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Abstract
Planar graphs are known to allow subexponential algorithms running in time 2O(

√
n)

or 2O(
√
n log n) for most of the paradigmatic problems, while the brute-force time 2Θ(n)

is very likely to be asymptotically best on general graphs. Intrigued by an algorithm
packing curves in 2O(n2/3 log n) by Fox and Pach (SODA’11), we investigate which
problems have subexponential algorithms on the intersection graphs of curves (string
graphs) or segments (segment intersection graphs) and which problems have no such
algorithms under the Exponential Time Hypothesis (ETH). Among our results, we
show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3 logO(1) n)

on string graphswhile an algorithm running in time 2o(n) for 4-Coloring even on axis-
parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring
of unit segments, we show a weaker lower bound, excluding a 2o(n

2/3) algorithm
(under the ETH). The construction exploits the celebrated Erdős–Szekeres theorem.
The subexponential running time also carries over toMin Feedback Vertex Set,
but not toMin Dominating Set and Min Independent Dominating Set.

Keywords String graphs · Segment graphs · Subexponential algorithms · ETH

1 Introduction

Most combinatorial optimization and decision problems admit subexponential algo-
rithms when restricted to planar graphs. More precisely, they can be solved in time
2O(

√
n), or 2Õ(

√
n) on planar graphs with n vertices, while under the ETH (Exponen-
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p.rzazewski@mini.pw.edu.pl

Édouard Bonnet
edouard.bonnet@dauphine.fr

1 LIP, ENS Lyon, Lyon, France

2 Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00568-7&domain=pdf
http://orcid.org/0000-0001-7696-3848


3048 Algorithmica (2019) 81:3047–3073

tial Time Hypothesis, which asserts that 3- Sat cannot be solved in subexponential
time [27,28]) they do not admit an algorithm running in time 2o(n) on general graphs.
The former is due to the facts that planar graphs have treewidth O(

√
n) and that

we have efficient algorithms parameterized by the treewidth tw of the graph, namely
running in 2O(tw)nO(1), or 2Õ(tw)nO(1).

The so-called bidimensionality theory [14,16–18] pushes this square-root phe-
nomenon further by yielding 2O(

√
k)nO(1) algorithms where k is the targeted size

of a solution (think for example of the problems of finding a maximum independent
set or a minimum dominating set of size k). In a nutshell, it exploits a deep structural
result by Robertson, Seymour, and Thomas [41]: planar graphs with treewidth tw have
a Θ(tw)-by-Θ(tw) grid as a minor (i.e., any graph obtained by deleting vertices and
edges, and contracting edges). Thus, if the presence of a large grid minor makes the
problem trivial (as in, one can always answer yes or always answer no), then one only
has to solve efficiently instances with low treewidth; which, as we noted, can often
be done. The claimed running time is obtained by defining large grids as Θ(

√
k)-by-

Θ(
√
k), since their absence as minors implies that the treewidth is in O(

√
k). The

bidimensionality theory is also used to obtain approximation schemes and linear ker-
nels and could be generalized to graphs with bounded genus and graphs excluding a
fixed minor [15].

A natural line of research is to generalize or extend the subexponential (parame-
terized) algorithms to classes of graphs which do not fall into those categories. For
geometric intersection graphs, the situation is much richer than for planar graphs.
For instance, Marx and Pilipczuk already observed that packing problems (of the
kind of Max Independent Set) are more broadly subject to subexponential
algorithms—running typically in nO(

√
k)—than covering problems (of the kind of

Min Dominating Set)—for which nO(k) is often essentially optimal under the
ETH [36,37].

We briefly survey the existing results in the design of subexponential algorithms
on geometric intersection graphs. A prominent role is played by intersection graph
of families of fat objects, i.e., objects for which the aspect ratio (their length divided
by their width) is bounded. We highlight that fat objects, and in particular disks and
squares, often allow faster algorithms and the so-called square-root phenomenon. As
we will see, subexponential algorithms are less frequent on intersection graphs of
curves and segments but nevertheless present such as exemplified byMax Indepen-

dent Set, 3-Coloring, Min Feedback Vertex Set, and Maximum Induced

Matching.

1.1 Subexponential Algorithms on Geometric Intersection Graphs

By a ply of a family of geometric objects we denote the maximum number of objects
covering a single point. Smith and Wormald show that for any collection of n convex
fat objects with ply p there is a balanced separator of size O(

√
np) [45]. This leads

to subexponential algorithms when the ply is constant, or in general for problems
becoming trivial when the ply is too large, such as k-Coloring. The 2Õ(

√
nk)-time
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algorithm that this win-win provides for coloring n fat objects, say disks, with k colors
is shown essentially optimal under the ETH by Biró et al. [5].

A next stepmay consist of designing FPT1 orXP2 algorithmswhere the dependency
in the parameter is subexponential (for problems of the form “find k vertices such
that…”). Using a shifting argument à la Baker [4], Alber and Fiala obtain a nO(

√
k)-

time algorithm to decide if one can find k disjoint unit disks or squares among n [3].
Marx and Pilipczuk generalize this result to packing k disjoint polygons among n
in the same time [36,37]. Their approach is based on guessing a small separator in
the medial axis (i.e., the Voronoi diagram of polygons) of a supposed solution, as
suggested by Adamaszek and Wiese and Har-Peled to obtain QPTAS for geometric
packing problems [1,2,26].

Marx showed that Max Independent Set and Min Dominating Set in the
intersection graphs of disks or squares are W[1]-hard, and therefore unlikely to be
FPT [35]. Those reductions also show that thenO(

√
k) algorithms [36,37] are essentially

optimal under the ETH. Fomin et al. [21] observed that unit disks of bounded degree
have treewidth O(

√
n) and used this fact to extend bidimensionality to unit disk

graphs for a handful of problems. Recently, a superset of the previous authors gave
2O(

√
k)nO(1)-time algorithms for k- Feedback Vertex Set, k- Path, k- Cycle,

Exact k- Cycle [20].

1.2 Non-fat Objects: Segments and Strings

Segment intersection graphs (or segment graphs in short) are the intersection graphs
of straight-line segments in the plane. They are called unit segments if all the segments
of a representation share the same length. For a fixed integer k, k-Dir is defined as
the set of intersection graphs of segments, each parallel to one of fixed k directions.
Strings graphs are the intersection graphs of simple curves in the plane. Those curves
can be assumed polygonal without loss of generality. The vertices of the polygonal
curves in a geometric representation are called geometric vertices not to confuse them
with the actual vertices of the graph. As shown by Kratochvíl and Matoušek, there
are string graphs with n vertices, which require 2Ω(n) geometric vertices in any string
representation with polygonal curves [31].

A systematic study of segment graphs and their subclasses was initiated by Kra-
tochvíl and Matoušek [32]. It is interesting to point out that every planar graph is a
segment graph, as shown by Chalopin and Gonçalves [13] (this was a long-standing
conjecture by Scheinerman [44], see also a recent proof by Gonçalvez, Isenmann, and
Pennarun [25]).

The class of string graphs is very general, as it includes split graphs (i.e., graphs
whose vertices can be partitioned into two sets inducing a clique and an independent
set), intersection graphs of bodies (i.e., compact shapes with non-empty interior), or
incomparability graphs (i.e., graphs whose vertex set is given by the set of elements
of a poset, and edges join elements that are incomparable).

