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Abstract
A planar orthogonal drawing of a planar 4-graph G (i.e., a planar graph with vertex-
degree at most four) is a crossing-free drawing that maps each vertex of G to a distinct
point of the plane and each edge of G to a polygonal chain consisting of horizontal
and vertical segments. A longstanding open question in Graph Drawing, dating back
over 30 years, is whether there exists a linear-time algorithm to compute an orthogonal
drawing of a plane 4-graph with the minimum number of bends. The term “plane”
indicates that the input graph comes together with a planar embedding, which must be
preserved by the drawing (i.e., the drawing must have the same set of faces as the input
graph). In this paper we positively answer the question above for the widely-studied
class of series–parallel graphs. Our linear-time algorithm is based on a characterization
of the planar series–parallel graphs that admit an orthogonal drawing without bends.
This characterization is given in terms of the orthogonal spirality that each type of
triconnected component of the graph can take; the orthogonal spirality of a component
measures how much that component is “rolled-up” in an orthogonal drawing of the
graph.
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1 Introduction

Given a planar 4-graph G (i.e., a planar graph with vertex-degree at most four), a
planar orthogonal drawing of G is a crossing-free drawing that maps each vertex of
G to a distinct point of the plane and each edge of G to a polygonal chain consisting
of horizontal and vertical segments [4, 12, 15, 17]. A bend is a point where a vertical
and a horizontal segment of the same edge meet; see Fig. 1a, b, where bends are
depicted as ‘×’. Computing planar orthogonal drawings of planar graphs with the
minimum number bends is one of the most studied problems in Graph Drawing. Garg
and Tamassia [14] proved that this problem is NP-hard for general planar 4-graphs
if the algorithm can freely choose the planar embedding; an O(n)-time algorithm
exists for n-vertex planar 3-graphs [10] and an O(n3 log2 n)-time algorithm exists for
n-vertex series–parallel 4-graphs [6].

If G is a plane 4-graph, i.e., it has a planar embedding that the drawing algo-
rithm must preserve, the problem is polynomial-time solvable. A seminal paper by
Tamassia [21] describes an O(n2 log n)-time algorithm based on an elegant min-cost
flow-network model. Cornelsen and Karrenbauer [2] reduced the time complexity to
O(n1.5), through a more efficient min-cost flow-network technique. Deciding whether
there exists an (optimal) O(n)-time algorithm is a longstanding question that is still
unanswered (see, e.g., [1, 4, 7]).

Contribution. In this paperwe positively answer the question above for series–parallel
graphs, which are a classical subject of investigation in Graph Drawing and Graph
Algorithms (see, e.g., [4, 20, 22, 23]). Namely, we give an O(n)-time algorithm that
receives as input an n-vertex plane series–parallel 4-graph G and that computes an
embedding-preserving orthogonal drawing of G with the minimum number of bends.
While O(n)-time algorithms that compute bend-minimum orthogonal drawings of
plane graphs with maximum vertex-degree three are known (see, e.g., [17–19]), our
result is the first linear-time algorithm for a graph family with vertices of degree four.
Indeed, even for series–parallel plane graphs with degree-4 vertices, the most efficient
solution known to date is the O(n1.5)-time algorithm by Cornelsen and Karrenbauer
[2].

Different from the approach of Cornelsen and Karrenbauer we do not use network-
flow techniques to minimize the number of bends. Instead, we rely on the observation
that the bend-minimization problem for an orthogonal drawing of a plane graph G is
equivalent to inserting in G the minimum number of subdivision vertices that make it
rectilinear planar, i.e., drawable without bends. Following this idea, we first charac-
terize those series–parallel graphs that are rectilinear planar. The characterization is
expressed in terms of the “orthogonal spirality” for the triconnected components of G.
Informally speaking, the orthogonal spirality of a component in an orthogonal drawing
of G measures how much the component is “rolled-up” (see, e.g., [5, 9–11, 13]). We
then consider the problem of efficiently adding the minimum number of subdivision
vertices along the edges of those series–parallel graphs that are not rectilinear planar.
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Fig. 1 a A series–parallel graph G with a given planar embedding. bA bend-minimum orthogonal drawing
H ofG with 5 bends, represented by cross vertices. cThe SPQ∗-tree T ofG with reference edge e = (1, 11);
series and parallel compositions are represented by S- and P-nodes; a Q∗-node represents an edge or a series
of edges; the root Pr -node is a parallel composition between e and the rest of the graph. d Three suboptimal
orthogonal drawings obtained by distributing the same number of bends of the highlighted subgraph Gν3
in a different way

In a nutshell, our bend-minimization algorithm executes a post-order visit of a
series–parallel decomposition tree T of the input graph G, also called SPQ∗-tree.
Tree T represents the parallel and the series compositions that form G (see Fig. 1a, c,
and refer to Sect. 2 for a formal definition of SPQ∗-trees). Suppose that ν is a node
of T and Gν its corresponding subgraph in G. When the algorithm visits ν, it must
efficiently determine whether Gν is rectilinear planar and, if not, it must compute the
minimum number of subdivision vertices needed to make it rectilinear planar; how to
efficiently compute such a number is a first key ingredient of our approach.

A second key ingredient is proving that, when the algorithm processes a node ν in
the bottom-up visit, the addition of the minimum number of subdivision vertices that
make Gν rectilinear planar leads to the optimum in terms of total number of bends.

As a third key ingredient, the algorithm needs to concisely describe the set of recti-
linear drawings of Gν that can be obtained by distributing these subdivision vertices in
all possible ways along the edges of Gν , which gives rise to a combinatorial explosion
of different possibilities. Indeed, different distributions of the same set of subdivision
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vertices along the edges of Gν can lead to orthogonal drawings of G that have differ-
ent number of bends. For example, consider the highlighted subgraph Gν3 (associated
with node ν3 of T ) in the graph of Fig. 1a. Any orthogonal drawing of Gν3 requires at
least three bends (subdivision vertices); placing all of them on edge (2, 11) yields the
optimal solution of Fig. 1b, which additionally requires two bends on edge (1, 11).
Conversely, placing the three bends on a different subset of edges of Gν3 leads to
(suboptimal) solutions with more bends; see Fig. 1d. To efficiently handle the combi-
natorially many distributions of the subdivision vertices along the edges of a subgraph
Gν , we succinctly encode in O(1) space the “orthogonal shapes” that Gν can have in
a bend-minimum planar orthogonal drawing of G. This is done by looking at the set
of possible orthogonal spirality values that Gν can take in such a drawing.

The remainder of the paper is organized as follows. Section2 recalls basic defi-
nitions used throughout the paper. Section3 strengthens a result given in [5] about
the interchangeability of orthogonal representations with the same spirality. Section4
characterizes those plane series–parallel graphs that are rectilinear planar. Section5
gives an overview of our bend-minimization algorithm. Section6 provides details
about the bottom-up visit performed by the algorithm. Section7 summarizes our main
result. Concluding remarks and open problems are in Sect. 8.

Some of our proofs are based on case analyses; in some proofs, we moved part of
the case analysis to the paper appendix, when the analysis of a case resulted similar
to the analysis of a previous case; also, the appendix reports a glossary of the main
symbols used throughout the paper.

2 Preliminaries

Weassume familiaritywith basic concepts of graphplanarity andgraphdrawing [4, 15–
17]. We only deal with connected graphs and we focus on orthogonal representations
rather than orthogonal drawings. An orthogonal representation H of a planar graph G
describes a class of equivalent planar orthogonal drawings of G in terms of planar
embedding, ordered sequence of bends along the edges (i.e., sequence of left/right
turns going from an end-vertex to the other) and clockwise sequence of geometric
angles at each vertex, each angle formed by two (possibly coincident) consecutive
edges around the vertex and expressed as a value in the set {90◦, 180◦, 270◦, 360◦}
(angles of 360◦ occur only at degree-1 vertices). An orthogonal representation H of
G can be described by a planar embedding of G plus an angle labeling specifying: (i)
for each vertex v of G, the geometric angles at v; (ii) for each edge e = (u, v) of G,
the ordered sequence of bends along e as a sequence of angles in the left face (and
hence in the right face) of e while moving along e from u to v (each bend determines
an angle of 90◦ in one of the two faces incident to e and an angle of 270◦ in the other
face). It is well known (see, e.g., [3]) that an angle labeling of G describes a valid
orthogonal representation if and only if the following properties hold: (H1) for each
vertex v, the sum of the angles at v equals 360◦; (H2) for each face f , if Na( f ) is
the number of a◦ angles in f , we have N90( f ) − N270( f ) − 2N360( f ) = 4 (resp.
N90( f )− N270( f )− 2N360( f ) = −4) if f is an internal face (resp. the external face).
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Note that, since the set of faces of a plane graph G is a base for the set of simple
cycles of G, Properties (H1) and (H2) together are equivalent to say that for every
simple cycle C of G, the number of right turns minus the number of left turns, when
walking clockwise around the boundary of C , is equal to four. Namely, if v is a vertex
of C we count: a right turn at v if there is an angle of 90◦ at v inside C ; a left turn
at v if the sum of the angles at v inside C equals 270◦; two left turns at v if v has
degree one. Also, a bend on an edge of C corresponds to a right (resp. left) turn if it
determines an angle of 90◦ (resp., 270◦) in C .

Given an orthogonal representation H of a plane graph G, a drawing of H (which
corresponds to an orthogonal drawing of G) can be computed in linear time [21]. If
H has no bend, H is a rectilinear representation.

Series–parallel graphs and decomposition trees. A two-terminal series–parallel
graph G, also called series–parallel graph, has two distinct vertices s and t , called
the source and the sink of G, respectively. A series–parallel graph can be inductively
defined by, and naturally associated with, a decomposition tree T : (i) a single edge
(s, t) is a series–parallel graph with source s and sink t , in which case T consists
of a single Q-node, whose poles are s and t ; (ii) given p ≥ 2 series–parallel graphs
G1, . . . , G p, each Gi with source si and sink ti (i = 1, . . . , p), a new series–parallel
graph G can be obtained with any of these two operations:
- Series composition, which identifies ti with si+1 (i = 1, . . . , p − 1); G has source
s = s1 and sink t = tp. The composition is represented in T by an S-node, with
poles s1 and tp, whose children are the roots of the decomposition trees Ti of Gi

(i = 1, . . . , p).
- Parallel composition, which identifies all sources si (resp. all sinks ti ) together (i =
1, . . . , p); G has source s = si and sink t = ti . The composition is represented in T
by a P-node, with poles are s and t , whose children are the roots of the decomposition
trees Ti of Gi (i = 1, . . . , p).

In our algorithm we do not distinguish between Q-nodes and S-nodes whose chil-
dren are all Q-nodes. We just call any of these nodes a Q∗-node. In other words, a
Q∗-node represents a series of edges. For a node ν of T , the pertinent graph Gν of ν

is the subgraph of G formed by all edges associated with the Q∗-nodes in the subtree
rooted at ν. We also call Gν a component of G.

