
Distributed Computing (2023) 36:475–499
https://doi.org/10.1007/s00446-023-00454-0

Almost universally optimal distributed Laplacian solvers via
low-congestion shortcuts

Ioannis Anagnostides1 · Christoph Lenzen2 · Bernhard Haeupler3 · Goran Zuzic3 · Themis Gouleakis4

Received: 15 January 2023 / Accepted: 25 June 2023 / Published online: 31 July 2023
© The Author(s) 2023

Abstract
In this paper, we refine the (almost) existentially optimal distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun,
and Ye (FOCS ‘21) into an (almost) universally optimal distributed Laplacian solver. Specifically, when the topology is
known (i.e., the Supported-CONGEST model), we show that any Laplacian system on an n-node graph with shortcut quality
SQ(G) can be solved after no(1)SQ(G) log(1/ε) rounds, where ε > 0 is the required accuracy. This almost matches our lower
bound that guarantees that any correct algorithm on G requires ˜�(SQ(G)) rounds, even for a crude solution with ε ≤ 1/2.
Several important implications hold in the unknown-topology (i.e., standard CONGEST) case: for excluded-minor graphs
we get an almost universally optimal algorithm that terminates in D · no(1) log(1/ε) rounds, where D is the hop-diameter
of the network; as well as no(1) log(1/ε)-round algorithms for the case of SQ(G) ≤ no(1), which holds for most networks
of interest. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model
which enhances CONGEST with limited global power in the form of the node-capacitated clique model. In this model, we
show the existence of a Laplacian solver with round complexity no(1) log(1/ε). The unifying thread of these results, and our
main technical contribution, is the development of near-optimal algorithms for a novel ρ-congested generalization of the
standard part-wise aggregation problem, which could be of independent interest.

Keywords Distributed algorithms · Laplacian solvers · Low-congestion shortcuts · Universal optimality

The author ordering was randamized using https://www.aeaweb.org/
journals/policies/random-author-order/generator. It is requested that
citations of this work list the authors seperated by r© instead of
commas: Anagnostides r© Lenzen r© Haeupler r© Zuzic r©
Gouleakis.

B Ioannis Anagnostides
ianagnos@cs.cmu.edu

Christoph Lenzen
lenzen@cispa.de

Bernhard Haeupler
haeuplb@ethz.ch

Goran Zuzic
goran.zuzic@inf.ethz.ch

Themis Gouleakis
tgoule@nus.edu.sg

1 Department of Computer Science, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

2 CISPA Helmholtz Center for Information Security,
Stuhlsatzenhaus 5, 66123 Saarbrücken, Germany

1 Introduction

The Laplacian paradigm has emerged as one of the cor-
nerstones of modern algorithmic graph theory. Integrating
techniques from combinatorial optimization with powerful
machinery from numerical linear algebra, it was originally
pioneered by Spielman and Teng [1] who established the first
nearly-linear time solvers for a (linear) Laplacian system.
Thereafter, there has been a considerable amount of interest
in providing simpler andmore efficient solvers [2–4]. Indeed,
this framework has led to some state of the art algorithms for
a wide range of fundamental graph-theoretic problems; e.g.,
see [5–10], and references therein. In the distributed setting, a
major breakthrough was recently made by Forster et al. [11].
In particular, the authors developed a distributed algorithm

3 Department of Computer Science, ETH Zürich, Rämistrasse
101, 8092 Zürich, Switzerland

4 Department of Computer Science, National University of
Singapore, 21 Lower Kent Ridge Road, Singapore 119077,
Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-023-00454-0&domain=pdf
https://www.aeaweb.org/journals/policies/random-author-order/generator
https://www.aeaweb.org/journals/policies/random-author-order/generator

476 I. Anagnostides et al.

that solves any Laplacian system on an n-node graph after
no(1)(

√
n + D) log(1/ε) rounds of the standard CONGEST

model, where D represents the hop-diameter of the underly-
ing network and ε > 0 is the error of the solver. Moreover,
they showed that their algorithm is existentially optimal, up
to the no(1) factor, establishing a lower bound of ˜�(

√
n+D)

rounds via a reduction from the s − t connectivity prob-
lem [12].

This existential lower bound in the CONGEST model
of distributed computing should hardly come as any sur-
prise. Indeed, it is well-known by now that a remarkably
wide range of global optimization problems, including
minimum spanning tree (MST), minimum cut (Min-Cut),
maximum flow, and single-source shortest paths (SSSP),
require ˜�(

√
n + D) rounds1 [12–14]. The same limita-

tion generally applies to any non-trivial approximation and
even under randomization. Nonetheless, these lower bounds
are constructed on some pathological graph instances that
arguably do not occur in practice. This begs the ques-
tion: Can we obtain more refined performance guarantees
based on the underlying topology of the communication
network? The framework of low-congestion shortcuts, intro-
duced by Ghaffari and Haeupler [15], demonstrated that
bypassing the notorious �(

√
n) lower bound is possible:

MST and Min-Cut on planar graphs can be solved in
˜O(D) rounds. This is crucial, given that in many graphs
of practical significance the diameter is remarkably small;
e.g., D = polylog(n) (as is folklore, this holds for most
social networks), implying exponential improvements over
generic algorithms used for general graphs. In the context of
the distributed Laplacian paradigm, we raise the following
question:

Is there a faster distributed Laplacian solver under
“non-worst-case” families of graphs in theCONGEST
model?

The only known technique in distributed computing for
designing algorithms that go below the

√
n-bound is the

low-congestion shortcut framework of Ghaffari and Hae-
upler [15], and the large ecosystem of tools built around
it [16–22]. However, the “ρ-congested minor” primitive
introduced and extensively used in the novel distributed
Laplacian solver [11] is out of reach from the current set
of tools available in the low-congestion shortcut frame-
work. We address this issue by introducing an analo-
gous primitive called ρ-congested part-wise aggregation,
which greatly simplifies the interface used by Forster et al.
[11]. We then extend the low-congestion shortcut frame-
work with new techniques that enables it to near-optimally
solve this primitive: we provide both an algorithm that

1 As usual, we use the notation ˜O(·) and ˜�(·) to suppress polylogarith-
mic factors on n.

utilizes the very recent hop-constrained expander decom-
positions for shortcut construction [22] to solve the prim-
itive in general graphs with a linear dependence on ρ,
as well as a very simple algorithm with a quadratic ρ-
dependence for bounded-treewidth graphs. Finally, we set-
tle our original question in the positive by establishing
that our new primitive can be readily used to acceler-
ate the distributed Laplacian solver for non-worst-case
topologies.

Specifically, we show that our new techniques are suf-
ficient to lift the existentially optimal algorithm [11] to a
universally optimal algorithm—modulo no(1) factor inherent
in the prior approach—for distributedly solving a Lapla-
cian system, meaning that, for any topology, our algorithm
is essentially as fast as possible. In other words, for any
graph, our algorithm almost matches the best possible (cor-
rect) algorithm for that graph. This result is unconditional in
essentially all settings of interest (see Theorem 2 for details),
but relies on conjectured improvements of current state-of-
the-art constructions of low-congestion shortcuts to achieve
unqualified universal optimality [18]—like all other results
in the area.

Furthermore, another concrete way of bypassing the
˜�(

√
n + D) lower bound, besides investigating non-worst-

case families of graphs, is by enhancing the local commu-
nication network with a limited amount of global power.
Indeed, research concerning hybrid networks was recently
initiated in the realm of distributed algorithms [23], although
networks combining different communication modes have
already found numerous applications in real-life comput-
ing systems; as such, hybrid networks have been intensely
studied in other areas of distributed computing (see [24–
26], and references therein). In this paper, we will enhance
the standard CONGEST model with the recently introduced
node-capacitated clique (henceforth NCC) [27]. The lat-
ter model enables all-to-all communication, but with severe
capacity restrictions for every node. The integration of
these models will be referred to as the HYBRID model for
the rest of this work. This leads to the following central
question:

Is there a faster distributed Laplacian solver in the
HYBRID model?

Our paper essentially settles this question by showing
the same ρ-congested part-wise aggregation primitive can
be efficiently solved in ˜O(ρ) rounds of NCC, implying
an almost optimal no(1)-round distributed algorithm for
solving Laplacian systems in the HYBRID model. A con-
ceptual contribution of our approach is that we treat both
CONGEST, Supported-CONGEST, and HYBRID in a uni-
fied way through the lens of the low-congestion shortcut
framework, by designing our algorithm using high-level

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 477

primitives and leaving the model-specific translations to the
framework itself. A similar unified view of PRAM (i.e.,
parallel) and CONGEST (i.e., distributed) graph algorithms
through the same lens has led to very recent breakthroughs on
long-standing open problems for both of these settings [28].

1.1 Overview of our contributions and techniques

The unifying thread and the main technical ingredient of our
(almost) universally optimal distributed Laplacian solvers is
a new fundamental communication primitive referred to as
the congested part-wise aggregation problem. Specifically,
we develop near-optimal algorithms for solving this problem
in the (Supported-)CONGEST and the NCCmodel (Sect. 3),
and then we utilize this primitive to develop almost univer-
sally optimal Laplacian solvers.

1.1.1 The congested part-wise aggregation problem

To introduce the congested part-wise aggregation problem,
let us first give some basic background. The aforementioned
Ghaffari-Haeupler framework of low-congestion shortcuts
revolves around the so-called part-wise aggregation prob-
lem posed as follows: “The graph is partitioned into disjoint
and individually-connected parts, and we need to compute
some simple aggregate function for each part, e.g., the min-
imum of the values held by the nodes in a given part” [15]
(see Definition 1 for a formal definition). Importantly, it has
been shown that this primitive can be solved efficiently in
structured topologies and that many problems (including the
MST, shortest path, min-cut, etc.) reduce to a small number
of calls to a part-wise aggregation oracle, leading to univer-
sally optimal algorithms. Unfortunately, it is not clear how
to reduce solving a Laplacian system to (a small number
of) part-wise aggregation calls; in this paper, we primarily
address this issue.

Our first technical contribution is to extend the framework
of low-congestion shortcuts by studying amore general prim-
itive: one that incorporates congestion (of the input parts)
into the underlying part-wise aggregation instance. More
precisely, unlike the standard part-wise aggregation prob-
lem, we allow each node to participate in up to ρ ∈ Z≥1

aggregation parts (see Definition 6). We later show that effi-
cient solutions to this primitive leads to efficient distributed
Laplacian solvers.

We first remark that a natural strategy for solving con-
gested part-wise aggregation instances does not work: con-
gested instances cannot, in general, be directly reduced to a
“small” collection of 1-congested instances, thereby neces-
sitating a more refined approach. To this end, our approach is
based on “lifting” the underlying communication network G
into its ρ-layered version ̂GO(ρ): every edge is replaced with
a matching and every node with a ρ-clique. The importance

of this transformation is that, as we show in Lemma 8, the ρ-
congested part-wise aggregation problem can be reduced to
a 1-congested instance on the ρ-layered graph (Sect. 3.1.1).
This is first established under the assumption that individ-
ual parts correspond to simple paths, and then we extend our
results to general parts by following the approach of Haeu-
pler et al. [18]. In light of this reduction, we next focus on
solving the 1-congested part-wise aggregation instance on
the layered graph.

As a warm-up, we treat graphs with bounded treewidth
tw(G) (Definition 5). It is known that on a graph G
with treewidth tw(G), a 1-congested part-wise aggregation
instance can be solved in ˜O(tw(G)D) rounds of CON-
GEST [17]. Keeping this in mind, we first show that the
treewidth of the ρ-layered graph ̂Gρ can only increase by
a factor of ρ compared to the original graph (Lemma 13).
Hence, we can solve 1-congested instances in ̂GO(ρ) in
˜O(ρ tw(G)D) rounds (when the underlying network is
̂GO(ρ)), which in turn allows us to solve ρ-congested
instances on G in ˜O(ρ2 tw(G)D) time in G (another ρ fac-
tor is necessary to simulate ̂GO(ρ) in G). This positive result
poses a natural question: can we achieve similar results on
graphs with bounded minor density δ(G) (Definition 4)?
However, the answer to this question is negative: minor den-
sity can blow up even for a 2-layered planar graph (see
Observation 2), making such a result impossible.

Then, we look at arbitrary graphs G: it is known that
1-congested part-wise aggregation instances can be solved
in a number of rounds that is controlled by SQ(G), where
SQ(G) is the shortcut quality of G (a certain graph param-
eter we formalize in Definition 3). Specifically, it can be
solved in ˜O(SQ(G)) rounds when the topology is known
in advance2 [18] and poly(SQ(G)) · no(1) in general CON-
GEST [22]. The shortcut quality parameter is significant
sincemanydistributedproblems (including theMST, shortest
path, Min-Cut, and—as we show later—Laplacian solving)
require ˜�(SQ(G)) rounds in CONGEST to be solved on
G [18]. Therefore, algorithms that have an upper bound close
to SQ(G) are universally optimal.

With the end goal of solving the 1-congested part-wise
aggregations on layered graphs ̂Gρ in time controlled by
SQ(G), our main result establishes that the shortcut quality
of the ρ-layered graph does not increase (modulo polylog-
arithmic factors) as compared to the original graph (The-
orem 15). This has a plethora of important consequences:
(1) when SQ(G) ≤ no(1), we can unconditionally solve
ρ-congested part-wise aggregation instances in ρ · no(1)
CONGEST rounds using the state-of-the-art shortcut con-

2 This model is also known as the supported CONGEST. That is,
CONGEST under the assumption that the topology is known; see Sect. 2
for a formal description of the model. Our techniques also apply in the
full generality of CONGEST, as we explain in the sequel.

123

478 I. Anagnostides et al.

struction [22], and (2) when the topology ofG is known (i.e.,
Supported-CONGEST), there exists a distributed algorithm
that solves any ρ-congested part-wise aggregation problem
in ρ · ˜O(SQ(G)) rounds [18]. As a consequence of our
general result, the shortcut quality of any 2-layered planar
graph is ˜O(D) since the shortcut quality of a planar graph
is ˜O(D) [15]. This is perhaps the most natural example of
a graph whose minor density is very far from the shortcut
quality; the only other example documented in the literature
so far is that of expander graphs.

Our proof proceeds by employing alternative characteri-
zations of the shortcut quality in terms of certain communi-
cation tasks. Specifically, shortcut quality can be shown to
be equal (modulo polylogarithmic factors) to the following
two-player max-min game: the first (max) player chooses k
sources and k sinks in the graph such that we can find k node-
disjoint paths matching the sources with the sinks; then the
second (min) player finds the smallest so-called quality Q
such that there exist k paths matching the sources with the
sinks with the path lengths being at most Q and each edge of
the underlying graph supporting atmost Q of second player’s
paths. This characterization allows us to compare the short-
cut quality of ̂Gρ withG as follows: take the worst-case (first
player’s) set of sources and sinks in ̂Gρ . Project them toG and
note they have node congestion ρ (due to the construction of
̂Gρ). Then, we show we can decompose (i.e., partition) these
set of sources and sinks into ˜O(ρ) pairs of sub-sources and
sub-sinks that are node-disjointly connectable in G. How-
ever, each such set enjoys paths of quality SQ(G), hence
embedding each such pair in a separate layer of ̂Gρ shows
that the shortcut quality of SQ(̂Gρ) is at most ˜O(SQ(G)).
Although this general approach improves over our result
for treewidth-bounded graphs we previously described, our
approach for the latter class of graphs is substantially simpler
and more suited in practice.

1.1.2 Almost universally optimal Laplacian solvers

First, we note that any distributed Laplacian solver that
always correctly outputs an answer on a fixed graph G must
take at least �̃(SQ(G)) rounds, giving us a lower bound to
compare ourselves with. Our refined lower bound uses the
hardness result recently shown by Haeupler et al. [18] for the
spanning connected subgraph problem, applicable for any
(i.e., non-worst-case) graph G. Specifically, we show that
a Laplacian solver can be leveraged to solve the spanning
connected subgraph problem, thereby substantially strength-
ening the lower bound due to Forster et al. [11].

Theorem 1 Consider agraphG with shortcut qualitySQ(G).
Then, solving a Laplacian system on G with ε ≤ 1

2 requires
˜�(SQ(G)) rounds in both CONGEST and Supported-
CONGEST models.

On the upper-bound side, we utilize the congested part-
wise aggregation primitive to improve and refine the Lapla-
cian solver of Forster et al. [11], leading to a substantial
improvement in the round complexity under structured net-
work topologies.