1 With running time f (k)nO(1).
2 With running time n f (k).
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Biró et al. showed that even though coloring disks or more generally fat objects
with a constant number of colors can be solved in 2Õ(

√
n) [5], 6-coloring axis-parallel

segments (2- Dir) in time 2o(n) would refute the ETH. This suggests that subexpo-
nential algorithms are less frequent on the intersection graphs of non-fat objects such
as segments and strings. On the other hand, Fox and Pach presented a subexponential
algorithm for Max Independent Set on string graphs [22]. Their approach uses a
win-win strategy and is based on the existence of balanced separators in string graphs.
Fox, Pach, and Tóth showed that string graphs with m edges have balanced separa-
tors of size O(m3/4 logm), and conjectured that there is always a separator of size
O(

√
m) [24]. Matoušek showed that string graphs admit a balanced separator of size

O(
√
m logm) [39]. Finally, recently Lee improved the result of Matoušek, proving

the conjecture.

Theorem 1 (Lee [33]) Every string graph with m edges has a balanced separator of
size O(

√
m). Moreover, it can be found in polynomial time, provided that the geometric

representation is given.

Let us point out that this result generalizes the famous planar separator theorem by
Lipton and Tarjan [34], as planar graphs are string graphs and the number of edges in
a planar graph is linear in the number of vertices. This also shows that Theorem 1 is
best possible (up to the constants), as the planar separator theorem is asymptotically
tight.

1.3 Our Contributions

We show that the subexponential algorithm for Max Independent Set in string
graphs by Fox and Pach [22], running in time 2Õ(n2/3), can be extended to 3-Coloring
and Min Feedback Vertex Set. As in the algorithm of Fox and Pach, the central
idea is a win-win: either the graph is rather sparse and the separator of Theorem 1
gives a speed-up, or the graph has a high-degree vertex (used for 3-Coloring) or a
large biclique (used forMin Feedback Vertex Set) and an efficient branching can
be performed. Refining a lower bound of Biró et al. [5], we complement this former
result by showing that for any k � 4, k-Coloring cannot be solved in 2o(n) even on
axis-parallel segments, unless the ETH fails. The reduction relies on having segment
lengths with two different orders of magnitude. We therefore ask if unit segments
could allow a faster algorithm for k-Coloring for k � 4. Under the ETH, we provide
a stronger lower bound than the one for planar graphs (which refutes a running time
2o(

√
n)) and show that unit segments cannot be k-colored in 2o(n

2/3) for any k � 4. Our
construction uses the fact, closely related to the famous Erdős–Szekeres [19] theorem,
that any permutation on n totally ordered elements can be partitioned into O(

√
n)

monotone subsequences (see Knuth [29, Sec. 5.1.4]).
We then give tight ETH lower bounds for Min (Connected) Dominating Set

and Min Independent Dominating Set on segment graphs and Max Clique on
string graphs. For that, we design reductions whose number n of produced segments is
linear in N + M from satisfiability problems with N variables and M clauses. Indeed,
the sparsification lemma of Impagliazzo et al. [28] implies that those satisfiability
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Table 1 Upper and lower bounds for classical problems on string and segment graphs

Problem Upper bound Lower bound

Max Independent Set 2Õ(
√
n) pO(1), 2Õ(n2/3) 2Ω(

√
n)

3-Coloring 2Õ(n2/3) 2Ω(
√
n)

k-Coloring for every k � 4 2O(n) 2Ω(n) (even in 2-DIR)

k-Coloring for every k � 4 2O(n) 2Ω(n2/3) in unit 3-DIR

Min Feedback Vertex Set 2Õ(n2/3) 2Ω(
√
n)

Maximum Induced Matching 2Õ(n2/3) 2Ω(
√
n)

Min (Connected) Dominating Set 2O(n) 2Ω(n)

Min Independent Dominating Set 2O(n) 2Ω(n)

Max Clique 2O(n) 2Ω(n) (on string graphs)

The upper bounds work on string graphs. The lower bounds are conditional on the ETH, and designed on
segment graphs, unless stated otherwise. New results are indicated by bold emphasis. By p we denote the
number of geometric vertices if a geometric representation is given

problems are not solvable in 2o(N+M) unless the ETH fails; which enables us to
conclude that the problems are not solvable in 2o(n) under the ETH, on graphs with n
vertices.

Although the NP-hardness of the mentioned problems is known for segment inter-
section graphs [11,47], getting such linear reductions might be difficult.

For instance, while it is known that planar graphs are a subclass of segment inter-
section graphs [13], implying the NP-hardness of all the problems of Table 1 except
k-Coloring for k � 4 and Max Clique, this fact does not serve our purpose since
they can be solved in time 2O(

√
n) on planar graphs. The situation is an interesting

intermediate between planar and general graphs. Our objects can intersect but we
cannot afford crossover gadgets (at least not quadratically many). Certain intersec-
tions create unwanted edges, whose importance we have to tame. It is also noteworthy
that segment/string graphs cannot be expanders since if they have constant degree, by
Theorem 1, they have treewidth Õ(

√
n). Hence, we are deprived of the usual hardest

instances.

1.4 Geometric Representation and Robust Algorithms

In case of graphs with geometric representations, it is important to distinguish between
a graph itself (i.e., a pure abstract structure, for which we know that some geometric
representation exists), and the representation itself. Note that this is not the case with
planar graphs, as finding a plane embedding can be done in linear time [9].

Finding a segment or string representation of a graph was shown to be NP-hard
by Kratochvíl [30], and Kratochvíl and Matoušek [32], respectively. However, it was
very unclear if the problems are in NP (which is usually the trivial part of an NP-
completeness proof). As mentioned above, Kratochvíl and Matoušek [31] showed
that some string graphs require a representation of exponential size, which proved
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that the simple idea of exhaustively guessing the representation cannot work for this
problem. Finally, the NP-membership of recognizing string graphs was proven by
Schaefer et al. [42].

The story of recognizing segment graphs is even more interesting. On the first
sight, the situation seems simpler than for strings, as the number of geometric points
in a segment representation is clearly polynomial in n. However, there are segment
graphs, whose every segment representation requires points with coordinates doubly
exponential in n, i.e., using 2Ω(n) digits (see Kratochvíl and Matoušek [32], and
McDiarmid and Müller [40]). Finally, the problem was shown to be complete for the
class ∃R (see Schaefer and Štefankovič [43]), i.e., the class of problems reducible
in polynomial time to deciding if a given existential formula over the reals is true.
This is a strong evidence that the problem is not in NP. For a nice exposition of the
∃R-completeness proof, see Matoušek [38].

All this shows that a requirement of an explicit geometric representation of an input
graphmay be a serious drawback of an algorithm.We call an algorithm robust if it takes
only an abstract structure like a graph as an input, and either computes the solution,
or concludes (correctly) that the input graph does not belong to the desired class. On
the one hand, our algorithms (see Sect. 2) are robust, but work slightly faster if the
input is given along with the geometric representation. On the other hand, the lower
bounds (see Sect. 3) hold even if the geometric representation is given explicitly.

