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Abstract
A cut sparsifier is a reweighted subgraph that maintains the weights of the cuts of the
original graph up to a multiplicative factor of (1± ε). This paper considers computing
cut sparsifiers of weighted graphs of size O(n log(n)/ε2). Our algorithm computes
such a sparsifier in time O(m · min(α(n) log(m/n), log(n))), both for graphs with
polynomially bounded and unbounded integer weights, where α(·) is the functional
inverse of Ackermann’s function. This improves upon the state of the art by Benczúr
andKarger (SICOMP, 2015), which takes O(m log2(n)) time. For unboundedweights,
this directly gives the best known result for cut sparsification. Together with prepro-
cessing by an algorithm of Fung et al. (SICOMP, 2019), this also gives the best known
result for polynomially-weightedgraphs.Consequently, this implies the fastest approx-
imate min-cut algorithm, both for graphs with polynomial and unbounded weights. In
particular, we show that it is possible to adapt the state of the art algorithm of Fung et
al. for unweighted graphs to weighted graphs, by letting the partial maximum span-
ning forest (MSF) packing take the place of the Nagamochi–Ibaraki forest packing.
MSF packings have previously been used by Abraham et al. (FOCS, 2016) in the
dynamic setting, and are defined as follows: an M-partial MSF packing of G is a set
F = {F1, . . . , FM }, where Fi is a maximum spanning forest in G\⋃i−1

j=1 Fj . Our
method for computing (a sufficient estimation of) the MSF packing is the bottleneck
in the running time of our sparsification algorithm.

Keywords Graph algorithms · Cut sparsification · Maximum spanning forest ·
Minimum cut

1 Introduction

In many applications, graphs become increasingly large, hence storing and work-
ing with such graphs becomes a challenging problem. One strategy to deal with this
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issue is graph sparsification, where we model the graph by a sparse set of (reweighted)
edges that preserve certain properties. Especially because the aim is to work with large
input graphs, this process should be efficient with respect to the graph size. Among
the different types of graph sparsifiers, there are spanners (preserving distances, see
e.g. [1–4]), resistance sparsifiers (preserving effective resistances, see e.g. [5]), cut
sparsifiers (preserving cuts, see e.g. [6–8]), and spectral sparsifiers (preserving Lapla-
cian quadratic forms, see e.g. [9–12]). This paper focuses on cut sparsifiers, as first
introduced by Benczúr and Karger in [6]. We say that a (reweighted) subgraph H ⊆ G
is a (1 ± ε)-cut sparsifier for a weighted graph G if for every cut C , the total weight
wH (C) of the edges of the cut in H is within a multiplicative factor of 1 ± ε of the
total weight wG(C) of the edges of the cut in G.

The main approach to compute cut sparsifiers uses the process of edge compres-
sion: each edge e ∈ E is part of the sparsifier with some probability pe, and if selected
obtains weight w(e)/p(e). It is immediate that such a scheme gives a sparsifier in
expectation, but it has to be shown that the result is also a sparsifier with high prob-
ability. The main line of research has been to select good connectivity estimators λe
for each edge such that sampling with pe ∼ 1/λe yields a good sparsifier. The sim-
plest such result is by Karger [13], where we sample uniformly with each λe equal to
the weight of the (global) minimum cut. Continuing along these lines are parameters
as: edge connectivity [8], strong connectivity [6, 7], electrical conductance [10], and
Nagamochi-Ibaraki (NI) indices [8, 14, 15]. The challenge within the approach of
edge compression is to find a connectivity estimator that results in a sparse graph, but
can be computed fast.

For weighted graphs, there are roughly three regimes for sparsification. The first
regime consists of cut sparsifiers of size O(n log2(n)/ε2). Fung, Hariharan, Harvey,
and Panigrahi [8, 16] show that sparsifiers of this asymptotic size can be computed in
linear time for polynomially-weighted graphs. For this they introduce a general frame-
work of cut sparsification with a connectivity estimator, see Sect. 2.1. For unbounded
weights, Hariharan and Panigrahi [17] give an algorithm to compute a sparsifier of
size O(n log2(n)/ε2) in time O(m log2(n)/ε2).

The second regime consists of cut sparsifiers of size O(n log(n)/ε2). Benczúr and
Karger [6, 7] show that these can be computed in time O(m log2(n)) for polynomially-
weighted graphs, and in time O(m log3(n)) for graphs with unbounded weights. Note
that these results can be optimized by preprocessing with the algorithms for the first
regime.

A third regime, consists of sparsifiers of size O(n/ε2). The known constructions
in this regime yield spectral sparsifiers, which are more general than cut sparsifiers.
Spectral sparsification was first introduced by Spielman and Teng in [9]. It considers
subgraphs that preserve Laplacian quadratic forms. Lee and Sun [12] give an algorithm
for finding (1±ε)-spectral sparsifiers of sizeO(n/ε2) in timeO(m·poly(log(n), 1/ε)).
Analyzing their results, we believe that the poly-logarithmic factor contributes at least
a factor of log10(n). While this is optimal in size, both for spectral sparsifiers [18] and
cut sparsifiers [19], it is not in time.
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Fig. 1 An overview of the state of the art algorithms for computing cut sparsifiers for undirected graphs
with integer weights. Algorithm A + B indicates that algorithm B is preprocessed with algorithm A

In this paper, we improve on the results in the second regime, both for graphs with
polynomially bounded and unbounded weights.1 For an overview of the previous best
running times and our results, see Fig. 1. We present our sparsification algorithm in
Sect. 4, with the special treatment of unbounded weights in Sect. 5. Our algorithm
improves on the algorithm of Benczúr and Karger [6, 7] for bounded weights, which
has been unchallenged for the last 25 years. It also improves on the algorithm of [17]
for unbounded weights, which has been unchallenged for the last 10 years. We obtain
the following theorem, where α(·) refers to the functional inverse of Ackermann’s
function, for a definition see e.g. [20]. For any realistic value x , we have α(x) ≤ 4.

Theorem 1.1 There exists an algorithm that, given a weighted graph G and a
freely chosen parameter ε ∈ (0, 1), computes a graph Gε , which is a (1 ± ε)-
cut sparsifier for G with high probability. The running time of the algorithm is
O(m ·min(α(n) log(m/n), log(n))) and the number of edges of Gε is O

(
n log(n)/ε2

)
.

Using preprocessing with a result from [8] (see Theorem 2.5), we obtain the fol-
lowing corollary for polynomially-weighted graphs.

Corollary 1.2 There exists an algorithm that, given a polynomially-weighted graph G
and a freely chosen parameter ε ∈ (0, 1), computes a graph Gε , which is a (1±ε)-cut
sparsifier for G with high probability. The running time of the algorithm is O(m +
n
(
log2(n)/ε2

)
α(n) log(log(n)/ε)) and the number of edges of Gε is O(n log(n)/ε2).

1 See Sect. 2.3 for our assumptions on the computational model in case of unbounded weights.
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Following Benczúr andKarger [7], the computation of cut sparsifiers of graphs with
fractional or even real weights can be reduced to integer weights. For the reduction
see Appendix 2. Thus our algorithm also gives a speedup for such graphs. Since the
integer case is the essential one, we follow prior works and only formulate our results
for this particular case.

As a direct application of the cut sparsifier, we can use Theorem 1.1 and Corol-
lary 1.2 to replace m by n log(n)/ε2 in the time complexity of algorithms solving
cut problems, at the cost of a (1 ± ε)-approximation. We detail the effects for the
minimum cut problem. Recently, Gawrychowski et al. [21] showed that one can
compute the minimum cut of a weighted graph in O(m log2(n)) time. Using spar-
sification [7, 8] for preprocessing, the state of the art for (1+ ε)-approximate min-cut
is O(m + n log4(n)/ε2). When we use our new sparsification results, we obtain faster
(1 + ε)-approximate min-cut algorithms when m = �(n log(n)/ε2).

Corollary 1.3 There exists an algorithm that, given a polynomially-weighted graph G
and a freely chosen parameter ε ∈ (0, 1), with high probability computes an (1+ ε)-
approximation of the minimum cut in time O(m + n log3(n)/ε2).

There exists an algorithm that, given a weighted graph G and a freely chosen
parameter ε ∈ (0, 1), with high probability computes an (1+ ε)-approximation of the
minimum cut in time O(m · min(α(n) log(m/n), log(n)) + n log3(n)/ε2).

For unweighted graphs, even faster minimum cut algorithms exist: Ghaffari, Now-
icki, and Thorup [22] show that we can find the minimum cut in O(min{m +
n log3(n),m log(n)}) time. Combining this with the linear time cut sparsifier of
Fung et al. [8], we get (1 + ε)-approximate minimum cut in unweighted graphs in
O(m + n log(n)min{1/ε + log2(n), log(n)/ε}) time.

The remainder of this article is organized as follows. The rest of the introduction
consists of a technical overview of our algorithms. Section 2 contains a review of the
general sparsification framework from [8] tailored to our needs, and can be skipped by
readers that are already familiar with this work. We present our algorithm to compute
the MSF indices in Sect. 3. This is used as a black box in our algorithm, which is
presented and analyzed in Sect. 4. In Sect. 5, we show how the results of Sect. 4
generalize to graphs with unbounded weights.

1.1 Technical Overview

The high-level set-up of our sparsification algorithm is similar to the algorithm for
unweighted graphs of Fung et al. [8]. Our main contribution consists of showing how
to generalize this technique to weighted graphs, by using maximum spanning forest
(MSF) indices instead of Nagamochi-Ibaraki (NI) indices. On a less significant note,
we prove that by a tightening of the analysis one can show that the size and time
bounds hold with high probability, and not only in expectation.

NI indices are defined by means of an NI forest packing: view graphs with integer
weights as unweighted multigraphs, and repeatedly compute a spanning forest. The
NI index is the (last) forest in which an edge appears (for details see Definition 2.4).
The MSF index is also defined by a forest packing, but in this case the MSF packing:
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we say F = {F1, . . . , FM } is an M-partial maximum spanning forest packing of
G if for all i = 1, . . . , M , Fi is a maximum spanning forest in G\⋃i−1

j=1 Fj . Now,
we say that an edge e has MSF index i (w.r.t. to some (partial) MSF packing F)
if e appears in the i-th forest Fi of the (partial) MSF packing F . The MSF index
has been used previously in the context of dynamic graph sparsifiers (see Abraham et
al. [23]). However, there it was only used because it rendered a faster running time, but
using NI indices in the corresponding static construction would have been possible
as well. In this paper, we use distinctive properties of the MSF index, and the NI
index would not suffice. We show that using the MSF index, we can generalize the
sparsification algorithm for unweighted graphs to an algorithm for weighted graphs,
thereby demonstrating that the MSF index is a natural analogue for the NI index in the
weighted setting. We provide an algorithm to compute an M-partial MSF packing in
time O(m · min(α(n) log(M), log(n))) for polynomially-weighted graphs. We show
that for unbounded weights we can compute a sufficient estimation, also in time
O(m · min(α(n) log(M), log(n))).