Theorem 2 Consider any n-node graph G with shortcut
quality SQ(G) and hop-diameter D. There exists a dis-
tributed Laplacian solver with error ε > 0with the following
guarantees:

• In the Supported-CONGEST model, it requires no(1)

SQ(G) log(1/ε) rounds.
• In the CONGEST model, it requires no(1) poly(SQ(G))

log(1/ε) rounds.
• In the CONGEST model on graphs with minor density δ,
it requires no(1)δD log(1/ε) rounds.

We note that the above algorithm is almost (up to inher-
ent no(1) factors) universally optimality for most settings
of interest. Since it is (almost) matching the SQ(G)-lower-
bound, it is unconditionally universally optimal when the
topology is known in advance (i.e., Supported-CONGEST).
Furthermore, in standard CONGEST, we give almost univer-
sally optimal Dno(1) log(1/ε)-round algorithms for topolo-
gies that include planar graphs, no(1)-genus graphs, no(1)-
treewidth graphs, excluded-minor graphs, since all of them
are graphs with minor density δ(G) = no(1). Furthermore,
for the realistic case of D ≤ no(1), it holds for most net-
works of interest that SQ(G) ≤ no(1) (e.g., expanders,
hop-constrained expanders, as well as all classes mentioned
earlier), for which we get no(1) log(1/ε)-round solvers. We
stress that the conjectured improvements of the state-of-the-
art of almost-optimal low-congestion shortcut constructions
would immediately lift our results to be unconditionally uni-
versally optimal in CONGEST; this issue is orthogonal and
not within the scope of this paper. It is also worth pointing
out that both our algorithms for solving congested part-wise
aggregations and the building blocks of the Laplacian solver
of Forster et al. [11] are in general randomized, and so all of
our guarantees apply with high probability.

Furthermore, in HYBRID we obtain an almost optimal
complexity in general graphs:

Theorem 3 Consider any n-node graph. There exists a dis-
tributed Laplacian solver in the HYBRID model with round
complexity no(1) log(1/ε), where ε > 0 is the error of the
solver.

This implies a remarkably fast subroutine for solving a
Laplacian system in HYBRID under arbitrary topologies. As
a result, we corroborate the observation that a very limited
amount of global power can lead to substantially faster algo-
rithms for certain optimization problems, supplementing a

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 479

recent line of work [23, 29–35]. Furthermore, our framework
based on the congested part-wise aggregation problemallows
for a unifying treatment of both (Supported-)CONGEST and
HYBRID, and we consider this to be an important con-
ceptual contribution of our work. Indeed, as we previously
explained, both of our accelerated Laplacian solvers rely on
faster algorithms for solving the congested part-wise aggre-
gation problem. In particular, for (Supported-)CONGEST
we have already described our approach in detail, while
in the HYBRID model we employ certain communication
primitives developed in [27] for dealing with congestion in
part-wise aggregations. A byproduct of our results is that the
framework of low-congestion shortcuts interacts particularly
well with the HYBRID model, as was also observed in prior
work [36].

1.2 Further related work

Our main reference point is the recent Laplacian solver of
Forster et al. [11] with existentially almost-optimal complex-
ity ofno(1)(

√
n+D) log(1/ε) rounds,where ε > 0 represents

the error of the solver. Specifically, they devised several
new ideas and techniques to circumvent certain issues which
mostly relate to the bandwidth restrictions of the CONGEST
model; these building blocks, as well as the resulting Lapla-
cian solver are revisited in ourwork to refine the performance
of the solver. We are not aware of any previous research
addressing this problem in the distributed context. On the
other hand, the Laplacian paradigm has attracted a con-
siderable amount of interest in the community of parallel
algorithms [37, 38].

Research concerning hybrid communication networks in
distributed algorithms was recently initiated by Augustine
et al. [23]. Specifically, they investigated the power of a
modelwhich integrates the standardLOCALmodel [39]with
the recently introduced node-capacitated clique (NCC) [27],
focusing mostly on distance computation tasks. Several of
their results were subsequently improved and strengthened in
subsequent works [30, 32] under the same model of compu-
tation. In ourworkwe consider a substantiallyweakermodel,
imposing a severe limitation on the communication over
the “local edges”. This particular variant has been already
studied in some recent works for a variety of fundamental
problems [31, 33].

TheNCCmodel, which captures the global network in all
hybrid models studied thus far, was introduced by Augus-
tine et al. [27] partly to address the unrealistic power of the
congested clique (CLIQUE) [40]. In the latter model each
node can communicate concurrently and independentlywith
all other nodes by O(log n)-bit messages. In contrast, the
NCCmodel allows communication with O(log n) (arbitrary)
nodes per round.As a result, in theHYBRIDmodel and under
a sparse local network, only ˜�(n) bits can be exchanged

overall per round, whereas CLIQUE allows for the exchange
of up to ˜�(n2) (distinct) bits. As evidence for the power
of CLIQUE we note that even slightly super-constant lower
bounds would give new lower bounds in circuit complexity,
as implied by a simulation argument due to Drucker et al.
[41]. Finally, we remark a subsequent work that leverages
tools from the Laplacian paradigm in the broadcast variant
of the congested clique [42].

2 Preliminaries

General notation. We denote with [k] := {1, 2, . . . , k}.
Graphs throughout this paper are undirected. The nodes and
the edges of a given graphG are denoted as V (G) and E(G),
respectively.We also use n := |V (G)| for brevity. The graphs
are often weighted, in which case we assume (as is standard)
that for all e ∈ E(G),w(e) ∈ {1, 2, . . . , poly(n)}. We will
denote the hop-diameter of a graph G with D(G) (the hop-
diameter ignores weights).Moreover, we use A�B to denote
the multiset union, i.e., each element is repeated according to
its multiplicity; this operation corresponds to disjoint unions
when A ∩ B = ∅.
Communication models. The communication network con-
sists of a set of n entities with [n] := {1, 2, . . . , n} being
the set of their IDs, and a local communication topology
given by a graph G.3 We define D := D(G) to be the (hop-
)diameter of the underlying network. At the beginning, each
node knows its own unique O(log n)-bit identifier as well as
the weights of the incident edges. Communication occurs in
synchronous rounds, and in every round nodes have unlim-
ited computational power to process the information they
possess. We will consider models with both local and global
communication modes.

The local communication mode will be modeled with the
CONGESTmodel [43] andSupported-CONGESTmodel [44],
for which in each round every node can exchange an
O(log n)-bit message with each of its neighbors in G via
the local edges. In the (standard) CONGEST model, each
node v ∈ V (G) initially only knows the identifiers of each
node in v’s own neighborhood, but has no further knowl-
edge about the topology of the graph. On the other hand, in
the Supported-CONGEST model, all nodes know the entire
topology of G upfront, but not the input.

The global communication mode will be modeled using
NCC [27], for which in each round every node can exchange
O(log n)-bit messages with O(log n) arbitrary nodes via
global edges. If the capacity of some channel is exceeded,
i.e., toomanymessages are sent to the same node, it will only

3 To avoid any possible confusion we point out that, for consistency
with the nomenclature of Forster et al. [11], we henceforth reserve G
to denote the underlying communication network while G is used in
statements regarding arbitrary graphs.

123

480 I. Anagnostides et al.

receive an arbitrary (potentially adversarially selected) sub-
set of the information based on the capacity of the network;
the rest of the messages are dropped. In this context, we will
let HYBRID be the integration of CONGEST andNCC (i.e.,
nodes have both a local and a global communication mode
at their disposal).

At this point, it is worth pointing out that different models
are suitable for different applications. The standard CON-
GESTmodel is appropriate in local communication networks
under severely congested edges, in contrast to LOCAL,
another popular model which captures local networks with
edges of essentially unlimited capacity. On the other hand,
NCC was introduced to model networks with global capa-
bilities, but under severe restrictions on the amount of
communication possible in each round; NCC has been put
forward as a more realistic counterpart to CLIQUE, which
we described earlier. Correspondingly, HYBRID is more
appropriate to model networks withmultiple communication
modes. For an additional motivation for each of the above
models, we refer to the papers that introduced them, and ref-
erences therein.

The performance of a distributed algorithm will be mea-
sured in terms of its round complexity—the number of rounds
required so that every node knows its part of the output. For
randomized algorithms itwill suffice to reach thedesired state
with high probability.4 We will assume throughout this work
that nodes have access to a common source of randomness;
this comes without any essential loss of generality in our set-
ting [45]. When talking about a distributed algorithm for a
specific problem (e.g., Laplacian solving, part-wise aggrega-
tion, etc.) we assume the input is appropriately distributedly
stored (i.e., each node will know its own part) and, upon ter-
mination, it will be required that the output is appropriately
distributedly stored. The appropriate way to distributedly
store the input and output will be explained in the problem
definition.
Low-congestion shortcuts.Arecurring scenario in distributed
algorithms for global problems (e.g. MST) boils down to
solving the following part-wise aggregation problem:

Definition 1 (Part-Wise Aggregation Problem) Consider an
n-node graph G whose node set V (G) is partitioned into k
(disjoint) parts P1�· · ·� Pk ⊆ V (G) such that each induced
subgraph G[Pi] is connected. In the part-wise aggregation
problem, each node v ∈ V is given its part-ID (if any) and
an O(log n)-bit value x(v) as input. The goal is that, for
every part Pi , all nodes in Pi learn the part-wise aggregate
⊕

w∈Pi x(w), where
⊕

is an arbitrary pre-defined aggrega-
tion function.

4 We say that an event holds with high probability if it occurs with
probability at least 1 − 1/nc for a (freely choosable) constant c > 0.

Throughout this paper, we will assume that the aggrega-
tion function

⊕

is commutative and associative (e.g. min,
sum, logical-AND), although this is not strictly needed (e.g.,
see [21]). To solve such problems, Ghaffari and Haeupler
[15] introduced a natural combinatorial graph structure that
they refer to as low-congestion shortcuts.

Definition 2 (Low-Congestion Shortcuts) Consider a graph
G whose node set V (G) is partitioned into k (disjoint) parts
P1 � · · · � Pk ⊆ V (G) such that each induced subgraph
G[Pi] is connected. A collection of subgraphs H1, . . . , Hk is
a shortcut ofG with congestion c and dilation d if the follow-
ing properties hold: (i) the (hop) diameter of each subgraph
G[Pi] ∪ Hi is at most d, and (ii) every edge is included in at
most c many of the subgraphs Hi . The quantity Q = c + d
will be referred to as the quality of the shortcut.

Importantly, a shortcut of quality Q allows us to solve
the part-wise aggregation problem in ˜O(Q) rounds of
CONGEST, as formalized below.

Proposition 4 Suppose that P1, . . . , Pk is any part-wise
aggregation instance in a communication network G. Given
a shortcut of quality Q, we can solve with high probabil-
ity the part-wise aggregation problem in ˜O(Q) CONGEST
rounds.

Proof Consider only one part Pi in isolation over the network
G[Pi] + Hi . First, we claim that there exists a simple deter-
ministic algorithm that computes the AND-aggregate (where
each node v ∈ Pi has a input bit x(v)) in O(d) rounds, where
each edge is used to send atmost O(1)messages. Concretely,
any node whose input is 0 will forward its input to all neigh-
bors and deactivate itself. Any node which hears about the
existence of an input-0 will forward this to all of its neigh-
bors and deactivate itself. After O(d) rounds, either all nodes
have heard about the existence of a 0 or they can conclude
all inputs are 1.

We continue considering only one part Pi in isolation. The
next step is to elect a leader of Pi by finding the node with the
smallest ID in Pi ; then, (1) iterate from the most significant
bit of the ID to the least significant bit of the ID; (2) compute
the AND-aggregate of the current bit of all the nodes’ IDs;
(3) if the AND-aggregate is 0, all nodes whose current bit of
the ID is 1 will drop out.

Putting these together we have a way of computing the
aggregate of a part Pi in isolation in ˜O(d) rounds with each
edge carrying ˜O(1) messages: First, we elect a leader of Pi .
Then, the leader initiates the computation of a spanning BFS
tree of G[Pi] + Hi by broadcasting from itself to all other
nodes, and each node forwards the message to all neighbors;
the neighbor from which it obtains the message first is the
parent in the tree. Moreover, by performing a convergecast
over the BFS tree, one can easily compute the aggregate in
O(d) rounds for a single part Pi .

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 481

Finally, we have to run the algorithms on all the parts
{Pi }i simultaneously. However, this might incur congestion
issues on some edges since algorithms associated with mul-
tiple parts want to send a message through the same edge in
the same round. By definition of the congestion c, at most
c messages need to be passed over any one edge e. Our job
is to schedule the algorithms such that, indeed, all of them
complete in ˜O(c) rounds. To this end, we choose a uniformly
random delay(i) between 0 and ˜O(c) for each part Pi . Then,
we start the algorithmon Pi at rounddelay(i)—this technique
is known as the randomized delay [45]. Randomly delaying
all algorithmsmakes the expected number ofmessages cross-
ing a given edge in a fixed round�(1). By a Chernoff bound,
this number is bounded by ˜O(1)with high probability. There-
fore, by simulating each round of the algorithm using ˜O(1)
rounds of communication (where each round of communi-
cation carries at most a single message across an edge), we
can schedule the algorithms on all parts simultaneously [45].
In turn, this allows us to complete all of the aggregates in
˜O(d + c) = ˜O(Q) rounds. �

We recall that we are operating under the assumption that
nodes share a common source of randomness, which is used
in the above proof.
Shortcut quality and construction of shortcuts.Shortcut qual-
ity, introduced below, is a fundamental graph parameter that
has been proven to characterize the complexity of many
important problems in distributed computing.

Definition 3 Given a graphG = (V , E), we define the short-
cut quality SQ(G) of G as the optimal (smallest) shortcut
quality of the worst-case partition of V into disjoint and con-
nected parts P1 � P2 � . . . � Pk ⊆ V .

For fundamental problems such as MST, SSSP, and Min-
Cut any correct algorithm requires ˜�(SQ(G)) rounds on any
network G, even if we allow randomized solutions and (non-
trivial) approximation factors. In fact, this limitation holds
even when the network topology G is known to all nodes
in advance [18]. We remark that ˜�(D(G)) ≤ SQ(G) ≤
O(D(G) + √

n), and the upper bound is known to be tight
in certain (pathological) worst-case graph instances [15].

Moreover, assuming fast distributed algorithms for con-
structing shortcuts of quality competitive with SQ(G), all of
the aforementioned problems can be solved in ˜O(SQ(G))

rounds [15, 20, 21]. However, the key issue here is the algo-
rithmic construction of the shortcuts upon which the above
papers rely. While there has been a lot of recent progress
in this regard, current algorithms are quite complicated and
have sub-optimal guarantees. We recall below these state-of-
the-art SQ(G)-competitive construction results.

Theorem 5 There exists a distributed algorithm that, given
any part-wise aggregation instance on any n-node graph G,

computes with high probability a shortcut with the following
guarantees:

• In CONGEST, the shortcut has quality poly
(

SQ(G)
) ·

no(1) and the algorithm terminates in poly
(

SQ(G)
)·no(1)

rounds [22].
• In Supported-CONGEST, the shortcut has quality

˜O(SQ(G)) and the algorithm terminates in ˜O(SQ(G))

rounds [18].

Universal optimality. A distributed algorithm is said to be
α-universally optimal if, on every network graph G, it is
α-competitive with the fastest correct algorithm on G [18].
Even the existence of such algorithms is not at all clear as
it would seem possible that vastly different algorithms are
required to leverage the structure of different networks. Nev-
ertheless, a remarkable consequence of Theorem 5 is that
in Supported-CONGEST we can design ˜O(1)-universally
optimal algorithms formany fundamental optimization prob-
lems. Moreover, efficient shortcut construction is the only
obstacle towards achieving these results in the full generality
of CONGEST, which is an orthogonal issue and out of scope
for this paper. Still, the aforementioned results are sufficient
to design no(1)-universally optimal algorithms on graphs that
have shortcut quality SQ(G) = no(1).
Graphs excluding dense minors. It turns out that the crucial
issue of efficient shortcut construction can be resolved with
a near-optimal, simple, and even deterministic algorithm for
the rich class of graphs with bounded minor density. For-
mally, let us first recall the following definition.

Definition 4 (Minor Density) The minor density δ(G) of a
graph G is defined as

δ(G) = max

{ |E ′|
|V ′| : H = (V ′, E ′) is a minor of G

}

.

