs’ results for WAF show a robust reduction in pre-
cipitation frequency up to 7 days/season in both MAM and 
JJA, accompanied by longer dry spell (up to 5 days/season) 
and shorter wet spells (3 days/season); as discussed previ-
ously (Fig. 4) these changes in JJA are projected to affect 
a substantial fraction of land, up to nearly 70% for RR1. 
Mean precipitation and its intensity (SDII) are projected 
to increase slightly more than 1 mm/day in JJA and SON. 
Finally, although the change in RX1 day is substantial (more 
than 10 mm/day both in JJA and SON), the area where this 
change is robust is very small and, in addition, the model’s 
inter-quartile range is very large.

Over CAF, both precipitation frequency and wet spell 
duration are projected to significantly decrease in all seasons 
(both over large fraction of land areas, see Fig. 5); however, 
precipitation mean and maximum intensity are projected to 
increase (up to 7 (3–12) mm/day for RX1 day in SON).

Results over East Africa show a consistent increase 
throughout all year in precipitation intensity, especially the 
daily maximum (RX1 day), with changes up to 8 (3–15) mm/
day in SON. DJF and SON are characterized by areas show-
ing a robust increase in precipitation frequency and extreme 
events, and, at the same time, areas where RR1 decrease, 
with a consequent increase in CDD (up to 10 (5–14) days/
season in SON).

Finally, southern Africa is projected to face less frequent 
precipitation (up to 5 days/season in both DJF and SON), 
shorter wet spells and longer dry spells (up to 10 days/season 
in both JJA and SON); however, in DJF some areas (around 
12% of land see Fig. 5) will be affected by a slight increase 
(around 1 mm/day) in precipitation intensity (SDII).

3.3 � Comparison with driving GCMs

As mentioned, due to their coarse resolution, GCMs are 
unable to simulate fine-scale climate variations, especially 
in regions of complex topography or coastlines, or with het-
erogeneous land cover. On the other hand, the downscaled 
climate is a combination of that inherited through lateral 
boundary conditions, and that generated by the RCM by 
means of dynamical processes (especially over such a large 
domain) and small scale processes (e.g., convection) and 

physical parameterizations (e.g. Hong and Kanamitsu 2014; 
Dosio and Panitz 2016).

It is therefore interesting to compare the results of the 
RCM ensemble to those of the driving GCMs to investi-
gate whether or not the downscaled climate change signal 
is similar to the forcing one, and to highlight if and where 
substantial differences exist.

Figure 7 shows the comparison of the ETCCDI indices as 
simulated by the RCM and GCM ensembles. For each sub-
region, results are spatially averaged over all land points, i.e., 
regardless of the significance and robustness of the change. 
We first note that the RCM ensemble median projected ten-
dency towards either a drier or a wetter climate is in agree-
ment with that of the GCM ensemble in two-thirds of the 
region-season permutations. There are, however, some dif-
ferences: the projected median change from the RCM and 
GCM ensembles is, respectively a decrease/increase over 
CAF (in DJF and MAM), EAF (in MAM and JJA), and SAF 
(in DJF). The opposite is seen over WAF in JJA. However, in 
all these cases the ranges of spatially averaged precipitation 
change overlap considerably and include zero change. Also, 
even though the median change in seasonal mean precipita-
tion differs between RCMs and GCMs, most of other indices 
show the same tendency; for instance, over WAF in JJA both 
RCMs and GCMs project an increase in mean and maximum 
precipitation intensity, but a reduction in its frequency, with 
consequent increase in the length of dry spells and reduction 
in the length of wet spells.

Occasional discrepancies in the sign of change between 
RCMs and GCMs exist for other indices (e.g., CDD over 
CAF in DJF and MAM or RR1 over WAF in SON, RX1 day 
over WAF in SON, SDII over WAF in SON) but, again, the 
difference between the two ensemble median values is small 
(usually around 1 day/season for CDD) and always much 
smaller than the models’ inter-quartile range.