An important distinction between the unweighted algorithm of Fung et al. and
our weighted algorithm, is that the use of contractions to keep running times low
throughout the algorithm is no longer possible: edges of different weights have to be
treated differently, hence cannot be contracted. By using multiple iterations with an
exponentially decreasing precision parameter we can overcome this problem.

In the case of a polynomially-weighted input graph, the algorithm consists of two
main phases. In the first phase, we compute sets F0, F1, . . . , F� ⊆ E , where edges
satisfy some lower bound on the weight of any cut separating their endpoints. In the
second phase, we sample edges from each set Fi with a corresponding probability.

We set a parameter ρ = �
(
ln(n)

ε2

)
and start by computing a 2ρ-partial maximum

spanning forest packing for G. We define F0 to be the union of these 2ρ forests. We
add the edges of F0 to Gε , which will become our sparsifier. We sample each of the
remaining edges E\F0 with probability 1/2 to construct X1. To counterbalance for
the sampling, we will boost the weight of each sampled edge with a factor 2. Now we
continue along these lines, but in each iteration we let Fi consist of an exponentially
growing number of spanning forests: Fi is defined as the union of the forests in a
(2i+1 · ρ)-partial MSF packing of Xi . Then, Xi+1 is sampled from the remaining
edges Xi\Fi , where again each edge is included with probability 1/2. We continue
this process until there are sufficiently few edges left in Xi+1. We add these remaining
edges to Gε .

The second phase of the algorithm is to sample edges from the sets Fi and add these
sampled edges toGε . Hereto, note that an edge e of Fi (for i ≥ 1) was not part of Fi−1,
meaning it was not part of any spanning forest in a (2i · ρ)-partial MSF packing of
Xi−1. This implies that for an edge e ∈ Fi the weight of any cut C in Xi−1 containing
e is at least 2i · ρ · w(e). Now we use the general framework for cut sparsification of
Fung et al. [8], which boils down to the fact that this guarantee on the weights of cuts
implies that we can sample edges from Fi with probability proportional to 1/(2iw(e)).
We show that this results in a sufficiently sparse graph.

Intuitively, it might seem redundant to sample edges from Xi\Fi to form Xi+1. This
is indeed not necessary to guarantee that the resulting graph is a sparsifier. However,
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it ensures that the number of iterations is limited, which leads to better bounds on the
size of the sparsifier and the running time. Since we sample edges with probability
1/2 in each phase, we need to repeat the sampling O(log(m/(m0)) times to get the
size of Xi down to O(m0). As this number of steps depends on the initial number
of edges m, we get better bounds for size and running time if m is already small.
We will exploit this by preprocessing the graph with an algorithm from [8] that gives
a cut sparsifier of size O(n log2(n)/ε2) in linear time. Moreover, we can show that
repeatedly calling our algorithm has no worse asymptotic time bound than calling it
once, since the input graph becomes sparser very quickly. By doing so, we obtain a
sparsifier of size O(n log(n)/ε2).

Since we only use that the MSF index gives a guaranteed lower bound on the
connectivity of an edge, one might wonder why the NI index does not work here.
After all, the NI indices of a graph can be computed in linear time, which would result
in a significant speed-up. However, when computing the NI index, the weight of an
edge influences the number of forests necessary, while computing theMSF index only
requires the comparison of weights. Moreover, the number of trees in a MSF packing
is always bounded by n. We can use this to bound the number of edges in the created
sparsifier. The same technique with NI indices would make the size of the sparsifier
depend on the maximum weight in the original graph.

To show that the algorithm outputs a cut sparsifier, it needs to be proven that both
the sampling in the first and the second phase preserve cuts. We follow the lines of the
analysis of [8], which makes use of cut projections and Chernoff bounds. We show
that by partitioning the edge sets according to their weight this method extends to
weighted graphs.

One part of the algorithm has remained unaddressed: the computation of the max-
imum spanning forests. The approach we use here is related to Kruskal’s algorithm
for computing minimum spanning trees [24]. We start by sketching the M-partial
MSF packing algorithm for polynomial weights. We sort the edges according to their
weights using radix sort in O(m) time.We create M empty forests on n vertices. Start-
ing with the heaviest edge, we add each edge e to the first forest in which it does not
create a cycle. We can find this forest using a binary search in log(M) steps. By using
a disjoint-forest representation for the union-find data structure necessary to carry out
these steps, we achieve a total time of O(mα(n) log(M)).

When working with unbounded weights, the bottleneck is the initial sorting of the
edges. Radix sort does not guarantee to be efficient for unbounded weights. Instead
we could use a comparison-based algorithm, such as merge sort, which takes time
O(m log(n)). By employing a different data structure than before, we can guarantee
total running timeO(m log(n)).However,wedonot need the exactMSF indices for our
sampling procedure; estimates suffice.We can apply a ‘windowing’ technique from [7]
to split the graph into subgraphs, where we can rescale the weights to polynomial
weights and apply our previouslymentioned algorithm.We then achieve a total running
time of O(mα(n) log(M)), as before. For more details on this, we refer to Sect. 3.1.
So in total we have running time O(m · min(α(n) log(m/n), log(n))).
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2 Notation and Review

Throughout this paper, we consider G = (V , E) to be an undirected, integer weighted
graph on |V | = n vertices with |E | = m edges. We define a set of edges C ⊆ E
to be a cut if there exists a partition of the vertices V in two non-empty subsets
A and B, such that C consists of all edges with one endpoint in A and the other
endpoint in B. The weight of the cut is the sum of the weights of the edges of the cut:
wG(C) = ∑

e∈C wG(e). Theminimum cut is defined as the cut with minimumweight.
We say that a (reweighted) subgraph H ⊆ G is a (1± ε)-cut sparsifier for a weighted
graph G if for every cut C in H , its weight wH (C) is within a multiplicative factor of
1± ε of its weight wG(C) in G. A key concept in the realm of cut sparsification is the
connectivity of an edge.

Definition 2.1 Let G = (V , E) be a graph, possibly weighted. We define the connec-
tivity of an edge e = (u, v) ∈ E to be the minimal weight of any cut separating u and
v. We say that e is k-heavy if it has connectivity at least k. For a cut C , we define the
k-projection of C to be the k-heavy edges of the cut C .

The following theorem from [8] bounds the number of distinct k-projections of a
graph, it is a generalization of a preceding theorem by Karger, see [25, 26]. This result
can be useful when showing that cuts are preserved by a sampling scheme. This is
due to the fact that while there may be exponentially many different cuts, this theorem
shows that there are only polynomiallymany cut projections. Hence if one can reduce a
claim for cuts to their k-projections, a high probability bound can be obtained through
the application of a Chernoff bound.

Theorem 2.2 For any k ≥ λ and any η ≥ 1, the number of distinct k-projections in
cuts of weight at most ηk in a graph G is at most n2η, where λ is the weight of a
minimum cut in G.

Throughout this paper, we say a statement holds with high probability (w.h.p.) if
it holds with probability at least 1 − nc, for some constant c. This constant can be
modified by adjusting the constants hidden in asymptotic notation.

2.1 A General Framework for Cut Sparsification

We review the general framework for cut sparsification as presented in [8]. This section
does not contain new results, and can be skipped by readers that are only interested in
our contribution.

The framework shows that edges can be sampled using different notions of connec-
tivity estimators. Although this scheme provides one proof for the validity of multiple
parameters, it might be worth noting that an analysis tailored to the used connectivity
estimator might provide a better result. For example, when the framework is applied
with ‘edge strengths’, it produces a sparsifier of size O(n log2(n)/ε2), a log(n) factor
denser than the edge strength-based sparsifier of Benczúr and Karger [7].

Let G = (V , E) be a graph with integer weights, and let ε ∈ (0, 1), c ≥ 1
be parameters, corresponding to the approximation precision and failure probability
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respectively. Given a parameter γ (possibly depending on n) and an integer-valued
parameter λe for each e ∈ E . We obtain Gε from G by independently compressing
each edge e with parameter

pe = min

(

1,
16(c + 7)γ ln(n)

0.38λeε2

)

.

Compressing an edge e with weight w(e) consists of sampling re from a binomial
distribution with parameters w(e) and pe. If re > 0, we include the edge in Gε with
weight re/pe.

In the following we describe a sufficient condition on the parameters γ and λe such
that Gε is a (1 ± ε)-cut sparsifier for G with probability at least 1 − 4/nc. Hereto we
partition the edges according to their value λe:

� :=
⌊

log

(

max
e∈E {λe}

)⌋

;
Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1 − 1}.

Let G = {Gi = (V , Ei ) : 1 ≤ i ≤ �} be a set of integer-weighted subgraphs such
that Ri ⊆ Gi . Moreover suppose that wGi (e) ≥ wG(e) for each e ∈ Ri . For a given
set of parameters � = {π1, . . . , π�} ⊆ R

�, we define

• �-connectivity: each edge e ∈ Ri is πi -heavy in Gi ;
• γ -overlap: for any cut C ,

�∑

i=0

e(C)
i 2i−1

πi
≤ γ · e(C),

where e(C) = ∑
e∈C wG(e) and e(C)

i = ∑
e∈C∩Ei

wGi (e).

The following theorem shows that compressing with parameters adhering to these
conditions gives a cut sparsifier with high probability.

Theorem 2.3 (See [8, Theorem 1.14]) Fix the parameters γ and λe for each edge e.
If there exists G satisfying �-connectivity and γ -overlap for some �, then Gε is a
(1 ± ε)-cut sparsifier for G, with probability at least 1 − 4/nc, where Gε is obtained
by edge compression using parameters γ and λe’s.

2.2 A First Application of the Framework

In this section, we review the application of the framework from the previous section
with Nagamochi–Ibaraki (NI) indices as parameters, as presented in [8]. As the name
suggests, NI indices were first introduced by Nagamochi and Ibaraki [14, 15]. The
algorithm they provide gives a graph partitioning into forests, and subsequently a
corresponding index for each edge, called the NI index.
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Definition 2.4 LetG = (V , E) be a graph, possiblyweighted.We say an edge-disjoint
sequence F1, F2, . . . of forests is a Nagamochi-Ibaraki forest packing for G if Fi is a
spanning forest for G\⋃i−1

j=1 Fi , where the weights of
⋃i−1

j=1 Fi are subtracted of G.
If G is a weighted graph, each edge e must be contained in w(e) contiguous forests.
We define the NI index, denoted by le, to be the index of the (last if weighted) forest
in which e appears.