Let G be a plane (two-terminal) series–parallel graph with vertex-degree at most
four. Note that G is either biconnected or it can be made biconnected with the addition
of a single dummy edge; in this latter case we assume that the planar embedding of
G is such that the dummy edge can be added on the external face of G. For any edge
e = (s, t) (possibly a dummy edge) on the external face, we can associate with G a
decomposition tree T where the root is a P-node representing the parallel composition
between e and the rest of the graph. Thus, the root of T is always a P-node with two
children, one of which is a Q∗-node corresponding to e. It will be called the (unique)
Pr -node of T , to distinguish it by the other P-nodes. Edge e is the reference edge of T ,
and T is the SPQ∗-tree of G with respect to e. Without loss of generality we assume
that the external face of G is to the right of e whilemoving from s to t . Also, it is always
possible to make T such that each (non-root) P-node has no P-node child and each S-
node has no S-node child. Since G has vertex-degree at most four, a P-node has either

123



2610 Algorithmica (2023) 85:2605–2666

Fig. 2 The components associated with the P-nodes ν1, ν3, and ν5, of the graph in Fig. 1. The alias vertices
are the little squares along dashed edges. For each node νi , i ∈ {1, 3, 5}, we report Gνi , Hνi , and the
spirality σνi of Hνi in H . In particular, the P-component of ν3, with poles {u = 2, v = 11}, has spirality
5
2 ; the P-component of ν5, with poles {u = 1, v = 11}, has spirality 2

two or three children. Finally, we assume that the left-to-right order of the children of
a P-node reflects the left-to-right order that their corresponding components have in
the planar embedding of G. See Fig. 1a, c. From now on we assume that T satisfies
the properties above for an n-vertex biconnected series–parallel graph. Observe that
the number of nodes of T is O(n).

Spirality of series–parallel graphs. Let G be a biconnected plane series–parallel
graph and let T be an SPQ∗-tree with respect to a reference edge e = (s, t). Let H
be an (embedding-preserving) orthogonal representation of G. Also, let ν be a node
of T with poles {u, v} and let Hν be the restriction of H to Gν . We also say that Hν

is a component of H . For each pole w ∈ {u, v}, let indegν(w) and outdegν(w) be
the degree of w inside and outside Hν , respectively. Define two (possibly coincident)
alias vertices of w, denoted by w′ and w′′, as follows: (i) if indegν(w) = 1, then
w′ = w′′ = w; (ii) if indegν(w) = outdegν(w) = 2, then w′ and w′′ are dummy
vertices, each splitting one of the two distinct edge segments incident tow outside Hν ;
(iii) if indegν(w) > 1 and outdegν(w) = 1, then w′ = w′′ is a dummy vertex that
splits the edge segment incident to w outside Hν .

Let Aw be the set of distinct alias vertices of a pole w. Let Puv be any simple path
from u to v inside Hν and let u′ and v′ be an alias vertex of u and an alias vertex of v,
respectively. The path Su′v′

obtained concatenating (u′, u), Puv , and (v, v′) is called
a spine of Hν . Denote by n(Su′v′

) the number of right turns minus the number of left
turns encountered along Su′v′

while moving from u′ to v′. The spirality σ(Hν) of Hν

is introduced by Di Battista et al. [5] and it is defined based on the following cases
(see also Fig. 2 for the spirality values of some P-components in the representation H
of Fig. 1b):

• Au = {u′} and Av = {v′}; then σ(Hν) = n(Su′v′
).

• Au = {u′} and Av = {v′, v′′}; then σ(Hν) = n(Su′v′
)+n(Su′v′′

)
2 .

• Au = {u′, u′′} and Av = {v′}; then σ(Hν) = n(Su′v′
)+n(Su′′v′

)
2 .

• Au = {u′, u′′} and Av = {v′, v′′}; without loss of generality, assume that (u, u′)
precedes (u, u′′) counterclockwise aroundu and that (v, v′)precedes (v, v′′) clock-
wise around v; then σ(Hν) = n(Su′v′

)+n(Su′′v′′
)

2 .
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Di Battista et al. [5] show that the spirality of Hν does not vary with the choice of
the path Puv . For brevity, in the following we often denote by σν the spirality of an
orthogonal representation Hν of Gν . If ν is a Q∗-node or a P-node with three children,
σν is always an integer. If ν is an S-node or a P-node with two children, σν is either
integer or semi-integer depending on whether the total number of alias vertices for the
poles of ν is even or odd. When we say that the spirality σν can take all values in an
interval [a, b], we mean that such values are either all the integer numbers or all the
semi-integer numbers in [a, b], depending on the cases described above for ν.

3 Substituting Orthogonal Components with the Same Spirality

Let G be a biconnected plane series–parallel graph and let T be an SPQ∗-tree of G
with respect to a given reference edge. Di Battista et al. [5] prove that two distinct
orthogonal representations of the same component Gν that have the same spirality are
“interchangeable”, under some additional hypotheses. Roughly speaking, they prove
that if a component Hν has a certain spirality in a given orthogonal representation H ,
it can be substituted with another representation H ′

ν having the same spirality, under
the assumption that the angles at the poles of ν that are outside Gν do not change.
In this subsection we formalize the concept of substituting an orthogonal component
with another one and give a stronger version of the result in [5], which proves the inter-
changeability of two orthogonal components that have the same spirality, regardless
of their angles at the poles.

Let H and H ′ be two different orthogonal representations of G with the reference
edge on the external face, and let Hν and H ′

ν be the restrictions of H and H ′ to Gν ,
respectively. If σ(Hν) = σ(H ′

ν), the operation of substituting Hν with H ′
ν in H ,

denoted by Sub(Hν, H ′
ν), defines a new plane graph H ′′ with an angle labeling, such

that: (a) H ′′ corresponds to a valid orthogonal representation of G; (b) the restriction
of H ′′ to Gν coincides with H ′

ν ; (c) the restriction of H ′′ to G \ Gν stays as in H .
More formally, let u and v be the two poles of ν. The external boundary of Hν

contains a left path pl and a right path pr , such that pl goes from u to v while
traversing the external boundary of Hν clockwise and pr goes from u to v while
traversing the external boundary of Hν counterclockwise. Denote by fl the face of H
outside Hν and incident to pl , and denote by fr the face of H outside Hν and incident
to pr . Also, for each pole w ∈ {u, v} of ν, denote by aw,l (resp. aw,r ) the angle at w

in face fl (resp. fr ) of H . Similarly, with respect to H ′
ν and H ′, define p′

l , p′
r , f ′

l , f ′
r ,

and a′
w,l , a′

w,r for each pole w ∈ {u, v}. The operation Sub(Hν, H ′
ν) defines H ′′ as

follows (schematic illustrations are given in Figs. 3, 4, 5):

• The set of vertices and the set of edges of H ′′ are the same as in G.
• The planar embedding of H ′′ is such that: all faces of H outside Hν and distinct
from fl and fr , as well as all faces of H ′

ν , are also faces of H ′′. Also, H ′′ has two
faces f ′′

l and f ′′
r obtained by replacing pl with p′

l and pr with p′
r in the boundary

of fl and fr , respectively.
• The angle labeling of H ′′ is such that: (i) all the angles at the vertices and along
the edges of G not belonging to Gν are those in H ; (ii) all the angles at the vertices

123



2612 Algorithmica (2023) 85:2605–2666

of Gν distinct from u and v are those in H ′
ν ; (iii) all the angles along the edges of

Gν are those in H ′
ν ; (iv) for each pole w ∈ {u, v} of ν, the angles at w that are

outside Gν and that are neither in f ′′
l nor in f ′′

r are those in H ; the angles at w that
are inside Gν are those in H ′

ν ; the angle a′′
w,l at w in f ′′

l and the angle a′′
w,r at w in

f ′′
r are such that a′′

w,l = aw,l and a′′
w,r = aw,r if indegν(w) = 1, while a′′

w,l = a′
w,l

and a′′
w,r = a′

w,r if indegν(w) > 1.

The next theorem proves that H ′′ is a valid orthogonal representation.

Theorem 1 Let G be a biconnected series–parallel 4-graph, T be an SPQ∗-tree of G
with respect to a reference edge e, and ν be a non-root node of T . Let H and H ′ be
two different orthogonal representations of G with e on the external face, and let Hν

and H ′
ν be the restrictions of H and H ′ to Gν , respectively. If σ(Hν) = σ(H ′

ν) then
the graph H ′′ defined by Sub(Hν, H ′

ν) is an orthogonal representation of G.

Proof We have to show that the embedded labeled graph H ′′ defined by Sub(Hν, H ′
ν)

satisfies Properties (H1) and (H2) of an orthogonal representation. Clearly, since H
and H ′ are orthogonal representations, (H1) holds for all vertices of H ′′ distinct from
the poles {u, v} of Gν ; indeed, each vertex distinct from u and v inherits all its angles
either from H or from H ′. Analogously, each face of H ′′ distinct from f ′′

l and f ′′
r is

either a face of H or a face of H ′, thus its angles satisfy Property (H2).
It remains to show that (H1) holds for u and v, and that (H2) holds for f ′′

l and f ′′
r .

To this aim, we analyze different cases based on the indegree of the two poles {u, v}
of Gν .
Case 1: indegν(u) = 1 and indegν(v) = 1. Refer to Fig. 3. In this case, the alias
vertices u′ and v′, associated with u and v respectively, coincide with the poles, i.e.,
u = u′ and v = v′. Let ux and yv be the two edge segments of Hν incident to u
and to v, respectively. Analogously, let ux ′ and y′v be the two edge segments of H ′

ν

incident to u and to v, respectively. Without loss of generality, assume that H and H ′
are oriented in such a way that both ux and ux ′ are vertical segments and that u is
below x in any drawing of H and u is below x ′ in any drawing of H ′. By definition,
since u = u′ and v = v′, the spirality σ(Hν) (resp. σ(H ′

ν)) equals the number of right
turns minus the number of left turns while moving from u to v along any simple path
of Hν (resp. of H ′

ν). Hence, since by hypothesis σ(Hν) = σ(H ′
ν), the edge segments

yv and y′v are either both horizontal or both vertical, and more precisely they are
incident to v in H and to v in H ′ from the same side (south, north, west, or east). In
this case, Sub(Hν, H ′

ν) defines a′′
u,l = au,l , a′′

u,r = au,r , a′′
v,l = av,l , and a′′

v,r = av,r ,
which implies that all the angles around u and v in H ′′ coincide with the angles around
u and v in H . Hence, Property (H1) holds for both u and v in H ′′. Also, let n(pl) (resp.
n(pr )) be the number of right turns minus the number of left turns along pl (resp. pr )
while moving from u to v in H . Similarly, let n(p′

l) (resp. n(p′
r )) be the number of

right turns minus the number of left turns along p′
l (resp. p′

r ) while moving from u to
v in H ′. Since σ(Hν) = σ(H ′

ν), and since u = u′ and v = v′, we have n(pl) = n(p′
l)

and n(pr ) = n(p′
r ). It follows that N90( f ′′

l ) − N270( f ′′
l ) = N90( fl) − N270( fl) and

N90( f ′′
r ) − N270( f ′′

r ) = N90( fr ) − N270( fr ), which imply Property (H2) for f ′′
l and

f ′′
r (note that, since G is biconnected, N360( f ) = 0 for every face f of H and of H ′).
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Fig. 3 Case 1 of Theorem 1: schematic illustration of the graph H ′′ defined by Sub(Hν , H ′
ν)

Case 2: indegν(u) = 1 and indegν(v) > 1. We distinguish two subcases:
outdegν(v) = 1 or outdegν(v) = 2. Assume first that outdegν(v) = 1 (see Fig. 4a).
In this case, u and its alias vertex u′ coincide and the only alias vertex v′ associated
with v subdivides the edge segment incident to v in H and in H ′. As in the analysis
of Case 1, assume that H and H ′ are oriented so that each of the two edge segments
ux and ux ′ in H and in H ′, respectively, is incident to u from north. By definition,
the spirality σ(Hν) (resp. σ(H ′

ν)) in this case equals the number of right turns minus
the number of left turns along any simple path of Hν (resp. of H ′

ν) from u to v′. Since
σ(Hν) = σ(H ′

ν), this implies that the segments vv′ in H and H ′ are incident to v from
the same side. In this case, Sub(Hν, H ′

ν) defines a′′
u,l = au,l , a′′

u,r = au,r , a′′
v,l = a′

v,l ,
and a′′

v,r = a′
v,r , which implies that all the angles around u in H ′′ coincide with the

angles around u and all the angles around v in H ′′ coincide with those around v in H ′.
Thus, Property (H1) holds for u and v in H ′′. It remains to prove (H2) for f ′′

l and f ′′
r .