2 Upper Bounds

Fox and Pach showed that, on string graphs, a maximum independent set can be
computed in subexponential time:

Theorem 2 (Fox and Pach [22], Lee [33]) Max Independent Set can be solved in
time 2O(n2/3 log n) in string graphs with n vertices.

In their paper, they give a worse running time than the one claimed above. This is
because they used the O(m3/4 logm) separator theorem [24], which has been recently
improved to O(

√
m) [33]. The algorithm is a simple win-win argument. If there is a

vertex with degree at least n1/3, then either removing it or selecting it and removing its
neighbors gives a branching F(n) � F(n − 1) + F(n − �n1/3� − 1). Otherwise, if all
the vertices have degree smaller than n1/3, the graph is rather sparse and the balanced
separator of size O(

√
m) = O(n2/3) provides an efficient divide-and-conquer. The

threshold n1/3 is computed so that it balances the running time of those two subroutines
and gives the claimed overall asymptotic time.

This result was somewhat improved by Marx and Pilipczuk [36,37] based on an
approach introduced by Adamaszek, Har-Peled, and Wiese [1]. However, their algo-
rithm requires that the string graph is given with a representation by polygonal curves
on a polynomial number of geometric vertices.

Theorem 3 (Marx and Pilipczuk [36]) Max Independent Set can be solved in
time 2O(

√
n log n) pO(1) in string graphs with n vertices, where the strings are given as

polygonal curves on a total of p geometric vertices.
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In a nutshell, the idea is to exhaustively guess a small balanced face-separator in
the Voronoi diagram of a supposed (although not known) fixed solution, and solve
recursively the two subinstances in the inside and outside of this separator.

Let us point out that since the complement of an independent set is a vertex cover,
the algorithms from Theorems 2 and 3 can be used to solve theMin Vertex Cover

problem within the same time bounds.
If the approach ofMarx and Pilipczuk does not seem to generalize easily to coloring

problems, the win-win of Fox and Pach can be transported to 3-Coloring with a bit
more arguments. The algorithm even works for the more general List 3-Coloring
(in List k-Coloring each vertex v is equipped with a list L(v) ⊆ [k] and we want to
find a proper coloring, in which every vertex receives a color from its list).

Theorem 4 List 3-Coloring of a string graph with n vertices can be decided in time
2O(n2/3 log n), even without geometric representation.

Proof Consider an instance (G, L) of List 3-Coloringwith n vertices. Observe that
without loss of generality we can assume that each list has two or three elements.
Indeed, if there is a vertex with just one allowed color, we can fix this color and
remove it from the list of each of its neighbors. Let N be the sum of the lengths of the
lists; clearly 2n � N � 3n.

First, assume that G has no vertex with degree larger than n1/3, then the number
m of edges is O(n4/3). By Theorem 1, G has a balanced separator of size O(

√
m) =

O(n2/3).We canfind this separator in polynomial time, if the representation is given, or
by exhaustive guessing in time nO(n2/3) = 2O(n2/3 log n), without using a representation.
Then we list all possible colorings of the separator and proceed with a standard divide-
and-conquer approach. The total time complexity of this step is 2O(n2/3 log n).

If there is a vertex v of degree at least n1/3, then one among the lists:
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3} appears on at least n1/3/4 of its neighbors. Thus there
are two colors (say, 1 and 2) that appear in lists of at least n1/3/4 of neighbors of v.
Since the list of v has size at least two, one of these colors (say 1) appears on the list
of v. We branch into two possibilities: choosing the color 1 for v (then we exclude 1
from the lists of all the neighbors of v), and not choosing 1 for v (then we remove 1
from the list of v). The complexity F of this step is given by the recursion

F(N ) � F(N − n1/3/4) + F(N − 1) � F
(
N − N 1/3/(31/3 · 4)

)
+ F(N − 1)

� F
(
N − N 1/3/(31/3 · 4)

)
+ F

(
N − N 1/3/(31/3 · 4)

)
+ F(N − 2)

� 3 · F
(
N − N 1/3/(31/3 · 4)

)
+ F(N − 3) � . . .

�
(
N 1/3/(31/3 · 4)

)
· F

(
N − N 1/3/(31/3 · 4)

)
+ F

(
N − N 1/3/(31/3 · 4)

)

=
(
N 1/3/(31/3 · 4) + 1

)
· F

(
N − N 1/3/(31/3 · 4)

)
.
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This inequality is satisfied by

F(N ) =
(
N 1/3/(31/3 · 4) + 1

) N
N1/3/(31/3 ·4) = 2O(N2/3 log N ) = 2O(n2/3·log n).

Combining these two cases gives the claimed time complexity. Finally, observe that
if the input graph is not a string graph, then the exhaustive search for a separator might
fail, and then we can report a wrong input instance. ��

InMin Feedback Vertex Set problem we ask for the minimum set of vertices,
whose removal destroys all cycles in a graph. For this problem, there is no obvi-
ous subexponential branching on a high-degree vertex. Instead, we use the following
theorem by Lee.

Theorem 5 (Lee [33]) There is a constant c such that for any t � 1, Kt,t -free string
graphs on n vertices have fewer than c · t log t · n edges.

It is worthmentioning that Fox and Pach [23, Theorem 5] obtained a slightlyweaker
result with logO(1) t instead of log t . Theorem 5 is the last tool we need to show the
following.

Theorem 6 Min Feedback Vertex Set on string graphs with n vertices can be

solved in time 2Õ(n2/3).

Proof The proof is similar to the proof of Theorem 4, but it involves a slight technical
complication. We will solve a more general problem, where the input is a graph G, a
set C1 of constraints of type disconnect(u, v), and another set C2 of constraints of
type stays(v), where u, v are vertices of G. We ask for a minimum feedback vertex
set X of G, such that for every constraint disconnect(u, v), the vertices u and v

are in different connected components of G − X , and for every constraint stays(v)

we have v /∈ X . The algorithm is recursive, the constraints C1 and C2 are checked
at the leaves of the recursion tree. Clearly, if C1 = C2 = ∅, then we just ask for the
minimum feedback vertex set.

If G has fewer than c/3 · n4/3 log n edges (where c is a constant from Theorem 5),
then by Theorem 1 there is a balanced separator S of size O(

√
m) = Õ(n2/3 log1/2 n),

we can find it in time nO(n2/3) = 2O(n2/3 log3/2 n) by exhaustive search or in polynomial
time, if the geometric representation is given. We partition the vertices of G − S into
sets V1, V2, such that V1, V2 � c′ · n (for a constant c′) and S separates V1 from
V2; such sets exist since S is a balanced separator. We will exhaustively guess the
intersection I ′ of afixedminimumsolutionwith S, taking into consideration the current
constraints C2 (this represents at most 2|S| = 2Õ(n2/3) possibilities), introduce the new
constraints stays(v) for every v ∈ S\I ′, and solve the problem independently in
G1 := G[V1 ∪ S\I ] and G2 := G[V2 ∪ S\I ].