Larger differences are found, however, in the range of 
projected change: as would be expected given the RCM 
ensemble includes multiple downscalings of some of the 
GCM ensemble members (Table 1) and as demonstrated for 
a single GCM being downscaled by a several RCMs (Dosio 
2017). However, there are cases where this difference is 
extremely marked, especially for SDII and RX1 day (par-
ticularly over WAF but also over CAF in DJF); although part 
of the difference is related to the different GCM and RCM 
ensemble sizes, the fact that some RCMs projects a much 
larger change (either positive or negative) in precipitation 
mean and maximum intensity may be also an effect of small 
scale processes (such as convection) being resolved differ-
ently by GCMs and RCMs. In contrast, there are also a few 
cases where the range of projections changes in the RCM 
ensemble is less than that of the driving GCMs, namely 
RX1 day over CAF in MAM and over EAF in SON. Also, 
Haensler et al. (2013) found a smaller range in a 4-member 

Fig. 7   Comparison of RCMs and GCMs changes of ETCCDI indi-
ces. Results show the median (horizontal line), inter-quartile range 
(colored box) and minimum–maximum range (vertical bar) of the 
RCMs and GCMs’ runs. Values are calculated as spatial average over 
the entire sub-region, independently of the robustness of the change. 
Red blue color represent RCMs’ results, yellow and light blue the 
GCMs’ ones. Red/yellow colors indicate a negative median change, 
blue colors a positive one (the opposite for CDD). The vertical 
dashed line separates the indices according to the plotting scale: SM 
and SDII range between − 4 and 4 mm/day, whereas all other indices 
range between − 20 and 20 (units depend on the index)

◂
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Fig. 8   As Fig. 5 but for GCMs’ results
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Fig. 9   As Fig. 6 but for GCMs’ results
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RCM ensemble compared to a 10-member GCM ensemble 
for both total precipitation and intensity of heavy rainfall 
over (part of) CAF. Note also that only a subset of the pos-
sible GCMs are being considered here, so the RCMs range 
is likely to underestimate the true uncertainty.

Similarly as in RCMs analysis, Figs. 8 and 9 show the 
land area fraction projected by the GCMs to face, respec-
tively, a robust, non-significant, and uncertain change, and 
the value of the change where it is robust. As mentioned a 
direct, quantitative comparison between GCMs’ and RCMs’ 
results is not possible as, by definition, robustness critically 
depends on the models’ ensemble size. However, some qual-
itative observations can be made.

First, we note that a striking difference between results 
from the RCMs and GCMs is visible over WAF in JJA and 
SON, where the fraction of land over which the change is 
uncertain as simulated by the GCMs (between 40 and 70% in 
JJA depending on the index) is much larger than the RCMs’ 
one (apart for the extreme events frequency, R10 mm and 
R20 mm). In particular, the RCMs project a robust posi-
tive change in SDII in JJA over more than 50% of the land, 
compared to less than 5% for the GCMs, whereas the area 
where the change is uncertain is less than 15% for the RCMs 
but nearly 60% for the GCMs. This may be partly a conse-
quence of the different ensemble sizes, as the smaller GCM 
ensemble (10 runs) makes the robustness criteria much more 
sensitive to outliers (i.e., dependent on the results of a single 
model), but it is interesting that the larger RCM ensemble, 
in this case, is able to reduce the uncertainty of the driv-
ing GCMs. In addition, Fig. 7 showed that, if averaged over 
all land points, i.e., independently on the robustness of the 
signal, the uncertainty range of the RCM ensemble is much 
larger than that of the GCM. We argue that the analysis of 
the area averaged climate change signal, without an evalu-
ation of its significance and robustness, may be mislead-
ing. We also argue that, when averaging over large regions, 
the added-value from RCMs, which occurs mainly at much 
smaller spatial scales (e.g. over topography), may be reduced 
or lost.

Over other regions and seasons, however, the situation 
is the opposite, with the GCM ensemble projecting a much 
larger fraction of land where the change is robust, compared 
to the RCM (e.g., EAF in SON). Generally, however, both 
RCMs and GCMs projection are similar, such as over SA 
in SON, where all precipitation indices suggest future drier 
conditions over large parts of the region.