Nagamochi and Ibaraki show that the NI indices can be computed in linear time
for unweighted graphs and in O(m + n log(n)) time for weighted graphs, see [14,
15]. As is shown in [8], we can use the NI index as the connectivity estimator in the
sparsification framework to obtain the following result.

Theorem 2.5 Let G = (V , E) be a weighted graph, and let ε > 0 be a constant.
Let Gε be obtained by independently compressing each edge with parameter pe =
min(1, ρ/le), where ρ = 224

0.38 ln(n)/ε2 and le is the NI index. Then Gε is a (1± ε)-cut
sparsifier for G with high probability.

The sampling itself takes at most O(m) time, as explained in Sect. 4.4. As the NI
indices can be computed in O(m + n log(n)) time, this implies that the total running
time is O(m + n log(n)). As a graph with m ≤ n log(n) is already sparse, we can
assume m > n log(n). Thus, for our purposes, the total running time is simply O(m).

Next we provide a bound for the number of edges in the sparsifierGε . [8] proves this
same bound in expectation, we provide a proof for this bound ‘with high probability’.

Lemma 2.6 With high probability, the size of the graph Gε in Theorem 2.5 is
O(n log2(n)/ε2).

Proof Let v ∈ V be a vertex with degree dv ≥ O(log2(n)/ε2) in G. We denote the
degree of v in Gε by d ′

v and we write d ′ := maxv∈V d ′
v . For each neighbor u of v in

G, we compress the edge e = (u, v) with parameter pe = min
(
1, 224 ln(n)

0.38ε2le

)
, where le

is the NI index of e. For each edge, the probability that it remains after compression
is 1− (1− pe)we . From Bernoulli’s inequality we see 1− (1− pe)we ≤ we pe. Let Ye
be the random variable that is 1 if e remains, and 0 else. We note that E

[∑
e:v∈e Ye

] ≤
224
0.38 ln

2(n)/ε2. Now we apply a Chernoff bound (Theorem A.2) to obtain

P

[

d ′
v ≥ δ

224

0.38
ln2(n)/ε2

]

≤ exp

(

−0.38δ
224

0.38
ln2(n)/ε2

)

= n−224δ ln(n)/ε2 .

Using a union bound we get the desired result

P

[

d ′ ≤ δ
224

0.38
ln2(n)/ε2

]

≥ 1 − n1−224δ ln(n)/ε2 .

Consequently,we obtain thatwith high probability the number of edges of the sparsifier
is at most O(n log2(n)/ε2).

The state of the art for polynomially-weighted graphs is achieved by postprocessing
this result with the algorithm by Benczúr and Karger [7]. Thus our improvement on [7]
leads to an overall improved result.
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2.3 The Computational Model

If we have an input graph G = (V , E)with weightsw : E → {1, . . . ,W }, we assume
our computational model has word size�(log(W )+ log(n)). Note that for polynomial
weights, this comes down to aword size of�(log(n)). Moreover, we assume that basic
operations on such words have uniform cost, i.e., they can be performed in constant
time. In particular, these basic operations are addition, multiplication, inversion, log-
arithm, and sampling a random bit string of word size precision. Such assumptions
are in line with previous work [7, 8], where they are made implicitly. As detailed in
Section 4.4, this can be done efficiently using the algorithm of Devroye [29], which
uses addition, mutliplication, inversion, logarithm, and sampling a random bit string
of word size precision.

3 AMaximum Spanning Forest Packing

An important primitive in our algorithm is the use of the maximum spanning forest
(MSF) index. The concept is similar to the Nagamochi-Ibaraki index, the impor-
tant difference is that an edge e with weight w(e) appears in w(e) different NI
forests. This means that the number of NI forests depends on the numerical val-
ues of the edge weights, and thus can grow far beyond O(n). On the other hand,
the number of maximum spanning forests in a MSF packing is bounded by the
maximum degree in the graph, hence also by n. While this already has notewor-
thy implications for polynomially-weighted graphs, it is even more significant for
superpolynomially-weighted graphs. We believe that this property might make them
suitable for applications other than presented here.

Definition 3.1 Let G = (V , E) be a weighted graph. We say F = {F1, . . . , FM } is
an M-partial maximum spanning forest packing of G if for all i = 1, . . . , M , Fi is
a maximum spanning forest in G\⋃i−1

j=1 Fj . If we have that
⋃M

i=1 Fi = G, then we
call F a (complete) maximum spanning forest packing of G. Moreover, for e ∈ E
we denote the MSF index of e (w.r.t. F) by fe, i.e., fe is the unique index such that
e ∈ Ffe .

Note that we do not demand the Fi ∈ F to be non-empty, as this suits notation
bests in our applications. Also note that a (partial) MSF packing is fully determined
by the MSF indices.

The following theorem states that computing the MSF indices up to M takes
O(mα(n) log(M)) time for polynomially-weighted graphs.

Theorem 3.2 Let G = (V , E) be a graph, where we allow parallel edges but no
self-loops, and we suppose m ≤ n2. Suppose we have weights w : E → {1, . . . , nc}
for some c ≥ 0. Then, for any M > 0, there exists an algorithm that computes an
M-partial MSF packing in O(m(α(n) log(M) + c)) time.

Proof The outline of the algorithm is as follows.
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1. Sort the edges by weight in descending order using radix sort in base n.2

2. Create empty forests F1, . . . , FM .
3. Iterate over the edges in descending order and for each edge e = (u, v) do the

following:

(a) Find the smallest index i such that u and v are not connected in Fi .
(b) Store i as the MSF index fe of e. If u and v are connected in every Fi , store

fe > M .
(c) Add e to Fi .

We need at most M trees, since we only compute an M-partial MSF packing. By
using radix sort, the initial sorting takes time O(cm) time (for a time bound of radix
sort, see e.g. [27]). We show that the remainder of the algorithm can be executed in
O(mα(n) log(M)) time.

For every 1 ≤ i ≤ M wemaintain the non-singular components of Fi with a union-
find data structure (supporting the three operations MakeSeti , Unioni , and FindSeti ).
To be precise, we use the disjoint-set forest representation of Tarjan [20] (see e.g. [27,
Chapter 21]). Additionally, for every node v ∈ V wemaintain s(v), the smallest index
i such that {v} is a singleton component of Fi .

For the binary search in Step 3a it is sufficient to first search over indices
i < min{s(u), s(v)}. If this search is successful and we find such an index i <

min{s(u), s(v)}, then we perform Unioni (u, v). Otherwise, we have learned that
min{s(u), s(v)} is the smallest index i such that u and v are not connected in Fi .
The algorithm then proceeds as follows:

• Let j := min{s(u), s(v)}.
• If j = s(u), then we perform MakeSet j (u) and increase s(u) by one.
• If j = s(v) (which could also be the case in addition to j = s(u)), we perform
MakeSet j (v) and increase s( j) by one.

• Finally, we perform Union j (u, v).

Now let ϕi , χi , and ψi denote the number of MakeSeti -, Unioni -, and FindSeti -
operations in the i-th union-find data structure, respectively. Since we use the disjoint-
set forest representation, we obtain a bound on the running time (see [27, Theorem
21.14]) of O((ϕi + χi + ψi )α(ϕi + χi + ψi )). To obtain a bound on the total running
time for all operations in the union-find data structures, we sum over all i :

O

(
M∑

i=1

(ϕi + χi + ψi )α(ϕi + χi + ψi )

)

≤ O

(
M∑

i=1

(ϕi + χi + ψi )α

(

max
j=1,...,M

(ϕ j + χ j + ψ j )

))

.

Now observe that in total we perform at most two MakeSet-operations per edge
(one for each of its endpoints) and thus

∑M
i=1 ϕi ≤ 2m. The number of Union-

2 Note that conversion to base n takes time O(logn(w(e))) ≤ O(logn(nc)) = O(c) for each edge, so total
time O(mc).
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operations is always bounded above by ϕi − 1, so
∑M

i=1 χi ≤ 2m. Furthermore, by
using binary search, we perform O(log(M)) FindSet-operations per edge and thus∑M

i=1 ψi = O(m log(M)). Thus we get a total time of O((m log(M))α(m + 2n)) ≤
O(mα(n) log(M)), which holds because α(m + 2n) ≤ α

(
n4
) ≤ α(n) + 2.

We therefore arrive at a total running time of O(cm + mα(n) log(M)) =
O(m (α(n) log(M) + c)).

If we want to compute the full maximum spanning forest packing, it suffices to
set M to be the maximum degree in the graph. When M is large, managing the data
structures slightly differently yields a better result.

Theorem 3.3 There exists an algorithm that, given a weighted graph G = (V , E),
where we allow parallel edges but no self-loops, and parameter M > 0, computes an
M-partial MSF packing in O(m(log(n) + log(M))) time.

Proof We use the same algorithm as in Theorem 3.2 with two simple changes. In
step 1, we use an optimal comparison-based sorting algorithm, like merge sort, instead
of radix sort. This takes time O(m log(n)). In steps 3 and 3, we use a linked-list
representation [27, Chapter 21] instead of the disjoint-set forest representation. To
analyze the running time, recall the following notation. Let ϕi , χi , and ψi denote the
number of MakeSeti -, Unioni -, and FindSeti -operations in the i-th union-find data
structure, respectively. HereMakeSeti , Unioni , and FindSeti are the operations on
the component Fi . By [27, Theorem 21.1], we obtain a bound on the running time of:
O(χi + ψi + ϕi log(ϕi )). We sum over all i to obtain

O

(
M∑

i=1

χi + ψi + ϕi log(ϕi )

)

= O

(
M∑

i=1

χi +
M∑

i=1

ψi +
M∑

i=1

ϕi log(ϕi )

)

.

As before, we have
∑M

i=1 χi ≤ m and
∑M

i=1 ϕi ≤ 2m. Also note ϕi ≤ n, as Fi is a for-
est, so we have

∑M
i=1 ϕi log(ϕi ) ≤ 2m log(n). Again, we perform at most O(log(M))

FindSet-operations per edge, hence
∑M

i=1 ψi = O(m log(M)). We conclude we have
total time O(m(log(n) + log(M))).

Note that if we do not have parallel edges, then M ≤ n, so the running time
simplifies to O(m log(n)). Also note that the weights no longer need to be bounded
for this result. In the next section, we consider an algorithm for sparse graphs with
unbounded weights.