Denote by Pl (resp. Pr ) the path of H obtained by concatenating pl (resp. pr ) with the
edge segment vv′. Analogously, denote by P ′

l (resp. P ′
r ) the path of H ′ obtained by

concatenating p′
l (resp. p′

r ) with the edge segment vv′. Since σ(Hν) = σ(H ′
ν), with the

usual notation we have n(Pl) = n(P ′
l ) and n(Pr ) = n(P ′

r ). Since, as observed above,
the segments vv′ in H and H ′ are incident to v from the same side, and since the angles
at u are the same in H ′′ and in H , we have N90( f ′′

l )− N270( f ′′
l ) = N90( fl)− N270( fl)

and N90( f ′′
r ) − N270( f ′′

r ) = N90( fr ) − N270( fr ), which imply Property (H2) for f ′′
l

and f ′′
r .

Suppose now that outdegν(v) = 2 (see Fig. 4b). In this case, u and its alias vertex
u′ coincide while v has two alias vertices v′ and v′′, which subdivides the two edge
segments incident to v in H and in H ′. Since deg(v) = 4, the angles at v are all
90◦ degree angles, both in H and in H ′. It follows that, the angles at u and v in H ′′
are the same as in H , i.e., Property (H1) holds. Denote by Pl (resp. Pr ) the path of
H obtained by concatenating pl (resp. pr ) with the edge segment vv′ (resp. vv′′).
Analogously, denote by P ′

l (resp. P ′
r ) the path of H ′ obtained by concatenating p′

l
(resp. p′

r ) with the edge segment vv′ (resp. vv′′). Since σ(Hν) = σ(H ′
ν), we have

n(Pl )+n(Pr )
2 = n(P ′

l )+n(P ′
r )

2 . On the other hand, since all angles at v are right angles in
H and in H ′, we have n(Pr ) = n(Pl) + 1 and n(P ′

r ) = n(P ′
l ) + 1. This implies that

n(Pl) = n(P ′
l ) and n(Pr ) = n(P ′

r ), which, together with the fact that the angles at u
are the same in H and H ′′, implies that N90( f ′′

l ) − N270( f ′′
l ) = N90( fl) − N270( fl)
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Fig. 4 Case 2 of Theorem 1: schematic illustration of the graph H ′′ defined by Sub(Hν , H ′
ν) when a

outdeg(v) = 1 and b outdeg(v) = 2

and N90( f ′′
r ) − N270( f ′′

r ) = N90( fr ) − N270( fr ). Hence, Property (H2) holds for f ′′
l

and f ′′
r .

Case 3: indegν(u) > 1 and indegν(v) = 1. This case is symmetric to Case 2.
Case 4: indegν(u) > 1 and indegν(v) > 1. In this case, there are three non-symmetric
subcases to analyze, depending on the outdegree of u and of v, i.e., outdegν(u) =
outdegν(v) = 1, or outdegν(u) = 1 and outdegν(v) = 2 (symmetrically outdegν(u) =
2 andoutdegν(v) = 1), or outdegν(u) = outdegν(v) = 2. See “AppendixA” for details
and refer to Fig. 5 for a schematic illustration. ��

Based on Theorem 1, in the following we can assume that two orthogonal compo-
nents with the same spirality are equivalent, and we can describe the set of possible
orthogonal representations for a component in terms of their spirality values.

4 Rectilinear Plane Series–Parallel Graphs

This section characterizes rectilinear plane series–parallel graphs. Let G be a plane
series–parallel 4-graph. If G is biconnected let e be any edge on the external face of
G; otherwise, we add a dummy edge e that makes it biconnected (recall that, if G
is not biconnected we are assuming that the dummy edge e can always be added in
the external face). Let T be the SPQ∗-tree of G with respect to e and let ν be a node
of T . We say that a component Gν admits spirality σν or, equivalently, that ν admits
spirality σν , if there exists a rectilinear planar representation Hν of Gν with spirality σν

in some rectilinear planar representation H of G. The following lemmas immediately
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Fig. 5 Case 4 of Theorem 1: schematic illustration of the graph H ′′ defined by Sub(Hν , H ′
ν) when a

outdeg(u) = outdeg(v) = 1, b outdeg(u) = 1 and outdeg(v) = 2, and c outdeg(u) = outdeg(v) = 2

derive from the results of Di Battista et al. [5], which for any S-node or P-node ν,
relate the values of spirality for an orthogonal representation of Gν to the values of
spirality of the orthogonal representations of the child components of Gν (i.e., the
components corresponding to the children of ν). These types of relationships will be
crucial to characterize those components that are rectilinear planar in a bottom-up
traversal of T . Namely, Lemma 1 concentrates on S-nodes, Lemma 2 on P-nodes with
three children, and Lemma 3 on P-nodes with two children. See also Fig. 6 for an
illustration.

Lemma 1 [5] Let ν be an S-node of T with children μ1, . . . , μh (h ≥ 2). The com-
ponent Gν admits spirality σν if and only if σν = ∑h

i=1 σμi , where σμi is a spirality
value admitted by Gμi (1 ≤ i ≤ h).

Lemma 2 [5] Let ν be a P-node of T with three children μl , μc, and μr . Gν admits
spirality σν with Gμl , Gμc , Gμr in this left-to-right order if and only if there exist

123



2616 Algorithmica (2023) 85:2605–2666

Fig. 6 Illustration of the relationships in: a Lemma 1 for S-nodes, b Lemma 2 for P-nodes with three
children, and c Lemma 3 for P-nodes with two children

three values σμl , σμc , and σμr such that: (i) Gμl , Gμc , Gμr admit spirality σμl , σμc ,
σμr , respectively; and (ii) σν = σμl − 2 = σμc = σμr + 2.

If ν is a P-node with two children, denote by μl and μr its left and right child in T ,
respectively. If ν is a P-node with three children, denote by μl , μc, and μr , the three
children of ν from left to right. Also, for each pole w ∈ {u, v} of ν, the leftmost angle
at w in H is the angle formed by the leftmost external edge and the leftmost internal
edge of Hν incident to w. The rightmost angle at w in H is defined symmetrically.
We define two binary variables αl

w and αr
w as follows: αl

w = 0 (αr
w = 0) if the

leftmost (rightmost) angle at w in H is 180◦, while αl
w = 1 (αr

w = 1) if this angle
is 90◦. Observe that if deg(w) = 4 or if ν has three children, αl

w = αr
w = 1. Also,

if ν has two children, define two additional variables kl
w and kr

w as follows: kd
w = 1

if indegμd
(w) = outdegν(w) = 1, while kd

w = 1/2 otherwise, for d ∈ {l, r}. For
example, in Fig. 2 the component of ν3 is such that kl

u = kr
u = 1, kl

v = kr
v = 1

2 ,
αl

u = 0, and αr
u = αl

v = αr
v = 1; the component of ν5 is such that kl

u = kr
u = 1,

kl
v = 1

2 , kr
v = 1, αl

u = 0, and αr
u = αl

v = αr
v = 1.

Lemma 3 [5] Let ν be a P-node of T with two children μl and μr , and with poles u
and v. Gν admits spirality σν with Gμl and Gμr in this left-to-right order if and only
if there exist six values σμl , σμr , αl

u , αr
u , αl

v , and αr
v such that: (i) Gμl and Gμr admit

spirality σμl and σμr , respectively; (ii) αl
w ∈ {0, 1}, αr

w ∈ {0, 1}, and 1 ≤ αl
w+αr

w ≤ 2
for any w ∈ {u, v}; and (iii) σν = σμl − kl

uαl
u − kl

vα
l
v = σμr + kr

uαr
u + kr

vα
r
v .

In the following we prove a condition under which the plane graph Gν is rectilinear
planar, assuming that its child components (if ν is not a leaf of T ) are rectilinear planar.
This condition depends on the type of node ν and is referred to as representability
condition of ν (or, equivalently, of Gν). Also, if the representability condition holds
for ν, we denote by Iν the set of values of spirality for which Gν is rectilinear planar,
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Fig. 7 Illustration of Lemma 4. For a Q∗ node ν of length 4 we have Iν = [−3, 3]

i.e., Gν admits spirality σν if and only if σν ∈ Iν . We prove that Iν is always an interval
(of all integer or all semi-integer values) and call it the representability interval of ν

(or, equivalently, of Gν).

4.1 Representability Condition for Q∗-Nodes and S-Nodes

For a Q∗-node ν representing a chain of � edges, we say that � is the length of ν. As the
next lemmas prove, the components of Q∗- and S-nodes are always rectilinear planar,
i.e., the representability condition is always true.

Lemma 4 Let ν be a Q∗-node of length �. Graph Gν is always rectilinear planar
(i.e., its representability condition is always true) and its representability interval is
Iν = [−� + 1, � − 1].
Proof Gν is a path with � − 1 degree-2 vertices. For any integer k ∈ [−� + 1, 0], a
rectilinear planar representation Hν of Gν with spirality k is obtained by making a left
turn at k degree-2 vertices of Gν (going from the source to the sink pole), and no turn
at any remaining vertex of Gν . Symmetrically, for any k ∈ (0, � − 1], we realize Hν

with spirality k by making a right turn at exactly k degree-2 vertices of Gν . It is clear
that no values of spirality out of Iν can be achieved. ��

Figure 7 illustrates Lemma 4 for a Q∗-node ν of length 4, for which Iν = [−3, 3].
The figure depicts a rectilinear planar representation of Gν with spirality σν for every
σν ∈ Iν .

Lemma 5 Let ν be an S-node with h ≥ 2 children μ1, . . . , μh. Suppose that, for
every i ∈ [1, h], the representability interval of Gμi is Iμi = [mi , Mi ]. Graph Gν

is always rectilinear planar (i.e., its representability condition is always true) and its
representability interval is Iν = [∑h

i=1 mi ,
∑h

i=1 Mi ].
Proof We use induction on the number of children of ν. In the base case h = 2. By
hypothesis Iμ1 = [m1, M1] and Iμ2 = [m2, M2]. By Lemma 1, a series composition of
a rectilinear representation of Gμ1 with spirality σμ1 and of a rectilinear representation
ofGμ2 with spiralityσμ2 results in a rectilinear representation ofGν with spiralityσν =
σμ1 +σμ2 . Hence, if M1 = m1 + r1 and M2 = m2 + r2, for two non-negative integers
r1 and r2, then the possible values for σν are exactly m1+m2, m1+1+m2, . . . , m1+
r1 + m2, . . . , m1 + r1 + m2 + 1, . . . , m1 + r1 + m2 + r2, i.e., all values in the interval
[m1 + m2, M1 + M2]. In the inductive case h ≥ 3; consider the series composition
G ′

1 of Gμ1 , . . . , Gμh−1 . Graph Gν is the series composition of G ′
1 and Gμh . By the

inductive hypothesis the representability interval of G ′
1 is [∑h−1

i=1 mi ,
∑h−1

i=1 Mi ] and

123



2618 Algorithmica (2023) 85:2605–2666

Fig. 8 Illustration of Lemma 5. a An S-node ν with children μ1, μ2, and μ3. b The com-
ponents Gν , Gμ1 , Gμ2 , and Gμ3 . Since Iμ1=[0, 0], Iμ2=[−1,−1], and Iμ3=[−3, 3], we have

Iν=[∑h
i=1 mi ,

∑h
i=1 Mi ]=[−3, 1]. (c) A rectilinear planar representation of Gν with spirality σν for every

σν ∈ Iν

by Lemma 1 applied to G ′
1 and Gμh we have Iν = [∑h

i=1 mi ,
∑h

i=1 Mi ], using the
same reasoning as for the base case. ��

Figure 8 illustrates Lemma 5. Figure8a shows an S-node ν and its three children
μ1, μ2, and μ3, where μ1 and μ3 are Q∗-nodes and μ2 is a P-node. Figure8b shows
the components Gν , Gμ1 , Gμ2 , and Gμ3 , where: Iμ1 = [0, 0] and Iμ3 = [−2, 2] by
Lemma 4; Iμ2 = [−1,−1], as Gμ2 only admits a rectilinear planar representation of
spirality −1. By Lemma 5, Iν = [∑h

i=1 mi ,
∑h

i=1 Mi ] = [0 − 2 − 1, 0 + 2 − 1] =
[−3, 1]. Figure8c depicts a rectilinear planar representation of Gν with spirality σν

for every σν ∈ Iν .