When the robust change (i.e., the value of the change 
averaged only over the points where it is robust) is com-
pared between the GCMs (Fig. 9) and RCMs (Fig. 6) simi-
larities are striking. Although the fraction of land where the 
change is robust may be different between the two ensem-
bles, usually both the magnitude and the sign of this change 
are very similar between RCMs and GCMs (with only very 

few exceptions, such as RX1 day over WAF in MAM, and 
RX1 day over SAF in DJF). This indicates that, although 
with some uncertainty in the geographical extent, GCMs 
and RCMs project a consistent future.

The question of how much ‘added value’ can be gained 
by using RCMs to dynamically downscale low resolution 
GCMs has been thoroughly investigated in the past (e.g., Di 
Luca et al. 2012; Diallo et al. 2012; Paeth and Mannig 2012; 
Diaconescu and Laprise 2013; Crétat et al. 2013; Laprise 
et al. 2013; Lee and Hong 2013; Giorgi et al. 2014; Dosio 
et al. 2015). These studies demonstrated the ability of RCMs 
to better simulate present-day, observed fine scale details 
and precipitation higher order statistics. On the other hand, 
the issue of quantifying (and even properly defining) the 
potential added value of projected climate change signal is 
more controversial, and very few studies addressed it (e.g. 
Di Luca et al. 2013; Torma et al. 2015; Rummukainen 2016; 
Fotso-Nguemo et al. 2017). The main outcomes of these 
studies are that added value in future projections must con-
sist of non-negligible fine-scale information that is absent 
in the lower resolution ones, and that the added value has 
to appear when there is a physical context for it, i.e., physi-
cal mechanisms that can modify the climate change signal 
simulated by the GCMs.

Here, we describe only some selected examples where 
differences between RCMs and GCMs are most evident. 
Following Di Luca et al. (2013) and Torma et al. (2015) we 
compare the RCMs (and GCMs) results to those of “virtual 
GCMs” (V_GCM). For each RCM, the daily precipitation 
fields (at 0.44°) have been first aggregated (area averaged) 
on a 1.32° grid (i.e., upscaled), similar to that used by the 
GCMs. Note however, that the term ‘virtual GCM’ means 
simply an upscaling of RCM results on the GCM grid, with-
out implying any similarities between e.g. GCM and ‘virtual 
GCM’ dynamics or physics.

Subsequently, the ETCCDI indices have been calculated 
and the robustness of the projected climate signal has been 
evaluated. Results are shown in Fig. 10. As pointed out by 
Torma et al. (2015), the comparison between downscaled 
and upscaled results may highlight whether the added value 
is indeed related to a better representation of fine scale pro-
cesses, rather than being the result of the disaggregation of 
the large scale field.

First we note that there are cases, such as seasonal mean 
precipitation in SON over SAF, where RCMs, V_GCMs 
and GCMs give similar results, with a robust decrease in 
precipitation over most of the North-East regions (with the 
highest values over southern Mozambique and the East coast 
of Madagascar) and smaller but robust decrease over the 
Southern and Western coast of South Africa. Finer spatial 
variations are visible in the RCMs results, for instance over 
Zimbabwe and Zambia, but, overall, the downscaled field is 
very consistent to that of the driving GCMs.
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Fig. 10   Comparison of RCMs’ and GCMs’ results for selected 
indices and regions. The results of the virtual GCM (V_GCM) is 
obtained by upscaling the original RCMs’ daily precipitation field 

on a lower resolution grid (1.32°) common to all GCMs, and, subse-
quently, computing the ETCCDI indices
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Over East Africa, on the contrary, marked differences 
exist; whereas the GCMs project an overall increase in mean 
precipitation in MAM, the change is generally non-robust 
and, over northern Ethiopia, non-significant. The RCMs, on 
the other hand, project a robust decrease of mean precipita-
tion over the Ethiopian highlands, which is still visible in the 
upscaled V_GCM results. This feature may be associated 
with the better representation of topographical details that 
are missing in the large scale GCMs. Dosio et al. (2015) 
show that over the Ethiopian highlands many aspects of pre-
cipitation (including extremes, CDD, precipitation PDFs, 
etc.) are better simulated by a RCM (CCLM) than the driv-
ing GCMs (although no detailed evaluation of the dynami-
cal processes involved was performed). A detailed analysis 
of the ability of CORDEX RCMs to simulate precipitation 
over the complex topography of northwest Ethiopia has been 
recently performed by Van Vooren et al. (2018); they claim 
that low quality in reproducing the orography in some mod-
els (including those with smoothed orography) makes their 
results questionable (although some models with a reason-
able representation of the true topography have a too high 
elevation-precipitation sensitivity and overestimate precipi-
tation). In their analysis over the Alps, Torma et al. (2015) 
also found that high resolution RCMs can produce, locally, 
a climate change signal opposite to that of the lower resolu-
tion GCMs.