3.1 An Estimation for UnboundedWeights

For our purposes we do not need the exact MSF indices, but estimates suffice. The
MSF index guarantees that if an edge e = (u, v) ∈ E has MSF index fe, then there
are at least fe paths from u to v, where every edge on such a path has weight at least
w(e). We relax this, to get the guarantee that if an edge e = (u, v) ∈ E has estimated
MSF index f̃e, then there are at least f̃e paths from u to v, where every edge on such
a path has weight at least (1 − 1/n)w(e). When we only compute estimates, we can
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do this faster than when we compute exact indices. The following lemma is inspired
by the windowing technique of Benczúr and Karger [7], which shows that strong
connectivities can be computed efficiently for graphs with unbounded weights by
‘windowing’ these weights. This means we divide the graph into subgraphs according
to an estimate and compute the sought connectivity estimators in these subgraphs.
Hereto, we first compute a single maximum spanning forest F for G. Now we define
d(e) to be the minimum weight among the edges on the path from u to v in F , where
e = (u, v). This can be done in total time O(m + n), see [28].

Lemma 3.4 There exists an algorithm that, given a weighted graph G = (V , E) and
parameter M > 0, computes in time O(mα(n) log(M)) an MSF index estimator f̃e
for each edge e ∈ E ′ := {e ∈ E : w(e) > d(e)/n} with fe ≤ M.

Proof We will split the graph G into graphs G(D) for different values of D. In each
G(D) we compute the estimator f̃e for some subset of edges from E ′. We iteratively
define D to be the highest value among the d(e) for which e ∈ E ′ and f̃e has not been
computed yet. We look at the subgraph G(D) = (VD, ED) defined by contracting all
edges with w(e) > D, and deleting self loops. Moreover, we delete all edges with
w(e) ≤ D/n2.

We claim we that for each edge e ∈ E ′ with d(e) ∈ (D/n, D] the MSF index in
G is equal to the MSF index in G(D). First we show that these edges actually appear
in G(D). It is clear that w(e) ≤ d(e) ≤ D, so such an edge e is not contracted.
Suppose e is deleted, then w(e) ≤ D/n2. If d(e) ∈ (D/n, D], then d(e) > D/n,
hence D/n2 < d(e)/n. Consequently w(e) ≤ D/n < d(e)/n, so then e /∈ E ′.

Now that we have established that edges e ∈ E ′ with d(e) ∈ (D/n, D] appear in
G(D), it remains to show that we can compute f̃ E . First let us remark that if e = (u, v),
then no (relevant) path from u to v is eliminated, since each such path must have an
edge e′ with w(e′) ≤ d(e) ≤ D, by definition of d(e). Hence the only paths that are
deleted, contain an edge e′ with w(e′) ≤ D/n2 < d(e)/n ≤ w(e), hence this path
does not contribute to the MSF index.

Next we compute an estimator of the MSF index in G(D), by computing the MSF
indices in a reweighted graph. We rescale the graph by multiplying all weights with
n3/D and rounding to the closest integer. This means that we have an error in the
weight of at most D/n3. For an edge with D/n2 < w(e) ≤ D, this means that the
error is at most w(e)/n. So using Theorem 3.2, we can compute the MSF indices in
this reweighted sugraph with edge weights bounded by n3 in time O(m′α(n) log(M)),
where there is a multiplicative error in edge weights of at most (1 ± 1/n). Note
that each edge appears in at most two subgraphs, hence we have a total time of
O(mα(n) log(M)).

4 Cut Sparsification for Weighted Graphs

In this section, we present our algorithm for computing a (1 ± ε)-cut sparsifier Gε

for a weighted graph G. This makes use of the framework as presented in Sect. 2.1
and the maximum spanning forest packing as treated in Sect. 3. This section works
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towards proving the following theorem for polynomially-weighted graphs. In Sect. 5,
we will generalize the techniques of this section to graphs with unbounded weights.

Theorem 4.1 There exists an algorithm that, given a weighted graph G = (V , E),
and freely chosen parameter ε > 0, computes a graph Gε , which is a (1 ± ε)-
cut sparsifier for G with high probability. The algorithm runs in time O(m ·
min(α(n) log(m/n), log(n))) and the number of edges of Gε is O

(
n
(
log(n)/ε2

)

log
(
m/(n log(n)/ε2)

) )
.

To be precise, we give an algorithm where the given bounds on both running time and
size of the sparsifier hold with high probability. By simply halting when the running
time exceeds the bound, and outputting an empty graph if we exceed the size bound,
this gives the result above.

To achieve a better bound on the size of the sparsifier, we repeatedly apply this
theorem to the input graph, with an exponentially decreasing precision parameter.

Theorem 4.2 (Restated) There exists an algorithm that, given a weighted graph G =
(V , E), and freely chosen parameter ε ∈ (0, 1), computes a graph Gε , which is a
(1 ± ε)-cut sparsifier for G with high probability. The algorithm runs in time O(m ·
min(α(n) log(m/n), log(n))) and the number of edges of Gε is O

(
n log(n)/ε2

)
.

Proof We obtain this result by repeatedly applying the algorithm from Theorem 4.1,

for a total of k := log∗
(

m
n log(n)/ε2

)
times. In iteration i , we set εi := ε/2k−i+2 and

denote the output of this iteration by Gi . This means that Gi is a (1 ± ε/2k−i+2)-cut
sparsifier for Gi−1. In total, we see that Gε := Gk is a (1 ± ε)-cut sparsifier for G
since

k∏

i=1

(1 + ε/2k−i+2) ≤ exp

(
k∑

i−1

log(1 + ε/2k−i+2)

)

≤ exp

(
k∑

i−1

ε/2k−i+2

)

≤ exp

⎛

⎝ε

∞∑

j=2

2− j

⎞

⎠ = exp(ε/2) ≤ 1 + ε,

as ε < 1, and

k∏

i=1

(1 − ε/2k−i+2) ≥
∞∏

j=0

1 − ε/4

2 j
≥ (1 − ε/8)

∞∏

j=1

1 − ε/4

j2

= (1 − ε/8)
sin(π

√
ε/2)√

ε/2
≥ (1 − ε/8)(1 − π2/24ε)

≥ 1 − (1/8 + π2/24)ε + π2

192
ε2 ≥ 1 − ε.

Since k = log∗
(

m
n log(n)/ε2

)
= O(log∗(n)), all bounds hold with high probability

simultaneously, and thus the end result holds with high probability.
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Now for the size bound, we have that

mi := |E(Gi )| ≤ C ·
(
n log(n)

ε2
4k−i+2 log

(
mi−1

n log(n)/ε2

))

,

for some constant C > 0, where we denote m0 := m. We will show by induction that

mi ≤ C ·
(
n log(n)

ε2
4k−i+2 · 2 log(i)

(
m

n log(n)/ε2

))

,

which means in particular thatmk = O
(
n log(n)/ε2

)
. The claim form1 is immediate.

Suppose it holds for i − 1, then

mi ≤ C ·
(
n log(n)

ε2
4k−i+2 log

(
mi−1

n log(n)/ε2

))

≤ C ·
(
n log(n)

ε2
4k−i+2 log

(

C · 4k−i+3 · 2 log(i−1)
(

m

n log(n)/ε2

)))

= C ·
(
n log(n)

ε2
4k−i+2

(

(k − i) log(4) + log(C · 27) + log(i)
(

m

n log(n)/ε2

)))

≤ C ·
(
n log(n)

ε2
4k−i+2 · 2 log(i)

(
m

n log(n)/ε2

))

,

since

(k − i) log(4) + log(C · 27) =
(

log∗
(

m

n log(n)/ε2

)

− i

)

log(4) + log(C · 27)

= log∗
(

log(i)
(

m

n log(n)/ε2

))

log(4) + log(C · 27)

< log(i)
(

m

n log(n)/ε2

)

,

if m
n log(n)/ε2

> D, for some constant D. This can be assumed to hold, since if
m

n log(n)/ε2
≤ D, then Theorem 4.1 immediately gives the desired result. The total

running time becomes of the sum of the k iterations:

k∑

i=1

O(mi−1 · min(α(n) log(mi−1/n), log(n)))

= O

((

m +
k−1∑

i=1

mi

)

· min(α(n) log(mi−1/n), log(n)))

)

.
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Note that

k−1∑

i=1

mi ≤
k−1∑

i=1

C ·
(
n log(n)

ε2
4k−i+2 · 2 log(i)

(
m

n log(n)/ε2

))

= O

(
n log(n)

ε2
4k log

(
m

n log(n)/ε2

))

.

We have log∗(x) = O(log log(x)), hence we obtain 4log
∗(x) log(x) = O(log2(x)) =

O(x). Using this with x = m
n log(n)/ε2

gives us total running time

k∑

i=1

O(mi−1 · min(α(n) log(mi−1/n), log(n)))

= O

((

m + n log(n)

ε2
4k log

(
m

n log(n)/ε2

))

· min(α(n) log(m/n), log(n))

)

= O(m · min(α(n) log(m/n), log(n))).

4.1 The Algorithm

To sparsify the graph, two methods of sampling are used. One of which is the frame-
work presented in Sect. 2.1. However, instead of applying the framework to the graph
directly, there is another sampling process that precedes it.

To simplify equations, let us set ρ := (7+c)1352 ln(n)

0.38ε2
. If |E | ≤ 4ρn

log
(
m/(n log(n)/ε2)

)
, we do nothing. That is, we return Gε = G. If not, we start

by an initialization step and continue with an iterative process, which ends when the
remaining graph becomes sufficiently small.

In the initialization step, we define X0 := E . We compute a 
2ρ�-partial maximum
spanning forest packing T1, . . . , T
2ρ� and we define F0 := ⋃
2ρ�

j=1 Tj . The remaining
edges Y0 := X0\F0 move on to the next phase.

In iteration i , we create Xi+1 from Yi by sampling each edge with probability 1/2.
Next, we compute ki := ρ · 2i+1 maximum spanning forests T1, . . . , Tki . We define
Fi := ⋃ki

j=1 Tj , and Yi := Xi\Fi .
We continue until Yi has at most 2ρn edges, and set� to be the number of iterations.

We retain all edges in F0. In other words: add each edge e ∈ F0 to Gε with weight
w(e). The edges of Y� are also retained, but they need to be scaled to counterbalance
the � − 1 sampling steps: add each edge e ∈ Y� to Gε with weight 2�−1w(e).