4.2 Representability Condition for P-Nodes with Three Children

Different from S-nodes, if ν is a P-node and the pertinent graphs of the children of ν

are rectilinear planar, Gν may not be rectilinear planar. In this subsection we consider
the case when ν has three children.

Lemma 6 Let ν be a P-node with three children μl , μc, and μr , ordered from left
to right. Suppose that Gμl , Gμc , and Gμr are rectilinear planar and that their rep-
resentability intervals are Iμl = [ml , Ml ], Iμc = [mc, Mc], and Iμr = [mr , Mr ],
respectively. Graph Gν is rectilinear planar if and only if [ml −2, Ml −2]∩[mc, Mc]∩
[mr + 2, Mr + 2] �= ∅. Also, if this representability condition holds then the repre-
sentability interval of Gν is Iν = [max{ml −2, mc, mr +2},min{Ml −2, Mc, Mr +2}].
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Fig. 9 Illustration of Lemma 6. a Gν is rectilinear planar and Iν = [1, 3], b Gν is not rectilinear planar

Proof Representability condition.Suppose first thatGν is rectilinear planar and let Hν

be a rectilinear planar representation of Gν with spirality σν . By Lemma 2, the spirality
values σμl , σμc , and σμr for the representations of Gμl , Gμc , and Gμr in Hν are such
that σμl = σν +2, σμc = σν , and σμr = σν −2. Since σμl ∈ [ml , Ml ], σμc ∈ [mc, Mc],
and σμr ∈ [mr , Mr ], we have σν ∈ [ml − 2, Ml − 2] ∩ [mc, Mc] ∩ [mr + 2, Mr + 2].
Suppose vice versa that [ml − 2, Ml − 2] ∩ [mc, Mc] ∩ [mr + 2, Mr + 2] �= ∅, and let
k be any value in such intersection. Setting σμl = k + 2, σμc = k, and σμr = k − 2
we have σμl ∈ [ml , Ml ], σμc ∈ [mc, Mc], and σμr ∈ [mr , Mr ]. By Lemma 2, Gν is
rectilinear planar for a value of spirality σν = k.
Representability interval. Assume that Gν is rectilinear planar. Clearly [max{ml −
2, mc, mr + 2},min{Ml − 2, Mc, Mr + 2}] = [ml − 2, Ml − 2] ∩ [mc, Mc] ∩ [mr +
2, Mr +2], and by the truth of the feasiblity condition we have [max{ml −2, mc, mr +
2},min{Ml − 2, Mc, Mr + 2}] �= ∅. Similarly to the first part of the proof of the
representability condition, any rectilinear planar representation of Gν has a value
of spirality in the interval [max{ml − 2, mc, mr + 2},min{Ml − 2, Mc, Mr + 2}].
On the other hand, let k ∈ [max{ml − 2, mc, mr + 2},min{Ml − 2, Mc, Mr + 2}].
Analogously to the second part of the proof of the representability condition, we can
construct a rectilinear planar representation of Gν with spirality σν = k, by combining
in parallel rectilinear planar representations of Gμl , Gμc , and Gμr with spirality values
σμl = σν + 2, σμc = σν , and σμr = σν − 2. ��

Figure 9 illustrates Lemma 6. In Fig. 9a, ν has three children that are Q∗-nodes.
By Lemma 4, Iμl = [−5, 5], Iμc = [−3, 3], and Iμc = [−1, 1]. We have [ml −
2, Ml − 2] ∩ [mc, Mc] ∩ [mr + 2, Mr + 2] = [−7, 3] ∩ [−3, 3] ∩ [1, 3] = {1, 2, 3} �=
∅ and, consequently, Gν is rectilinear planar. Also, Iν = [max{ml − 2, mc, mr +
2},min{Ml −2, Mc, Mr +2}] = [1, 3]. In Fig. 9b, the left child of ν is an S-node such
that Iμl = [−2,−2]. We have [ml − 2, Ml − 2] ∩ [mc, Mc] ∩ [mr + 2, Mr + 2] =
[−4,−4] ∩ [−3, 3] ∩ [1, 3] = ∅ and, consequently, Gν is not rectilinear planar.
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Fig. 10 Schematic illustration of the different types of P-nodes with two children

4.3 Representability Condition for P-Nodes with Two Children

For a P-node ν with two childrenμl andμr , the representability condition and interval
dependon the different configurations of indegree andoutdegree of the poles of ν inGν ,
Gμl , and Gμr . To distinguish the different configurations, we define the type of ν and
of Gν , using a self-contained notation; refer also to Fig. 10 for a schematic illustration.
Each type is denoted using one or two symbols, I (indegree) and O (outdegree), along
with suitable indices. More precisely, the possible types are defined as follows:

• I2Oλβ : both poles of ν have indegree two in Gν ; also one pole has outdegree λ in
Gν and the other pole has outdegree β in Gν , for 1 ≤ λ ≤ β ≤ 2. This gives rise
to the specific types I2O11, I2O12, and I2O22.

• I3dOλβ : one pole of ν has indegree two in Gν , while the other pole has indegree
three in Gν and indegree two in Gμd for d ∈ {l, r}; also one pole has outdegree λ

in Gν and the other has outdegree β in Gν , for 1 ≤ λ ≤ β ≤ 2, where λ = β = 2
is not possible. This gives rise to the specific types I3 lO11, I3rO11, I3 lO12, I3rO12.

• I3dd ′ : both poles of ν have indegree three in Gν ; one of the two poles has indegree
two in Gμd and the other has indegree two in Gμd′ , for dd ′ ∈ {ll, lr , rr} (both
poles have outdegree one in Gν). Hence, the specific types are I3ll , I3lr , I3rr .

In the next three subsections, we analyze separately the properties of the different
types of P-nodes with two children.
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4.3.1 Nodes of Type I2O�ˇ

Lemma 8 states the representability condition and interval for P-nodes of type I2Oλβ .
Its proof is based on the preliminary property stated by Lemma 7.

Lemma 7 Let Gν be a P-node of type I2Oλβ with children μl and μr . Gν is rectilinear
planar if and only if Gμl and Gμr are rectilinear planar for spirality values σμl and
σμr such that σμl − σμr ∈ [2, 4 − γ ], where γ = λ + β − 2.

Proof We distinguish three cases, based on the values of λ and β, namely the cases
I2O11, I2O12, and I2O22.
Case 1: λ = β = 1, i.e., Gν is of type I2O11. We have to prove that Gν is rectilinear
planar if and only if Gμl and Gμr are rectilinear planar for spirality values σμl and σμr

such that σμl −σμr ∈ [2, 4]. For a I2O11 component we have kl
u = kl

v = kr
u = kr

v = 1.
If Gν is rectilinear planar then 1 ≤ αl

u + αr
u ≤ 2 and 1 ≤ αl

v + αr
v ≤ 2 in any

rectilinear planar representation of Gν . Hence, by Lemma 3, for any value of spirality
σν we have σμl − σμr = αl

u + αl
v + αr

u + αr
v ∈ [2, 4].

Suppose vice versa that Gμl and Gμr are rectilinear planar for spirality values σμl

and σμr such that σμl − σμr ∈ [2, 4]. We define a rectilinear planar representation
Hν of Gν by combining in parallel the two rectilinear planar representations of Gμl

and Gμr and by suitably assigning the values of αd
u and αd

v (d ∈ {l, r}), depending on
the value of σμl − σμr . This assignment is such that for any cycle C of Gν through
u and v, the number of 90◦ angles minus the number of 270◦ angles in the interior
of C is equal to four. Poles u and v split C into two paths πl and πr . The spirality
σμl equals the number of right minus left turns along πl while going from u to v,
which corresponds to the number of 90◦ minus 270◦ angles in the interior of C at the
vertices of πl . Similarly, −σμr equals the number of right minus left turns along πr

while going from v to u, which corresponds to the number of 90◦ minus 270◦ angles
in the interior of C at the vertices of πr . By also considering the angles at u and v

inside C , the number of 90◦ angles minus the number of 270◦ angles inside C can be
expressed as ac = σμl − σμr + 4 − αl

u − αr
u − αl

v − αr
v , and three cases are possible:

(i) if σμl − σμr = 2, for every pole w ∈ {u, v} we set αl
w and αr

w such that
αl

w + αr
w = 1; (ii) if σμl − σμr = 3, for one pole w ∈ {u, v} we set αl

w and αr
w such

that αl
w + αr

w = 1, and for the other pole w′ ∈ {u, v} we set αl
w′ = αr

w′ = 1; (iii) if
σμl − σμr = 4, for every pole w ∈ {u, v} we set αl

w = αr
w = 1.

In all the cases above, we have that ac = 4. Also, any other cycle not passing
through u and v is an orthogonal polygon because it belongs to a rectilinear planar
representation of either Gμl (with spirality σμl ) or Gμr (with spirality σμr ).
Case 2: λ = 1 and β = 2, i.e., Gν is of type I2O12. We have to prove that Gν is
rectilinear planar if and only if Gμl and Gμr are rectilinear planar for spirality values
σμl and σμr such that σμl − σμr ∈ [2, 3]. Suppose, w.l.o.g., that outdegν(u) = 1 and
outdegν(v) = 2. We have kl

u = kr
u = 1 and kl

v = kr
v = 1

2 .
If Gν is rectilinear planar then αl

v + αr
v = 2 and αl

u + αr
u ∈ [1, 2]. By Lemma 3,

σμl −σμr = kl
uαl

u +kr
vα

l
v+kl

uαr
u +kr

vα
r
v , and hence σμl −σμr = αl

u + 1
2α

l
v+αr

u + 1
2α

r
v ∈

[2, 3].
Suppose vice versa that Gμl and Gμr are rectilinear planar with spirality σμl and

σμr such that σμl −σμr ∈ [2, 3]. As in the previous case, we define a rectilinear planar