However, note that there might be cycles in G that are not fully contained in V1 ∪ S
or in V2 ∪ S and the straightforward approach discussed above would not destroy
them. Let us call such cycles essential. For each essential cycle C , and for i = 1, 2,
we call i -subpath of C a subpath of C , whose endvertices are in S, and inner vertices
are in Vi . To destroy C , we must disconnect the endvertices of some i-subpath of C .
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We ensure this by introducing appropriate separation constraints. For every partition
Π = (S1, S2, . . . , Sk) of S\I , we run the algorithm recursively in each graph Gi with
additional constraints disconnect(u, v) for every u, v ∈ S, such that u and v are
in different parts of Π . The number of partitions of S\I is given by the Bell number
of |S\I |, which is upper-bounded by |S||S| = 2|S| log |S| = 2Õ(n2/3). This gives us a
total of 2Õ(n2/3) recursive calls at each level of the recursion tree. It is sufficient to only
consider those connectivity patterns since being connected is a transitive relation: if u
and v, and v andw stay connected inGi , then u andw also stay connected.We combine
solutions in G1 and G2 which agree on the subset I ⊆ S, and such that the essential
cycles cannot survive. It is known and relatively easy to see that this happens exactly
when the partitions Π1 = (S11 , S

1
2 , . . . , S

1
k1

) for G1 and Π2 = (S21 , S
2
2 , . . . , S

2
k2

) for

G2 are such that for each pair (i, j), |S1i ∪ S2j | � 1 and the bipartite intersection graph

(with an edge between S1i and S2j iff they have non-empty intersection) is a forest (see
e.g., [6,7]). This way, for every connectivity pattern in S\I , we will find the minimum
feedback vertex set respecting this pattern. When we combine the solutions of both
subproblems, we reject the ones that do not agree on S, and those with an essential
cycle C for which the endvertices of every i-subpath are not disconnected in Gi . This
step has a total running time 2Õ(n2/3).

On the other hand, if G has at least c/3 · n4/3 log n edges, by Theorem 5, there is a
subgraph of G isomorphic to Kn1/3,n1/3 . We can find it by exhaustive guessing in time

n2n
1/3 · poly(n) = 2Õ(n1/3). Observe that any feedback vertex set of G must contain

all but one vertex of one bipartition class of the biclique. This observation gives us a
branching algorithm: we choose the vertex v which is not necessarily included in the
the solution in 2n1/3 ways, then we remove all other vertices from the bipartition class
of v, and proceed recursively. Note that v might be still chosen to the solution in next
steps. The complexity of this algorithm is given by the recursion

F(n) � 2Õ(n1/3 log n) + 2n1/3F(n − n1/3 + 1). (1)

Note that the depth of recursion is O(n2/3), so the inequality is solved by

F(n) = (2n1/3)O(n2/3) = 2O(n2/3 log n).

We also trim the branches which violate a constraint of C2. Branching does not intro-
duce new constraints. In particular, the vertexwhich is not added to the solution (unlike
all the other vertices of its bipartition class) might still be included in the solution at a
later stage. Observe that the branching on a separator and the branching on a biclique
produce instances of the same problem and can be done in an interleaved fashion.

Finally, if the exhaustive search for a separator or a biclique fails, then either we
have reached a constant size, in which case the subproblem can be brute-forced, or we
can correctly report that the input graph is not a string graph. ��

It is interesting to note that a similar approach works also for the Maximum

Induced Matching problem.
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Theorem 7 Maximum Induced Matching on string graphs with n vertices can be

solved in time 2Õ(n2/3).

Proof Again, to ensure consistency of solutions found in recursive calls, wewill solve a
more general problem, where we are given a graphG and a subset X of its vertices, and
we ask for a maximum induced matching which covers all vertices from X . Clearly, if
X = ∅, then we just ask for a maximum induced matching. Whenever in the recursion
a neighbor u of a vertex v ∈ X becomes matched to some vertex other than v, we
can immediately terminate the current recursive call, as it will not produce a feasible
solution.

If G has fewer than c/3 · n4/3 log n edges (where c is a constant from Theorem 5),
then by Theorem 1 there is a balanced separator S of size O(

√
m) = Õ(n2/3 log1/2 n),

which can be found in time 2O(n2/3 log3/2 n) by exhaustive search or in polynomial time
if the geometric representation is given. We partition the vertices of G − S into sets
V1, V2, such that V1, V2 � c′ ·n (for a constant c′) and S separates V1 fromV2.Weguess
the set I ⊆ S of vertices covered by a fixed optimal solution, and for each vertex v ∈ I
we consider separately cases when the edge covering v belongs to G1 := G[V1 ∪ S]
or to G2 := G[V2 ∪ S] and solve the problem independently in G1 and G2. If a vertex
v is chosen to be covered by an edge from, say, G1, then in the recursive call in G2

we can remove v and all its neighbors. This gives at most 2 · 3|S| = 2Õ(n2/3) recursive
calls and the total complexity of this step is 2Õ(n2/3).

In the other case, if the number of edges is at least c/3·n4/3 log n, then byTheorem5,
G contains a copy of the biclique Kn1/3,n1/3 as a (non-necessarily induced) subgraph.
Let A and B be the bipartition classes of the biclique and consider some fixed solution
S. Observe that if S∩ (A∪ B) �= ∅, then either (a) S contains an edge uv where u ∈ A
and v ∈ B, and no other vertex of A ∪ B is covered, or (b) V (S) contains a vertex u
from, say, A, and no vertex of B (or the other way around). In case (a) the edge uv can
be chosen in at most n2/3 ways and we can safely remove all vertices of the biclique,
and in case (b) the vertex u can be chosen in at most 2n1/3 ways and we remove all
vertices of the other bipartition class. Finally, if S ∩ (A ∪ B) = ∅, we remove all
vertices of the biclique. Thus we obtain a branching algorithm, whose complexity is
given by a recursion:

F(n) � 2Õ(n2/3) + F(n − 2n1/3)︸ ︷︷ ︸
S∩(A∪B)=∅

+ n2/3F(n − 2n1/3)︸ ︷︷ ︸
case (a)

+ 2n1/3F(n − n1/3)︸ ︷︷ ︸
case (b)

� 2Õ(n2/3) + 2n2/3F(n − n1/3).

Note that in case (b) we exhaustively guess the vertex v from V (S) and add it to X in
the recursive call. The inequality above is solved in a way analogous to inequality (1).
The complexity of this step is again bounded by 2Õ(n2/3), and so is the running time
of the whole algorithm. ��

We observe that the approach of Theorem 7 can be further generalized to find
induced packings of copies of any fixed graph H . In the Maximum Induced H -

Packing problemwe are given a graphG and ask for a maximum subset X of vertices
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of G, such that G[X ] consists of disjoint copies of H . Observe that if H = K2, then
Maximum Induced H - Packing is precisely Maximum Induced Matching.
Evenmore generally, we can consider a problem of Maximum InducedH- Packing

for a fixed finite set of graphs H. In this problem we are given a graph G, and we
look for the largest set X ⊆ V (G), such that each connected component of G[X ] is
isomorphic to some graph fromH.

The general idea is exactly the same as in the proof of Theorem 7, but the technical
details are significantly more complicated. Recall that in the Maximum Induced

Matching problem we needed to exhaustively guess the intersection I of an optimal
solution X with the balanced separator S, and for each v ∈ I we considered the cases
that v is matched to a vertex of G1 or to a vertex of G2. Now, for each such vertex v,
we need to consider the specific graph H ∈ H, such that the connected component of
G[X ] containing v is isomorphic to H . Moreover, we need to consider the position
of v in the copy of H , and a partition of the remaining vertices of H between G1 and
G2. However, sinceH is a fixed family of fixed graphs, the total number of recursive
calls is still 2Õ(n2/3). We skip the proof, as it does not bring any new insight and is
technically involved.