Any other edge e ∈ Fi is at least kiw(e)-heavy in Xi−1, as e /∈ Fi−1. We exploit
this heavyness to sample from these edges using the framework. For each e ∈ Fi we:

• Define ne := 2iw(e) and pe := min
(
1, 384

169
1

4iw(e)

)
;

• Generate re from the binomial distribution with parameters ne and pe;
• If re is positive, add e to Gε with weight re/pe.
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Algorithm 1 Sparsify(V,E, w, ε, c)

Input: An undirected graph G = (V,E), with integer weights w : E → N
+,

and parameters ε ∈ (0, 1), c ≥ 1.
Output: An undirected weighted graph Gε = (V,Eε).

1: Set ρ ← (7+c)1352 ln(n)
0.38ε2 .

2: if |E| ≤ 4ρn log m/(n log(n)/ε2)
)
then

3: return Gε = G.
4: end if
5: Compute an �2ρ�-partial maximum spanning forest packing

T1, T2, . . . , T�2ρ� for G.
6: Set i ← 0.
7: Set X0 ← E.
8: Set F0 ← ⋃�2ρ�

j=1 Tj .
9: Set Y0 ← X0 \ F0.

10: while |Yi| > 2ρn do
11: Sample each edge in Yi with probability 1/2 to construct Xi+1.
12: i ← i + 1.
13: Set ki ← ρ · 2i+1.
14: Compute an ki-partial maximum spanning forest packing

T1, T2, . . . , Tki
for the graph Gi := (V,Xi).

15: Set Fi ← ⋃ki

j=1 Tj

16: Set Yi ← Xi \ Fi.
17: end while
18: Set Γ ← i. // Γ is the number of elapsed iteration in the previous while-

loop.
19: Add each edge e ∈ YΓ to Gε with weight 2Γ−1w(e).
20: Add each edge e ∈ F0 to Gε with weight w(e).
21: for j = 1, . . . ,Γ do
22: for e ∈ Fj do

23: Set pe ← min
(
1, 384

169
1

4jw(e)

)
.

24: Generate re from Binom(2jw(e), pe).
25: if re > 0 then
26: Add e to Gε with weight re/pe.
27: end if
28: end for
29: end for
30: return Gε = (V,Eε).

The factor 2i in calling upon the binomial distribution can be seen as boosting the
weight of the edge by a factor 2i , which is needed to counterbalance the i sampling
steps in creating Fi .

Up to the computation method of the MSF packing, the presented algorithm is the
same for polynomially and superpolynomially-weighted graphs. For the unbounded
case, we use theMSF index estimator as presented in Sect. 3.1. In Sect. 5 we detail how
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this influences the correctness of the algorithm, and the bounds on size and running
time.

4.2 Correctness

Wewill prove thatGε constructed in Sparsify(V , E, w, ε,c) is a (1±ε)-cut sparsifier
for G with probability at least 1− 8/nc. Following the proof structure of [8], we first
define

S :=
(

�⋃

i=0

2i Fi

)

∪ 2�Y�,

where � is the maximum number such that Fi �= ∅. We define GS := (V , S). And we
prove the following two lemmas, that together yield the desired result.

Lemma 4.3 GS is a (1± ε/3)-cut sparsifier for G with probability at least 1− 4/nc.

Lemma 4.4 Gε is a (1± ε/3)-cut sparsifier for GS with probability at least 1− 4/nc.

Let us start by proving Lemma 4.3. In creating the sets Fi , we repeatedly makes
use of the MSF indices. The MSF index of an edge immediately ensures a certain
connectivity of that edge. The following lemma makes this precise.

Lemma 4.5 Let i ≥ 0 and e ∈ Yi be an edge, and set ki := ρ · 2i+1. Then e is w(e)ki -
heavy in G ′

i,e = (V , X ′
i,e), where X ′

i,e := {e′ ∈ Xi : w(e′) ≥ w(e)}. Consequently, e
is also w(e)ki -heavy in Gi = (V , Xi ).

Proof Since e ∈ Yi = Xi\Fi , we know that e was not part of any maximum spanning
forest in a ki -partial MSF packing Fi of Gi . Hence, by definition of the maximum
spanning forests, each of the forests inFi has a path connecting the vertices of e, with
all edges of weight at least w(e). Thus any cut in G ′

i picks up a contribution of at least
w(e) for each of the ki paths. Hence the minimum cut in G ′

i separating the vertices of
e has value at least w(e)ki , or equivalently e is w(e)ki -heavy in G ′

i .

Next, we show in a general setting that certain ways of sampling preserve cuts. The
following lemma is a generalization of Lemma 5.5 in [8].

Lemma 4.6 Let R ⊆ Q be subsets of weighted edges on some set of vertices V ,
satisfying 0 < w(e) ≤ 1 for all e ∈ Q. Moreover, assume that each edge in R is π -
heavy in (V , Q). Suppose that each edge e ∈ R is sampled with probability p ∈ (0, 1],
and if selected, given a weight of w(e)/p to form a set of edges R̂. We denote, for
every cut C:

r (C) :=
∑

e∈R∩C
w(e), q(C) :=

∑

e∈Q∩C
w(e), r̂ (C) :=

∑

e∈=R̂∩C
w(e)/p.
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Let ζ ∈ N≥5, and δ ∈ (0, 1] such that δ2 pπ ≥ ζ ln(n)
0.38 , then

∣
∣
∣r (C) − r̂ (C)

∣
∣
∣ ≤ δq(C)

for all cuts C, with probability at least 1 − 4/nζ−4.

Proof For each j ≥ 0, let C j be the set consisting of all cuts C with

2 j · π ≤ r (C) ≤ 2 j+1 · π − 1.

We will show that each j the statement of the lemma holds true with probability at
least 1 − 2n(4−ζ )2 j

. Then the lemma follows from the union bound since

∞∑

j=0

2n(4−ζ )2 j ≤ 2n4−ζ
∞∑

j=0

2−(2 j−1) ≤ 2n4−ζ
∞∑

k=0

2−k ≤ 4n4−ζ ,

where we use that n4−ζ ≤ 1/2.
Let C ∈ C j . For every e ∈ R, define the random variables Ye that takes value

w(e) with probability p and 0 otherwise. We have Ye ∈ [0, 1], E[Ye] = pw(e), and∑
e∈R Ye = pr (C). Now we apply Theorem A.1 with ε = δq(C)/r (C) and μ = pr (C)

to obtain

P

[∣
∣
∣r (C) − r̂ (C)

∣
∣
∣ > δq(C)

]
= P

[∣
∣
∣
∣
∣

∑

e∈R

Ye − μ

∣
∣
∣
∣
∣
> δ

q(C)

r (C)
· pr (C)

]

≤ 2 exp

⎛

⎝−0.38δ2
(
q(C)

r (C)

)2

pr (C)

⎞

⎠

≤ 2 exp
(
−0.38δ2 pq(C)

)
,

where the last inequality holds as r (C) ≤ q(C) since R ⊆ Q. Now observe that
q(C) ≥ r (C) ≥ π · 2 j , hence

P

[∣
∣
∣r (C) − r̂ (C)

∣
∣
∣ > δq(C)

]
≤ 2 exp

(
−0.38δ2 pπ2 j

)

≤ 2 exp
(
−ζ ln(n)2 j

)

= n−ζ2 j
.

As every edge in R ∩ C is π -heavy in (V , Q), we can apply Theorem 2.2 to see that
the number of distinct sets R ∩ C is at most:

n2
2 j+1π

π = n4·2 j
.
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Thus the union bound gives us that the statement of the lemma holds true for all cuts
C ∈ C j with probability at least 1 − 2n(4−ζ )2 j

.

We want to apply this lemma to our sampling procedure. We do this by considering
different weight classes separately. We define Xi,k := {e ∈ Xi : 2k ≤ w(e) ≤
2k+1 − 1}, and x (C)

i,k = ∑
e∈Xi,k∩C w(e). We define Yi,k and y(C)

i,k analogously. Some
rescaling is necessary to ensure that all weights lie in (0, 1], as Lemma 4.6 requires.
For A ⊆ E and β > 0, we write βA to indicate we multiply the weight of the edges
by a factor of β.

Corollary 4.7 With probability at least 1 − 4/n4+c, for every cut C in Gi ,

∣
∣
∣2−k x (C)

i+1,k − 2−k−1y(C)
i,k

∣
∣
∣ ≤ ε/13

2i/2+1

∞∑

k′=k

2−k′−1x (C)

i,k′ .

Proof Any e ∈ Yi,k is ρ · 2i+1w(e) ≥ ρ · 2i+k+1-heavy in
⋃∞

k′=k Xi,k′ . A closer look
shows us that we also have that any e ∈ 2−k−1Yi,k is ρ ·2i -heavy in⋃∞

k′=k 2
−k′−1Xi,k′ .

We set R = 2−k−1Yi,k , Q = ⋃∞
k′=k 2

−k′−1Xi,k′ , π = ρ · 2i , p = 1/2, and δ = ε/13
2i/2+1 ,

and we check that

δ2 pπ = ε2/132

2i+3 ρ2i = ε2

23 · 132
(7 + c)1352 ln(n)

0.38ε2
= (7 + c) ln(n)

0.38
.

So we can apply Lemma 4.6 with these settings to obtain:

∣
∣
∣2−k x (C)

i+1,k − 2−k−1y(C)
i,k

∣
∣
∣ ≤ ε/13

2i/2+1

∞∑

k′=k

2−k′−1x (C)

i,k′ ,

which holds for all cuts C with probability 1 − 4/n3+c.

Now we look at the general case, for which we sum all weight classes. Hereto, we
define x (C)

i = ∑
e∈Xi∩C w(e), x (C)

i+1 = ∑
e∈Xi+1∩C w(e), and y(C)

i = ∑
e∈Yi∩C w(e).

Corollary 4.8 With probability at least 1 − 4/n1+c, for every cut C in Gi ,

∣
∣
∣2x (C)

i+1 − y(C)
i

∣
∣
∣ ≤ ε/13

2i/2
· x (C)

i .

Proof We rescale and sum over k for each of the weight classes in Lemma 4.7 to get

∣
∣
∣2x (C)

i+1 − y(C)
i

∣
∣
∣ =

∣
∣
∣
∣
∣

∞∑

k=0

2k+1
(
2−k x (C)

i+1,k − 2−k−1y(C)
i,k

)
∣
∣
∣
∣
∣

≤
∞∑

k=0

2k+1
∣
∣
∣2−k x (C)

i+1,k − 2−k−1y(C)
i,k

∣
∣
∣
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Fig. 2 A visualization of the area
covered by

∑∞
k=0

∑∞
k′=k 1 =

∑∞
k′=0

∑k′
k=0 1

≤
∞∑

k=0

2k+1

(
ε/13

2i/2+1

∞∑

k′=k

2−k′−1x (C)

i,k′

)

Next, we want to interchange the sum over k with the sum over k′, a visual argument
for the adjustment of the bounds can be found in Fig. 2.