123



2622 Algorithmica (2023) 85:2605–2666

representation Hν of Gν , by combining in parallel the two representations of Gμl and
Gμr and by suitably setting αd

u and αd
v (d ∈ {l, r}). Namely, we set αl

v = αr
v = 1,

and the values of αl
u and αr

u as follows: (i) if σμl − σμr = 2, we set αl
u and αr

u
such that αl

u + αr
u = 1; (ii) if σμl − σμr = 3, we set αl

u = αr
u = 1. With an

argument similar to the previous case, for any cycle C through u and v, the number
of 90◦ angles minus the number of 270◦ angles in C can be expressed in this case by
ac = σμl − σμr + 4 − αl

u − αr
u − 1 (the angle at v in C is always of 90◦). In case (i)

we have ac = 2 + 4 − 1 − 1 = 4; in case (ii) we have ac = 3 + 4 − 2 − 1 = 4. Any
other cycle not passing through u and v remains the same as in the representations of
Gμl and Gμr .
Case 3: λ = β = 2, i.e., Gν is of type I2O22. We prove that Gν is rectilinear planar
if and only if Gμl and Gμr are rectilinear planar for spirality values σμl and σμr such
that σμl − σμr = 2. We have kl

u = kr
u = 1

2 .
If Gν is rectilinear planar then αl

u +αr
u = αl

v +αr
v = 2. By Lemma 3, σμl = σν +1

and σμr = σν − 1; hence σμl − σμr = 2.
Suppose vice versa that σμl − σμr = 2. Again, we obtain a rectilinear planar

representation Hν of Gν by combining in parallel the representations of Gμl and Gμr

and by suitably setting αd
u and αd

v (d ∈ {l, r}). In this case, for any cycle C through
u and v, the number of 90◦ angles minus the number of 270◦ angles in C can be
expressed by ac = σμl − σμr + 1 + 1 (both the angles at u and v inside C is always
of 90◦ degrees). We then set αl

u = αl
v = αr

u = αr
v = 1, which guarantees ac = 4. Any

other cycle not passing through u and v remains the same as in the representations of
Gμl and Gμr . ��
Lemma 8 Let ν be a P-node of type I2Oλβ with children μl and μr . Suppose that
Gμl and Gμr are rectilinear planar with representability intervals Iμl = [ml , Ml ]
and Iμr = [mr , Mr ], respectively. Graph Gν is rectilinear planar if and only if [ml −
Mr , Ml − mr ] ∩ [2, 4 − γ ] �= ∅, where γ = λ + β − 2. Also, if this representability
condition holds then the representability interval of Gν is Iν = [max{ml − 2, mr } +
γ
2 ,min{Ml , Mr + 2} − γ

2 ].
Proof We prove the correctness of the representability condition and the validity of
the representability interval.
Representability condition. Suppose that Gν is rectilinear planar. By Lemma 7, Gμl

and Gμr admit spirality values σμl and σμr , respectively, such that σμl − σμr ∈
[2, 4 − γ ]. Hence, ml − Mr ≤ σμl − σμr ≤ 4 − γ and Ml − mr ≥ σμl − σμr ≥ 2,
i.e., [ml − Mr , Ml − mr ] ∩ [2, 4 − γ ] �= ∅.

Suppose, vice versa that [ml − Mr , Ml − mr ] ∩ [2, 4 − γ ] �= ∅. By hypothesis
Gμl (resp. Gμr ) is rectilinear planar for every integer value of spirality in the interval
[ml , Ml ] (resp. [mr , Mr ]). This implies that for every integer value k in the interval
[ml −Mr , Ml −mr ], there exist rectilinear planar representations forGμl andGμr with
spirality values σμl and σμr such that σμl − σμr = k. Since by hypothesis there exists
a value k ∈ [ml − Mr , Ml − mr ] ∩ [2, 4 − γ ], there must be two spirality values σμl

and σμr for the representations of Gμl and Gμr such that σμl − σμr = k ∈ [2, 4− γ ].
Hence, by Lemma 7, Gν is rectilinear planar.
Representability interval.
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As in the proof of Lemma 7, we distinguish three cases, based on the values of λ

and β.
Case 1: λ = β = 1, i.e., Gν is of type I2O11. We prove that Iν = [max{ml −
2, mr },min{Ml , Mr + 2}].

Assume first that σν is the spirality of a rectilinear representation of Gν . By
Lemma 3, σν ∈ [ml − 2, Mr + 2]. Also, since for a I2O11 component kl

u = kl
v =

kr
u = kr

v = 1, we have σν = σμr + αr
u + αr

v , which implies σν ≥ mr . Analogously,
σν = σμl − αl

u − αl
v ≤ Ml . Hence, σν ∈ Iν = [max{ml − 2, mr },min{Ml , Mr + 2}].

Assume vice versa that k is any integer in the interval Iν = [max{ml −2, mr }, M =
min{Ml , Mr + 2}]. We show that Gν admits a rectilinear planar representation with
spirality σν = k. By hypothesis k ≤ min{Ml , Mr + 2} ≤ Ml ; also, k ≥ max{ml −
2, mr } ≥ ml − 2, i.e., k + 2 ≥ ml . Hence [k, k + 2] ∩ [ml , Ml ] �= ∅. Analogously,
k ≤ min{Ml , Mr + 2} ≤ Mr + 2, i.e., k − 2 ≤ Mr ; also, k ≥ max{ml − 2, mr } ≥ mr .
Hence [k − 2, k] ∩ [mr , Mr ] �= ∅. We now distinguish the following subcases:

• Case 1.1: k ≤ Ml − 2. Consider any two rectilinear planar representations Hμl of
Gμl and Hμr ofGμr with spiralityσμl = k+2 andσμr ∈ [k−2, k]∩[mr , Mr ] �= ∅,
respectively. As already observed, k + 2 ≥ ml and by hypothesis k + 2 ≤ Ml ;
hence σμl ∈ [ml , Ml ]. With this choice we have 2 ≤ σμl − σμr ≤ 4, and we
can combine Hμl and Hμr in parallel as in the proof of Lemma 7 to obtain a
rectilinear planar representation Hν of Gν . By Lemma 3 the spirality of Hν equals
σμl − αu

l − αv
l = k + 2 − αu

l − αv
l and it suffices to set αu

l = αv
l = 1 (which is

always possible, as these two values correspond to 90◦ angles) to get σν = k.
• Case 1.2: k = Ml − 1. Consider any rectilinear planar representation Hμl of Gμl

with spirality σμl = k + 1 = Ml . To suitably choose the spirality of a rectilinear
planar representation Hμr of Gμr , observe that by the representability condition
Ml − 2 ≥ mr and, as already proved, Mr ≥ k − 2, i.e., Mr ≥ Ml − 3. It follows
that [Ml −3, Ml −2]∩ [mr , Mr ] �= ∅. Hence, either Ml −3 ∈ [mr , Mr ] (possibly
mr = Mr = Ml − 3) or Ml − 2 ∈ [mr , Mr ] (possibly mr = Mr = Ml − 2). In the
first case, choose any representation Hμr with spirality σr = Ml −3, which implies
σμl −σμr = 3 ∈ [2, 4]. In the second case, choose Hμr with spirality σr = Ml −2,
which implies σμl − σμr = 2 ∈ [2, 4]. Hμl and Hμr can be combined in parallel
to get a representation of Gν with spirality σν = k. Namely, by Lemma 3 we can
set αl

u = 0 and αl
v = 1 (or vice versa); also, if σμr = Ml − 2 we set αr

u = 0 and
αl

v = 1 (or vice versa), while if σμr = Ml − 3 we set αr
u = αl

v = 1.
• Case 1.3: k = Ml . We can combine in parallel a representation Hμl of Gμl

with spirality σμl = k = Ml and a representation Hμr of Gμr with spirality σμr =
k−2 = Ml −2,which implies thatσμl −σμr = 2. By the representability condition
we have Ml − 2 ≥ mr , i.e., σμr ≥ mr ; also, k ≤ min{Ml , Mr + 2} ≤ Mr + 2, i.e.,
σμr ≤ Mr . Hence, σμr ∈ [mr , Mr ]. By Lemma 3 we can set αl

u = αl
v = 0 and

αr
u = αl

v = 1 to get a representation of Gν with spirality σν = k.

Case 2: λ = 1 and β = 2, i.e., Gν is of type I2O12. The arguments are similar to the
previous case; see “Appendix B” for details.
Case 3: λ = β = 2, i.e., Gν is of type I2O22. We prove that Iν = [max{ml −2, mr }+
1,min{Ml , Mr + 2} − 1].
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Assume first that Gν is rectilinear planar and let Hν be a rectilinear planar represen-
tation of Gν with spirality σν . Let Hμl and Hμr be the rectilinear planar representations
of Gμl and Gμr contained in Hν , and let σμl and σμr be their spirality values. Since
both u and v have outdegree two in Gν we have that αl

u + αr
u = αl

v + αr
v = 2.

By Lemma 3, σμl = σν + 1 and σμr = σν − 1. By the representability condition,
σμr = σμl −2.Henceσμr ≥ ml −2 andσμr ≥ max{ml −2, mr }. Also byσν = σμr +1,
σν ≥ max{ml −2, mr }+1. Similarly, by the representability condition, σμl = σμr +2.
Hence σμl ≤ Mr + 2 and σμl ≤ max{Ml , Mr + 2}. Since σμl = σν + 1 we have
σν ≤ max{Ml , Mr + 2} − 1.

Assume vice versa that k is an integer in the interval Iν = [max{ml − 2, mr } +
1,min{Ml , Mr + 2}− 1]. We show that there exists a rectilinear planar representation
of Gν with spirality σν = k. We have k + 1 ∈ [max{ml , mr + 2},min{Ml , Mr + 2}]
and therefore k + 1 ∈ [ml , Ml ]. Hence there exists a rectilinear planar repre-
sentation Hμl of Gμl with spirality σμl = k + 1. Similarly, we have k − 1 ∈
[max{ml − 2, mr },min{Ml − 2, Mr }] and therefore k − 1 ∈ [mr , Mr ]. Hence there
exists a rectilinear planar representation Hμr of Gμr with spirality σμr = k −1. By the
representability condition Gν has a rectilinear planar representation Hν ; also, follow-
ing the same construction as in the proof of Lemma 7, the spirality of Hν is σν = k.

��

4.3.2 Nodes of Type I3dO�ˇ

Lemma 10 states the representability condition and interval for P-nodes of type I2Oλβ .
Its proof is based on the preliminary property stated by Lemma 9.

Lemma 9 Let Gν be a P-node of type I3dOλβ and let μl and μr be its two children.
Gν is rectilinear planar if and only if Gμl and Gμr are rectilinear planar for spirality
values σμl and σμr , respectively, such that σμl −σμr ∈ [ 52 , 7

2−γ ], where γ = λ+β−2.

Proof We distinguish four cases, based on the values of λ, β, and d.
Case 1: λ = β = 1 and d = l, i.e., Gν is of type I3 lO11.We prove that Gν is rectilinear
planar if and only if Gμl and Gμr are rectilinear planar for spirality values σμl and σμr

such that σμl − σμr ∈ [ 52 , 7
2 ]. For an I3 lO11 component we have kl

u = kr
u = kr

v = 1
and kl

v = 1
2 .

If Gν is rectilinear planar then 1 ≤ αl
u +αr

u ≤ 2 and αl
v = αr

v = 1 in any rectilinear
planar representation of Gν . Hence, by Lemma 3, for any value of spirality σν we have
σμl − σμr = αl

u + 1
2α

l
v + αr

u + αr
v ∈ [ 52 , 7

2 ].
Suppose vice versa that Gμl and Gμr are rectilinear planar for spirality values σμl

and σμr such that σμl − σμr ∈ [ 52 , 7
2 ]. We define a rectilinear planar representation

Hν of Gν , by combining in parallel the two rectilinear planar representations of Gμl

and Gμr and by suitably assigning the values of αl
u and αr

u , depending on the value of
σμl − σμr .