Theorem 8 Maximum Induced H- Packing on string graphs with n vertices can

be solved in time 2Õ(n2/3). ��
Finally, note that if H contains graphs with different numbers of vertices, then

instead of maximizing the number of vertices in X , we can alternatively maximize the
number of connected components of G[X ].

3 Lower Bounds

Rather surprisingly, the win-win for 3-Coloring abruptly ceases to work for k-
Coloring for every k � 4. First, let us consider the List 4-Coloring. Following
Kratochvíl and Matoušek [32], by Pure 2- Dir we denote graphs admitting a 2- Dir
representation in which parallel segments do not intersect. Observe that such a graph
is bipartite.

Theorem 9 List 4-Coloring of a Pure 2- Dir graph cannot be solved in time 2o(n),
even if each list has size at most 3, unless the ETH fails.

Proof Let Φ be a 3- Sat formula with n variables v1, v2, . . . , vn and m clauses
C1,C2, . . . ,Cm . By repeating some literals in a clause, we may assume that each
clause contains exactly three literals. For a clause Ci , let vi1, v

i
2, v

i
3 denote the vari-

ables of Ci .
We construct a 2- Dir graph G with lists L of colors from {1, 2, 3, 4}, such that Φ

is satisfiable if and only if G is list-colorable with respect to the lists L .
For each variable vi , we introduce a horizontal segment called xi . For each clause

Ci we introduce three vertical segments yi1, y
i
2, y

i
3, corresponding to vi1, v

i
2, and vi3,

respectively. We arrange them in a grid-like way (see Fig. 1). One may observe that
the intersection graph induced by those segments is a biclique. We set the lists of each
xi to {1, 2} and the lists of each yi1, y

i
2, y

i
3 to {3, 4}.
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Fig. 1 The arrangement of
variable- and
occurrence-segments in G x1

x2

x3

x4

x5

x6

y11y
1
2y

1
3 y21y

2
2y

2
3 y31y

3
2y

3
3 y41y

4
2y

4
3

Fig. 2 Equality and inequality gadgets. The arrangement of segments is the same in both gadgets, the only
difference is the lists

The colors 1 and 2 used for xi will be interpreted, respectively, as true and false
values given to vi , while the colors 3 and 4 given to yij will be interpreted, respectively,

as true and false values given to the literal corresponding to vij .
To ensure this, we need to introduce equality gadgets and inequality gadgets. If the

variable vi appears positively in the clause C j as its �-th literal, then at the crossing

point of xi and y j
� we put the equality gadget ensuring that in any feasible coloring of

G, the color of xi is 1 (2, respectively) if and only if the color of yi� is 3 (4, respectively).
On the other hand, if vi appears negatively in C j as its �-th literal, then at the crossing

point of xi and y
j
� we put the inequality gadget ensuring that in any feasible coloring of

G, the color of xi is 1 (2, respectively) if and only if the color of y
j
� is 4 (3, respectively).

The equality gadget consists of 3 segments, arranged as depicted on Fig. 2 and uses
lists from the middle table on Fig. 2. Suppose xi gets the color 1. Then a receives color
3, and c gets the color 4. Thus the only choice for the color for y j

� is 3. The coloring
can be extended by coloring b to 2. The other cases are symmetric. The inequality
gadget is analogous and uses the lists on the right side of Fig. 2.

The only thing left is to ensure that the coloring of y j
1 , y j

2 , y j
3 exists if and only if

C j is satisfied. This is ensured by the satisfiability gadget depicted in Fig. 3, attached

to the top ends of y1j , y
j
2 , and y j

3 . Note that the gadget can be colored if and only if at

least one of y j
1 , y j

2 , y j
3 gets color 3, which is equivalent to one literal of C j being set

to true.
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Fig. 3 Satisfiability gadget

The number of vertices of G is n′ = n︸︷︷︸
xi

+ 3m︸︷︷︸
y j
�

+ 9m︸︷︷︸
(in)equality

+ 4m︸︷︷︸
satisfiability

= Θ(n+

m). On the other hand, an algorithm solving list coloring of G in time 2o(n
′) can be

used to decide the satisfiability ofΦ in time 2o(n
′) = 2o(n+m), which in turn contradicts

the ETH. ��
The non-list version is obtained analogously to the hardness for 6-Coloring in

[5]. We include the proof to make the paper self-contained.

Theorem 10 For every fixed k � 4, the k-Coloring problem of a 2- Dir graph cannot
be solved in time 2o(n), unless the ETH fails.

Proof We modify the construction from the proof of Theorem 9. We first introduce
k overlapping segments R1, R2, . . . , Rk , whose coloring will serve as a reference
coloring. Since these segments are pairwise intersecting, each of them receives a
different color. We will denote by i ∈ [k] the color assigned to Ri .

Now, for each segment v of G, we want to simulate the list L(v) from the instance
of List 4-Coloring constructed in the proof of Theorem 9. For every color i /∈ L(v),
we want to introduce a segment si intersecting v, which will always receive color i .

To achieve this, we first need to transport the reference coloring to every gadget.We
split it into two parts—we will separately transport colors 1 and 2, and colors greater
than 2. The overall high-level idea is depicted in Fig. 4. Observe that this already
simulates the lists for every xi .

Such a construction relies on a constant-size gadget, which allows us to turn or split
the reference coloring. The construction of this gadget is depicted in Fig. 5. Note that
the number of segments in this gadget is constant if k is constant. Moreover, turning
or splitting the reference coloring of fewer than k colors can be obtained by a simple
adaptation of the turning gadget. Indeed, suppose we want to introduce a turning
gadget for the set of colors C ⊆ [k], with |C | = k′ < k and we have k′ overlapping
segments carrying these colors. We introduce k − k′ dummy segments, overlapping
these segments. The dummy segments will clearly receive colors from [k]\C , but we
do not know which segment will get which color. Now we introduce a turning gadget
for k colors. We know which segments leaving the turning gadget get colors in C (and
we precisely know which segment gets which color). We do not need the remaining
segments anymore, so we can finish them as soon as they leave the turning gadget.

Now, the only thing left is to connect every segment in every gadget to appro-
priate segments carrying the reference coloring (note that each y j

� belongs to some
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x1

x2

x3

x4

x5

x6

y11 y12 y13 y21 y22 y23 y31 y32 y33

Fig. 4 Reference coloring is transported to every gadget. Circles denote the (in)equality gadgets, while
rectangles denote the satisfiability gadgets. Red and blue lines denote, respectively, pairs of overlapping
segments with colors 1,2, and colors greater than 2. Segments R1, R2, . . . , Rk are positioned in the lower
left corner of the picture (Color figure online)

Fig. 5 Turning gadget for k = 4 colors. The parallel segments depicted close to each other are overlapping.
Observe that the depicted 4-coloring is the only possible (up to the permutation of colors). For k > 4 the
turning gadget is analogous (Color figure online)

(in)equality gadget). This can easily be done using a constant number of additional
segments per gadget: we introduce a turning gadget for k colors, and finish the seg-
ments that are not needed anymore before they intersect the segments in gadgets (see
Fig. 6).
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xi

yj

c

a b yj1 yj2 yj3

a
b

c

d

Fig. 6 Simulation of lists for vertices in (in)equality gadgets and satisfiability gadgets. Horizontal violet
lines denote tuples of overlapping segments, carrying the reference coloring (all k colors). In the vertical
lines, segments carrying unnecessary colors are finished before they intersect the segments of the gadgets
(Color figure online)

The total size of the construction increases by a constant factor, as we introduce
O(n) constant-size turning gadgets. Thus an algorithm for k-coloring the constructed
2- Dir graph in time 2o(n

′) could be used to solve any 3- Sat instance in time 2o(n),
refuting the ETH. ��

Observe that the construction in the proof of Theorem 9 cannot be performed with
segments of bounded lengths, since segments xi and y j

k need to have length O(n)

(while the segments inside the gadgets can have unit length). For unit segments, we
show the following weaker lower bound.