Any family of graphs closed under taking minors (such as
planar graphs) has a constant minor density. For such graphs,
Ghaffari and Haeupler [19] established an efficient shortcut
construction:

Theorem 6 ([19]) Any graph G with hop-diameter D and
minor density δ(G) admits shortcuts of quality ˜O(δD), which
can be constructed with high probability in ˜O(δD) rounds
of CONGEST.

Some of our results apply for communication networks
with bounded treewidth, so let us recall the following defini-
tion.

Definition 5 (Tree Decomposition and Treewidth) A tree
decomposition of a graph G is a tree T with tree-nodes
X1, . . . , Xk , where each Xi is a subset of V (G) satisfying
the following properties:

123

482 I. Anagnostides et al.

1. V = ⋃k
i=1 Xi ;

2. For any node u ∈ V (G), the tree-nodes containing u
form a connected subtree of T ;

3. For every edge {u, v} ∈ E(G), there exists a tree-node
Xi which contains both u and v.

The width w of the tree decomposition is defined as w :=
maxi∈[k]|Xi | − 1. Moreover, the treewidth tw(G) of G is
defined as the minimum of the width among all possible tree
decompositions of G.

Bounded-treewidth graphs inherit all of the nice properties
guaranteed by Theorem 6, as implied by the following well-
known fact.

Fact 7 For any graph G, δ(G) ≤ tw(G).

The Laplacian matrix.Consider a weighted undirected graph
G = (V , E,w > 0). TheLaplacian of the graphG is defined
as

L(G)u,v =
{

∑

{u,z}∈E w(u, z) If u = v,

−w(u, v) otherwise.

TheLaplacianmatrix of a graph is (i) symmetric (L(G)T =
L(G)); (ii) positive semi-definite (xTL(G)x ≥ 0 for any
x); and (iii) weakly diagonally dominant (L(G)u,u ≥
∑

v �=u |L(G)u,v|).
Further notation. Consider two positive semi-definite matri-
ces A,B ∈ R

n×n . For a vector x ∈ R
n we define ‖x‖A :=√

xTAx (Mahalanobis norm). We will write A ≈ε B if
exp(−ε)A � B � exp(ε)A, where A � B if and only
if the matrix B − A is positive semi-definite. For an edge
e = {u, v}, we will let b(e) := 1u −1v , where 1u ∈ R

n rep-
resents the characteristic vector of node u. For a graphG with
resistances r(e), we define the leverage scores as levG(e) :=
r(e)−1bT (e)L(G)†b(e). Note that 0 ≤ levG(e) ≤ 1.

3 Congested part-wise aggregations

This section is concerned with a congested generalization of
the standard part-wise aggregation problem (Definition 1),
formally introduced below.

Definition 6 (Congested Part-Wise Aggregation Problem)
Consider an n-node graph G with a collection of k sub-
sets of nodes P1, . . . , Pk ⊆ V (G) called parts such that
each induced subgraph G[Pi] is connected and each node
v ∈ V (G) is contained in at most ρ ∈ Z≥1 many parts, i.e.,
∀v ∈ V (G) |{i : Pi � v}| ≤ ρ. In the ρ-congested part-wise
aggregation problem, each node v is given the following as
input: for each part Pi � v node v knows the part-ID i and
an O(log n)-bit part-specific value xi (v). The goal is that,

for each part Pi , all nodes in Pi learn the part-wise aggre-
gate

⊕

w∈Pi xi (w), where
⊕

is a pre-defined aggregation
function.

This congested generalization of the standard part-wise
aggregation problem that we study in this section turns out
to be a central ingredient in our refined Laplacian solver; this
is further explained in Sect. 4. The remainder of this section
is organized as follows. In Sect. 3.1we establish near-optimal
algorithms for solving congested part-wise aggregations in
CONGEST, which is also the main focus of this section.
We conclude by pointing out the construction for NCC in
Sect. 3.2.

3.1 Solving congested instances in the CONGEST
model

The first natural strategy for solving the ρ-congested part-
wise aggregation problem of Definition 6 is through a
reduction to poly(ρ) 1-congested instances. However, this
approach immediately fails even if we allow ρ = 2. Indeed,
there exist congested part-wise aggregation instances for
which every two (distinct) parts share a common node, even
when ρ = 2, leading to the following observation.

Observation 1 For an infinite family of values n, there exists
an n-node planar graph G and a 2-congested part-wise
aggregation instance I with k = �(

√
n) parts such that

reducing I to the union of k′ 1-congested part-wise aggrega-
tion instances on G requires k′ = �(

√
n).

Such a pattern is illustrated in Fig. 1. Indeed, in that 2-
congested part-wise aggregation instance every two distinct
parts share a common node. As a result, directly employing a
1-congested part-wise aggregation oracle is of little use since
it would introduce an overhead depending on the number of
parts. In light of this, we develop a more refined approach
that leverages what we refer to as the layered graph.

3.1.1 The layered graph

Here we introduce the layered graph ̂Gρ , associated with the
underlying graph G. Then, we reduce any ρ-congested part-
wise aggregation on G to a 1-congested instance on ̂GO(ρ).
The layered graph. Consider an underlying network G and
some ρ ∈ Z≥1, corresponding to the congestion parameter
in Definition 6. The layered graph ̂Gρ is constructed in the
followingway. First, we let ̂Gρ be a disjoint union of ρ copies
ofG (called layers), namelyG1,G2, . . . ,Gρ . Each node v ∈
V (G) is associated with its copies v1, v2, . . . , vρ ∈ V (̂Gρ).
We also add an edge between each two copies that originate
from the same node (i.e., we add a clique to ̂Gρ on the set
of copies associated with the same node v ∈ V (G)); this
construction is illustrated in Fig. 2. The layered graph induces

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 483

Fig. 1 A 2-congested part-wise aggregation problem on a 6× 6 grid (the instance immediately extends to an
√
n × √

n topology). Different colors
highlight different parts of the instance

Fig. 2 An example of a transformation from G to the layered graph ̂Gρ

with ρ = 3. We have highlighted with different colors different layers
of the graph

a natural projection operation π : V (̂Gρ) → V (G) which
maps a copy vi to its original node v = π(vi). Furthermore,
we often talk about simulating ̂Gρ in G, by which we mean
that each node v simulates—learns all the inputs and can
generate all outputs—for its copies v1, . . . , vρ . Throughout
this paper, we will assume that ρ = poly(n) so that any
O(log n)-bit message on ̂Gρ can be sent within O(1) rounds
in G; this also keeps the ˜O-notation well-defined.

The main goal of this section is to establish that the
ρ-congested part-wise aggregation problem on G can be
reduced to a 1-congested instance on ̂GO(ρ), as formalized
below.

Lemma 8 (Unrestricted Congested Part-Wise Aggregation)
Let G be an n-node graph and let Z≥1 � ρ ≤ poly(n).
Suppose that any (1-congested) part-wise aggregation on
̂GO(ρ) can be solved with a τ -round CONGEST algorithm
on ̂GO(ρ). Then, there exists an ˜O(ρ · τ)-round CONGEST
algorithm on G that solves any ρ-congested part-wise aggre-
gation instance on G.

Towards establishing this reduction, we first point out that
any CONGEST algorithm on ̂Gρ can be simulated with only
a ρ multiplicative overhead in the round complexity.

Lemma 9 (Simulating ̂Gρ in G) For any G and any Z≥1 �
ρ ≤ poly(n), we can simulate any τ -round CONGEST algo-
rithm on ̂Gρ with a (ρ · τ)-round CONGEST algorithm on
G.

Proof Let us consider one round of communication in ̂Gρ .
Each node vwill simulate (learn allmessages coming into) its
copies v1, . . . , vρ ∈ V (̂Gρ). Therefore, in each round node
v ∈ V (G) needs to learn all messages sent to v’s copies
v1, . . . , vρ ∈ V (̂Gρ) from their neighbors in ̂Gρ . Note that,
by definition, v already knows the messages sent between
any two copies vi and v j . Hence, in a single round v can
learn all messages sent to any fixed vi . As a result, ρ rounds
of communication in G suffice to simulate a single round in
̂Gρ . �

Furthermore, we will use a folklore result showing how to
color a (multi)graph of maximum degree � in O(�) colors
in O(log n) rounds of CONGEST.

Fact 10 (Folklore, [46])Given a (multi)graphG with n nodes
and maximum degree � ≤ poly(n), there exists a random-
ized CONGEST algorithm that colors the edges of G with
O(�) colors and completes in O(log n) rounds, with high
probability. The coloring is proper, i.e., two edges that share
an endpoint are assigned a different color.

By multigraph here we simply mean that there can be
multiple parallel edges between the same pair of nodes, and
every such edge can carry an independentmessage per round.
For completeness, we provide the simple proof below.

Proof of Fact 10 A simple edge-coloring algorithm presented
by Johansson [46] works by choosing a color uniformly at
random from the set {1, . . . , O(�)} for each edge. Each edge
will, with constant probability, choose a color not used by its
neighbors. Then, this color stays fixed and the edge drops
out. Hence, after O(log n) iterations the edges will be prop-
erly colored. Implementation-wise, we can assume there is

123

484 I. Anagnostides et al.

an additional node in the middle of each edge which repre-
sents that edge (this only makes the problem harder). Each
edge randomly chooses and sends its color to its endpoints
which, in turn, informonwhether there is a conflict. Then, the
edges send back to its endpoints whether it dropped out. This
iteration is then repeated until we reach a proper coloring. �

Using this lemma, we first prove a version of our main
reduction (Lemma 8), but with the slight twist that we restrict
each part of the ρ-congested part-wise aggregation problem
to be a simple path.

Lemma 11 (Path-Restricted Congested Part-Wise Aggrega-
tion) Let G be an n-node graph and let Z≥1 � ρ ≤ poly(n).
Suppose that there exists a τ -round CONGEST algorithm
solving the (1-congested) part-wise aggregation on ̂GO(ρ).
Then, there exists an ˜O(ρ · τ)-round CONGEST algorithm
on G that solves any ρ-congested part-wise aggregation
instance on G when each part is restricted to be a simple
path5 (nodes are not repeated in simple paths).

Proof Let P = {P1, P2, . . . , Pk} be subsets of nodes in G
comprising the parts of some ρ-congested part-wise aggre-
gation on G. We will construct paths P ′ = {P ′

1, P
′
2, . . . , P

′
k}

in ̂GO(ρ) in a way that solving a part-wise aggregation on P ′
corresponds to solving a ρ-congested part-wise aggregation
on P .

Let Ei be the set of edges of G comprising the simple
path traversing all the nodes in Pi , and consider the graph
G ′ := (V (G),

⊎k
i=1 Ei). First, we observe that the degree of

any node in v ∈ V (G ′) = V (G) is at most 2ρ since at most
ρ many parts contain v and each part contributes at most 2
to the degree (since Pi is a simple path). Furthermore, we
can simulate any ψ-round CONGEST algorithm on G ′ with
a (ψ ·ρ)-round CONGEST algorithm on G as each edge e ∈
E(G) appears at most ρ times in E(G ′) due to the part-wise
aggregation instance being at most ρ-congested. Therefore,
using Fact 10 we can distributedly color the edges of G ′ into
at most O(ρ) colors in O(log n) CONGEST rounds on G ′,
which translates to ˜O(ρ) CONGEST rounds on G. Suppose
that the algorithm assigns a color c(e) ∈ {1, . . . , O(ρ)} to
each edge e ∈ ⊎

i Ei .
We now construct P ′

i ⊆ ̂GO(ρ) as follows: consider each
edge {u, v} ∈ Ei and add both uc({u,v}), vc({u,v}) ∈ V (̂GO(ρ))

to P ′
i (i.e., the c({u, v})-th copy of both u and v). By construc-

tion, P ′
i induces a connected subgraph and the projection P ′

i
to G is exactly Pi . Next, we invoke the (1-congested) part-
wise aggregation τ -round algorithm for {P ′

1, . . . ,P ′
k} on ̂Gρ ,

which can be converted to an ˜O(τ ·ρ)-round algorithm on G
(Lemma 9). Thus, we obtain an ˜O(τ · ρ)-round CONGEST
algorithmonG which solves any path-restrictedρ-congested
part-wise aggregation problem. �

5 I.e., there exists a simple path traversing all the nodes of the part, and
each node knows the corresponding incident edges of that path.

Finally, our reduction claimed in Lemma 8 follows via
[18, Lemma 7.2], as we formalize below.

Proof of Lemma 8 Armed with Lemma 11, the claim follows
by leveraging [18, Lemma 7.2 in the Full Version]. For
completeness, their result states the following: Suppose we
are given a collection of part-wise aggregation parts {Pi }i
in any graph H . Then, one can solve the corresponding
part-wise aggregate problem by reducing it to ˜O(1)-many
(1-congested) part-wise aggregations between disjoint parts

restricted to be simple paths P ′
i = {P ′

i, j }
˜O(1)
j=1 . Here, P

′
i, j is

a collection of node-disjoint simple paths restricted to Pi .
Note that, for each j ,

⋃

i P
′
i, j is a collection of node-disjoint

simple paths (since P ′
i, j ⊆ Pi). Hence, it is sufficient to solve

part-wise aggregation on a collection of node-disjoint simple
paths on H .

For our proof, we use the above result for H = G.
Moreover,

⋃

i P
′
i, j is ρ-congested since at most ρ parts

Pi use any node v, and within each such Pi , every oracle
call uses the node v at most once (since they are disjoint).
By Lemma 11, the part-wise aggregation problem on ρ-
congested node-disjoint simple paths is exactly handled in
˜O(ρ · τ) CONGEST rounds. Therefore, the original prob-
lem can also be solved in ˜O(ρ · τ) CONGEST rounds, as
required. �

3.1.2 Treewidth-bounded graphs

Here we leverage the reduction we established in Lemma 8
to obtain a simple algorithm for solving the congested part-
wise aggregation problem in treewidth-bounded graphs. The
crucial observation is that the treewidth of the layered graph
can only grow by a factor of ρ compared to the treewidth of
the underlying graph, as we show below.

Claim 12 D(̂Gρ) ≤ D(G) + 1.

Proof First, consider any two nodes ui , v j ∈ V (̂Gρ) such
that π(ui) �= π(v j), with i, j ∈ [ρ]. By construction of the
layered graph Gi , there exists a path of length at most D(G)

in the i-th layer of ̂Gρ between ui to vi . Thus, it follows that
the (hop) distance between ui and v j is at most D(G) given
that v j and vi , with i �= j , are adjacent—the copies form a
clique in the layered graph. This also implies that the distance
between any two nodes ui and u j , with π(ui) = π(u j), is 1,
concluding the proof. �

Lemma 13 If the treewidth of G is tw(G), then tw(̂Gρ) ≤
ρ tw(G) + ρ − 1.

Proof Consider a tree decomposition (in the sense of Defi-
nition 5) of G into tree-nodes {X j }kj=1 such that the width

of the decomposition satisfies w = tw(G). We will show
that there exists a tree decomposition on the graph ̂Gρ with

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 485

width at most ρ(w + 1) − 1, which in turn will imply that
tw(̂Gρ) ≤ ρ(w + 1) − 1 = ρ(tw(G) + 1) − 1. Indeed,
consider the following sets:

̂X j := {ui : u ∈ X j , i ∈ [ρ]},

for all j ∈ [k]. In words, each node V (G) � u ∈ X j

is replaced by all of its copies ui in ̂X j . Observe that,
by construction, |̂X j | = ρ|X j |. Thus, it suffices to show
that the collection of sets {̂X j }kj=1 forms a legitimate tree

decomposition. First, since V (G) ⊆ ⋃

j X j , it follows that

V (̂Gρ) ⊆ ⋃

̂X j . Moreover, consider any two sets ̂X j , ̂X
,
both containing a node ui ∈ V (̂Gρ) for some i ∈ [ρ]. Then,
we know that all the tree-nodes in the (unique) path between
X j and X
 based on the original tree decomposition include
u since X j and X
 both include u and {X j } is a tree decompo-
sition of G. In turn, this implies that all the tree-nodes in the
path between ̂X j and ̂X
 also contain ui . Thus, the tree-nodes
containingui forma connected subtree. Finally,weknow that
for every edge {u, v} ∈ E(G) there exists a subset X j such
that u, v ∈ X j . Hence, we can infer that for every edge in
E(̂Gρ) there is a tree-node ̂X j which includes both incident
endpoints. As a result, we have constructed a tree decompo-
sition in ̂Gρ with width max j∈[k]|̂X j | − 1 ≤ ρ(w + 1) − 1.

�

Combining this guarantee with Fact 7, Lemma 8, The-

orem 6, and Claim 12, we obtain the following immediate
consequence.