Let v′ be the alias vertex of Gμl that is in Gν . Any cycle C that goes through u and
v also passes through v′. We show that the number of 90◦ angles minus the number
of 270◦ angles inside C is equal to four.
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Vertices u and v′ split C into two paths πl and πr . Suppose to visit C clockwise.
The number of right minus left turns along πl while going from u to v′ equals σμl + 1

2 .
The number of right minus left turns along πr while going from v′ to u equals −σμr .
Hence, the sum σμl + 1

2 − σμr + 2 − αr
u − αl

u corresponds to the number of 90◦
angles minus the number of 270◦ angles inside C at the vertices of πl . Notice that
αr

u + αl
u ∈ {1, 2} since u is a vertex of degree 3. If σμl − σμr = 5

2 we set αr
u + αl

u = 1
and we have σμl + 1

2 −σμr +2−αr
u −αl

u = 5
2 + 1

2 +2−1 = 4. Else, if σμl −σμr = 7
2

we set αr
u + αl

u = 2 and we have σμl + 1
2 − σμr + 2− αr

u − αl
u = 7

2 + 1
2 + 2− 2 = 4.

Any other cycle not passing through u and v remains the same as in the represen-
tations of either Gμl (with spirality σμl ) and Gμr (with spirality σμr ).
Case 2: λ = 1, β = 2, and d = l, i.e., Gν is of type I3 lO12. We prove that Gν

is rectilinear planar if and only if Gμl and Gμr are rectilinear planar for spirality
values σμl and σμr such that σμl − σμr = 5

2 (note that this corresponds to the interval
[ 52 , 7

2 − γ ] claimed in the lemma). For an I3 lO12 component, kl
u = kr

u = kl
v = 1

2 and
kr
v = 1.
If Gν is rectilinear planar then αl

u = αr
u = αl

v = αr
v = 1 in any rectilinear planar

representation of Gν . Hence, by Lemma 3, for any value of spirality σν we have
σμl − σμr = 1

2α
l
u + 1

2α
l
v + 1

2α
r
u + αr

v = 5
2 .

Suppose vice versa that Gμl and Gμr are rectilinear planar for spirality values
σμl and σμr such that σμl − σμr = 5

2 . As usual, we define Hν by combining in
parallel the two rectilinear planar representations of Gμl and Gμr and we assign
values αl

u = αl
v = αr

u = αr
v = 1.

Let v′ be the alias vertex of Gμl that is in Gν . Any cycle C that goes through u and
v also passes through v′.

Vertices u and v′ split C into two paths πl and πr . Suppose to visit C clockwise.
The number of right turns minus left turns along πl while going from u to v′ equals
σμl + 1

2 . The number of right turns minus left turns along πr while going from v′ to u
equals −σμr . Also, pole u forms a 90◦ angle in C . Hence, the sum σμl + 1

2 − σμr + 1
corresponds to the number of 90◦ angles minus the number of 270◦ angles in C at the
vertices of πl . Since σμl − σμr = 5

2 we have σμl + 1
2 − σμr + 1 = 5

2 + 1
2 + 1 = 4.

Any other cycle not passing through u and v remains the same as in the rectilinear
representations of Gμl (with spirality σμl ) and Gμr (with spirality σμr ).
Case 3: λ = β = 1 and d = r . Symmetric to Case 1.
Case 4: λ = 1, β = 2, and d = r . Symmetric to Case 2. ��
Lemma 10 Let ν be a P-node of type I3dOλβ with children μl and μr . Suppose that
Gμl and Gμr are rectilinear planar with representability intervals Iμl = [ml , Ml ]
and Iμr = [mr , Mr ], respectively. Graph Gν is rectilinear planar if and only if [ml −
Mr , Ml − mr ] ∩ [ 52 , 7

2 − γ ] �= ∅, where γ = λ + β − 2. Also, if this representability
condition holds then the representability interval of Gν is Iν = [max{ml − 3

2 , mr +
1} + γ−ρ(d)

2 ,min{Ml − 1
2 , Mr + 2} − γ+ρ(d)

2 ], where φ(·) is a function such that
φ(r) = 1 and φ(l) = 0.

Proof We prove the correctness of the representability condition and the validity of
the representability interval.
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Representability condition. Suppose that Gν is rectilinear planar. By Lemma 9, Gμl

and Gμr admit spirality values σμl and σμr , respectively, such that σμl − σμr ∈
[ 52 , 7

2 − γ ], where γ = λ + β − 2. Hence, ml − Mr ≤ σμl − σμr ≤ 7
2 − γ and

Ml − mr ≥ σμl − σμr ≥ 5
2 , i.e., [ml − Mr , Ml − mr ] ∩ [ 52 , 7

2 − γ ] �= ∅.
Suppose, vice versa that [ml − Mr , Ml −mr ]∩ [ 52 , 7

2 −γ ] �= ∅. By hypothesis Gμl

(resp. Gμr ) is rectilinear planar for every value of spirality in the interval [ml , Ml ]
(resp. [mr , Mr ]). This implies that for every semi-integer value k in the interval [ml −
Mr , Ml − mr ], there exist rectilinear planar representations for Gμl and Gμr with
spirality values σμl and σμr such that σμl − σμr = k. Since by hypothesis there
exists a value k ∈ [ml − Mr , Ml − mr ] ∩ [ 52 , 7

2 − γ ], there must be two values
of spirality values σμl and σμr for the representations of Gμl and Gμr such that
σμl − σμr = k ∈ [ 52 , 7

2 − γ ]. Hence, by Lemma 9, Gν is rectilinear planar.
Representability interval. As for Lemma 9, the case analysis is based on the values
of λ, β, and d; w.l.o.g. we assume that v is the pole of degree four.
Case 1: λ = β = 1, and d = l, i.e., Gν is of type I3 lO11. We prove that Iν =
[max{ml − 3

2 , mr + 1},min{Ml − 1
2 , Mr + 2}].

Assume first that σν is the spirality of a rectilinear planar representation of Gν .
Since for an I3 lO11 component we have kl

u = kr
u = kr

v = 1 and kl
v = 1

2 , by Lemma 3
we have σν = σμr + αr

u + αr
v and σν = σμl − αl

u − 1
2α

l
v . Since αl

u + αr
u ∈ {1, 2} and

αl
v = αr

v = 1, we have σν ≥ mr + 1, σν ≤ Mr + 2, σν ≥ ml − 3
2 , and σν ≤ Ml − 1

2 .
Conversely, we show that if σν ∈ [max{ml − 3

2 , mr + 1},min{Ml − 1
2 , Mr + 2}],

there exists a rectilinear planar representation of Gν with spirality σν . We have σν ∈
[ml − 3

2 , Ml − 1
2 ]. Hence, σν + 1

2 ≤ Ml and σν + 3
2 ≥ ml , i.e., [σν + 1

2 , σν + 3
2 ] ∩

[ml , Ml ] �= ∅. Also, since ml and Ml are both semi-integer numbers while σν is
integer, it is impossible to have σν + 1 = ml = Ml . It follows that σν + 1

2 ∈ [ml , Ml ]
or σν + 3

2 ∈ [ml , Ml ]. With the same reasoning, we have σν ∈ [mr + 1, Mr + 2] and
[σν − 2, σν − 1] ∩ [mr , Mr ] �= ∅. Hence, σν − 2 ∈ [mr , Mr ] or σν − 1 ∈ [mr , Mr ].
We now observe that either σν + 3

2 ∈ [ml , Ml ] or σν − 2 ∈ [mr , Mr ]. Indeed, if
it were σν + 3

2 /∈ [ml , Ml ] and σν − 2 /∈ [mr , Mr ], then σν + 1
2 ∈ [ml , Ml ] and

σν − 1 ∈ [mr , Mr ] and consequently, σν + 1
2 = Ml and σν − 1 = mr ; hence, it would

be Ml − mr = 3
2 and, by the representability condition, Gν would not be rectilinear

planar.
Based on this observation, we can construct a rectilinear planar representation Hμl

of Gμl with spirality σμl and a rectilinear planar representation Hμr of Gμr with
spirality σμr , by distinguishing the following cases, one of which must be verified:

• Case (a): σν + 3
2 /∈ [ml , Ml ]. This implies that σν + 1

2 ∈ [ml , Ml ] and σν − 2 ∈
[mr , Mr ], and therefore we set σμl = σν + 1

2 and σμr = σν − 2.
• Case (b): σν − 2 /∈ [mr , Mr ]. This implies that σν + 3

2 ∈ [ml , Ml ] and σν − 1 ∈
[mr , Mr ], and therefore we set σμl = σν + 3

2 and σμr = σν − 1.
• Case (c): σν + 3

2 ∈ [ml , Ml ] and σν − 2 ∈ [mr , Mr ]. We set σμl = σν + 3
2 and

σμr = σν − 2.

In all the three cases we have σμl − σμr ∈ [ 52 , 7
2 ], hence, there exists a rectilinear

planar representation Hν of Gν given the values of σμl and σμr . We have to prove that
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in the three cases the spirality of Hν is σν . By Lemma 3 we have σ ′
ν = σμl −αl

u − 1
2α

l
v ,

where σ ′
ν is the spirality of the representation Hν of Gν given a choice of σμl , α

l
v , and

αr
v . In Case (a) we have σ ′

ν = σν + 1
2 − αl

u − 1
2α

l
v; choosing αl

u = 0 and αl
v = 1

we have σ ′
ν = σν . In Cases (b) and (c) we have σ ′

ν = σν + 3
2 − αl

u − 1
2α

l
v; choosing

αl
u = 1 and αl

v = 1 we have σ ′
ν = σν .

Case 2: λ = 1, β = 2, and d = l, i.e., Gν is of type I3 lO12. We prove that Iν =
[max{ml − 3

2 , mr + 1} + 1
2 ,min{Ml − 1

2 , Mr + 2} − 1
2 ] = [max{ml − 1, mr +

3
2 },min{Ml − 1, Mr + 3

2 }.
Assumefirst thatσν is the spirality of a rectilinear planar representation ofGν . Since

for an I3 lO12 component we have kl
u = kr

u = kl
v = 1

2 and kr
v = 1, by Lemma 3 we

have σν = σμr + 1
2α

r
u +αr

v and σν = σμl − 1
2α

l
u − 1

2α
l
v . Sinceαl

u = αl
v = αr

u = αr
v = 1,

we have: σν ≥ mr + 3
2 , σν ≤ Mr + 3

2 , σν ≥ ml − 1, and σν ≤ Ml − 1.
Conversely, we show that if σν ∈ [max{ml − 1, mr + 3

2 },min{Ml − 1, Mr + 3
2 }],

there exists a rectilinear planar representation of Gν with spirality σν . We have σν ∈
[ml − 1, Ml − 1] and σν ∈ [mr + 3

2 , Mr + 3
2 ]. Hence, σν + 1 ∈ [ml , Ml ] and

σν − 3
2 ∈ [mr , Mr ]. We can construct a rectilinear planar representation Hμl of Gμl

with spirality σμl = σν + 1 and a rectilinear planar representation Hμr of Gμr with
spiralityσμr = σν− 3

2 . Notice that, for this choice, we haveσμl −σμr = 5
2 , hence, there

exists a rectilinear planar representation Hν of Gν given the values of σμl and σμr . We
have to prove that the spirality of Hν isσν . ByLemma3we haveσ ′

ν = σμl − 1
2α

l
u− 1

2α
l
v ,

where σ ′
ν is the spirality of the representation Hν of Gν given a choice of σμl , αl

v ,
and αr

v . Since σν = σμl − 1, αl
v = 1, and αr

v = 1, we have σ ′
ν = σν + 1 − 1 = σν .

Case 3: λ = β = 1 and d = r . Symmetric to Case 1.
Case 4: λ = 1, β = 2, and d = r . Symmetric to Case 2. ��

4.3.3 Nodes of Type I3dd′

Lemma 12 states the representability condition and interval for P-nodes of type I2Oλβ .
Its proof is based on the preliminary property stated by Lemma 11.

Lemma 11 Let Gν be a P-node of type I3dd ′ and let μl and μr be its two children.
Gν is rectilinear planar if and only if Gμl and Gμr are rectilinear planar for spirality
values σμl and σμr , respectively, such that σμl − σμr = 3.