Theorem 11 For every fixed k � 4, List k-Coloring of a unit 2- Dir graph or k-
Coloring of a unit 3- Dir cannot be solved in time 2o(n

2/3), unless the ETH fails.

Proof Consider a 3- Sat instancewith variablesv1, v2, . . . , vn and clausesC1,C2, . . . ,

Cm , where m = Θ(n). By duplicating some literals if necessary, we may assume that
each clause contains exactly three literals.

Let us start with a reduction to List k-Coloring in unit 2- Dir. For each clause C j

we introduce three d isjoint vertical unit segments, each corresponding to one literal
in C j . These segments will be called literal segments related to C j . We place them in
such a way that the distance between the leftmost and the rightmost literal segment
(of all literal segments) is slightly smaller than 1/2. The ordering of the segments is
the following: first, the literal segments related to the clause C1, then literal segments
related to the clause C2 and so on. Moreover, they are slightly shifted vertically, so
that the y-coordinates of their top endpoints form an increasing sequence. We set the
list of possible colors for each literal segment to {3, 4} and for each three literal seg-
ments related to a single clause, we introduce a satisfiability gadget already shown in
Fig. 3. We will interpret 3 as assigning the value true to the particular literal (and 4
will correspond to false). Figure 7 shows the placement of literal segments and satisfi-
ability gadgets. Analogously, for each variable v, we introduce a vertical segment for
each occurrence of v (we call these segments occurrence segments) with list {3, 4}.
The segments are placed in such a way that the distance between the leftmost and the
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Fig. 7 Placement of satisfiability gadgets. Segments in one color correspond to one clause. Literal segments
are depicted by thick lines. Note that all segments can be freely extended to the left and to the bottom, to
make them unit (Color figure online)

Fig. 8 Modified equality and inequality gadgets. The segment x is an occurrence segment and the segment
y is a variable segment. Segments a, b, and x overlap

rightmost occurrence segment is slightly smaller than 1/2. Moreover, leftmost occur-
rence segments correspond to v1, then we put the segments for v2 etc. For a variable
vi for i ∈ [n], we introduce a horizontal segment, intersecting the occurrence seg-
ments of variables vi , vi+1, . . . , vn . These segments will be called variable segments.
The variable segments are pairwise disjoint and each has list {1, 2}. Again, we will
interpret 1 as the value true given to a variable, and 2 will denote false. Now we need
to ensure that the truth assignment defined by the coloring of occurrence segments is
consistent. For this, we will use a slightly modified version of the (in)equality segment
introduced in Fig. 2. The modified gadget is shown in Fig. 8. For a variable v and its
positive occurrence, we introduce an equality gadget joining the occurrence segment
and the variable segment. Analogously, we introduce an inequality gadget joining the
variable segment and the occurrence segment corresponding to a negative occurrence.
The placement of all these segments is shown in Fig. 9.

Now we need to make sure that the truth assignment given by the coloring of literal
segments is consistent with the truth assignment given by the coloring of occurrence
segments. We will do it in a very similar way as we synchronized the colorings of
occurrence segments, i.e., by using auxiliary horizontal segments and equality gadgets.
Let �1, �2, . . . , �3m denote the literals ordered as their corresponding literal segments
(from left to right). Let o1, o2, . . . , o3m be the ordering of occurrences, again from
left to right. Let σ be the permutation of [3m], such that the literal �i corresponds
to the occurrence oσ(i). Now, for every i ∈ [n], we want to introduce an equality
gadget between the literal segment corresponding to �i and the occurrence segment
corresponding to oσ(i).
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Fig. 9 Placement of variable and occurrence segments along with (in)equality gadgets. Segments in one
color correspond to one variable. Literal segments are depicted by thick lines. Thin horizontal lines are
variable segments and thin vertical lines are parts of (in)equality gadgets (Color figure online)

We observe that this is quite easy to do if σ is either increasing or decreasing.
It follows from basic properties of Young tableaux (see Knuth [29, Sec. 5.1.4]) that
each permutation of [3m] can be partitioned into z � �√6m + 1/4− 1/2� = O(

√
n)

monotone sequences, and this partition can be found in polynomial time (see also
Brandstädt and Kratsch [10]). Let σ1, σ2, . . . , σz be the partition of σ , where each σi
is monotone. We introduce z layers, each corresponding to one σi . The i th layer is
responsible for synchronizing the colorings of literal segments and occurrence seg-
ments corresponding to elements of σi (we call such segments important for layer
i). Figure 10 shows a single layer, we set the distance between horizontal segments
to be very small, compared to the length of each segment. Moreover, the horizontal
segments cross the vertical literal and occurrence segments near their middle points.
Note that each layer contains copies of all literal segments and occurrence segments.
They appear in two groups—literal segments on the left and occurrence segments
on the right. The distance between leftmost and rightmost segment in one group is
slightly less than 1/2, and the distance between the rightmost literal segment and the
leftmost occurrence segment is slightly less than 2. This allows us to fit two equality
gadgets, whose horizontal segments are collinear but non-overlapping (see Fig. 10 and
notice that we can adjust the distances within groups and between the groups, so that
the distance between the horizontal segments is always positive and smaller than 1).
For each such pair we introduce k − 1 overlapping segments with lists {1, 2, . . . , k},
intersecting both of them and nothing else.

The last thing to do is to connect the literal segments (with (in)equality gadgets),
layers, and occurrence segments with satisfiability gadgets. We place the occurrence
segments at the bottom, and thenwe introduce layers in such away that the correspond-
ing vertical segments are collinear but non-intersecting. Finally, the literal segments
with satisfiability gadgets are put on top (see Fig. 12 left).

Now consider two consecutive layers i and i +1. Let s1 and s2 be collinear vertical
segments and let s1 be above s2 (i.e., s1 is in the layer i + 1, and s2 is in the layer
i , see Fig. 11). Let us assume that σi is increasing, the other case is symmetric.
Observe that the top end of s2 is not covered by (i.e., does not belong to) any other
segment introduced so far. If s1 is an important literal segment of the i th layer, then
there are two segments a, b belonging to the appropriate equality gadget, which are
covering the lower endpoint of s1. We introduce k − 3 overlapping vertical segments
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Fig. 10 A single layer i . Thick colored segments indicate corresponding literal and occurrence segments,
which are important for layer i . Thin colored segments are parts of equality gadgets (Color figure online)

q1, q2, . . . , qk−3, intersecting only s1,a,b (so its upper endpoint is below the horizontal
segment of the equality gadget, where a and b belong), and s2, and set their lists to
{1, 2, . . . , k}. The distance between the layers can be adjusted do that these newly
introduced segments have no other intersections. Indeed, this is possible since the
horizontal segments in each layer cross the vertical ones near their middle points.