Over central Africa in MAM, the RCM ensemble projects 
a robust decrease in RR1 whose geographical extension and 
magnitude are much larger than those of the driving GCMs. 
Figure 6 showed that CAF is one of the regions where the 
downscaled climate differs more significantly, with the 
change in both SM and CDD in MAM being opposite in 
the two ensembles. In their analysis, both Dosio and Panitz 
(2016) and Fotso-Nguemo et al. (2017) found that RCMs 
(CCLM and REMO) produce a precipitation signal over 
central Africa in striking contrast with that from the driving 
GCMs. Given the large numerical domain, central Africa is 
a region where the climate generated by the RCM is scarcely 
influenced by the lateral boundary conditions, and, conse-
quently, local processes related to the land–atmosphere inter-
action (soil moisture-precipitation feedback) and convective 
parameterization may be the most important factors. How-
ever, the analysis in this work is not sufficient to indicate 
which of the GCM or RCM signals is the most credible.

Over West Africa, differences between the projected 
change in CWD in JJA by the RCM and GCM ensembles 
are visible especially along the coasts. The robust decrease 
in wet spell duration over Guinea, is accompanied by an 
increase (although not robust) over Liberia, which is not vis-
ible in the GCM results, which, on the contrary, are uncer-
tain over the region. In addition, the spatial variability of 
the CWD change related to the topographic details over e.g. 
Nigeria is missing in both the V_GCMs and GCMs results.

4 � Effect of the GCM–RCM matrix 
heterogeneity and subsampling

In our analysis of the change of ETCDDI indices from the 
CORDEX RCMs projections, we have applied an approach 
that can be described as ‘one simulation one vote’, i.e. all 
simulations were given the same weight in the computation 
of e.g. ensemble means. This approach has been applied by 
the vast majority of studies dealing with ensembles of GCM-
driven RCMs, over different regions of the world, including 
the ‘Africa-box’ in the recent IPCC Special Report on 1.5 °C 
warming (Hoegh-Guldberg et al., 2018); in fact, the issue of 
dealing with a heterogeneous matrix of GCM–RCM com-
binations (with e.g. a RCM downscaling a large number of 
GCMs, and other RCMs relatively few or only one GCM) is 
far from being settled.

However, model weighting and ensemble subsampling is 
a topic becoming increasingly debated, and, therefore, the 
issue of how results depend on the choice (or weight given 
to) RCMs and GCMs needs further discussion.

In Fig. 11 the change in some selected ETCCDI indices is 
shown for all GCM–RCM simulations (and not just as box-
whisker plot as in Fig. 7). From the analysis of the results 
some interesting findings are highlighted:

1. First and foremost, we note that, for most regions, sea-
sons, and indices, the results do not depend on the choice of 
the RCM, GCM or ensemble subsampling. For instance, for 
Southern Africa (but this is true for other cases e.g., NAF, 
EAF in JJA, WAF in JJA, etc.) the vast majority of models 
(and in some cases all of them) project the same tendency, 
namely less frequent but more intense rainfall, and longer 
dry spells. As such, the result is robust, and any subsam-
pling of the ensemble would lead to the same qualitative 
conclusion (although, obviously, the absolute value of the 
change would change if a subsampling of the ensemble was 
performed).

2. Similarly, by definition, where the change is non-signif-
icant (i.e., for more than 80% of the projections), the results 
are barely dependent on the GCM or RCM choice.