Proof We distinguish three cases, based on the values of d and d ′. The proof for type
I3rl is symmetric to the one for type I3lr .
Case 1: d = d ′ = l, i.e., Gν is of type I3ll . We prove that Gν is rectilinear planar if
and only if Gμl and Gμr are rectilinear planar for spirality values σμl and σμr such
that σμl − σμr = 3. For an I3ll component we have kl

u = kl
v = 1

2 and kr
u = kr

v = 1.
If Gν is rectilinear planar, we have αl

u = αr
u = αl

v = αr
v = 1 in any rectilinear

planar representation of Gν . Hence, by Lemma 3, for any value of spirality σν we have
σμl − σμr = 1

2α
l
u + 1

2α
l
v + αr

u + αr
v = 3.

Suppose vice versa that Gμl and Gμr are rectilinear planar for spirality values σμl

and σμr such that σμl − σμr = 3. We define a rectilinear planar representation Hν
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of Gν , by combining in parallel the two rectilinear planar representations of Gμl and
Gμr with values αl

u = αl
v = αr

u = αr
v = 1.

Let u′ and v′ be the alias vertices of Gμl that subdivide edges of Gν . Any cycle C
through u and v also passes through u′ and v′.

Vertices u′ and v′ split C into two paths πl and πr . Suppose to visit C clockwise.
The number of right turns minus left turns along πl while going from u′ to v′ equals
σμl + 1. The number of right turns minus left turns along πr while going from v′
to u′ equals −σμr . The sum of these two values corresponds to the number of 90◦
angles minus the number of 270◦ angles in the interior of C at the vertices of πl ; we
have σμl + 1 − σμr = 3 + 1 = 4. All other cycles not passing through u and v are
orthogonal polygons as they remain the same as in Gμl (with spirality σμl ) and Gμr

(with spirality σμr ).
Case 2: d = d ′ = r . Symmetric to Case 1, observing that kr

u = kr
v = 1

2 and kl
u =

kl
v = 1.
Case 3: d = l and d ′ = r , i.e., Gν is of type I3lr . We prove that Gν is rectilinear planar
if and only if Gμl and Gμr are rectilinear planar for spirality values σμl and σμr such
that σμl − σμr = 3. For an I3lr component we have kr

u = kl
v = 1

2 and kl
u = kr

v = 1.
If Gν is rectilinear planar, we have αl

u = αr
u = αl

v = αr
v = 1 in any rectilinear

planar representation of Gν . Hence, by Lemma 3, for any value of spirality σν we have
σμl − σμr = αl

u + 1
2α

l
v + 1

2α
r
u + αr

v = 3.
Suppose vice versa that Gμl and Gμr are rectilinear planar for values of spirality

σμl and σμr such that σμl − σμr = 3. We define Hν by combining in parallel the two
rectilinear planar representations of Gμl and Gμr , with values αl

u = αl
v = αr

u = αr
v =

1.
Let v′ be the alias vertex of the pole v of Gμl such that v′ subdivides an edge of

Gν . Similarly, let u′ be the alias vertex of the pole u of Gμr such that u′ subdivides
an edge of Gν . Any cycle C through u and v also passes through u′ and v′.

Vertices u′ and v′ split C into two paths πl and πr . Visiting C clockwise, the
number of right minus left turns along πl while going from u′ to v′ equals σμl + 1

2 .
The number of right minus left turns along πr while going from v′ to u′ equals
−σμr + 1

2 . The sum of these two values corresponds to the number of 90◦ angles
minus the number of 270◦ angles in the interior of C at the vertices of πl , and we have
σμl + 1

2 − σμr + 1
2 = 3 + 1

2 + 1
2 = 4.

��
Lemma 12 Let ν be a P-node of type I3dd ′ with children μl and μr . Suppose that Gμl

and Gμr are rectilinear planar with representability intervals Iμl = [ml , Ml ] and
Iμr = [mr , Mr ], respectively. Graph Gν is rectilinear planar if and only if 3 ∈ [ml −
Mr , Ml − mr ]. Also, if this representability condition holds then the representability
interval of Gν is Iν = [max{ml − 1, mr + 2} − φ(d)+φ(d ′)

2 ,min{Ml − 1, Mr + 2} −
φ(d)+φ(d ′)

2 ], where φ(·) is a function such that φ(r) = 1 and φ(l) = 0.

Proof We prove the correctness of the representability condition and the validity of
the representability interval.
Representability condition. Suppose that Gν is rectilinear planar. By Lemma 11, Gμl

and Gμr admit spirality values σμl and σμr , respectively, such that σμl − σμr = 3.
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Hence, ml − Mr ≤ σμl − σμr ≤ 3 and Ml − mr ≥ σμl − σμr ≥ 3, i.e., 3 ∈
[ml − Mr , Ml − mr ].

Suppose, vice versa that 3 ∈ [ml − Mr , Ml −mr ]. By hypothesis Gμl (resp. Gμr ) is
rectilinear planar for every value of spirality in the interval [ml , Ml ] (resp. [mr , Mr ]).
This implies that there exist rectilinear planar representations for Gμl and Gμr with
spirality values σμl ∈ [ml , Ml ] and σμr ∈ [mr , Mr ] such that σμl − σμr = 3. Hence,
by Lemma 11 Gν is rectilinear planar.
Representability interval. We distinguish three cases, based on the values of d and
d ′. Note that a possible forth case for the type I3rl is symmetric to the case for the
type I3lr .
Case 1: d = d ′ = l, i.e., Gν is of type I3ll . We prove that Iν = [max{ml − 1, mr +
2},min{Ml − 1, Mr + 2}].

Assume first that σν is the spirality of a rectilinear planar representation of Gν .
Since for an I3ll component we have kl

u = kl
v = 1

2 and kr
u = kr

v = 1, by Lemma 3 we
have σν = σμr +αr

u +αr
v and σν = σμl − 1

2α
l
u − 1

2α
l
v . Since αl

u = αl
v = αr

u = αr
v = 1,

we have: σν ≥ mr + 2, σν ≤ Mr + 2, σν ≥ ml − 1, and σν ≤ Ml − 1.
Conversely, we show that if σν ∈ [max{ml − 1, mr + 2},min{Ml − 1, Mr +

2}], there exists a rectilinear planar representation of Gν with spirality σν . We have
σν ∈ [ml − 1, Ml − 1] and σν ∈ [mr + 2, Mr + 2]. Hence, σν + 1 ∈ [ml , Ml ] and
σν − 2 ∈ [mr , Mr ]. We can construct a rectilinear planar representation Hμl of Gμl

with spirality σμl = σν + 1 and a rectilinear planar representation Hμr of Gμr with
spirality σμr = σν −2. Note that, for this choice, we have σμl −σμr = 3, hence, there
exists a rectilinear planar representation Hν of Gν given the values of σμl and σμr . We
have to prove that the spirality of Hν isσν . ByLemma3we haveσ ′

ν = σμl − 1
2α

l
u− 1

2α
l
v ,

where σ ′
ν is the spirality of the representation Hν of Gν given a choice of σμl , α

l
v , and

αl
u . Since σν = σμl − 1, αl

u = 1, and αl
v = 1, we have σ ′

ν = σν + 1 − 1
2 − 1

2 = σν .
Case 2: d = d ′ = r . Symmetric to Case 1.
Case 3: d = l and d ′ = r , i.e.,Gν is of type I3lr .We prove that Iν = [max{ml −1, mr +
2}− 1

2 ,min{Ml − 1, Mr + 2}− 1
2 ] = [max{ml − 3

2 , mr + 3
2 },min{Ml − 3

2 , Mr + 3
2 }].

Assumefirst thatσν is the spirality of a rectilinear planar representation ofGν . Since
for an I3lr component we have kr

u = kl
v = 1

2 and kl
u = kr

v = 1, by Lemma 3 we have
σν = σμr + 1

2α
r
u + αr

v and σν = σμl − αl
u − 1

2α
l
v . Since αl

u = αl
v = αr

u = αr
v = 1, we

have: σν ≥ mr + 3
2 , σν ≤ Mr + 3

2 , σν ≥ ml − 3
2 and σν ≤ Ml − 3

2 . Conversely, we show
that if σν ∈ [max{ml − 3

2 , mr + 3
2 },min{Ml − 3

2 , Mr + 3
2 }], there exists a rectilinear

planar representation of Gν with spirality σν . We have σν ∈ [ml − 3
2 , Ml − 3

2 ] and
σν ∈ [mr + 3

2 , Mr + 3
2 ]. Hence, σν + 3

2 ∈ [ml , Ml ] and σν − 3
2 ∈ [mr , Mr ]. We can

construct a rectilinear planar representation Hμl of Gμl with spirality σμl = σν + 3
2

and a rectilinear planar representation Hμr of Gμr with spirality σμr = σν − 3
2 . Notice

that, for this choice, we have σμl − σμr = 3, hence, there exists a rectilinear planar
representation Hν of Gν given the values of σμl and σμr . We have to prove that the
spirality of Hν is σν . By Lemma 3, σ ′

ν = σμl − αl
u − 1

2α
l
v , where σ ′

ν is the spirality of
the representation Hν of Gν given a choice of σμl , α

l
v , and αl

u . Since σν = σμl − 3
2 ,

αl
u = 1, and αl

v = 1, we have σ ′
ν = σν + 3

2 − 1 − 1
2 = σν . ��
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4.4 Representability Condition for the Root

To finally achieve a characterization of rectilinear series–parallel graphs we need to
consider the representability condition that must be verified at the level of the root,
when the reference edge is not a dummy edge. Denote by e = (u, v) the reference
edge of G and let ρ be the root of T with respect to e. Let η be the child of ρ that does
not correspond to e, and let u′ and v′ be the alias vertices associated with the poles u
and v of Gη. Suppose that Gη is rectilinear planar with representability interval Iη.

We say that G satisfies the root condition if Iη ∩ 
ρ �= ∅, where 
ρ is defined as
follows: (i)
ρ = [2, 6] if u′ coincides with u and v′ coincides with v; (ii)
ρ = [3, 5]
if exactly one of u′ and v′ coincides with u and v, respectively; (iii) 
ρ = 4 if none
of u′ and v′ coincides with u and v. We prove the following.

Lemma 13 Let e = (u, v) be the reference edge of G and let ρ be the root of T with
respect to e. Let η be the child of ρ that does not correspond to e. Suppose that Gη

is rectilinear planar with representability interval Iη. G is rectilinear planar if and
only if it satisfies the root condition. Also, if G satisfies the root condition, it admits
a rectilinear planar representation H for any value of spirality ση of Hη such that
ση ∈ Iη ∩ 
ρ , where Hη is the restriction of H to Gη.

Proof Let fint be the internal face of G incident to e. Observe that u and v are the poles
of Gη. Let u′ and v′ be the alias vertices associated with u and with v, respectively. H
is a rectilinear planar representation of G if and only if the following two conditions
hold: the restriction Hη of H to Gη is a rectilinear planar representation; the number A
of right turns minus left turns of any simple cycle of G in H containing e and traversed
clockwise in H is equal to 4. We have A = ση + αu′ + αv′ , where: ση is the spirality
of Hη; for w ∈ {u′, v′}, αw = 1, αw = 0, and αw = −1 if the angle formed by w in
fint is equal to 90o, 180o, or 270o, respectively.
According to the definition of root condition, there are three cases to consider: (i)


ρ = [2, 6], (ii)
ρ = [3, 5], and (iii)
ρ = 4.ConsiderCase (i). Since in this case the
alias vertices coincide with the poles, we have αu′ ∈ [−1, 1], αv′ ∈ [−1, 1], and hence
αu′ + αv′ ∈ [−2, 2]. If G is rectilinear planar, we have that A = ση + αu′ + αv′ = 4
for some ση ∈ Iη and for αu′ + αv′ ∈ [−2, 2]. Hence, ση = 4 − αu′ − αv′ ∈ [2, 6],
i.e., the root condition Iη ∩ 
ρ �= ∅ holds.