Corollary 14 Let G be an n-node communication network of
diameter at most D and treewidth tw(G). Then, we can solve
with high probability any ρ-congested part-wise aggregation
problem in G within ˜O(ρ2 ·tw(G)·D) rounds ofCONGEST.

Minor density in the layered graph. In light of Lemma 13, a
natural question is whether an analogous bound holds with
respect to the minor density of the underlying graph; i.e.,
whether δ(̂Gρ) = poly(ρ)δ(G). Unfortunately, this is not
possible, as illustrated in Fig. 3.

Observation 2 There exists an n-node graph G with minor
density δ(G) = ˜O(1), but its 2-layered version ̂G2 hasminor
density δ(̂G2) = �(

√
n).

3.1.3 General graphs

We conclude with our main result of Sect. 3.1: a near-
optimal distributed algorithm for solving the ρ-congested
part-wise aggregation problem in general graphs. In light of
our reduction in Lemma 8, the technical crux is to control
the degradation in the shortcut quality incurred by the trans-
formation into the layered graph. Surprisingly, we show that
the shortcut quality of ̂Gρ does not increase by more than
a polylogarithmic factor even when the number of layers is
polynomial:

Theorem 15 For any n-node graph G and any Z≥1 � ρ ≤
poly(n), we have that SQ(̂Gρ) = ˜O(SQ(G)).

This theorem improves over our previous result for
treewidth-bounded graphs (Lemma 13) since the latter guar-
antee inevitably induces a linear factor of ρ in the shortcut
quality of ̂Gρ ; in contrast, Theorem 15 guarantees merely
a polylogarithmic in ρ degradation in the shortcut quality.
While this will not affect the asymptotic performance of the
Laplacian solver, this improvement might prove to be impor-
tant for future applications. Assuming that we have shown
Theorem 15, we can then utilize the efficient shortcut con-
structions given in Theorem 5 to solve ρ-congested part-wise
aggregations on any graph.

Corollary 16 There exists a randomized distributed algo-
rithm that, for any n-node graph G and ρ ∈ Z≥1 ≤ poly(n),
solves with high probability any ρ-congested part-wise
aggregation instance on G with the following guarantees:

• In the CONGEST, the algorithm terminates in at most
ρ · poly (

SQ(G)
) · no(1) rounds.

• In the CONGEST model on graphs with minor density δ,
it requires ˜O(ρ · δ · D) rounds.

• In the Supported-CONGEST, the algorithm terminates
in ˜O(ρ · SQ(G)) rounds.

The rest of this subsection is dedicated to the proof of
Theorem 15. First, to argue about the shortcut quality of the
layeredgraph,weneed todevelop several generalizednotions
of node connectivity.

Fig. 3 The layered graph ̂Gρ of a 3 × 3 grid with every node having congestion ρ = 2 (left), and a minor of ̂Gρ induced by the connected
components {C1,C2,C3, R1, R2, R3} (right)

123

486 I. Anagnostides et al.

Pair node connectivity. Given a (multi)set of source-sink
pairsP = {(si , ti)}ki=1 inG, we say thatP has pair node con-
nectivityρ if there exist paths P1, . . . , Pk , with si and ti being
the endpoints of each Pi , such that every node v ∈ V (G) is
contained in at most ρ many paths, i.e., for all v we have
|{i : V (Pi) � v}| ≤ ρ. If P has pair node connectivity 1 we
say that the pairs in P are node-disjointly connectable.
Any-to-any node connectivity. Suppose that we are given
multisets of k sources S = {s1, . . . , sk} and k sinks T =
{t1 . . . , tk}. We say that (S, T) have any-to-any node connec-
tivity ρ if there is a permutation π : {1, . . . , k} → {1, . . . , k}
such that the pairs {(si , tπ(i))}ki=1 have pair node connectiv-
ity ρ. If (S, T) have any-to-any node connectivity 1 we say
that the multisets (S, T) are any-to-any node-disjointly con-
nectable.

The following decomposition lemma states that two sets
with any-to-any node connectivity ρ can be decomposed
into ˜O(ρ) many pairs of subsets that are any-to-any node-
disjointly connectable.

Lemma 17 Given a graph G, suppose we are given any two
multisets of nodes S ⊆ V (G) and T ⊆ V (G) of size k :=
|S| = |T | that have any-to-any node connectivity ρ. Then,
we can partition S = S1 � S2 � . . . � SO(ρ log k) and T =
T1 � T2 � . . . TO(ρ log k) such that |Si | = |Ti | and (Si , Ti) are
any-to-any node-disjointly connectable.

Proof Suppose that each edge inG has infinite capacitywhile
each node in G has unit capacity. Then, let us connect a
super-source s to each node x ∈ S with a unit-capacity edge,
and a super-sink t to each node x ∈ T with a unit capacity
edge. By assumption, we know that there exists a flow f
over E(G) which sends k units of flow from s to t with
edge congestion 1 and node congestion at most ρ. Therefore,
the flow f /ρ sending k/ρ units of flow from s to t is a
feasible solution of the maximum flow linear program with
node constraints (i.e., it satisfies both edge and node capacity
constraints). Since that linear program is integral (i.e., has an
integrality gap of 1), there exists an integral flow f ′ which
sends at least k/ρ units of flow and satisfies both node and
edge capacity restrictions. In other words, there exist at least
k/ρ node disjoint paths (with the exception of the endpoints)
between s and t . Let S1 ⊆ S (T1 ⊆ T) be the set of nodes
on these paths immediately following the super-source (just
before the super-sink, respectively). Clearly, by construction,
(S1, T1) are any-to-any node-disjointly connectable. Finally,
we define S′ ← S\S1, T ′ ← T \T1 and proceed iteratively
as above (producing S2, T2 instead of S1, T1). In each step,
the size of S′ and T ′ decreases by at least a multiplicative
factor of 1 − 1/ρ. Hence, O(ρ log k) steps suffice so that
S′ = T ′ = ∅. �

Next, we introduce two communication tasks that will be
useful for characterizing the shortcut quality.

Multiple-unicast problem. Suppose that we are given k
source-sink pairs P = {(si , ti)}ki=1. The goal is to find the
smallest possible completion time τ such that there are k
paths P1, . . . , Pk for which (1) the endpoints of each Pi are
exactly si and ti ; (2) the dilation is τ , i.e., each path Pi has
at most τ hops; and (3) the congestion is τ , i.e., each edge
e ∈ E(G) is contained in at most τ many paths.
Any-to-any-cast problem. Suppose we are given k sources
S = {s1, . . . , sk} and k sinks T = {t1 . . . , tk}. The goal
is to find the smallest τ so that there is a permutation
π : {1, . . . , k} → {1, . . . , k} for which the multiple-unicast
problem on {(si , tπ(i))}ki=1 has at most τ completion time.

Finally, we now recall (a reinterpretation of) a result char-
acterizing shortcut quality from [18, 47]. Shortcut quality
was originally defined as the smallest completion-time of
the worst-case generalized (with respect to parts) multiple-
unicast (i.e., multi-commodity) problem over a pair node-
disjointly connectable instance (Definition 3). Using recent
network coding gap results, we can equivalently express
shortcut quality as the smallest completion-time of theworst-
case any-to-any-cast (i.e., single-commodity) problem over
sources and sinks that are any-to-any node-disjointly con-
nectable. The formal statement follows.

Theorem 18 ([18, 47]) Consider any graph G and let τ be
the worst-case completion time of any-to-any-cast problems
taken over all any-to-any node-disjointly connectable sets
(S ⊆ V (G), T ⊆ V (G)). Then, τ = ˜�(SQ(G)).

Proof It was proven in [18, Lemma 2.8 in the Full Version]
that SQ(G) is, up to ˜�(1) factors, equal to the completion
time C of some multiple-unicast instance with respect to
some source-sink pairs P := {(si , ti)}ki=1 that are pair node-
disjointly connectable. We note that, since sources and sinks
are disjoint, it follows that k = poly(n) and O(log k) =
O(log n). Furthermore, Haeupler et al. [47] proved that there
exists a sub-instanceP ′ = {(s′

i , t
′
i)
k′
i=1} ⊆ P such that SQ(G)

is (up to ˜�(1) factors) equal to the completion time τ of
the any-to-any-cast problemwith respect to ({s′

i }k
′

i=1, {t ′i }k
′

i=1).
One side of the claim is clear: for any sub-instance P ′ ⊆
P we have that τ ≤ C . The other direction is harder and
we sketch its proof here using the terminology by Haeupler
et al. [47]. By definition and strong duality, CutP (2C) =
ConcurrentFlowP (2C) ≤ 1. Furthermore, CutP (C/10) =
CutP (2C)/20 ≤ 1/10. Hence, by [18, Lemma 2.6] there
is a sub-instance P ′ ⊆ P with a moving cut of distance
τ := ˜�(C) and capacity less than |P ′|. Therefore, this proves
that the completion time of any-to-any-cast problem on P ′
is at least τ . With this in mind, we have that ˜�(SQ(G)) =
˜�(C) = τ ≤ C = ˜�(SQ(G)).

Finally, sinceP = {(si , ti)}ki=1 is pair node-disjointly con-
nectable, it follows from the definition that the sub-instance
({s′

i }k
′

i=1, {t ′i }k
′

i=1) is any-to-any node-disjointly connectable.

Therefore, ({s′
i }k

′
i=1, {t ′i }k

′
i=1) satisfies the constraints of this

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 487

result and has completion-time τ = ˜�(SQ(G)), as required.
It is also clear that, by shortcut quality, any any-to-any node-
disjointly connectable instance has completion time at most
SQ(G) using the node-disjoint paths that witness the any-
to-any node-disjointness as parts of the shortcut, making
({s′

i }k
′

i=1, {t ′i }k
′

i=1) the worst-case such instance (modulo poly-
logarithmic factors). �

Finally, combining all of the previous ingredients, we are
ready to show Theorem 15.

Proof of Theorem 15 Let S ⊆ V (̂Gρ) and T ⊆ V (̂Gρ) be
any-to-any node-disjointly connectable sets such that the
completion time of any-to-any-cast between S and T is
˜�(SQ(̂Gρ)) (Theorem 18). Let k := |S| = |T |, and suppose
that S′ := ⊎

s∈S{π(s)} ⊆ V (G) and T ′ := ⊎

t∈T {π(t)} ⊆
V (G) are the multisets induced by projecting S and T to
G, respectively. By construction of ̂Gρ , S′ and T ′ have any-
to-any node connectivity ρ; to see this, consider the witness
paths disjointly connecting them in ̂Gρ and project them to
G. Therefore, we can partition S′ = S′

1 � . . .� S′
O(ρ log k) and

T ′ = T ′
1�. . .�T ′

O(log k) such that |S′
i | = |T ′

i | and (S′
i , T

′
i) are

any-to-any node-disjointly connectable in G (Lemma 17).
By definition of shortcut quality, for each i ∈ {1, . . . ,

O(ρ log k)} there exists a set of paths (Pi
j)

|S′
i |

j=1 in G between
S′
i andT

′
i of quality (i.e., both congestion anddilation) atmost

SQ(G). Then, we inject the first O(log k) collections of paths
(P1

j) j , (P
2
j) j , . . . , (P

O(log k)
j) j to the first layer G1 of ̂Gρ ;

the second O(log k) collections to the second layer G2, and
so on, until we finally inject the last O(log k) collections to
the last layer Gρ . Note that only the paths on the same layer
interact, so both the congestion and dilation after injecting all
paths into ̂Gρ is O(SQ(G) log k). Hence, the same applies
for the shortcut quality. Finally, to solve the any-to-any-cast
problem on S and T one might need to add an between-layer
edge at the beginning and at the end since each injected path
is restricted to some adversarially chosen layer. However, this
only increases the congestion and dilation by O(1). Hence,
the completion time of any-to-any-cast between S and T is
˜O(SQ(G)), implying that SQ(̂Gρ) = ˜O(SQ(G)). �

3.2 TheNCCmodel

Wenext turn our attention to theNCCmodel. In particular,we
observe that the ρ-congested part-wise aggregation problem
admits a solution in poly(ρ, log n) rounds of NCC:

Lemma 19 Let G be an n-node graph. Then, we can solve
with high probability any ρ-congested part-wise aggregation
problem on G after O(ρ + log n) rounds of NCC.

This lemma is established after appropriately translat-
ing the communication primitives established for NCC by

Augustine et al. [27]. In particular, let us first describe one
of their key communication primitives.
The aggregation problem. In the aggregation problem, as
defined by Augustine et al. [27], we are given a distributive
function and a set of aggregation parts {P1, . . . , Pk}, with
Pi ⊆ V (G) for all i . Every aggregationpart is associatedwith
some target node ti ∈ Pi .6 Assuming that every node holds
exactly one input value for each aggregation part of which it
is a member, the goal is to let all the target nodes learn the
aggregate values with respect to the associated aggregation
parts. This setting allows a node to be part ofmultiple groups,
and in particular, we let
 be the local load: the number
of groups a given node may be included in—or an upper
bound thereof. In addition, if L = ∑k

i=1|Pi | represents the
global load of the aggregation problem, [27, Theorem 2.3]
established the following result.

Lemma 20 ([27]) There exists an aggregation algorithm
which solves with high probability the aggregation problem
in O(L/n +
/ log n + log n) rounds of NCC.

In the context of the ρ-congested part-wise aggregation
problem (Definition 6), it is clear that
 ≤ ρ and L ≤ ρn.
Thus, we are now ready to establish Lemma 19.

Proof of Lemma 19 We first employ the communication pro-
tocol of Lemma 20 so that after O(ρ + log n) rounds ofNCC
each target node learns with high probability the aggregate
values with respect to the associated aggregation parts. Next,
we can reverse in time the previous communication pattern,
but instead using the aggregate values as determined by the
target nodes. As a result, every node will know with high
probability the aggregate value for each of its aggregation
parts after O(ρ + log n) rounds of NCC. �

4 Almost universally optimal Laplacians

In this section, we relate the congested part-wise aggregation
problemwe studied in the previous sectionwith theLaplacian
solver of Forster et al. [11]. To present a unifying analysis for
both CONGEST and HYBRID, as well as for future appli-
cations and extensions, we analyze the distributed Laplacian
solver under the following hypothesis.

Assumption 1 Consider a model of computation which
incorporates CONGEST. We assume that we can solve
with high probability any ρ-congested part-wise aggrega-
tion problem in Q(ρ) = O(ρcQ) rounds, for some universal
constant c ≥ 1.

6 In [27] the target node does not have to belong to the corresponding
aggregation part, but this additional flexibility will not be required for
our purposes.

123

488 I. Anagnostides et al.

The important connection between the congested part-
wise aggregation problem (Definition 6) and the distributed
Laplacian solver of Forster et al. [11] revolves around the
concept of a low-congestion minor, a central component in
the work of Forster et al. [11].

Definition 7 ([11])AgraphG is aminor ofG if the following
properties hold:

1. For every node uG ∈ V (G) there exists:

(i) A subset of nodes of G, which is termed as a
super-node, SG→G(uG), with a leader node
(uG) ∈
SG→G(uG);

(ii) A connected subgraph of G on SG→G(uG), for
which we maintain a spanning tree TG→G(uG).

2. There exists a mapping of the edges of G onto edges of
G, or self-loops, such that for any {uG, vG} ∈ E(G),
the mapped edge {u, v} satisfies u ∈ SG→G(uG) and
v ∈ SG→G(vG).

Moreover, we say that this minor G has congestion ρ, or G
is a ρ-minor, if:

1. Every node u ∈ G is contained in at most ρ super-nodes
SG→G(uG), for some uG ∈ V (G);

2. Every edge of G appears as the image of an edge of
G or in one of the trees connecting super-nodes (i.e.,
T G→G(uG) for some uG) at most ρ times.

Finally, we say that G is ρ-minor distributed over G if every
u ∈ V (G) stores:

1. All uG ∈ V (G) for which u ∈ SG→G(uG);
2. For every edge e incident to u, (i) all the nodes uG for

which e ∈ TG→G(uG), and (ii) all edges eG that map to
it.

We remark that the basis of Definition 7 was the earlier
concept of a distributed cluster graph [48]. Now the upshot
is that the congested part-wise aggregation problemwe intro-
duced is the central ingredient that allows performing certain
“local” operations on a graph ρ-minor distributed into the
underlying communication network. Indeed, the following
lemma is a direct consequence of Definition 7.