If s1 is not an important segment (and s2 is important or not), we introduce k − 1
overlapping segments q1, q2, . . . , qk−1 with lists {1, 2, . . . , k}, intersecting s1, s2, and
no other previously constructed segment. This way s1 and s2 are non-adjacent, but
they are both intersected by k − 1 pairwise intersecting segments. This ensures that s1
and s2 will receive the same color.

In an analogouswaywe synchronize the colorings of occurrence segments, however
this time segments from equality gadgets cover top ends of important occurrence
segments.

The number of segments in each layer is O(n) and the number of layers is z =
O(

√
n). Thus the total number of segments in our construction isO(n3/2). This implies

that an algorithm solving List k-Coloring on unit 2- Dir graphs with N vertices in
time 2o(N

2/3) could be used to solve 3- Sat with n variables in time 2o(n), which
contradicts the ETH.

If we want to obtain a reduction to the non-list k-Coloring for any k � 4, we need
to transport the reference coloring to each gadget. However, this cannot be done for
segments a, b in our (in)equality gadgets (recall Theorem 10 and Fig. 8), which have
non-trivial lists and are fully covered by other segments—note that if a segment in color
4 intersects a, it will also intersect x (note that the segments with lists {1, 2, . . . , k},
even if they are fully covered, are not problematic since they do not need the reference
coloring). But if we use a third direction, we can make a, b intersect x and y (again,
we use notation in Fig. 8) and no other vertex with non-trivial list in our grid-like
structure—it is enough to choose their slope to be “almost vertical” (see Fig. 12,
right). Now we can transport the reference coloring just as we did in the proof of
Theorem 10, see Fig. 4. This construction adds a linear number of segments per layer,
which is O(n3/2) segments in total.

This shows the claimed lower bound, for every fixed k � 4, for k-Coloring of
unit 3- Dir graphs and completes the proof. ��
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Fig. 11 Literal segments of two consecutive layers i and i + 1. Thick colored segments indicate segments
that are important in the given layer. Thin colored segments are parts of equality gadgets (they denote
overlapping segments a and b. Thick black segments are bundles of segments qi (Color figure online)

Fig. 12 Left: overall construction. Right: modified equality gadgets in a unit 3- Dir graph

It is perharps interesting to mention that for any choice three distinct directions,
the class of intersection graphs of segments parallel to these three directions is the
same [12]. However, this is no longer the case if we consider unit segments only.
In particular, the choice of the three directions of segments in the construction from
Theorem 11 depends on the initial 3- Sat instance. In other words, we cannot perform
the construction with any three prescribed directions.
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Now we show that on segment graphs,Min Dominating Set,Min Connected

Dominating Set, andMin Independent Dominating Set are unlikely to have a
subexponential algorithm.

Theorem 12 Min (Connected) Dominating Set cannot be solved in time 2o(n)

on segment graphs with n vertices, unless the ETH fails.

Proof By introducing new variables and clauses, we can transform an arbitrary 3- Sat
formula ψ with N ′ variables and M ′ = O(N ′) clauses into an equivalent Cnf- Sat
formula φ with N = O(N ′+M ′) variables andM = O(N ′+M ′) clauses, where each
variable appears exactly twice positively and twice negatively. Indeed, say a variable
xi appears t times, one can create t copies x1i , x

2
i , . . . , x

t
i and equate them by the chain

of implications ¬x1i ∨ x2i ,¬x2i ∨ x3i , . . . ¬xt−1
i ∨ xti ,¬xti ∨ x1i . Now, each occurrence

of xi is replaced by a different xsi . To use all the copies of the chain of implications
exactly once more positively and negatively, one can add equivalent literals to a clause
initially containing xi or ¬xi .

Put M pairwise-disjoint small segments on a circle as shown in Fig. 13; M slightly
perturbed points work as long as no two pairs define the same direction. Each small
segment s(C j ) represents a distinct clause C j . For each literal σ xi , where xi is one
of the N variables appearing in φ and σ ∈ {∅,¬}, we add a segment s(σ xi ) crossing
only the two small segments s(C j ) and s(C j ′) corresponding to the clauses this literal
satisfies. We extend all the segments corresponding to literals to make them pairwise
intersect.

For each pair of literals xi ,¬xi , we add a small segment s(i) near the intersection of
s(xi ) and s(¬xi )which intersects only s(xi ) and s(¬xi ). This finishes the construction
(see Fig. 13). Note that the total number of segments is n := 3N + M = Θ(N ). We
claim that there is a dominating set of size N in the intersection graph if and only if φ

is satisfiable.
Indeed, to dominate all the segments s(i) for i ∈ [N ], one has to take at least one

of s(xi ) and s(¬xi ), hence exactly one of them since the sought after dominating set
should have size N . The choice of the literalswill only dominate all the segments s(C j )

for j ∈ [M] if the chosen dominating set corresponds to a satisfying assignment. The
reverse direction is straightforward.

Moreover, as every pair of segments representing literals intersects, the dominating
set encoding the satisfiable assignment is connected (it even induces a clique). ��

The hardness proof for Min Independent Dominating Set has to be quite
different and is trickier.

Theorem 13 Min Independent Dominating Set cannot be solved in time 2o(n)

on segment graphs with n vertices, unless the ETH fails.

Proof We reduce from 3- SAT on N variables and M clauses, where each variable
appears at most four times, and each clause contains exactly three literals. This restric-
tion was shown NP-complete by Tovey [46] via a linear reduction, so the ETH lower
bound holds for this problem too. We can further assume that each literal appears at
most three times. Indeed, if the same literal appears four times, then by definition its
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Fig. 13 An example with 9
clauses and 6 variables. The
segments s(xi ) and s(¬xi ) can
be inferred from s(i) or from the
colors (although we only
specified which is which for
variable x1). Observe that the
light blue (i.e., connecting s(C5)

to s(C7), and s(C3) to s(C9))
and purple (connecting s(C3) to
s(C5), and s(C2) to s(C7)) pairs
do not intersect inside the circle
so those segments should be
extended outside it until they
meet (this part is not shown in
the picture) (Color figure online)

s(C1)

s(C2)

s(C3)
s(C4)

s(C5)

s(C6)

s(C7)
s(C8)

s(C9)

s(1)

s(2)

s(3)

s(4)s(x1)

s(¬x1)

negation cannot appear in the whole instance. Hence, the variable can be set so as to
satisfy the four corresponding clauses.

The variable gadget G(xi ) for variable xi consists of three parallel segments Ti
representing positive occurrences crossing three parallel segments Fi representing
negative occurrences. Those two sets of segments intersect three dummy pairs of
parallel segments as shown on Fig. 14. Note that even if a literal appears strictly fewer
than three times, we keep exactly three parallel segments to encode it.