∞∑

k=0

2k+1

(
ε/13

2i/2+1

∞∑

k′=k

2−k′−1x (C)

i,k′

)

= ε/13

2i/2+1

∞∑

k′=0

2−k′−1x (C)

i,k′

k′
∑

k=0

2k+1

≤ ε/13

2i/2+1

∞∑

k′=0

2−k′−1x (C)

i,k′ 2k
′+2

≤ ε/13

2i/2
x (C)
i ,

which holds simultaneously for all cuts C with probability at least 1 − 4/n1+c. The
reason is that at most m ≤ n2 of the Xi,k ∩ C are non-empty, hence a union bound
gives the desired bound on the probability.

We will repeatedly apply this lemma. To show that the accumulated error does not
grow beyond ε/3, we use the following fact. For a proof we refer to [8].

Lemma 4.9 Let x ∈ (0, 1] be a parameter. Then for any k ≥ 0,

k∏

i=0

(

1 + x/13

2i/2

)

≤ 1 + x/3,

k∏

i=0

(

1 − x/13

2i/2

)

≥ 1 − x/3.
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As a final step towards proving Lemma 4.3, we prove a lemma that focusses on the
sparsification occurring in the last � − j + 1 iterative steps of our algorithm.

Lemma 4.10 Let

S j =
⎛

⎝
�⋃

i= j

2i− j Fi

⎞

⎠ ∪ 2�− j Y�

for any j ≥ 0. Then, S j is a
(
1 ± (ε/3)2− j/2

)
-cut sparsifier for G j = (V , X j ), with

probability at least 1 − 4/nc.

Note that setting j = 0 gives us Lemma 4.3. Although this lemma is a generalization
of the corresponding case for unweighted graphs in [8], the proof for the weighted
case will be exactly the same: all the work that needed to be done is contained in the
previous lemmas. We include the proof here for completeness.

Proof Let C be a cut. We define s(C)
j := ∑

e∈S j∩C wS j (e), and f (C)
i , x (C)

i , and y(C)
i

analogously. We will show that the weight of C in S j is at most (1 + (ε/3)2− j/2)

times the weight of C in G j .

s(C)
j =

�∑

i= j

2i− j f (C)
i + 2�− j y(C)

� by definition of S j

=
�−1∑

i= j

2i− j f (C)
i + 2�− j x (C)

� by definition of Y�

≤
�−1∑

i= j

2i− j f (C)
i + 2�− j−1

(

y(C)
�−1 + ε/13

2(�−1)/2
x (C)
�−1

)

by Lemma 4.7

=
�−2∑

i= j

2i− j f (C)
i + 2�− j−1x (C)

�−1

(

1 + ε/13

2(�−1)/2

)

by definition of Y�−1

We repeat the last step � − j − 1 times to conclude

s(C)
j ≤ x (C)

j

�−1∏

i= j

(

1 + ε2− j/2/13

2i/2

)

≤ x (C)
j (1 + (ε/3)2− j/2) by Lemma 4.8

The proof of s(C)
j ≥ x (C)

j (1 − (ε/3)2− j/2) is analogous. As we have that � ≤ n, we
can use a union bound to conclude that Lemma 4.8 holds for all simultaneously with
probability at least 1 − 4/nc, which concludes the proof.
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To prove Lemma 4.4, we will invoke the framework from [8], as given in Sect. 2.1.
More specifically, we will apply Theorem 2.3. We set the parameter γ := 64/3, and
for each e ∈ Fi we set λe := ρ · 4iw(e). This is in line with our choice for pe:

min

(

1,
16(c + 7)γ ln(n)

0.38λeε2

)

= min

(

1,
16(c + 7)γ ln(n)

0.38ρ · 4iw(e)eε2

)

= min

(

1,
384

169

1

4iw(e)

)

= pe.

We have to provide a set of subgraphs G and a set of parameters � such that �-
connectivity and γ -overlap are satisfied.

To explore the connectivity of edges in Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1 − 1} we
partition these sets as follows:

R j,k := {e ∈ Fj : 2k ≤ ρw(e) ≤ 2k+1 − 1}.

We will view these edges in the subgraph:

E j,k :=
�⋃

j ′= j−1

∞⋃

k′=k

ρ · 4�− j ′+12�−k′+ j ′ R j ′,k′ .

Lemma 4.11 Each edge e ∈ R j,k is π := ρ · 4�2�-heavy in (V , E j,k).

Proof Fix e ∈ R j,k . This edge is ρ · 2 jw(e) ≥ ρ · 2 j+k-heavy in {e ∈ X j−1 : w(e′) ≥
w(e)}, see Lemma 4.5. Hence e is ρ · 2 j+k-heavy in {e′ ∈ X j−1 : ρw(e′) ≥ 2k}.
We can rescale this: e is

(
ρ · 2 j+�

)
-heavy in 2�−k · {e′ ∈ X j−1 : ρw(e′) ≥ 2k} =

⋃∞
k′=k 2

�−k · {e′ ∈ X j−1 : 2k′ ≤ ρw(e′) ≤ 2k
′+1 − 1}. We rescale again to see e is

ρ ·22 j+�−1-heavy in
⋃∞

k′=k 2
�−k+ j−1 ·{e′ ∈ X j−1 : 2k′ ≤ ρw(e′) ≤ 2k

′+1−1}. Next,
we want to replace X j−1 with S j−1. Hereto, we apply Lemma 4.7 with ε = 13 ·2i/2+1,
which shows that for each of the weight classes the cuts are preserved up to a factor 2.
Hence we obtain e is ρ · 22 j+�−2-heavy in Ẽ j,k := ⋃�

j ′= j−1
⋃∞

k′=k 2
�−k+ j ′ · {e′ ∈

Fj ′ : 2k′ ≤ ρw(e′) ≤ 2k
′+1 − 1}.

Now let e′ ∈ R j,k be any edge, and letC be a cut such that e′ ∈ C . We need to show
that the weight of this cut in E j,k is at least ρ · 4�2�. Let e := argmine∈C { je : e ∈
R je,ke for some ke ≥ k} (in case e is not unique, pick any). By the above statement
we have that e is ρ · 22 je+�−2-heavy in Ẽ je,ke ⊆ Ẽ je,k . Thus e is ρ · 4�2�-heavy in
4�− je+1 Ẽ je,k . This is a subgraph of E je,k , which in turn is a subgraph of E j,k . Hence
e is ρ · 4�2�-heavy in E j,k , and thus C has weight at least ρ · 4�2�.

Now we take all weight classes together to find the set of subgraphs G for which
�-connectivity is satisfied.

Corollary 4.12 Each edge in e ∈ Ri is ρ · 4�2�-heavy in Gi = (V , Ei ), with Ei :=
⋃min(
i/2�,�)

j=1 E j,i−2 j .
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Proof Note that e ∈ Ri satisfies 2i ≤ ρ ·22 jw(e) ≤ 2i+1−1 if e ∈ Fj . Hence e ∈ R j,k

with 2 j + k = i . We are only considering edges in Fj with 1 ≤ j ≤ �, thus we have

Ri = ⋃min(
i/2�,�)
j=1 R j,i−2 j , hence the claim follows directly from Lemma 4.11.

It remains to show that γ -overlap is satisfied.

Lemma 4.13 For any cut C,

�∑

i=0

e(C)
i 2i−1

ρ · 4�2λ
≤ 64/3 · e(C),

where e(C) = ∑
e∈C wGS (e) and e(C)

i = ∑
e∈C∩Ei

wGi (e).

Proof Weadd F0 andY� toGε , sowedonot need to be concerned about the intersection
of the cut C with these sets. This means we only intersect a cut C with Fj where
1 ≤ j ≤ �. Hence we start our sum with i = 2. We consider the sum we need to
bound:

�∑

i=2

e(C)
i 2i−1

ρ · 4�2λ
=

�∑

i=2

(∑
e∈C∩Ei

wGi (e)
)
2i−1

ρ · 4�2λ

=
�∑

i=2

min(
i/2�,�)∑

j=1

(∑
e∈C∩E j,i−2 j

wGi (e)
)
2i−1

ρ · 4�2λ

=
�∑

i=2

min(
i/2�,�)∑

j=1

�∑

j ′= j−1

∞∑

k′=i−2 j

ρ · 4�− j ′+12�−k′+ j ′
(∑

e∈C∩E j ′,k′ wG(e)
)
2i−1

ρ · 4�2λ

=
�∑

i=2

min(
i/2�,�)∑

j=1

�∑

j ′= j−1

∞∑

k′=i−2 j

2−k′− j ′+i+1

⎛

⎝
∑

e∈C∩E j ′,k′
wG(e)

⎞

⎠ .

Next, we want to interchange the sum over i and the sum over j and change the bounds
accordingly. See Fig. 3a for a visual argument.

�∑

i=2

min(
i/2�,�)∑

j=1

�∑

j ′= j−1

∞∑

k′=i−2 j

2−k′− j ′+i+1

⎛

⎝
∑

e∈C∩E j ′,k′
wG(e)

⎞

⎠

=
�∑

j=1

�∑

i=2 j

�∑

j ′= j−1

∞∑

k′=i−2 j

2−k′− j ′+i+1

⎛

⎝
∑

e∈C∩E j ′,k′
wG(e)

⎞

⎠

Interchanging the sum over i and j ′ does not change the bounds, as they are inde-
pendent of each other. When interchanging the sum over i and the sum over k′ we
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(a) (b)

Fig. 3 Two visualizations of the area covered by a double sum

have to be more careful, see Fig. 3b for a visual argument.

�∑

j=1

�∑

i=2 j

�∑

j ′= j−1

∞∑

k′=i−2 j

2−k′− j ′+i+1

⎛

⎝
∑

e∈C∩E j ′,k′
wG(e)

⎞

⎠

=
�∑

j=1

�∑

j ′= j−1

∞∑

k′=0

min(2 j+k′,�)∑

i=2 j

2−k′− j ′+i+1

⎛

⎝
∑

e∈C∩E j ′,k′
wG(e)

⎞

⎠

≤
�∑

j=1

�∑

j ′= j−1

∞∑

k′=0

2−k′− j ′+2 j+k′+2

⎛

⎝
∑

e∈C∩E j ′,k′
wG(e)

⎞

⎠

=
�∑

j=1

�∑

j ′= j−1

22 j− j ′+2

⎛

⎝
∞∑

k′=0

∑

e∈C∩E j ′,k′
wG(e)

⎞

⎠

=
�∑

j=1

�∑

j ′= j−1

22 j− j ′+2

⎛

⎝
∑

e∈C∩Fj ′
wG(e)

⎞

⎠ .