3. In other cases (e.g., SDII and CDD over WAF in 
DJF), models results are uncertain; however, this uncer-
tainty is not largely dependent on the choice of the RCM. 
For instance, both CCLM and RCA show both negative 
and positive results (depending on the downscaled GCM); 
here, therefore, the uncertainty in the climate change signal 
comes from the driving GCM, and mean results are scarcely 
affected by the choice of the downscaling RCM (assuming 
the RCM has been used to downscaled a reasonable number 
of GCMs). The impact of the driving GCM is even more evi-
dent for instance over EAF in MAM, where the simulations 
downscaling IPSL-CM5A-MR show the largest increase in 
SM, SDII and RR1, and the largest decrease in CDD. On 
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Fig. 11   Changes of selected ETCCDI indices for all GCM–RCM 
simulations. Results are highlighted according to driving GCM 
(symbols) and downscaling RCM (colors). Note that results are the 

same as those in the box-whisker plot in Fig. 7. SM and SDII range 
between − 3 and 3  mm/day, whereas RR1 and CDD range between 
− 15 and 15 days/season
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the other hand, the runs downscaling MPI-ESM-LR project 
a consistently large increase in CDD and reduction of RR1.

4. Finally, however, there are some cases where the results 
are indeed clearly clustered according to the RCM. These 
cases are investigated in more detail in Fig. 12 for a selected 
example, namely CAF in JJA (but similar conclusions can 
be drawn for other regions and seasons).

In Fig. 12 results are first shown according to the RCMs 
(similar to Fig. 11), with the addition of the ensemble mean 
and min–max spread (ENS, as already shown in Fig. 7). 

Furthermore, two new set of results are shown; the first one 
(MEAN-RCM) shows the change in the index computed as 
average of the single RCM simulations (e.g., the average 
of the 10 GCM-downscaled runs by RCA); the second one 
(MEAN_GCM) shows the results when the average is per-
formed according to the driving GCM (i.e., averaging all 
RCM runs downscaling the same GCM). Looking at the 
single RCM results, the impact of the RCM choice is clear; 
for instance, CCLM shows a decrease in SM for all simu-
lations, whereas both RACMO and RCA show mostly an 

Fig. 12   Changes of selected ETCCDI indices for CAF in JJA. Results 
for all GCM–RCM simulations are shown according to the downs-
caling RCM (columns 1–5), with symbols and colors as in Fig.  11. 
Ensemble mean results and spread are shown in the ‘ENS’ column. 

Results are also shown as average according to the RCM (e.g., all 10 
GCM-driven runs by RACMO; MEAN_RCM) or driving GCM (i.e., 
all RCM runs downscaling the same GCM; MEAN_GCM). In these 
columns, horizontal lines denote the mean of the reduced ensemble



5853What can we know about future precipitation in Africa? Robustness, significance and added value…

1 3

increase in mean precipitation. Results for the other RCMs 
are mixed, though. By means of the ‘one simulation one 
vote’ approach, results are uncertain, with models results 
generally uniformly spread around an ensemble mean value 
of nearly zero. However, it is interesting to note that this 
uncertainty is not substantially reduced if clustering is per-
formed according to either the RCM or the driving GCM (as 
shown by the columns MEAN-RCM and MEAN_GCM), 
which show mean values very close to the ensemble mean, 
and a spread that is not always significantly reduced. Here, 
even in cases where ensemble mean results are uncertain and 
single RCM results are clearly clustered together, there is no 
straightforward way of subsampling the model ensemble to 
reduce the uncertainty or to infer a more robust result.

It is clear that RCMs can project completely different 
climate change signals even when downscaling the same 
GCM, but the investigation on why this happens needs thor-
ough and specifically dedicated research. Here we show that 
where the results of a large GCM–RCM ensemble (although 
unbalanced with respect to the combination of GCMs ad 
RCMs) are robust or non-significant, they are so indepen-
dently of the choice of the GCM and/or RCM. In addition, 
where results are uncertain, a simple sub-selection of model 
results based on either GCM or RCM averaging will not 
reduce the uncertainty significantly, nor change the overall 
message.