The clause gadget G(C j ) for the clause C j consists of three pairwise crossing
segments, drawn in blue in Fig. 14, each of which crosses one red segment. Each
pair of blue and red segment corresponds to one of literals of C j , these segments
will be called literal segments. Additionally, all blue segments are intersected by four
parallel dummy segments, and each pair of crossing blue and red segment has a private
segment, crossing both of them.

Now, for every literal xi (¬xi ) belonging to the clause C j , we add a new segment
denoted by s(xi ,C j ) or s(¬xi ,C j ), respectively. We call these segments occurrence
segments. This segment crosses one non-dummy segment in G(xi ): a segment of Ti if
the literal is positive, and a segment of Fi otherwise. Moreover, it crosses exactly one
red literal segment from G(C j ), and no other segments in variable and clause gadgets,
see Fig. 15. Each red literal segment is crossed by exactly one occurrence segment,
and each segment of

⋃
i∈[n] Ti ∪ Fi is crossed by at most one occurrence segment.

We claim that such a constructed graph has an independent dominating set of size
at most 3N + 3M if and only if the initial formula is satisfiable.

First, suppose that A is a satisfying assignment. If xi is set to true by A, we select
the three segments of Ti in the solution, otherwise we select the three segments of
Fi . Now consider a clause C j . Since A is satisfying, it contains at least one true
literal. In G(C j ) we select the blue segment corresponding to a true literal and the red
segments corresponding to the other two literals. Note that this waywe select 3N+3M
segments and the selected set dominates all segments from all gadgets. Let us consider
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Fig. 14 The variable gadget
G(xi ) for the variable xi (left)
and the clause gadget G(C j ) for
the clause C j (right)

Fi Ti

an occurrence segment s((¬)xi ,C j ). Either it is dominated by one of the selected red
segments in G(C j ), or it corresponds to a true literal of C j , so it is dominated by a
selected segment in G(xi ).

On the other hand, assume that there is an independent dominating set S of size
at most 3N + 3M . Notice that in order to dominate all dummy segments in G(xi ),
we need to select at least three segments from G(xi ), and if we want to select exactly
three, we need to choose either all segments in Ti , or all segments in Fi . Analogously,
we need to select at least three segments from each G(C j ), and if we want to select
exactly three, we need do choose exactly one of blue segments and thus we cannot
choose its corresponding red segment. Note that since the total size of S is 3N + 3M ,
we need to select exactly three segments in each gadget, and no occurrence segment
is selected.

We define the assignment A as follows: if segments Ti are in S, then xi is set true,
and otherwise xi is set false. Suppose thatC j is not satisfied by A, whichmeans that all
its literals are false. This means that the three occurrence segments joining appropriate
variable gadgets with G(C j ) are not dominated by segments in variable gadgets, so
S must contain all three red segments from G(C j ). However, this way the horizontal
segments from G(C j ) are not dominated, a contradiction.

The total number of segments is bounded by 12N + 13M + 3M = O(N + M), so
the claim holds. ��

Theorem 14 Max Clique cannot be solved in time 2o(n) on string graphs with n
vertices, unless the ETH fails.

Proof We reduce from 3- Sat with a linear number of clauses, where every clause
contains exactly three literals. Let φ be an instance with N variables and M = Θ(N )

clauses. For any positive integers p and s, the co-cluster CCp,s = Ks,s,...,s (p times) can
be represented as in Fig. 16.

We encode the N variables by 2N curves representing true and false for each
variable by a co-cluster CCN ,2 and the M = Θ(N ) clauses by 3M curves each
representing a distinct literal in a clause by a co-cluster CCM,3. There are in total
n := 2N + 3M = Θ(N ) curves. We make the 2N variable curves intersect the 3M
literal curves in a grid-likeway. They form an almost complete biclique K2N ,3M where
3M edges are removed.

123



Algorithmica (2019) 81:3047–3073 3069

F1 T1

G(x1)

F2 T2

G(x2)

F3 T3

G(x3)

F4 T4

G(x4)

F5 T5

G(x5)

G(C1) G(C2) G(C3) G(C4) G(C5) G(C6)

s(¬x1, C4)

Fig. 15 The overall picture. We only represented two clauses: C3 = ¬x2 ∨ x3 ∨ x5 and C4 = ¬x1 ∨¬x2 ∨
¬x5

Fig. 16 Realization of a
co-cluster CCp,s = Ks,s,...,s
with s = 3 and p = 7

More precisely, the literal curve c(l ji ) ( j ∈ [M], i ∈ [3]) intersects every variable
curve but c(σ xk) (k ∈ [N ]) encoding the k-th variable with sign σ ∈ {∅,¬} for which
l ji and σ xk are opposite literals (see Fig. 17).

It is easy to observe that there is a clique of size N + M if and only if φ has a
satisfying assignment. ��

4 Perspectives

We have started a generalized optimality program on segment and string graphs for the
most principal graph problems. On the algorithmic side, we extended a subexponential
algorithm for Max Independent Set on string graphs [22] to some other prob-
lems, namely 3-Coloring,Min Feedback Vertex Set, andMaximum Induced

Matching. On the complexity side, we showed that no subexponential algorithm is
likely for, among others, 4-Coloring, Min Dominating Set, and Min Indepen-

dent Dominating Set. It is quite easy to obtain such lower bounds for string graphs.
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c(¬x1)
c(x1)

c(¬x2)
c(x2)

c(¬x3)
c(x3)

c(¬x4)
c(x4)

c(¬x5)
c(x5)

c(¬x6)
c(x6)

x3 ∨ x1 ∨ ¬x6

Fig. 17 The representation of 3 clauses: x3 ∨ x1 ∨ ¬x6, x5 ∨ ¬x4 ∨ ¬x2, and ¬x3 ∨ x4 ∨ ¬x6

Extending those results to segments requires more ingenuity, and even more so when
it comes to unit segments.

A handful of questions remains unsettled. Can we improve the algorithm or give
tight ETH lower bounds for the following problems: Max Independent Set with-
out geometric representation, 3-Coloring, and Min Feedback Vertex Set on
segments/strings? Can we show for Max Clique the same lower bound for segment
graphs as we have for string graphs. The mere NP-hardness of Max Clique on seg-
ments [11] answered a long-standing open question. Hence, it is likely that getting a
tight ETH hardness will be difficult. We would also find it interesting to have, for a
certain problem, an algorithm for segments (resp. unit segments) which beats the ETH
lower bound on strings (resp. segments). So far, we only have candidate problems for
such a “separation”.

Finally, another natural continuation of this work is to determine which fixed-
parameter tractable problems can be solved in time O∗(2Õ(k2/3)) or O∗(2Õ(

√
k)), and

whichW[1]-hard problems can be solved in time f (k)nO(
√
k) on segments and strings.

For instance,Min Vertex Cover can be solved in time O∗(2Õ(k2/3)) (even in time
O∗(2Õ(

√
k)) if a geometric representation is given with O∗(2Õ(

√
k)) intersections) on

string graphs due to the linear kernel yielding an equivalent instance on 2k vertices
and the algorithm for Max Independent Set. The latter problem can be solved in
nO(

√
k) in segments or more generally in polygons of polynomial complexity [36],

while Min Dominating Set on string graphs cannot be solved in time f (k)no(k),
for any computable function f , unless the ETH fails (since this lower bound holds for
split graphs).
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42. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J. Comput. Syst. Sci.

67(2), 365–380 (2003)
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