Next, we want to interchange the sum over j with the sum over j ′, a visual argument
can be found in Fig. 4.

�∑

j=1

�∑

j ′= j−1

22 j− j ′+2

⎛

⎝
∑

e∈C∩Fj ′
wG(e)

⎞

⎠ =
�∑

j ′=0

2− j ′+2
j ′+1∑

j=1

4 j

⎛

⎝
∑

e∈C∩Fj ′
wG(e)

⎞

⎠
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Fig. 4 A visualization of the
area covered by
∑�

j=1
∑�

j ′= j−1 1 =
∑�

j ′=0
∑ j ′+1

j=1 1

≤
�∑

j ′=0

2− j ′+2 4
j ′+2

3

⎛

⎝
∑

e∈C∩Fj ′
wG(e)

⎞

⎠

= 64

3

�∑

j ′=0

2 j ′
⎛

⎝
∑

e∈C∩Fj ′
wG(e)

⎞

⎠

= 64

3

∑

e∈C
wGS (e)

= 64

3
e(C).

Together Corollary 4.12 and Lemma 4.13 show that the conditions of Theorem 2.3
are met with the given parameters. This proves Lemma 4.4, and then Theorem 4.1
follows.

4.3 Size of the Sparsifier

The sparsifierGε consists of F0, Y� , and F ′, where F ′ = ∪�
i=1F

′
i , with F ′

i the sampled
edges of Fi . First of all, note that |F0| = O(cn ln(n)/ε2) and |Y�| = O(cn ln(n)/ε2).
Now take e ∈ Fi . This edge results to an edge in Gε if the sample from the binomial

distribution with parameters ne = 2iw(e) and pe = min
(
1, 384

169
1

4iw(e)

)
is positive.

The probability that this happens is

P[Binom(ne, pe) > 0] =
ne∑

k=1

P[Binom(ne, pe) = k]
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≤
ne∑

k=1

kP[Binom(ne, pe) = k]

=
ne∑

k=0

kP[Binom(ne, pe) = k]

= E[Binom(ne, pe)]
= ne pe

≤ 384

169
2−i .

Note that this probability is equal for all e ∈ Fi . Since Fi is the union of ki = ρ · 2i+1

spanning forests, we know that |Fi | ≤ ρ2i+1n. Hence the expected size of F ′
i , the

sampled edges in Fi , equals

E[∣∣F ′
i

∣
∣] =

∑

e∈Fi
P[Binom(ne, pe) > 0]

≤
∑

e∈Fi

384

169
2−i

= |Fi | 384
169

2−i

≤ ρ2i+1n
384

169
2−i

= ρ
768

169
n.

We have that the total number of sampled edges equals

E[∣∣F ′∣∣] =
�∑

i=1

E[∣∣F ′
i

∣
∣] ≤ �ρ

768

169
n,

so it remains to bound �, i.e., the number of Fi ’s. Hereto, note that the while loop of
lines 10–17 ends if |Yi | ≤ 2ρn. We bound the number of edges in Yi by bounding the
number of edges of Xi , of which Yi is a subset. Each edge in Yi−1 ⊆ Xi−1 is sampled
with probability 1/2 to form Xi . So E[|Xi |] ≤ |Xi−1| /2. Now by a Chernoff bound
(see Theorem A.2) we obtain:

P

[

|Xi | >
2

3
|Xi−1|

]

≤ exp

(

−0.38

36
|Xi−1|

)

> exp

(

−cn ln(n)

36

)

= n−cn/36,

since |Xi−1| ≥ |Yi−1| ≥ 2ρn = 2 · (7+c)1352 ln(n)

0.38ε2
n ≥ cn ln(n)

0.38 . We have at most n2 sets

Xi , so we can conclude that with high probability |Xi | ≤ 2
3 |Xi−1| in each step, and
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by induction |Yi | < |Xi | ≤ ( 2
3

)i
m. We see that

m

(
2

3

)�

≤ 2ρn = 21632

0.38ε2
cn ln(n),

which is equivalent to

(
2

3

)�

≤
21632
0.38ε2

cn ln(n)

m
,

and that is equivalent to

� ≥ log

(
m

21632
0.38ε2

cn ln(n)

)

/ log(3/2).

So, we can conclude � = O
(
log

(
m

cn log(n)/ε2

))
. This gives that the total number of

sampled edges is, in expectation,

E[∣∣F ′∣∣] ≤ �ρ
768

169
n = O(cn log(n) log

(
m/(cn log(n)/ε2)

)
/ε2).

This compression process can also be seen as the sum of m independent random
variables that take values in {1, 0}.3 We have just calculated that the expected value
μ is at most Bcn ln(n) log

(
m/(cn log(n)/ε2)

)
/ε2, for some B > 0. Using this, we

apply a Chernoff bound (TheoremA.2) to get an upper limit for the number of sampled
edges:

P

[∣
∣F ′∣∣ > 2Bcn ln n log

(
m/(cn log(n)/ε2)

)
/ε2

]

≤ exp
(
−0.38Bcn ln(n) log

(
m/(cn log(n)/ε2)

)
/ε2

)

= n−0.38cnB log
(
m/(cn log(n)/ε2)

)
/ε2 .

We conclude that, with high probability, the number of sampled edges is

O(cn log(n) log
(
m/(cn log(n)/ε2)

)
/ε2).

And finally, we conclude that with high probability the number of edges of Gε is
boundedby |E(Gε)| = |F0|+|Y�|+∣∣F ′∣∣ = O(cn log(n) log

(
m/(cn log(n)/ε2)

)
/ε2).

3 To be precise, we set the probability of an edge e /∈ ⋃
i Fi to exist to 0.
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4.4 Time Complexity

First off, if

m ≤ 4ρn log
(
m/(n log(n)/ε2)

)

= O(cn log(n)/ε2 log
(
m/(n log(n)/ε2)

)
),

the algorithm does nothing and returns the original graph. So for this analysis we
can assume m > 4ρn log

(
m/(n log(n)/ε2)

)
. We analyze the time complexity of the

algorithm in two phases. The first phase consists of computing the probabilities pe for
all e ∈ E . The second one is compressing edges, given these probabilities.

The first phase contains i iterations of the while loop (lines 10–17). In each iteration
we sample edges from Yi ⊆ Xi with probability 1/2 to form Xi+1. This takes time
at most O(|Xi |). Next, we compute a maximum spanning forest packing of the graph
Gi+1 = (V , Xi+1). We know that we can compute a M-partial maximum spanning
forest packing of a polynomially-weighted graph with n vertices and m0 edges in
O(m0 · min(α(n) log(M), log(n))) time (see Theorem 3.2 and Theorem 3.3). So this
iteration takes atmostO(|Xi+1|·(min(α(n) log(ki+1), log(n)))) time.Asnoted earlier,

we have with high probability that |Xi | ≤ ( 2
3

)i
m. Ifmα(n) log(m/n) ≤ m log(n), we

conclude w.h.p. that the first phase takes total time at most

�∑

i=0

O(|Xi |) + O(|Xi+1| α(n) log(ki+1))

=
�∑

i=0

(
2

3

)i

O(m) +
(
2

3

)i+1

O(mα(n) log(ρ2i+2))

≤ 3 · O(m) + 3 · O(mα(n) log(ρ2�))

= O(mα(n) log(m/n)).

And if m log(n) < mα(n) log(m/n), we have that w.h.p. the first phase takes total
time at most

�∑

i=0

O(|Xi |) + O(|Xi+1| log(n)) =
�∑

i=0

(
2

3

)i

O(m) +
(
2

3

)i+1

O(m log(n))

≤ 3 · O(m) + 3 · O(m log(n))

= O(m log n).

In the second phase, we sample each edge e from the binomial distribution with
parameters ne and pe. We will show this can be done with a process that takes T =
O(m) time with high probability. Hereto, we use an algorithm from [29] for binomial
sampling, for which the pseudocode is given in Algorithm 2.
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Algorithm 2 Binom(n, p)
Input: Two parameters n, p.
Output: A random sample from the binomial distribution with parameters n
and p.

1: Set k ← −1, S ← 0.
2: while S <n do
3: k ← k + 1.
4: Generate u ∼ U(0, 1).
5: S ← S + �log(u)/ log(1 − p)� + 1.
6: end while
7: return k

It is easy to see that this algorithm takes O(1 + k) time, where k is the output.
So if the sample from the binomial distribution is k, this takes time O(1 + k). This
means that the total time T equals m plus the total sum of all samples. Note that this
is slightly different from what we did in Sect. 4.3 to bound the number of edges: there
we needed to bound the number of positive samples.

For each edge e ∈ Fi we need to draw from the binomial distribution with parame-
ters ne and pe. We denote Te for the time we need to sample e. By the above, we have
E[Te] = 1 + ne pe. So, the expected number of successes is at most

E[T ] =
∑

i

∑

e∈Fi
E[Te] =

∑

i

∑

e∈Fi
(1 + ne pe)

=
∑

i

|Fi | + O(cn log(n) log
(
m/(n log(n)/ε2)

)
/ε2),

as shown in Sect. 4.3. Let B > 0 such that
∑

i
∑

e∈Fi ne pe ≤ Bcn ln(n)

log
(
m/(n log(n)/ε2)

)
/ε2. We can use a Chernoff bound (see Theorem A.2) on the

sum of these
∑

i
∑

e∈Fi ne random variables to obtain:

P

[

T −
∑

i

|Fi | > 2Bcn ln(n) log
(
m/(n log(n)/ε2)

)
/ε2

]

≤ exp
(
−0.38Bcn ln(n) log

(
m/(n log(n)/ε2)

)
/ε2

)

= n−0.38Bcn log
(
m/(n log(n)/ε2)

)
/ε2 .

So we can say that with high probability we need

T =
∑

i

|Fi | +
(

T −
∑

i

|Fi |
)

= O(m) + O(2Bcn ln(n) log
(
m/(n log(n)/ε2)

)
/ε2) = O(m)

time for the sampling.
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Concluding, the algorithm takes

O(m · min(α(n) log(m/n), log(n)) + O(m) = O(m · min(α(n) log(m/n), log(n))

time in total for polynomially-weighted graphs.

5 Adaptation to UnboundedWeights

In this section, we sketch how we can adapt the algorithm of the previous section to
sparse graphs with unbounded weights. The key to this is Lemma 3.4, which shows
that for unbounded weights we might not be able to compute the MSF indices exactly,
but we can find an estimate for edges e with w(e) > d(e)/n. Recall the definition of
d(e): compute a single maximum spanning forest F for G and define d(e) to be the
minimum weight among the edges on the path from u to v in F , where e = (u, v).