Lemma 21 Let G = (V , E)be ann-node graphρ-minor dis-
tributed into an n-node communication network G = (V , E)

for which Assumption 1 holds for some Q = Q(ρ). Then, we
can perform with high probability the following operations
simultaneously for all uG ∈ V (G), within O(Q(ρ)) rounds:

1. Every leader
(uG) sends an O(log n)-bit message to all
the nodes in SG→G(uG);

2. All the nodes in SG→G(uG) compute an aggregation
function on O(log n)-bit inputs.

Armed with this connection, our next crucial observation
is that the performance of the Laplacian solver of Forster
et al. [11] can be parameterized in terms of the complexity
of the congested part-wise aggregation problem. Indeed, we
revisit and refine the main building blocks of their solver in
Section A, leading to our main result below.

Theorem 22 Consider a weighted n-node graph G for which
Assumption 1 holds for some Q(ρ) = O(ρcQ), where c is a
universal constant andQ = Q(G) is some parameter. Then,
we can solve any Laplacian system after no(1)Q log(1/ε)
rounds.

Combining this theoremwith Corollary 16 and Lemma 19
yields the following immediate consequences.
Lower bound in Supported-CONGEST. Finally, we com-
plement our positive results with an almost-matching lower
bound on any graphG, applicable even under the Supported-
CONGEST model, thereby establishing universal optimality
up to an no(1) factor. Our reduction leverages the refined
hardness result established by Haeupler et al. [18] for the
spanning connected subgraph problem [12]. In this problem
a subgraph H of G is specified with nodes knowing all of the
incident edges belonging to H . The goal is to let every node
learn whether H is connected and spans the entire network.

Theorem 23 ([18]) Let A be any algorithm which is always
correct with probability7 at least 2

3 for the spanning con-
nected subgraph problem, and T (G) = maxI TA(I;G)

be the worst-case round-complexity of A under G. Then,
T (G) = ˜�(SQ(G)).

In this context, we show that a Laplacian solver can be
leveraged to solve the spanning connected subgraph problem,
leading to the following lower bound.

Proof First of all, as pointed out in [11, Theorem 2], it suf-
fices to establish the lower bound for a high-precision solver,
i.e. for a sufficiently small ε = 1/ poly(n). Indeed, a low-
accuracy solver (ε ≤ 1

2) can always be “boosted” with only
an O(log n) overhead in the overall complexity.

In this context, let H be the input to the spanning con-
nected subgraph problem. We construct a resistor network
H ′ so that r(e) = 1 if e ∈ E(H), and r(e) = n4 for every
edge e /∈ E(H). Moreover, let us select arbitrarily a node
v ∈ V (G). The key idea of the proof is to consider as input

7 Note that Haeupler et al. [18] only proved this for always-correct
algorithms with probability 1, but the extension we claim here follows
readily from their argument.

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 489

to the Laplacian solver a vector b ∈ R
n such that b(u) = −1

for all u ∈ V (G)\{v}, while b(v) = n − 1.
To analyze the output of that Laplacian system, we first

analyze the simpler Laplacian system with input a vector
χv,u ∈ R

n for which the coordinate corresponding to node
v is 1; the coordinate corresponding to node u is −1; and
any other coordinate is set to 0. We recall the following well-
known facts.

Fact 24 Let φ = L(H ′)†χv,u. Then, for any nodew ∈ V (G)

it holds that φ(v) ≥ φ(w) ≥ φ(u).

In the statement above, we use L(H ′)† to denote the
Moore-Penrose pseudo-inverse of matrix L(H ′).
Fact 25 Let φ = L(H ′)†χv,u. Then, the v−u effective resis-
tance is such that resH ′(v, u) = φ(v) − φ(u).

As argued by Forster et al. [11], the output of the Laplacian
with input χv,u and a sufficiently small error ε = 1/ poly(n)

can be used to determine whether v and u are connected.
Indeed, the following arguments have been extracted from
their lower bound.

Claim 26 If u and v are connected in H it follows that
resH ′(v, u) ≤ n − 1.

Proof It is well-known that the effective resistances satisfy
the triangle inequality. Moreover, given that v and u are con-
nected in H , it follows that there exists a path of length at
most n−1 in H ′ so that every edge has resistance 1 (by con-
struction of the resistor network H ′). As a result, the triangle
inequality implies that resH ′(v, u) ≤ n − 1. �

Claim 27 If v and u are not connected in H it follows that
resH ′(v, u) ≥ n2.

Proof Suppose that e1, . . . , ek are the edges leaving the con-
nected component of v in H , for some k ≤ n2. Then, the
Nash-Williams inequality implies that

resH ′(v, u) ≥ 1
∑k

i=1
1

r(ei)

≥ n2,

by construction of the resistor network. �

The next step of the proof is to incorporate in the analysis

the error of the solver. To this end, let φ′ be an ε-approximate
solution to the linear systemL(H ′)φ = χv,u in the sense that

‖φ′−L(H ′)†χv,u‖L(H ′) ≤ ε‖χv,u‖L(H ′)† = ε
√

resH ′(v, u).

Moreover, since the Laplacian matrix has integer resistances
up to range poly(n), it follows that for any x, ‖x‖∞ ≤
poly(n)‖x‖L. Thus, by setting ε = 1/ poly(n) to be suffi-
ciently small, we have that

resH ′(v, u) − 1

n
≤ φ′(v) − φ′(u) ≤ resH ′(v, u) + 1

n
.

Now we will use these bounds to argue about the initial
Laplacian system with input vector b. By linearity, a solu-
tion of the Laplacian system with input b can be expressed
as the sum of solutions of Laplacians with input χv,u over
all u ∈ V (G)\{v}. Next, we let φ = L(H ′)†b, and φ′ be
the output of the Laplacian solver for a sufficiently small
ε = 1/ poly(n). Our analysis distinguishes between the fol-
lowing cases.
Case I. Suppose that H is connected. In turn, this implies
that v is connected with any node u ∈ V (G). As a result, it
follows from Fact 24, Fact 25 and Claim 26 that for any node
u,

φ′(v) − φ′(u) ≤ (n − 1)2 + 1. (1)

Case II. In the contrary case, there must be node u such that
v and u are disconnected on H . By Claim 27 and Fact 24 this
yields that

φ′(v) − φ′(u) ≥ n2 − 1. (2)

Thus, (1) and (2) imply that the output φ′ of the Laplacian
solver contains enough information to determine whether H
is connected or not since n2−1 > (n−1)2+1 for any n ≥ 2.

To leverage this in the CONGEST model we proceed as
follows. First, node v sends to every other node in the graph
its own part of the output from the Laplacian solver. This
step can be clearly completed after D(G) rounds. Then, each
node u inspects whether the value φ′(v)−φ′(u) is larger than
n2−1. In that case, node u can transmit this information to the
entire network; this step is easily seen to be implementable in
D(G) rounds. As a result, assuming that SQ(G) ≥ 3D(G),
the proof follows immediately from Theorem 23. But the
contrary case is also immediate since onany topology solving
a Laplacian system trivially requires �(D(G)) rounds. This
completes the proof. �

5 Conclusions

In this paper, we have established almost universally optimal
Laplacian solvers for both the (Supported-)CONGEST and
the HYBRID model. One of our main technical contribu-
tions was to introduce and study a congested generalization
of the standard part-wise aggregation problem, which we
believe may find further applications beyond the Laplacian
paradigm in the future. For example, one candidate problem
would be to refine the distributed algorithm for max-flow
due to Ghaffari et al. [48]. We also hope that our acceler-
ated Laplacian solvers will be used as a basic primitive for
obtaining improved distributed algorithms for other funda-
mental optimization problems as well.

123

490 I. Anagnostides et al.

Funding Open Access funding provided by Carnegie Mellon Uni-
versity. Bernhard Haeupler was supported in part by NSF grants
CCF-1814603, CCF-1910588, NSF CAREER award CCF-1750808,
a Sloan Research Fellowship, funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (ERC grant agreement 949272), and the Swiss
National Foundation (project grant 200021-184735). Goran Zuzic was
supported in part by the Swiss National Foundation (project grant
200021-184735). Themis Gouleakis was supported in part by an NRF
Fellowship for AI (R-252-000-A33-133). Part of the work was done
while visiting the Simons Institute for Theory of Computing.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: The Laplacian solver

In this section, we describe the basic building blocks of
the distributed Laplacian solver of Forster et al. [11]. Our
goal will be to cast their guarantees within our more gen-
eral framework, leading to the proof of Theorem 22. First,
let us introduce some further concepts and notation related
to Laplacian systems.

Definition 8 (Schur Complement) For a symmetric matrix
A ∈ R

n×n and a partition of [n] into T and S, permute the
rows and columns of A such that

A =
[

A[S,S] A[S,T]
A[T ,S] A[T ,T]

]

.

Then, the Schur complement of A onto T is defined as
SC(A, T) := A[T ,T]−A[T ,S]A†

[S,S]A[S,T], where we recall
thatM† denotes theMoore-Penrose pseudo-inverse ofmatrix
M. For a graph G and a subset T ⊆ V (G), we will write
SC(G, T) := SC(L(G), T).

A.1 The Laplacian building blocks

To keep the exposition reasonably self-contained, here we
review the basic ingredients of the distributed Laplacian
solver developed by Forster et al. [11]. Our main goal is
to extend their guarantees under Assumption 1. Then, we
will combine these pieces in Section A.2 to complete the
construction.

A.1.1 Ultra-sparsification

As is standard in the Laplacian paradigm, we will require a
preconditioner in the formof anultra-sparsifier. In particular,
the following lemma is established in Section B.2, and it is
a refinement of [11, Lemma 4.9]:

Lemma 28 (Ultra-Sparsification) Consider an n-node m-
edge graph G which is ρ-minor distributed into an n-node
communication network G for which Assumption 1 holds
for some Q = Q(ρ). Then, UltraSparsify(G, k) takes as
input a parameter k and returns after no(1)Q(ρ) rounds a
graph H such that

1. H is a subgraph of G;
2. H has n − 1 + m2O(

√
log n log log n)/k edges;

3. L(G) � L(H) � kL(G).

Moreover, the algorithm returns ̂G,Z1,Z2,C such that

1. ̂G 1-minor distributes into H such that ̂G = SC(H ,C),
with |C | = m2O(

√
log n log log n)/k;

2. The operators Z1 and Z2 can be evaluated in O(Q(ρ)

log n) rounds, and are such that

L(H)† = ZT
1

[

Z2 0
0 L(̂G)†

]

Z1.

Let us briefly review the pieces required for this lemma.
First, we need the distributed implementation of the low-
stretch spanning tree algorithm of Alon et al. [49], which is
due to Ghaffari et al. [48]. Then, this spanning tree is aug-
mented with off-tree edges based on the sampling procedure
ofKoutis et al. [50], leading to a graphwith a spectral approx-
imation guarantee with respect to the original graph. Finally,
the parallel elimination procedure of Blelloch et al. [38] is
used to perform a series of contractions, leading to a sub-
set with size analogous to the number of off-tree edges. We
revisit these steps in detail in Section B.2.

A.1.2 Sparsified cholesky

The next building block is the sparsified Cholesky algorithm
of Kyng et al. [51], which manages to effectively eliminate
in every iteration a non-negligible fraction of the nodes. In
the distributed context, we state the following lemma which
is a refinement of [11, Lemma 4.10].

Lemma 29 (Sparsified Cholesky) Let G be an n-node graph
ρ-minor distributed into a communication network G for
which Assumption 1 holds for some Q = Q(ρ). Then, for
a given parameter d and error ε, the algorithm Eliminate
(G, d, ε) runs in O(Q(ρ)(logc n/εc)d) rounds, where c rep-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 491

resents some universal constant, and returns a subset T ⊂
V (G) and access to operators Z1 and Z2 such that

1. |T | ≤ (49/50)d |V (G)|;
2. The operators Z1,ZT

1 ,Z2 can be applied to vectors in
O(Q(ρ)(logc n/εc)d) rounds;

3.

(1−ε)dL(G)† � ZT
1

[

Z2 0
0 SC(G, T)†

]

Z1 � (1+ε)dL(G)†.

This lemma is established based on a distributed imple-
mentation of the sparsified Cholesky algorithm of Kyng et al.
[51]. In particular, the Cholesky decomposition essentially
reduces solving a Laplacian to inverting (i) any sub-matrix
of the Laplacian induced on a set S, and (ii) the Schur com-
plement on V \ S. Thus, Kyng et al. [51] initially develop a
procedure for identifying an “almost independent” subset of
nodes F (more precisely, a strongly diagonally dominant sub-
set) for which inverting the Laplacian restricted on F can be
done efficiently through preconditioning (e.g. via the Jacobi
method), while F also contains at least a constant fraction of
the nodes. Next, a combinatorial view of the Schur comple-
ment based on a certain family of random walks (see [52]) is
employed to construct a spectral sparsifier of the Schur com-
plement on T = V \F . This process is then repeated for d
iterations, leading to Lemma29. Several technical challenges
that arise are discussed in Section B.3. Next, the main idea is
to recurse on the set of terminals T . However, in our context
this requires maintaining the invariant that the underlying
subgraph is cast as a minor (with a reasonable congestion)
of G. This is ensured in the following subsection.

A.1.3 Minor schur complement

This subsection introduces a subroutine that will be invoked
after the Eliminate algorithm to return a low-congestion
minor based on the set of terminalsT returned byEliminate;
while doing so, the algorithm will incur a small overhead in
the spectral guarantee, and a limited growth in the number
of nodes with respect to T . This increase will be eventually
negligible due to the selection of parameter d in Eliminate.
In this context, the following lemma is a refinement of [11,
Theorem 3].

Lemma 30 Let G be an n-node graph ρ-minor distributed
into an n-node communication network for which Assump-
tion 1 holds for some Q = Q(ρ). Then, for an error
parameter 0 < ε < 0.1 and a subset T of nodes, the algo-
rithmApproxSC returns with high probability a graph H as
a ρ-minor distribution into G such that

1. T ⊆ V (H);
2. H has O(|T | log2 n/ε2) edges;

3. SC(H , T) ≈ε SC(G, T).

This algorithm requires O(log10 n/ε3) calls to a distributed
Laplacian solver to accuracy 1/ poly(n) on graphs that 2ρ-
minor distribute into G, and an overhead of O(Q(ρ) log10

n/ε3) rounds.

This result builds upon the work of Li and Schild [53],
who (roughly speaking) established that randomly contract-
ing an edge with probability equal to its leverage score (and
otherwise deleting) would suffice. In the distributed context,
Forster et al. [11] devise a parallelized implementation of this
scheme based on the localization of electrical flows [54].
More precisely, they manage to identify a non-negligible
subset of edges—which they refer to as steady edges—with
small mutual (electrical) “correlation”, allowing for indepen-
dent (and hence highly parallelized) contractions/deletions
within this set. This approach employs the recursive and
sketching-based method of random projections due to Spiel-
man and Srivastava [55], similarly to the approach of Li and
Schild [53], to estimate quantities such as leverage scores
and electrical correlation. These steps are carefully reviewed
in Section B.4.

A.1.4 Schur complement chain

Finally, let us introduce the concept of a Schur complement
chain, and explain how it can be employed to produce a
Laplacian solver.

Definition 9 For ann-nodegraphG, {(Gi ,Zi,1,Zi,2, Ti)}ti=1
is a (γ, ε)-Schur complement chain if the following condi-
tions hold:

1. G1 = G;
2. Ti ⊂ V (Gi+1) ⊂ V (Gi) and SC(Gi , Ti) ≈ε SC(Gi+1,

Ti);
3. |V (Gi+1)| ≤ |V (Gi)|/γ for i < t , and |V (Gt)| ≤ γ .
4.

(1 − ε)L(Gi)
† � ZT

i,1

[

Zi,2 0
0 SC(Gi , Ti)†

]

Zi,1

� (1 + ε)L(Gi)
†.

In the sequel, a Schur complement chainwill be developed
throughLemmas 28 to 30.Next, the following lemma implies
a solution to the Laplacian system based on a suitable Schur
complement chain.

Lemma 31 ([11]) Consider an n-node communication net-
work for which Assumption 1 holds for some Q = Q(ρ),
and let {(Gi ,Zi,1,Zi,2, Ti)}ti=1 be a (γ, ε)-Schur comple-
ment chain for an n-node graph G for some γ ≥ 2 and
ε ≤ 1/(C log n), for a sufficiently large constant C, such
that for all i :

123

492 I. Anagnostides et al.

1. Gi ρ-minor distributes into G;
2. The linear operators Zi,1 and Zi,2 can be evaluated in

at most no(1)Q(ρ) rounds.