5 � Summary and concluding remarks

In this study, for the first time to our knowledge, we 
employed the large CORDEX-Africa RCMs ensemble to 
specifically answer two questions:

1.	 What can we know about the future precipitation char-
acteristics over Africa?

2.	 Does this information differ from that derived from the 
driving GCMs?

By employing a definition of robustness that takes into 
account both the statistical significance of the change and 
the models’ agreement on its sign, we were able to identify 
regions where there is confidence that the projected precipi-
tation characteristics will change (i.e., the change is robust) 
and those where the precipitation statistics are likely to 
remain unchanged (the change is non-significant). Although 
results are strongly dependent on the region, season, and pre-
cipitation characteristic (ETCCDI indices), from the RCM 
ensemble some general conclusions can be drawn:

1.	 Over most of North Africa, precipitation characteris-
tics (especially the precipitation intensity) are projected 
to not change significantly (Fig. 5); however, over the 

Atlas region precipitation frequency is projected to 
decrease throughout all year (Figs. 3, 4), with a conse-
quent increase in the length of dry spells (up to 10 days/
season in JJA).

2.	 Over most (50%) of West Africa, models do not agree on 
the changes in mean seasonal precipitation and extreme 
events, especially in JJA. However, changes in other pre-
cipitation characteristic are robust, such as a reduction 
in precipitation frequency accompanied by longer dry 
spells and shorter wet spells over nearly 70% of land. 
At the same time, precipitation intensity is projected to 
increase over a large fraction of the region up to more 
than 1 mm/day.

3.	 Over East Africa, a robust increase in precipitation 
intensity, frequency and extreme events is projected in 
both DJF and SON over more than 15% of land, with 
changes in daily maximum intensity up to 8 mm/day 
in SON. On the other hand, in JJA, more than 30% of 
land is projected to face a robust reduction in precipita-
tion frequency, with a consequent increase in CDD and 
reduction of CWD.

4.	 Over Central Africa, both precipitation frequency and 
wet spell duration are projected to significantly decrease 
in all seasons over a large fraction of land; however, 
precipitation mean and maximum intensity are projected 
to increase (up to 7 mm/day for RX1 day in SON over 
more than 30% of land).

5.	 Southern Africa is the region showing the largest (in 
terms of fraction of land affected) and more consistent 
trend towards drier future conditions, with around 40% 
of land projected to face a robust reduction in mean pre-
cipitation in JJA and SON, and up to nearly 80% of land 
affected by less frequent rain and longer dry spells in 
JJA. However, a slight increase (1 mm/day) in precipi-
tation intensity is projected over around 10% of land in 
DJF.

The RCMs spatially averaged ensemble median change 
is usually in agreement with that of the GCM ensemble and, 
when differences exist, the ranges of change overlap consid-
erably and include zero. In addition, even though the median 
change in seasonal mean precipitation may differ in some 
cases, most of other indices show the same tendency. Larger 
differences are found, however, in the range of the projected 
change: this can be a consequence of several GCMs being 
downscaled by the same RCM, but also small-scale pro-
cesses (such as convection) being resolved differently by 
GCMs and RCMs.

When the robust change (i.e., the value of the change 
averaged only over the points where it is robust) is com-
pared between the GCMs and RCMs, similarities are strik-
ing, indicating that, although with some uncertainty on the 



5854	 A. Dosio et al.

1 3

geographical extent, GCMs and RCMs project a consistent 
future.

The added value of downscaling future climate projec-
tions must consist of non-negligible fine-scale information 
that is absent in the lower resolution ones, and, in addition, it 
has to be related to physical mechanisms that can modify the 
climate change signal simulated by the GCMs. By compar-
ing the RCM results not only to those of the GCMs but also 
those of ‘virtual GCMs’ (i.e., upscaled results), we high-
lighted regions where the added value is indeed related to a 
better representation of fine scale processes. A few selected 
examples were discussed:

1.	 Over Southern Africa, the downscaled seasonal precipi-
tation change is very consistent with that of the driving 
GCMs, although finer spatial variations are visible in the 
RCMs results, for instance over Zimbabwe and Zambia.

2.	 Over East Africa, the RCMs, project a robust decrease of 
mean precipitation over the Ethiopian highlands, which 
is opposite to the GCMs results: this feature may be 
associated with the better representation of topographi-
cal details that are missing in the large scale GCMs.

3.	 Over Central Africa the downscaled climate differs 
significantly from the GCMs; the climate generated by 
the RCM is scarcely influenced by the lateral bound-
ary conditions and local processes, land–atmosphere 
interaction, and convective parameterization may be 
the most important factors. For instance, in MAM, the 
RCMs ensemble projects a robust decrease in precipita-
tion frequency whose geographical extension and mag-
nitude are much larger than those of the driving GCMs.