The only adaptation for unbounded weights is that the first time we compute
maximum spanning forests in Algorithm 1, we set aside any edges e ∈ E with
w(e) ≤ d(e)/n.We show that we can sample efficiently from these vertices, since they
are well-connected by F0, the initial MSF that remains in our sparsifier. We will do
this by sampling them with λe = ρ · d(e). Note that we only have to set aside vertices
the first time we compute a MSF packing, after this the estimates d(e) in a new graph
can only decrease, so if a vertex satisfies w(e) ≤ d(e)/n in a certain subgraph, it also
satisfied this in the initial graph.

For the remaining vertices, we apply the algorithm as presented in the previous
section. The only difference is that we use Lemma 3.4 to compute a estimates of the
MSF indices. This means that if an edge e ∈ E obtains the estimate index f̃e w.r.t.
some graph E ′, we have that e is at least fewe(1 − 1/n)-heavy in E ′. For simplicity,
we use 1 − 1/n ≥ 1/2. We see that this impacts the analysis in two places where the
heaviness is used: Lemmas 4.7 and 4.11.

When examining Lemma 4.7, we see that we apply Lemma 4.6with δ2 pπ ≥ ζ ln(n)
0.38 ,

for certain δ, p, π , and ζ . We want to apply this lemma but have π̃ = π/2, hence we
set δ̃ = √

2δ. If we want to end up with the original result of Lemma 4.7, we set the
ε̃ = ε/

√
2. This constant factor change gets absorbed in the asymptotic notation for

size and running time of the algorithm.
The second lemma we investigate is Lemma 4.11, which is the �-connectivity in

the sampling. Here, there is an easy solution: we boost all edges in E j,k by a factor
two, which ensures the �-connectivity as desired. Consequently, all edges in Ei are
boosted with a factor two, which propagates to a factor two in ei (C) as denoted in
Lemma 4.13, resulting to a γ -overlap with γ = 128

3 , rather than 64
3 .

Summing this up, we can say that our original analysis holds when we call the
algorithm with ε̃ = ε/

√
2 and ρ̃ = (7+c)2704 ln(n)

0.38ε2
, where the change in ρ is a direct

consequence of the change in γ .
The last thing that remains, is to show that, when we sample, �-connectivity is

also satisfied for the edges e ∈ E with w(e) ≤ d(e)/n. This is an extension to
Corollary 4.12.
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Lemma 5.1 Suppose e ∈ Ri and w(e) ≤ d(e)/n, then e is π = ρ · 4�2�-heavy in
Gi = (V , Ei ), with Ei = ⋃min(
i/2�,�)

j=1 E j,i−2 j .

Proof We know that e is d(e)-heavy in F0, so we look for the occurrence of F0 in Ei :

Ei =
min(
i/2�,�)⋃

j=1

�⋃

j ′= j−1

∞⋃

k′=i−2 j

ρ · 4�− j ′+12�−k′+ j ′ {e′ ∈ Fj ′ : 2k′ ≤ ρ · w(e′) ≤ 2k
′+1 − 1}

⊇ ρ · 4�+1
∞⋃

k′=i−2

2�−k′ {e′ ∈ F0 : 2k′ ≤ ρ · w(e′) ≤ 2k
′+1 − 1}. (1)

We look more closely at the connectedness of e in this particular set. We note that
w(e′) ≥ d(e) for any edge on a path in F0 from u to v for e = (u, v), by definition of
d(e). So we only need to consider e′ ∈ F0 with ρ · w(e′) ≥ ρ · d(e) = λe ≥ 2i , as
e ∈ Ri . This means that e is d(e)-heavy in

∞⋃

k′=i

{e′ ∈ F0 : 2k′ ≤ ρ · w(e′) ≤ 2k
′+1 − 1}

⊆
∞⋃

k′=i−2

{e′ ∈ F0 : 2k′ ≤ ρ · w(e′) ≤ 2k
′+1 − 1}.

We can rescale this to exploit the weights fully: e is 2�-heavy in
⋃∞

k′=i−2 2
�−k′ {e′ ∈

F0 : 2k′ ≤ ρ · w(e′) ≤ 2k
′+1 − 1}. Combining this with Equation 1 gives us that e is

ρ · 4�+12�-heavy in Ei , which is a factor four more than we needed to show.

5.1 Size and Time Complexity

For the size of the resulting graph Gε , the upper bound of the previous section still
holds for the edges that are sampled according to their MSF index. It remains to show
that the contribution of any edges with w(e) ≤ d(e)/n is small. For these edges we
have pe = 384

169
1

d(e) . We use P[Binom(ne, pe) > 0] ≤ pene, to see

P[e ∈ Gε : λe = ρ · d(e)] ≤ 384

169

w(e)

d(e)
≤ 384

169

w(e)

n · w(e)
.

As there can be at most n2 edges with w(e) ≤ d(e)/n, we obtain that the expected
number of edges in Gε originating from such edges is at most O(n). By the same
arguments as given in Sect. 4.3, this holds not only in expectation, but also with high
probability.

Concerning the time complexity, we use Theorem 3.3 or Lemma 3.4 instead of
Theorem 3.2. These run in time O(m log(n)) and O(mα(n) log(M)) respectively.
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Since the size of the sparsifier does not increase significantly, the time needed for
sampling does not increase significantly either. Hence we obtain a total time of O(m ·
min(α(n) log(m/n), log(n))). This makes the algorithm the fastest cut sparsification
algorithm known for graphs with unbounded weights.

6 Conclusion

In this paper, we presented a faster (1 ± ε)-cut sparsification algorithm for weighted
graphs. We have shown how to compute sparsifiers of size O(n log(n)/ε2) in O(m ·
min(α(n) log(m/n), log(n))) time, for integerweighted graphs. Both algorithms apply
a sampling technique where the MSF index is used as a connectivity estimator.

Wehave shown thatwecan compute anM-partialMSFpacking inO(mα(m) log(M))

time for polynomially-weighted graphs. For graphs with unbounded integer weights,
we have shown that we can compute a complete MSF packing in O(m log(n)) time,
and a sufficient estimation of an M-partial MSF packing can be computed in time
O(mα(m) log(M)). An open question is whether a more efficient computation is
possible. This would improve on our sparsification algorithm, but might also be
advantageous in other applications. The NI index has shown to be useful in various
applications. We believe to have shown that the MSF index is a natural analogue.

To develop an algorithm to compute an MSF packing, one might be inclined to
build upon one of the algorithms that compute a minimum spanning tree faster than
Kruskal’s algorithm, such as the celebrated linear-time algorithm of Karger, Klein,
and Tarjan [30]. However, this algorithm and many other fast minimum spanning tree
algorithms make use of edge contractions. It is far from obvious how to generalize this
to a packing: in that case, we need to work simultaneously on multiple trees, hence we
cannot simply contract the input graph in favor of any single one. To make this work,
a more meticulous use of data structures seems necessary.

Computation of theMSF indices in linear timewould be an ultimate goal. However,
for our application a slightly looser bound suffices. If we can reduce the running time to
compute the MSF indices to O(m + n log(n)), then we obtain a time bound of O(m)

for cut sparsification. Moreover, we do not need the exact MSF index, an estimate
suffices. This can either be a constant-factor approximation of the MSF index for
each edge, or an estimate in the weights used in the forests, as done for graphs with
unbounded weights in Sect. 5.
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A Tail Bounds

To analyze the sampling methods used in Sect. 4, we make use of the well-known
Chernoff bound to get a grasp on the tail of various distributions [31].

Theorem A.1 Let Y1, . . . ,Yn be n independent random variables such that each Yi
takes values in [0, 1]. Let μ = ∑n

i=1 E[Yi ] and ξ = 2 ln(2) > 0.38. Then for all
ε > 0

P

[∣
∣
∣
∣
∣

n∑

i=1

Yi − μ

∣
∣
∣
∣
∣
> εμ

]

≤ 2 exp
(
−ξ min(ε, ε2)μ

)
.

At times, the expected value μ itself is not known. Fortunately an upper bound on
the expected value also suffices.

Theorem A.2 Let Y1, . . . ,Yn be n independent random variables such that Yi takes
values in [0, 1]. Let μ = ∑n

i=1 E[Yi ] and ξ = 2 ln(2) > 0.38. Suppose μ′ ≥ μ. Then
for all δ ≥ 2

P

[
n∑

i=1

Yi > δμ′
]

≤ 2 exp
(−ξ(δ − 1)μ′) .

Proof Let ε := (δ − 1)μ′
μ
. We have ε ≥ 1, so min(ε, ε2) = ε. The statement now

follows directly from Theorem A.1.

B Reduction from Real to Integer Weights

In this section,we showhow to reduce the computationof a cut sparsifier of a graphwith
non-negative real weights to integer weights, formalizing the procedure sketched by
Benczúr and Karger [7]. Let G = (V , E, w) be a weighted graph, where w : E → R.

Denote Wmax := max
e∈E w(e) and Wmin := min

{

1,min
e∈E w(e)

}

. Then the reduction

consists of the following steps:

1. Compute Wmin and r := −
log( ε
2Wmin)�.

2. Create w′ : E → R by rounding the weights w(e) to the closest multiple of 2−r ,
and define G ′ := (V , E, w′).

3. Create ŵ : E → R by ŵ(e) := 2rw′(e).
4. Compute a (1 ± ε/3)-cut sparsifier Ĥ = (V , EH , ŵH ) of Ĝ = (V , E, ŵ).
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5. Output H = (V , EH , wH ) where wH (e) := 2−r ŵH (e).

First, we show that the graph H is indeed a (1+ ε)-cut sparsifier of G. Hereto, we
note that for any cut C we have

wH (C) = 2−rwĤ (C) ≤ 2−r (1 + ε/3)wĜ(C) = (1 + ε/3)wG ′(C) ≤ (1 + ε)wG(C),

where the last inequality holds as each weight w′(e) has at most an additive error of
2−r ≤ ε

2Wmin ≤ ε
2 with respect to w(e), hence at most an multiplicative error of ε

2 .
Analogously we obtain wH (C) ≥ (1 − ε)wG(C).

By construction, Ĝ has integer weights, which are bounded by O( Wmax
εWmin

). Steps 1,
2, 3, and 5 can be implemented in O(m) time. So indeed we have reduced the problem
to finding a cut sparsifier of a graph with integer weights. Moreover, note that if G
has polynomially bounded real weights, in the sense that Wmax = O(poly(n)) and
Wmin = �(1/ poly(n)), then the graph Ĝ has polynomially bounded integer weights.
We can state this independent of ε, since for ε ≤ 1/m we can always output the entire
input graph as a cut sparsifier of optimal size O(n/ε2) [19].
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