Then, for any given vector b, there is an algorithm which
computes a vector x in no(1)Q(ρ) rounds such that

‖x − L(G)†b‖L(G) ≤ ε log n‖b‖L(G)† .

A.2 Putting everything together

In this subsection, we combine the building blocks we pre-
viously developed to establish Theorem 22. The distributed
Laplacian solver of Forster et al. [11] is given in Algorithm 1.
We also include below the formal version of Theorem 22.

Algorithm 1 Distributed Laplacian Solver [11]:
Solver(G, ε)

Input: An undirected weighted graph G
G ′ := SpectralSparsify(G)

(G1,Z1,1,Z1,2, T1,G2) := UltraSparsify(G ′, k) � Lemma 28
{(Gi ,Zi,1,Zi,2, Ti)}ti=2 := BuildChain(G2, d, ε, k)
Solve L(G)x = b via Chebyshev preconditioning � Lemma 31
Procedure BuildChain(G, d, ε, k)
if |V (G)| ≤ k return ∅
(Z1,Z2,C) := Eliminate(G, d, ε) � Lemma 29
H := ApproxSC(G,C, ε) � Lemma 30
return (G,Z1,Z2,C) ∪ BuildChain(H , d, ε, k)

Theorem 32 (Full-Version of Theorem 22) Consider a
weighted n-node graph G for which Assumption 1 holds
for some Q(ρ) = O(ρcQ(G)), where c is a universal
constant and Q = Q(G) is some parameter. Then, for
any vector b ∈ R

n stored on its nodes and a sufficiently
small error parameter ε > 0, Solver(G, ε) returns after
no(1)Q log(1/ε) rounds a vector x distributed on its nodes
such that

‖x − L(G)†b‖L(G) ≤ ε‖b‖L(G).

The proof of this theorem is included in Section B.5. We
note that a guarantee with respect to the L(G)†-norm—as in
Lemma 31—can be translated to a guarantee in the L(G)-
norm. This incurs only a logarithmic multiplicative overhead
since it is assumed that theweights are polynomially bounded
and the dependence on 1/ε is logarithmic [56, pp. 19–20].
Thus, the overhead is subsumed by the factor no(1).

Appendix B: Omitted proofs

In this section, we include all of the proofs deferred from
Section A. We commence by introducing some additional
helpful routines.

B.1 Useful routines

Before diving into the proofs of the Laplacian building
blocks, it will be useful to present several operations that
can be performed efficiently under Assumption 1. We stress
that the proofs related to the Laplacian solver closely follow
the approach in [11]. Our goal here is to translate them into
our more general setting.

Corollary 33 (Matrix–Vector Products) Consider a matrixA
with non-zeroes supported on the edges of an n-node graphG
which is ρ-minor distributed over a communication network
G for which Assumption 1 holds for some Q = Q(ρ), with
values stored in the endpoints of the corresponding edges,
and a vector x ∈ R

n stored on the nodes
(uG) for uG ∈
V (G). Then, we can compute the vector Ax ∈ R

n stored on
the leader nodes
(uG) for all uG ∈ V (G) after O(Q(ρ))

rounds with high probability.

The proof of this corollary follows the one by [11, Corol-
lary 4.4], but nonetheless we state it here for completeness.

Proof of Corollary 33 The first step is to use Assumption 1 to
disseminate the coordinates of vector x to the corresponding
super-nodes after Q(ρ) rounds; that is, for every uG ∈ V (G)

the leader
(uG) passes to SG→G(uG) the corresponding
coordinate. Then, every node performs locally all the multi-
plications for its corresponding indices, and afterρ rounds the
node can deliver this information to the corresponding super-
node. Observe that this is possible becauseA is supported on
edges of G, and Definition 7 imposes an edge-congestion
bound. Finally, we invoke again Assumption 1 to sum all of
the values of each super-node to the leader node, which gives
the desired output requirement. �

Another important corollary of Assumption 1 is that we
can simulate the spectral sparsification algorithm of Koutis
(henceforth SpectralSparsify) on G [57]:

Corollary 34 (Spectral Sparsification) Consider an n-node
graph G that ρ-minor distributes into an n-node communi-
cation network G for which Assumption 1 holds for some
Q = Q(ρ). Then, for any 0 < ε < 0.1 we can imple-
ment the SpectralSparsify algorithm of Koutis for G after
O(Q(ρ) log7 n/ε2) rounds, which returns with high proba-
bility a graph ˜G distributed as a ρ-minor into G such that

• L(G) ≈ε L(˜G) (Spectral approximation);
• ˜G is a reweighted subgraph of G with O(n log6 n/ε2)

edges in expectation.

The proof of this corollary is fairly simple (see [11, Corol-
lary 4.4]), but we give a sketch for completeness.

Proof of Corollary 34 The SpectralSparsify algorithm of
Koutis iteratively uses the spanner scheme of Baswana and

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 493

Sen [58]. The latter algorithm gradually grows clusters. In
particular, in each round clusters are sampled at random—a
“leader” node determines whether the cluster is included in
the sample, and then forwards the information to the rest of
the cluster. Then, nodes compare the weights of their inci-
dent edges to decide whether they will join some cluster,
and which incident edges will be added to the spanner. As a
result, all the operations of the Baswana-Sen algorithm can
be performed via the routine of Assumption 1, and the claim
follows. �

Composition of Minors. We also state the extensions of [11,
Lemma 4.6] and [11, Corollary 4.7], which are related to the
composition of ρ-minors.

Lemma 35 (ComposingMinors)Consider a graphG2 which
is ρ2-minor distributed into a communication network G for
which Assumption 1 holds for some Q = Q(ρ), and a graph
G1 which is ρ1-minor distributed into G2. Then, we can com-
pute with high probability and after ˜O(Q(ρ1ρ2)) rounds a
(ρ1 × ρ2)-minor distribution of G1 into G.

Corollary 36 (Parallel Contraction) Consider a graph G
which is ρ-minor distributed into a communication network
G for which Assumption 1 holds for some Q = Q(ρ). If F
represents a subset of the edges of graph G, we can obtain
with high probability a ρ-minor distribution of G/F into G
in ˜O(Q(ρ)) rounds.

Recall that the notation G/F implies the graph obtained
from G after contracting all the edges in the set F ⊆ E(G).

B.2 Ultra-sparsification: proof of Lemma 28

The first ingredient required for Lemma 28 is a distributed
version of the celebrated Alon-Karp-Peleg-West (AKPW)
low-stretch spanning tree construction [49], which is due to
Ghaffari et al. [48]. We commence by stating their definition
of a distributed N-node cluster graph, which incidentally
was the basis for Definition 7.

Definition 10 (DistributedClusterGraph, [48])Adistributed
N -node cluster graph is a 5-tuple G = (V, E,L, T , ψ) sat-
isfying the following properties:

1. V = {S1, . . . , SN } forms a partition of the node set into
N clusters;

2. E represents a multi-set of (weighted) edges;
3. L is the set of leaders such that every cluster Si has

exactly one leader
i ∈ L. The ID of the leader node will
also serve as the ID of the cluster, while it is assumed
that nodes know the ID of their leader, as well as the size
of their cluster;

4. T = {T1, . . . , TN } is a set of cluster trees such that each
cluster tree Ti = (Si , Ei) is a (rooted) spanning tree of

the induced subgraph G[Si] of G, with root the leader
of the cluster
i ∈ Si (observe that this implies that the
subgraph induced by each cluster Si is connected);

5. ψ : E → E is a bijective function that maps every edge
{Si , S j } ∈ E to some edge {ui , u j } ∈ E connecting
the corresponding clusters; i.e., it holds that ui ∈ Si and
u j ∈ S j . It is assumed that the two nodes ui and u j know
that the edge {ui , u j } is used to connect their respective
clusters, as well as its weight.

Having introduced the concept of a distributed cluster
graph, we state the following lemma, which is a direct
corollary of the communication primitives we previously
described.

Lemma 37 Let G = (V , E)be ann-node graphρ-minor dis-
tributed into an n-node communication network G = (V , E)

for which Assumption 1 holds for some Q = Q(ρ). If
G = (V, E,L, T , ψ) is a distributed cluster graph for G, the
following operations can be performed in ˜O(Q(ρ)) rounds:

1. The leader
i of each cluster Si broadcasts an O(log n)-
bit message to every node in Si ;

2. Computing aggregation functions on O(log n)-bit inputs
simultaneously for all clusters, assuming the tree Ti is
known.

Proof The definition of a distributed N -node cluster graph
(Definition 10) implies that G is 1-minor distributed over G,
and in turn ρ-minor distributed into G. Note that the induced
distributed mapping can be obtained using ˜O(Q(ρ)) rounds
of communication by virtue of Lemma 35. Thus, Assump-
tion 1 leads to the desired claim. �

As a result, it follows that the SplitGraph algorithm of
Ghaffari et al. [48] can be simulated on a graph G ρ-minor
distributed into G after no(1)Q(ρ) communication rounds—
under Assumption 1. In particular, this observation directly
gives a distributed construction of a low-stretch spanning
tree:

Lemma 38 ([11, 48]) Consider an n-node m-edge graph
G which is ρ-minor distributed into an n-node communi-
cation network G for which Assumption 1 holds for some
Q = Q(ρ). Then, we can construct a spanning tree T of
G after no(1)Q(ρ) rounds such that the nodes know upper
bounds on the corresponding stretches that sum to at most
m2O(

√
log n log log n).

Importantly, it turns out that the guarantee of Lemma 38
suffices to sample edges by stretch, as implied by the follow-
ing lemma.

Lemma 39 ([50]) Consider an n-node graph G and a tree T
such that the nodes know upper bounds on the corresponding

123

494 I. Anagnostides et al.

stretches that sum up to α. Then, for any parameter k there
is a sampling procedure, implementable locally, that gives a
graph H which satisfies with high probability the following:

1. L(G) � L(H) � kL(G);
2. H contains the edges of T and O(α log n/k) additional

edges.

The final step for establishing Lemma 28 uses the parallel
elimination procedure of Blelloch et al. [38], which requires
a logarithmic number of rounds under the PRAM model of
computation. Thus, we can show the following lemma:

Lemma 40 Consider an n-node graph H which is ρ-minor
distributed into an n-node communication network G for
which Assumption 1 holds for some Q = Q(ρ). Moreover,
let T be a spanning tree of H and W be the set of off-tree
edges of H with respect to T . Then, there is an algorithm
which runs in O(Q(ρ) log n) rounds and returns a graph ̂G,
1-embeddable into H, satisfying the following:

1. ̂G contains O(|W |) nodes and edges;
2. There are operators Z1 and Z2, which can be evaluated

in O(Q(ρ) log n) rounds, such that

L(H)† = ZT
1

[

Z2 0
0 L(̂G)†

]

Z1.

With these pieces in place, Lemma 28 follows directly
from Lemmas 38 to 40.

B.3 Sparsified Cholesky: proof of Lemma 29

The proof of Lemma 29 mainly relies on a distributed imple-
mentationof theSchur complement chain (SCC) construction
of Kyng et al. [51]. In particular, the first step is to formalize
a notion of almost-independence:

Definition 11 AmatrixM is α-diagonally dominant (hence-
forth α-DD) if

Mi,i ≥ (1 + α)
∑

j �=i

|Mi, j |, ∀i .

Moreover, an index set F is α-DD ifM[F,F] is α-DD.

An important observation is that computing the inverse
M−1[F, F] for an α-DD set can be efficiently performed
using a preconditioned gradient descent method. In this con-
text, Kyng et al. [51] give a simple sampling algorithm for
finding “large” α-DD sets given a Laplacian matrix. More
precisely, their algorithm initially selects a random subset
of nodes, and then it filters out these which do not met the
condition of Definition 11. This leads to the following:

Lemma 41 Let G be an n-node graph ρ-minor distributed
into a communication network G for which Assumption 1
holds for some Q = Q(ρ). Then, ifL is the Laplacian matrix
of G and α ≥ 0 some parameter, there is an algorithm which
computes an α-DD subset F ofL of size at least n/(8(1+α))

in O(Q(ρ) log n) rounds with high probability.

Indeed, the algorithm of Kyng et al. [51] determines
an α-DD subset of size n/(8(1 + α)), while the round-
complexity guarantee follows similarly to the proof in [11,
Lemma 6.7]. Here we should note that the global aggrega-
tion steps required in the distributed implementation of [11,
Lemma 6.7] can be trivially performed in O(Q(1)) rounds.

The next step is to construct an operator that approximates
L−1

[F,F], where F is anα-DDset, and can be efficiently applied
to vectors. This is ensured by the following lemma:

Lemma 42 ([11]) Let G be a graph ρ-minor distributed into
ann-node communication networkG forwhichAssumption 1
holds for some Q = Q(ρ). Moreover, let L be the Laplacian
matrix associated with G, and F be a subset of V (G) such
that L[F,F] is α-DD for some α ≥ 4. Then, for any vector b
stored on the leaders of the super-nodes, there is an algorithm
which returns in O(Q(ρ) log(1/ε)) rounds the vector Zb
stored on the same nodes, where Z is a linear operator such
that

L[F,F] � Z−1 � L[F,F] + ε · SC(L, F),

for any sufficiently small ε > 0.

Again, this lemma follows from the guarantee of Kyng et
al. [51] regarding the Jacobi procedure, as well as by directly
adapting the distributed implementation of Forster et al. [11]
using Corollary 33.
Approximating the Schur Complement.Moreover, α-DD sets
will be useful in the approximation of the Schur complement
induced by the complementary subset of nodes. First, let us
recall a combinatorial view of the Schur complement as a
Laplacian matrix with weights estimated by certain random
walks:

Lemma 43 ([52]) Let G be an n-node weighted graph and a
subset of nodesT .Moreover, consider parameters 0 < ε < 1
and μ = O(log n/ε2). If H is an initially empty graph,
repeat for every edge {u, v} ∈ E(G) and for μ iterations
the following procedure:

1. Simulate a random walk starting from u until it first hits
T at some node t1;

2. Simulate a random walk starting from v until it first hits
T at some node t2;

3. Combine these twowalks to get awalk t1 = u0, . . . , u
 =
t2, where
 is the length of the combined walk.

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 495

4. Add the edge {t1, t2} to H with weight

1

μ
∑
−1

i=0 1/w(ui , ui+1)
.

Then, the resulting graph H satisfies L(H) ≈ε SC(G, T)

with high probability.

It should be noted that the random walks in the lemma are
implied in the usual sense,wherein a step froma node is taken
with probability proportional to the edge-weights of the inci-
dent edges. In the sequel, we will compute an α-DD set F
via Lemma 41, and then the goal will be to approximate the
Schur complement on the set T = V \ F . Importantly, given
that F is α-DD, we can guarantee that the random walks
required in Lemma 43 will be short in expectation. Nonethe-
less, a challenge that arises in the distributed context—and in
particular under the CONGEST model—is that the expected
congestion of an edge may by prohibitively large. This issue
will be resolved by incorporating new nodes to the termi-
nals whenever they exceed some threshold of congestion.
At the same time, however, we also have to limit the node-
congestion since G is minor distributed into G, and we can
only deal with limited congestion. This will be addressed by
invoking the spectral sparsification algorithm, ensuring that
the average degree, and subsequently the congestion, remains
limited.

Before we proceed with the approximation of the Schur
complement, we note that we can implement the random
walks of Lemma 43 in ˜O(Q(ρ)) rounds under Assumption 1,
as implied by the approach by Forster et al. [11].

Lemma 44 ([11]) Let G be an n-node graph ρ-minor dis-
tributed into an n-node communication network G for which
Assumption 1 holds for some Q = Q(ρ). Moreover, let
F be an α-DD set, T = V \F the set of terminals, ε ∈
(0, 1) some error parameter, and γ ≥ 1 the congestion
parameter. Then, the algorithm RandomWalkSchur runs
in O(α−1γ Q(ρ) log2 n/ε2) rounds, and returns a graph H
along with its (α−1γ log nρ)-minor distribution into G such
that

L(H) ≈ε SC(G, ̂T),

with high probability, where ̂T ⊇ T has size at most n −
|F | + O(α−1mε−2 log2 n/γ).