4.	 Over West Africa, differences between the RCM and 
GCM ensembles are visible especially along the coasts; 
for instance, the spatial variability of the CWD change 
simulated by the RCMs, related to e.g., the topographic 
details over Nigeria is missing in both the V_GCMs and 
GCMs results.

In addition to these general conclusions, however, there 
are some caveats to our study that need to be mentioned. In 
particular:

1.	 As stated, the definition of robustness is sensitive to the 
ensemble size: in particular, the smaller GCM ensemble 
(10 members) makes the robustness criteria much more 
sensitive to outliers (i.e., dependent on the results of a 
single model); as a result, the comparison between RCM 
and GCM ensembles can only be qualitative.

2.	 Although, our study highlighted that, for many regions 
and seasons, there is high confidence in the projected 
future characteristics of precipitation, i.e., the RCMs’ 
projected change is robust (or non-significant) and in 
agreement with that of the GCMs, there are still cases 

where: (a) RCMs results do not agree (i.e. the change 
is uncertain); (b) the RCM inter-quartile range is very 
large despite the change being robust; and (c) the down-
scaled change differs in sign from that of the driving 
GCMs. Although some studies have investigated these 
issues based on the results of a single RCM, a detailed 
analysis of the causes of the differences based on the 
large CORDEX-Africa matrix is still missing. Our study 
can be helpful in identify those regions where future 
research is most needed.

3.	 Although it has been shown that a correct representa-
tion of topography is needed to realistically reproduce 
precipitation over e.g., the Ethiopian Highlands, and, 
hence, that RCMs have the potential to add value to the 
projected climate, no proof has been provided that the 
different climate change between RCMs and GCMs is 
the result of e.g. enhanced mesoscale dynamics. Simi-
larly, for CAF, the differential climate change signals 
may well stem from different GCM and RCM phys-
ics and parameterizations, but whether value has been 
added is unclear.

4.	 Our analysis of future precipitation characteristics for 
Africa is based on mean climatology and selected ETC-
CDI indices; however, many other important aspects 
have been neglected, especially relevant for the mon-
soon, such as onset, length and end of the rainy season 
etc. The investigation of monsoon characteristics and its 
change, especially in West Africa and the Sahel, would 
require also a thorough analysis of the dynamic and ther-
modynamic drivers of e.g. moisture transport, low- and 
mid-tropospheric flows (Easterly Jet) etc., which is out-
side the scope of this work.

5.	 Although the results of this study are based on a large 
ensemble of runs, the CORDEX-Africa RCM–GCM 
matrix is still incomplete: in particular, only one RCM 
downscaled all the GCMs, whereas only one GCM (EC-
EARTH) has been downscaled by all RCMs (although 
using different ensemble members). We have shown that 
the main conclusions of our study, based on ‘one simu-
lation one vote’ approach, hold, and results are often 
robust (or non-significant) regardless of the choice of 
the specific RCMs or GCMs. Where the results are 
uncertain, however, and clearly clustered according to 
the RCM, we showed that a simple subsampling based 
on averaging according the RCM and/or the GCM, is not 
able to reduce significantly the uncertainty nor the value 
of the mean change.

This adds evidence to the proposition by e.g. Weigel 
et al. (2010) that, for many applications, equal weighting 
may be the more transparent way to combine models and 
is preferable to a weighting that does not appropriately 
represent the true underlying uncertainties. Weigel et al. 
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(2010) claim that ‘optimum weighting’ requires both accu-
rate knowledge of the single model skill, and the relative 
contributions of the joint model error and unpredictable 
noise: both issues are still open to discussion. In addition, 
we showed that a simple evaluation of models’ perfor-
mance for the present climate is not sufficient to single out 
the ‘best performing’ RCM and, as a consequence, makes 
it challenging to find a suitable methodology to subsample 
the ensemble by means of skill based weighting.

This implies that a thorough investigation of models’ 
performance and their response to external forcing is still 
required, which needs to be based on the assessment of their 
ability to reproduce the physical processes and drivers of 
the African climate. This, clearly, is an important topic for 
future research.
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