Proof Let us briefly describe the RandomWalkSchur
algorithm. First, we compute the expected congestion of the
family of random walks W predicted by Lemma 43 with
respect to the set of terminals T . This is done by propa-
gating the congestion to neighbors for O(α−1 log n) steps.
Then, we create a new set ̂T which includes T as a subset, as
well as all the nodes which exceeded the congestion thresh-
old of γ based on the estimation procedure of the previous

step. Note that the congestion of a node with respect to W
is simply the number of times this particular node partici-
pates in some randomwalk ofW . By construction, it follows
that the size of ̂T is n − |F | along with all the nodes that
exceeded the congestion threshold of γ . However, since F
is an α-DD set it follows that the length of a random walk is
O(α−1 log n) with high probability, while for every edge we
simulate μ = O(log n/ε2) random walks (this is related to
the concentration of the corresponding random variables, as
implied byLemma43), in turn implying that the total conges-
tiongeneratedby these randomwalks isO(α−1mε−2 log2 n).
As a result, only O(α−1mε−2 log2 n/γ) nodes can have con-
gestionmore thanγ , verifying the assertion regarding the size
of ̂T . Next, the algorithm implements the random walks of
Lemma 43, but with respect to the augmented set of terminals
̂T . A Chernoff bound argument assures us that all nodes in
V \̂T will have congestion O(γ) with high probability.

In terms of the distributed implementation, estimating the
congestion can be implemented in O(α−1Q(ρ) log2 n/ε2)

rounds; this follows since everywalkhas lengthO(α−1 log n)

with high probability, and we execute μ = O(log n/ε2) iter-
ations for every edge. Also note that a single step in the
procedure estimating the congestion can be implemented in
O(Q(ρ)) rounds. Next, the generation of the random walks
with respect to the augmented set ̂T can be performed in
O(α−1γ Q(ρ) log2 n/ε2) rounds with high probability; this
uses the aforementioned guarantee for the congestion. The
final step is to minor-distribute the graph H with weights as
dictated by Lemma 43. This is done by assigning to the ter-
minals the leaders of all intermediate (non-terminal) nodes.
The congestion guarantee ensures that the resulting mapping
is an O(α−1γ log nρ)-minor distribution into G. �

Proof of Lemma 29 The Eliminate algorithm proceeds in d
rounds, initializingM(0) to be an ε-spectral sparsifier ofL(G)

(recall Corollary 34). In every round i ≥ 1, (i) we compute
an α-DD set Fi with α := 4; (ii) we employ Lemma 42 to
have access to an operator that approximates M(i−1)

[F,F]; and
(iii) we compute an ε-spectral sparsifier M(i) of the Schur
complement SC(M(i−1), ̂Ti) approximated via Lemma 44;
here, ̂Ti = ̂Ti−1 − Fi + Ui , where Ui represents the set
of extra nodes added to ensure low congestion. In particu-
lar, Lemma 44 is invoked with congestion parameter γ :=
1000Cα−1 log8 n/ε4, where C is a sufficiently large con-
stant. The sparsification algorithm of Koutis (Corollary 34)
tells us that the number of edges will be m = (n log6 n/ε2),
in turn implying that the number of nodes drops by at least a
multiplicative factor of 49/50.

In terms of the distributed implementation, notice that
due to the selection of the parameters the approximation
of the Schur complement (Lemma 44) can be performed in
O(Q(ρ) log10 n/ε6) rounds. Next, the spectral sparsification
step can be implemented in O(Q(ρ′) log7 n/ε2), where ρ′ =

123

496 I. Anagnostides et al.

α−1γ log nρ = O(log9 n/ε4)ρ. Thus, by virtue of Assump-
tion 1 we can infer that Q(ρ′) = O(logc

′
n/εc

′
)Q(ρ), where

c′ is some universal constant. Thus, after d iterations the
cost of these operations is bounded byO(Q(ρ)(logc n/εc)d),
where c is some universal constant. Finally, the error guar-
antee follows directly from Lemmas 42 to 44, after a direct
argument bounding the accumulation of the error. �

B.4 Minor schur complement: proof of Lemma 30

We commence this subsection by introducing the notion of
steady edges, which are in a sense edges which are mutually
“uncorrelated”:

Definition 12 ([11]) A stochastic subset of edges Z ⊆ E is
called (α, δ)-steady with respect to an m-edge graph H if

1. EZ
[∑

e∈Z r(e)−1b(e)b(e)T
] � αL(H);

2. For all e ∈ Z we have
∑

e �= f ∈Z
|b(e)TL(H)†b(f)|√

r(e)
√
r(f)

≤ δ;

3. For all e ∈ Z it holds that

r(e)−1b(e)TL(H)†
[

SC(H , T) 0
0 0

]

L(H)†b(e) ≤ 32|T |
m

.

In words, the first constraint ensures that no edge will be
selected in the steady set with too high of a probability; the
second corresponds to the localization constraint, circum-
scribing the (mutual) correlation of edges within the set; and
the final constraint imposes a bound on the variance, and
will be used in the martingale analysis (to apply Freedman’s
inequality). It should be stressed that the existence of such
objects is highly non-trivial, and follows from the localiza-
tion of electrical flows recently shown by Schild et al. [54].
In the distributed setting, the following result will be estab-
lished:

Lemma 45 ([11]) Let G be an n-node m-edge graph ρ-
minor distributed into G for which Assumption 1 holds for
some Q = Q(ρ). For a constant δ ∈ (0, 1) and a subset
of terminals T ⊆ V (G), there exists an algorithm which
has access to a distributed Laplacian solver, and returns
with high probability a set of at least δm/(2000C log2 m)

edges in expectation which is (δ/(1000C log2 m), δ)-steady,
where C is a sufficiently large constant. This algorithm
requires O(log2 n) calls to a distributed Laplacian solver
to 1/ poly(n) accuracy on graphs that 2ρ-minor distribute
into G, and O(Q(ρ) log2 n) communication rounds.

Thefirst step towards establishing this lemma is to approx-
imate the correlation of edges within some arbitrary set:

Lemma 46 ([11]) Let G be an n-node graph with resistances
r , ρ-minor distributed into a communication network G for
which Assumption 1 holds for some Q = Q(ρ). Then, there

is an algorithm, with access to a distributed Laplacian solver,
which for any subset W ⊆ E(G) and any edge e ∈ W returns
with high probability the quantity

∑

e �= f ∈W

|b(e)TL(G)†b(f)|√
r(e)

√
r(f)

to within a factor of 2. This algorithm requires O(log2 n)

calls to adistributedLaplacian solver ongraphs thatρ-minor
distribute into G to accuracy 1/ poly(n), and an additional
O(Q(ρ) log2 n) communication rounds.

The proof of this lemma follows directly from [11,
Lemma 5.13], and leverages the
1-sketch of Indyk [59].
Similarly, a sketch can be employed to estimate the effect of
each edge on the Schur complement:

Lemma 47 ([11]) Let G be an n-node with resistances re, ρ-
minor distributed into a communication network G for which
Assumption 1 holds for some Q = Q(ρ). Then, for a subset
T ⊆ V (G), there exists an algorithm which returns with
high probability an estimate of

r(e)−1b(e)TL(G)†
[

SC(G, T) 0
0 0

]

L(G)†b(e)

to within a factor of 2. This algorithm requires O(log n) calls
to a distributed Laplacian solver to accuracy 1/ poly(n) on
graphs that 2ρ-minor distribute into G, and O(Q(ρ) log n)

communication rounds.

As a result, Lemma 45 is established based on the algo-
rithm FindSteady of Forster et al. [11], with the round
complexity guarantee following directly fromLemma 46 and
Lemma 47.

The next ingredient is a pre-processing stepwhich ensures
that all the edges have leverage scores bounded away from 0
and 1.

Lemma 48 ([53]) Let G be an n-node graph ρ-minor dis-
tributed into a communication network G for which Assump-
tion 1 holds for some Q = Q(ρ). If 1.1-approximate leverage
scores ˜levG(e) for the edges in G are known, then there exists
a process which returns after ˜O(Q(ρ)) rounds a graph H
such that

1. H is electrically equivalent to G;8

2. H is 2ρ-minor distributed into G;
3. All the leverage scores of edges in H are between

[3/16, 13/16].

8 For the definition of electrical equivalence we refer to the work of Li
and Schild [53], as it is not important for the purpose of this work.

123

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 497

Moreover, there exists a procedurewhich takes as inputG and
returns in O(Q(ρ)) rounds a graph resulting from collapsing
paths and parallel edges, and removing non-terminal leaves,
along with a ρ-minor distribution into G.

The distributed implementation of this lemma is fairly
simple, and relies on Lemma 35.We will also use the follow-
ing lemma, which is based on the random projection scheme
of Spielman and Srivastava [55]:

Lemma 49 ([11]) Let G be an n-node graph ρ-minor dis-
tributed into a communication network G for which Assump-
tion 1 holds for some Q = Q(ρ). Then, there is an algorithm
with access to a distributed Laplacian solver which for all
edges e ∈ E(G) approximates the leverage score levG(e)
to within a factor of 1 + δ with high probability. This algo-
rithm requires O(log n/δ2) calls to a distributed Laplacian
solver on graphswhichρ-minor distribute into G to accuracy
1/ poly(n), as well as O(Q(ρ) log n/δ2) communication
rounds.

The proof of this lemma follows directly from [11,
Lemma 5.4], and uses Achliopta’s variant of the Johnson-
Lindenstrauss lemma [60]. With these pieces at hand, we are
ready to describe the algorithm for computing a minor Schur
complement. At each iteration we first determine a set of
steady edges via Lemma 45. Then, we estimate the leverage
scores via the random projection scheme of Lemma 49, and
each edge in the steady set is contracted (independently) with
probability given by its (approximate) leverage scores; oth-
erwise, the edge is deleted (for this wewill use Corollary 36).
We also employ Lemma 48 in every iteration to ensure that
leverage scores are bounded away from 0 and 1. This pro-
cess is repeated as long as the number of edges exceeds a
threshold, leading to the algorithmApproxSC [11]. The next
theorem was shown by Forster et al. [11] using matrix mar-
tingale analysis:

Lemma 50 ([11]) The algorithmApproxSC takes as input a
graph G with a set of terminals T and an error parameter
ε, and returns with high probability a graph H satisfying
|E(H)| = O(|T | log2 n/ε2) and SC(H , T) ≈ε SC(G, T).

Proof of Lemma 30 First, the algorithm only performs dele-
tions and contractions, implying that it indeed returns a
minor. Moreover, the correctness follows directly from
Lemma 50. To bound the requirements of the algorithm
note that ApproxSC executes O(logm/α) iterations, where
α := δ/(1000C log2 m) = O(ε/ log4 m), with high prob-
ability. In each iteration the dominant cost in terms of
calls to a distributed Laplacian solver follows from the
subroutine approximating leverage scores, which requires
O(log n/δ2) = O(log5 n/ε2). Thus, we may conclude that
ApproxSC requires O(log10 n/ε3) calls to a distributed
Laplacian solver. The bound in terms of the round complexity
follows similarly. �

B.5 Putting everything together: proof of
Theorem 32

Proof The correctness of the algorithm follows directly from
Lemmas 28 to 31, so let us focus on the round com-
plexity. By the guarantee of Lemma 28 we know that
the UltraSparsify routine returns a graph G2 such that
|V (G2)| = |V (G1)|2O(

√
log n log log n)/k; this follows since

we have sparsified the graph in the first step. Thus, for
k = 2(log n)2/3 we can infer that |V (G2)| ≤ |V (G1)|/k1−o(1).
Next, with regards to the Schur complement chain,
Lemmas 29 and 30 imply that |V (Gi+1)| ≤ |V (Gi)|
O(0.98d log2 n/ε2). Hence, setting d = 2(log log n)2 and ε =
1/(log n)2 gives us that |V (Gi+1)| ≤ |V (Gi)|2−�((log log n)2).

As a result, BuildChain returns a (2�((log log n)2), ε)-
Schur complement chain,which in turn implies that this chain
has length O(log n/(log log n)2). Thus, Lemma 31 implies
thatwe can use this chain to produce a solution inρno(1)Q(ρ)

rounds, where ρ represents the maximum congestion of a
graph along the chain; it will be establish that ρ = no(1).

Let f (n, ρ) represent the number of rounds required
by Solver on a graph with n nodes which ρ-minor dis-
tributes into G, and g(n, ρ) the number of rounds required
by BuildChain with input an n-node graph which ρ-minor
distributes into G. Then, if we ignore lower order terms, it
follows that

f (n, ρ) = no(1)Q(ρ) + g(n/k1−o(1), ρ),

where we used that |V (G2)| ≤ |V (G1)|/k1−o(1). Moreover,
we have that

g(n, ρ) = O
(

(logc n/εc)(log log n)2Q(ρ)
)

+ f (n, 2ρ)O(log10 n/ε3) + g(n/2�((log log n)2), ρ)

= no(1)Q(ρ) + polylog(n) f (n, 2ρ)

+ g(n/2�((log log n)2), ρ),

where we used that |V (Gi+1)| ≤ |V (Gi)|2−�((log log n)2),
and we ignored lower order terms. As a result, the overall
increase in congestion is 2O(log n/(log log n)2) = no(1). That
is, all the graphs constructed (no(1))-minor distribute into
G. Finally, the theorem follows since by Assumption 1 the
dependence of Q(ρ) on ρ is polynomial. �

References

1. Spielman, D.A., Teng, S.: Nearly linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear
systems. SIAM J. Matrix Anal. Appl. 35(3), 835–885 (2014).
https://doi.org/10.1137/090771430

123

https://doi.org/10.1137/090771430

498 I. Anagnostides et al.

2. Koutis, I., Miller, G.L., Peng, R.: Approaching optimality for solv-
ing SDD linear systems. SIAM J. Comput. 43(1), 337–354 (2014).
https://doi.org/10.1137/110845914

3. Kelner, J.A., Orecchia, L., Sidford, A., Zhu, Z.A.: A simple,
combinatorial algorithm for solving SDD systems in nearly-
linear time. In: Symposium on Theory of Computing Conference,
STOC’13, 2013, pp. 911–920 (2013). https://doi.org/10.1145/
2488608.2488724

4. Kyng, R., Sachdeva, S.: Approximate gaussian elimination for
Laplacians - fast, sparse, and simple. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, pp.
573–582 (2016). https://doi.org/10.1109/FOCS.2016.68

5. Axiotis, K.,Madry, A., Vladu, A.: Faster sparseminimum cost flow
by electrical flow localization. In: 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021, pp. 528–539
(2021). https://doi.org/10.1109/FOCS52979.2021.00059

6. Madry, A.: Computing maximum flow with augmenting electrical
flows. In: IEEE 57th Annual Symposium on Foundations of Com-
puter Science, FOCS 2016, pp. 593–602 (2016). https://doi.org/
10.1109/FOCS.2016.70

7. Brand, J., Lee, Y.T., Nanongkai, D., Peng, R., Saranurak, T., Sid-
ford, A., Song, Z., Wang, D.: Bipartite matching in nearly-linear
time on moderately dense graphs. In: 61st IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2020, pp.
919–930 (2020). https://doi.org/10.1109/FOCS46700.2020.00090

8. Kelner, J.A., Lee, Y.T., Orecchia, L., Sidford, A.: An almost-linear-
time algorithm for approximate max flow in undirected graphs,
and its multicommodity generalizations. In: Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2014, pp. 217–226 (2014). https://doi.org/10.1137/
1.9781611973402.16

9. Peng, R.: Approximate undirected maximum flows in
O(mpolylog(n)) time. In: Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, pp. 1862–1867 (2016). https://doi.org/10.1137/1.
9781611974331.ch130

10. Axiotis, K., Madry, A., Vladu, A.: Circulation control for faster
minimum cost flow in unit-capacity graphs. In: 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, pp.
93–104 (2020). https://doi.org/10.1109/FOCS46700.2020.00018

11. Forster, S., Goranci, G., Liu, Y.P., Peng, R., Sun, X., Ye, M.: Minor
sparsifiers and the distributed laplacian paradigm. In: 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS
2021, pp. 989–999 (2021). https://doi.org/10.1109/FOCS52979.
2021.00099

12. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D.,
Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verifica-
tion and hardness of distributed approximation. In: Proceedings
of the Forty-Third Annual ACM Symposium on Theory of Com-
puting. STOC ’11, pp. 363–372 (2011). https://doi.org/10.1145/
1993636.1993686

13. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time
complexity of distributed mst construction. In: 40th Annual Sym-
posium on Foundations of Computer Science, pp. 253–261 (1999).
https://doi.org/10.1109/SFFCS.1999.814597

14. Elkin, M.: Unconditional lower bounds on the time-approximation
tradeoffs for the distributed minimum spanning tree problem. In:
Proceedings of the Thirty-Sixth Annual ACMSymposium on The-
ory of Computing. STOC ’04, pp. 331–340 (2004). https://doi.org/
10.1145/1007352.1007407

15. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar
networks II: low-congestion shortcuts, mst, and min-cut. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, pp. 202–219 (2016). https://
doi.org/10.1137/1.9781611974331.ch16

16. Haeupler, B., Izumi, T., Zuzic, G.: Low-congestion shortcuts
without embedding. In: Giakkoupis, G. (ed.) Proceedings of the
2016 ACM Symposium on Principles of Distributed Comput-
ing, PODC 2016, pp. 451–460 (2016). https://doi.org/10.1145/
2933057.2933112

17. Haeupler, B., Izumi, T., Zuzic, G.: Near-optimal low-congestion
shortcuts on bounded parameter graphs. In: Distributed
Computing—30th International Symposium, DISC 2016. Lecture
Notes in Computer Science, vol. 9888, pp. 158–172 (2016).
https://doi.org/10.1007/978-3-662-53426-7_12

18. Haeupler, B., Wajc, D., Zuzic, G.: Universally-optimal distributed
algorithms for known topologies. In: STOC ’21: 53rdAnnualACM
SIGACT Symposium on Theory of Computing, pp. 1166–1179
(2021). https://doi.org/10.1145/3406325.3451081

19. Ghaffari, M., Haeupler, B.: Low-congestion shortcuts for graphs
excluding dense minors. In: PODC ’21: ACMSymposium on Prin-
ciples ofDistributedComputing, 2021, pp. 213–221 (2021). https://
doi.org/10.1145/3465084.3467935

20. Zuzic, G., Goranci, G., Ye, M., Haeupler, B., Sun, X.: Universally-
optimal distributed shortest paths and transshipment via graph-
based
1-oblivious routing. In: Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
2549–2579 (2022). https://doi.org/10.1137/1.9781611977073.100
. SIAM

21. Ghaffari, M., Zuzic, G.: Universally-optimal distributed exact min-
cut. In: PODC ’22: ACM Symposium on Principles of Distributed
Computing, 2022, pp. 281–291 (2022). https://doi.org/10.1145/
3519270.3538429

22. Haeupler, B., Räcke, H., Ghaffari, M.: Hop-constrained expander
decompositions, oblivious routing, and distributed universal opti-
mality. In: STOC ’22: 54th Annual ACM SIGACT Symposium on
Theory of Computing, 2022, pp. 1325–1338 (2022). https://doi.
org/10.1145/3519935.3520026

23. Augustine, J., Hinnenthal, K., Kuhn, F., Scheideler, C., Schnei-
der, P.: Shortest paths in a hybrid network model. In: Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, pp. 1280–1299 (2020). https://doi.org/10.1137/1.
9781611975994.78

24. Chen, T., Gao, X., Chen, G.: The features, hardware, and architec-
tures of data center networks: a survey. J. Parallel Distrib. Comput.
96, 45–74 (2016). https://doi.org/10.1016/j.jpdc.2016.05.009

25. Wang, G., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Ng,
T.S.E., Kozuch, M., Ryan, M.: C-through: Part-time optics in
data centers. In: Proceedings of the ACM SIGCOMM 2010 Con-
ference. SIGCOMM ’10, pp. 327–338 (2010). https://doi.org/10.
1145/1851182.1851222

26. Kar, U.N., Sanyal, D.K.: An overview of device-to-device commu-
nication in cellular networks. ICT Express 4(4), 203–208 (2018).
https://doi.org/10.1016/j.icte.2017.08.002

27. Augustine, J., Ghaffari, M., Gmyr, R., Hinnenthal, K., Scheideler,
C., Kuhn, F., Li, J.: Distributed computation in node-capacitated
networks. In: The31stACMonSymposiumonParallelism inAlgo-
rithms and Architectures, SPAA 2019, pp. 69–79 (2019). https://
doi.org/10.1145/3323165.3323195

28. Rozhon, V., Grunau, C., Haeupler, B., Zuzic, G., Li, J.: Undirected
(1+ε)-shortest paths via minor-aggregates: near-optimal determin-
istic parallel and distributed algorithms. In: STOC ’22: 54thAnnual
ACM SIGACT Symposium on Theory of Computing, 2022, pp.
478–487 (2022). https://doi.org/10.1145/3519935.3520074

29. Censor-Hillel, K., Leitersdorf, D., Polosukhin, V.: On sparsity
awareness in distributed computations. In: SPAA ’21: 33rd ACM
Symposium on Parallelism in Algorithms and Architectures, pp.
151–161 (2021). https://doi.org/10.1145/3409964.3461798

30. Kuhn, F., Schneider, P.: Computing shortest paths and diameter in
the hybrid network model. In: Proceedings of the 39th Symposium

123

https://doi.org/10.1137/110845914
https://doi.org/10.1145/2488608.2488724
https://doi.org/10.1145/2488608.2488724
https://doi.org/10.1109/FOCS.2016.68
https://doi.org/10.1109/FOCS52979.2021.00059
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1109/FOCS46700.2020.00090
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1109/FOCS46700.2020.00018
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1145/1993636.1993686
https://doi.org/10.1145/1993636.1993686
https://doi.org/10.1109/SFFCS.1999.814597
https://doi.org/10.1145/1007352.1007407
https://doi.org/10.1145/1007352.1007407
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1145/2933057.2933112
https://doi.org/10.1145/2933057.2933112
https://doi.org/10.1007/978-3-662-53426-7_12
https://doi.org/10.1145/3406325.3451081
https://doi.org/10.1145/3465084.3467935
https://doi.org/10.1145/3465084.3467935
https://doi.org/10.1137/1.9781611977073.100
https://doi.org/10.1145/3519270.3538429
https://doi.org/10.1145/3519270.3538429
https://doi.org/10.1145/3519935.3520026
https://doi.org/10.1145/3519935.3520026
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.1016/j.jpdc.2016.05.009
https://doi.org/10.1145/1851182.1851222
https://doi.org/10.1145/1851182.1851222
https://doi.org/10.1016/j.icte.2017.08.002
https://doi.org/10.1145/3323165.3323195
https://doi.org/10.1145/3323165.3323195
https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1145/3409964.3461798

Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts 499

on Principles of Distributed Computing. PODC ’20, pp. 109–118
(2020). https://doi.org/10.1145/3382734.3405719

31. Feldmann, M., Hinnenthal, K., Scheideler, C.: Fast hybrid network
algorithms for shortest paths in sparse graphs. In: 24th International
Conference on Principles of Distributed Systems, OPODIS 2020.
LIPIcs, vol. 184, pp. 31–13116 (2020). https://doi.org/10.4230/
LIPIcs.OPODIS.2020.31

32. Censor-Hillel,K., Leitersdorf,D., Polosukhin,V.:Distance compu-
tations in the hybrid networkmodel via oracle simulations. In: 38th
International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2021. LIPIcs, vol. 187, pp. 21–12119 (2021). https://
doi.org/10.4230/LIPIcs.STACS.2021.21

33. Götte, T., Hinnenthal, K., Scheideler, C., Werthmann, J.: Time-
optimal construction of overlay networks. In: PODC ’21: ACM
Symposium on Principles of Distributed Computing, pp. 457–468
(2021). https://doi.org/10.1145/3465084.3467932

34. Kuhn, F., Schneider, P.: Routing schemes and distance oracles in
the hybrid model. In: 36th International Symposium onDistributed
Computing, DISC 2022. LIPIcs, vol. 246, pp. 28–12822 (2022).
https://doi.org/10.4230/LIPIcs.DISC.2022.28

35. Coy, S., Czumaj, A., Feldmann, M., Hinnenthal, K., Kuhn, F.,
Scheideler, C., Schneider, P., Struijs,M.: Near-shortest path routing
in hybrid communication networks. In: 25th International Confer-
ence on Principles of Distributed Systems, OPODIS 2021. LIPIcs,
vol. 217, pp. 11–11123 (2021). https://doi.org/10.4230/LIPIcs.
OPODIS.2021.11

36. Anagnostides, I., Gouleakis, T.: Deterministic distributed algo-
rithms and lower bounds in the hybrid model. In: 35th Interna-
tional Symposium on Distributed Computing, DISC 2021. LIPIcs,
vol. 209, pp. 5–1519 (2021). https://doi.org/10.4230/LIPIcs.DISC.
2021.5

37. Peng, R., Spielman, D.A.: An efficient parallel solver for SDD lin-
ear systems. In: Symposium onTheory of Computing, STOC2014,
pp. 333–342 (2014). https://doi.org/10.1145/2591796.2591832

38. Blelloch, G.E., Gupta, A., Koutis, I., Miller, G.L., Peng, R.,
Tangwongsan, K.: Nearly-linear work parallel SDD solvers, low-
diameter decomposition, and low-stretch subgraphs. Theory Com-
put. Syst. 55(3), 521–554 (2014). https://doi.org/10.1007/s00224-
013-9444-5

39. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

40. Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg,D.:MST construction
in O(log log n) communication rounds. In: SPAA 2003: Proceed-
ings of the Fifteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, 2003, pp. 94–100 (2003). https://
doi.org/10.1145/777412.777428

41. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested
clique model. In: ACM Symposium on Principles of Distributed
Computing, PODC ’14, pp. 367–376 (2014). https://doi.org/10.
1145/2611462.2611493

42. Forster, S., Vos, T.: The Laplacian paradigm in the broadcast con-
gested clique. In: PODC ’22: ACM Symposium on Principles of
DistributedComputing, Salerno, 2022, pp. 335–344 (2022). https://
doi.org/10.1145/3519270.3538436

43. Peleg, D.: Distributed Computing: A Locality-sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia
(2000)

44. Schmid, S., Suomela, J.: Exploiting locality in distributed SDN
control. HotSDN 2013—Proceedings of the 2013 ACM SIG-
COMMWorkshop onHot Topics in SoftwareDefinedNetworking,
pp. 121–126 (2013). https://doi.org/10.1145/2491185.2491198

45. Ghaffari, M.: Near-Optimal Scheduling of Distributed Algorithms.
In: Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, pp. 3–12 (2015). https://doi.org/10.1145/
2767386.2767417

46. Johansson, Ö.: Simple distributed δ + 1-coloring of graphs. Inf.
Process. Lett. 70(5), 229–232 (1999)

47. Haeupler, B., Wajc, D., Zuzic, G.: Network coding gaps for com-
pletion times of multiple unicasts. In: 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pp.
494–505 (2020). https://doi.org/10.1109/FOCS46700.2020.00053
. IEEE

48. Ghaffari, M., Karrenbauer, A., Kuhn, F., Lenzen, C., Patt-Shamir,
B.: Near-optimal distributed maximum flow: extended abstract. In:
Proceedings of the 2015 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2015, pp. 81–90 (2015). https://doi.
org/10.1145/2767386.2767440

49. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game
and its application to the k-server problem. SIAMJ.Comput. 24(1),
78–100 (1995). https://doi.org/10.1137/S0097539792224474

50. Koutis, I., Miller, G.L., Peng, R.: Approaching optimality for solv-
ing sdd linear systems. In: 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, pp. 235–244 (2010). https://
doi.org/10.1109/FOCS.2010.29

51. Kyng, R., Lee, Y.T., Peng, R., Sachdeva, S., Spielman, D.A.: Spar-
sified cholesky and multigrid solvers for connection laplacians.
In: Proceedings of the Forty-Eighth Annual ACM Symposium on
Theory of Computing. STOC ’16, pp. 842–850. Association for
Computing Machinery, New York, NY, USA (2016). https://doi.
org/10.1145/2897518.2897640

52. Durfee, D., Gao, Y., Goranci, G., Peng, R.: Fully dynamic spec-
tral vertex sparsifiers and applications. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2019, pp. 914–925 (2019). https://doi.org/10.1145/
3313276.3316379

53. Li, H., Schild, A.: Spectral subspace sparsification. In: 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS
2018, pp. 385–396 (2018). https://doi.org/10.1109/FOCS.2018.
00044

54. Schild, A., Rao, S., Srivastava, N.: Localization of electrical flows.
In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2018. SODA ’18, pp.
1577–1584. Society for Industrial and Applied Mathematics, USA
(2018). https://doi.org/10.1137/1.9781611975031.103

55. Spielman, D.A., Srivastava, N.: Graph sparsification by effective
resistances. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, 2008, pp. 563–568
(2008). https://doi.org/10.1145/1374376.1374456

56. Vishnoi, N.: Lx=b. Laplacian solvers and their algorithmic applica-
tions. Found. Trends Theor. Comput. Sci. (2012). https://doi.org/
10.1561/0400000054

57. Koutis, I.: Simple parallel and distributed algorithms for spectral
graph sparsification. In: 26th ACM Symposium on Parallelism in
Algorithms andArchitectures, SPAA’14, pp. 61–66 (2014). https://
doi.org/10.1145/2612669.2612676

58. Baswana, S., Sen, S.: A simple and linear time randomized algo-
rithm for computing sparse spanners in weighted graphs. Random
Struct.Algorithms30(4), 532–563 (2007). https://doi.org/10.1002/
rsa.20130

59. Indyk, P.: Stable distributions, pseudorandom generators, embed-
dings, and data stream computation. J. ACM 53(3), 307–323
(2006). https://doi.org/10.1145/1147954.1147955

60. Achlioptas, D.: Database-friendly random projections: Johnson–
lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–
687 (2003). https://doi.org/10.1016/S0022-0000(03)00025-4

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/3382734.3405719
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.4230/LIPIcs.STACS.2021.21
https://doi.org/10.4230/LIPIcs.STACS.2021.21
https://doi.org/10.1145/3465084.3467932
https://doi.org/10.4230/LIPIcs.DISC.2022.28
https://doi.org/10.4230/LIPIcs.OPODIS.2021.11
https://doi.org/10.4230/LIPIcs.OPODIS.2021.11
https://doi.org/10.4230/LIPIcs.DISC.2021.5
https://doi.org/10.4230/LIPIcs.DISC.2021.5
https://doi.org/10.1145/2591796.2591832
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.1145/777412.777428
https://doi.org/10.1145/777412.777428
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/3519270.3538436
https://doi.org/10.1145/3519270.3538436
https://doi.org/10.1145/2491185.2491198
https://doi.org/10.1145/2767386.2767417
https://doi.org/10.1145/2767386.2767417
https://doi.org/10.1109/FOCS46700.2020.00053
https://doi.org/10.1145/2767386.2767440
https://doi.org/10.1145/2767386.2767440
https://doi.org/10.1137/S0097539792224474
https://doi.org/10.1109/FOCS.2010.29
https://doi.org/10.1109/FOCS.2010.29
https://doi.org/10.1145/2897518.2897640
https://doi.org/10.1145/2897518.2897640
https://doi.org/10.1145/3313276.3316379
https://doi.org/10.1145/3313276.3316379
https://doi.org/10.1109/FOCS.2018.00044
https://doi.org/10.1109/FOCS.2018.00044
https://doi.org/10.1137/1.9781611975031.103
https://doi.org/10.1145/1374376.1374456
https://doi.org/10.1561/0400000054
https://doi.org/10.1561/0400000054
https://doi.org/10.1145/2612669.2612676
https://doi.org/10.1145/2612669.2612676
https://doi.org/10.1002/rsa.20130
https://doi.org/10.1002/rsa.20130
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1016/S0022-0000(03)00025-4

	Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts
	Abstract
	1 Introduction
	1.1 Overview of our contributions and techniques
	1.1.1 The congested part-wise aggregation problem
	1.1.2 Almost universally optimal Laplacian solvers

	1.2 Further related work

	2 Preliminaries
	3 Congested part-wise aggregations
	3.1 Solving congested instances in the CONGEST model
	3.1.1 The layered graph
	3.1.2 Treewidth-bounded graphs
	3.1.3 General graphs

	3.2 The `3́9`42`"̇613A``45`47`"603ANCC model

	4 Almost universally optimal Laplacians
	5 Conclusions
	Appendix A: The Laplacian solver
	A.1 The Laplacian building blocks
	A.1.1 Ultra-sparsification
	A.1.2 Sparsified cholesky
	A.1.3 Minor schur complement
	A.1.4 Schur complement chain

	A.2 Putting everything together

	Appendix B: Omitted proofs
	B.1 Useful routines
	B.2 Ultra-sparsification: proof of Lemma 28
	B.3 Sparsified Cholesky: proof of Lemma 29
	B.4 Minor schur complement: proof of Lemma 30
	B.5 Putting everything together: proof of Theorem 32

	References