Suppose vice versa that the root condition Iη ∩ 
ρ �= ∅ holds. For any value
ση ∈ Iη ∩
ρ there exists a rectilinear planar representation of Hη of Gη with spirality
ση. Also, since 
ρ = [2, 6], we have that 4 − ση ∈ [−2, 2], and therefore, for
any possible choice of ση ∈ Iη ∩ 
ρ , we can suitably choose αu′ and αv′ such that
αu′ +αv′ = 4−ση, i.e., A = ση +αu′ +αv′ = 4. It follows that G is rectilinear planar
and it admits a rectilinear planar representation for any value ση ∈ Iη ∩ 
ρ .

Cases (ii) and (iii) are proved analogously; in Case (ii) αu′ + αv′ ∈ [−1, 1] and in
Case (iii) αu′ + αv′ = 0. ��

The next theorem summarizes the main result of this section.

Theorem 2 Let G be a plane series–parallel 4-graph and let T be an SPQ∗-tree of
G. Graph G is rectilinear planar if and only if, for every node of T the corresponding
representability condition of Table 1 is satisfied.
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5 Overview of the Bend-Minimization Algorithm

Let G be a plane series–parallel 4-graph. If G is biconnected let e be any edge on the
external face of G; otherwise, we add a dummy edge e that makes it biconnected. Let
T be the SPQ∗-tree of G with respect to e. Our bend-minimization algorithm works
in two phases. It first visits T bottom-up (in post order) to determine the number of
bends of a bend-minimum orthogonal representation of G. Then it visits T top-down
to construct such an orthogonal representation.

When a node ν is considered in the bottom-up visit, the algorithm assigns to ν

a budget bν of bends. This budget corresponds to the minimum number of extra
bends that must be added to the budgets of the children of ν to realize an orthogonal
representation of Gν . In other words, bν can be regarded as the minimum number of
extra subdivision vertices that must be inserted along the edges of Gν (besides those
already inserted for the children of ν) to make it rectilinear planar. The budget bν is
larger than zero if and only if the representability condition of the rectilinear planarity
testing for ν is not satisfied. Hence, according to Table 1, bν = 0 if ν is a Q∗- or an
S-node, while it can be positive if ν is a P-node or the root of T . For instance, for the
graph of Fig. 1a and the tree T of Fig. 1c, the first component that requires some bends
in the bottom-up visit of T is Gν3 , namely bν3 = 3; two more bends are required at
the root level, i.e., bρ = 2. When bν > 0, a crucial and non-trivial aspect is how to
efficiently compute bν . The other key aspect is how to succinctly describe the set I ′

ν

of spirality values that a rectilinear representation of a subdivision of Gν can take, by
considering all possible distributions of the bν subdivision vertices along its edges.
We will show that I ′

ν is still an interval, which allows us to represent it in O(1) space.
Section 6 describes how to compute the budgets bν and the sets I ′

ν in the bottom-up
visit of T , and it proves the optimality of the solution. Section7 describes the top-down
visit and summarizes our main result.

6 Budgets and Optimality

In the following we denote by m and M the minimum and maximum values of the
representability interval Iν of ν when Gν is rectilinear planar, as defined in Table
1. Also, since when we visit ν, all its children have already been visited and have
received their own budget of bends (i.e., of subdivision vertices for the corresponding
component), we will simply assume that each child of ν is rectilinear planar.

As observed, if ν is either a Q∗-node or an S-node, bν = 0. Hence, we assume that
ν is a P-node. A child μ of a (non-root) P-node ν is either a Q∗- or an S-node. To
compute bν and I ′

ν we define the concept of exposed edge of μ. If μ is a Q∗-node,
every edge of Gμ is an exposed edge of μ (and of Gμ). If μ is an S-node with at least
one Q∗-node child μ′, every edge of Gμ that belongs to Gμ′ is an exposed edge of
μ (and of Gμ). Else, μ is an S-node that has no exposed edge. Lemma 14 states a
crucial property. It implies that when we need to insert some subdivision vertices in
an S-component μ that is a child of ν, these vertices can always be added along an
exposed edge of μ, if one exists.
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Fig. 11 Illustration of Lemma 14. a An orthogonal representation Hμ of an S-component with spirality 3
and having 3 bends. An exposed edge, shown as a red thick segment. bAdifferent orthogonal representation
H ′

μ of the same component having the same spirality and number of bends as Hμ, but such that all the
bends are along the red thick exposed edge (Color figure online)

Lemma 14 Let μ be an S-node such that Gμ is rectilinear planar and μ has an exposed
edge e. Let Hμ be an orthogonal representation of Gμ having b > 0 bends. There
exists an orthogonal representation H ′

μ of Gμ with b bends such that: (i) all the b
bends of H ′

μ lie on e; (ii) σ(H ′
μ) = σ(Hμ).

Proof Let u and v be the poles of Gμ. Any path from u to v inside Gμ contains the
exposed edge e. Consider an orthogonal representation Hμ of Gμ with b > 0 bends.
Let e′ �= e be an edge with at least one bend in Hμ. Let Puv be any simple path
from u to v of Hμ passing through e′. Suppose, without loss of generality, that the
bend on e′ corresponds to a right turn along Puv while going from u to v. Since by
hypothesis Gμ is rectilinear planar, we can derive from Hμ a different orthogonal
representation H ′′

μ with b bends by simply moving the right bend from e′ to e, i.e.,
by inserting a right bend along e and by straightening the right bend of Hμ along e′.
With this transformation, the number of right and left turns along Puv is the same in
H ′′

μ and Hμ, and the angles at u and v in the two representations are also the same.
This implies that σ(H ′′

μ) = σ(Hμ). By repeatedly applying this transformation on H ′′
μ

until all the b bends of Hμ are moved on e we get the desired representation H ′
μ. ��

An illustration of Lemma 14 is given in Fig. 11. In Fig. 11a an orthogonal repre-
sentation Hμ of an S-component is shown. It has spirality 3 and 3 bends. In Fig. 11b
a different orthogonal representation H ′

μ of the same component is given, having the
same spirality and number of bends as Hμ, where all the bends are along an exposed
edge.

Observe that, if ν is a P-node with three children, each of them has an exposed
edge (as the poles of ν have degree at most four). If ν has two children, it might have
a child without exposed edges only if ν is of type I3ll or I3rr (see Fig. 10). Section6.1
and Sect. 6.2 focus on the budget of P-nodes with three children and on the budget of
P-nodes with two children, respectively. Section6.3 concentrates on the budget of the
root.
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Fig. 12 a Illustration of the notation mt , Mt for t ∈ {x, y, z}. b Illustration of the statement of
Lemma 15 for the graph Gν . By Property (i) of the lemma bν = mz − Mx = 2 and by Property (ii)
I ′
ν = [max{Mx , my},min{mz , M y}] = [0, 2]

6.1 Budget of P-Nodes with Three Children

Lemma 15 handles the case of a P-node ν with three children μl , μc, and μr such
that the corresponding components are rectilinear planar, while Gν is not rectilinear
planar. Denote by Iμl = [ml , Ml ], Iμc = [mc, Mc], and Iμr = [mr , Mr ] the repre-
sentability intervals of μl , μc, and μr , respectively. Since Gν is not rectilinear planar,
the representability condition for ν is violated, i.e., [ml − 2, Ml − 2] ∩ [mc, Mc] ∩
[mr + 2, Mr + 2] = ∅ (see the third row of Table 1). Rename the three intervals
involved in the representability condition as [mx , Mx ], [my, M y], and [mz, Mz], where
x, y, z ∈ {l, c, r} and x �= y �= z, in such a way that mz = max{ml − 2, mc, mr + 2}
and Mx = min{Ml − 2, Mc, Mr + 2}. Namely, z = l if mz = ml − 2, z = c if
mz = mc, and z = r if mz = mr + 2. Similarly, x = l if Mx = Ml − 2, x = c if
Mx = Mc, and x = r if Mx = Mr + 2. See Fig. 12a for an example. The following
simple property holds.

Proposition 1 [mx , Mx ] and [mz, Mz] are disjoint, with mz > Mx .

Proof Suppose for a contradiction that mz ≤ Mx . Since Mx is the minimum of the
three maxima, we have that M y and Mz are to the right of Mx . Also, since mz is the
maximum of three minima, we have that my and mx are to the left of mz . Hence the
three intervals [mx , Mx ], [my, M y], and [mz, Mz] share the interval [mz, Mx ], which
contradicts the fact that Gν is not rectilinear planar. ��
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The next lemma gives the rule for computing the budget of a P-node with three
children and for determining the corresponding interval of spirality values, once a
number of bends equal to the budget has been added.

Lemma 15 Let ν be a P-node with three childrenμl ,μc, andμr . Let Gμl , Gμc , and Gμr

be rectilinear planar with representability intervals Iμl = [ml , Ml ], Iμc = [mc, Mc],
and Iμr = [mr , Mr ], respectively. If Gν is not rectilinear planar then: (i) the budget
for ν is bν = mz − Mx ; and (ii) the interval of spirality values for an orthogonal
representation of Gν with bν bends is I ′

ν = [max{Mx , my},min{mz, M y}].
Proof Since byhypothesisGν is not rectilinear planar, by the representability condition
inTable 1wehave [mx , Mx ]∩[my, M y]∩[mz, Mz] = ∅. ByProposition 1, [mx , Mx ]∩
[mz, Mz] = ∅. We prove Property (i) and (ii) separately. Figure12b provides an
illustration for the graph in Fig. 12a, where x = c, y = l, and z = r . ��
Proof of Property (i). We show that bν = mz − Mx . Observe that each of the three
components Gμl , Gμc , and Gμr is an S-component with an exposed edge.

We first prove that bν bends are necessary. Suppose for a contradiction that Gν

admits an orthogonal representation H ′
ν with b′

ν < bν bends. Denote by b′
x and b′

z
the number of bends in the restriction of H ′

ν to Gμx and to Gμz , respectively. By
Lemma 14, we can assume that all the bends b′

x are along an exposed edge of Gμx and
all the bends b′

z are along an exposed edge ofGμz . Consider the underlying graphG ′
ν of

H ′
ν obtained by replacing each bend of H ′

ν with a subdivision vertex. G ′
ν is rectilinear

planar. Denote by [m′
x , M ′

x ] and [m′
z, M ′

z] the spirality intervals of G ′
μx

and G ′
μz
.

Note that each subdivision vertex along an exposed edge of G ′
μx

allows one more turn
(either to the left or to the right) in a rectilinear planar representation of this component
with respect to a rectilinear planar representation of Gμx . Hence, the spirality interval
of G ′

μx
extends the one of Gμx by b′

x units, both for the minimum value and for the
maximum value. The same reasoning applies to G ′

μz
. It follows that m′

x = mx − b′
x ,

M ′
x = Mx +b′

x ,m
′
z = mz −b′

z , and M ′
z = Mz +b′

z . Consider the three representability
intervals [m′

l − 2, M ′
l − 2], [m′

c, M ′
c], and [m′

r + 2, M ′
r + 2] for G ′

μl
, G ′

μc
, and G ′

μr
,

respectively. Suppose that x = l, i.e., min{Ml − 2, Mc, Mr + 2} = Ml − 2; then we
define m′

x = m′
l − 2 and M

′
x = M ′

l − 2. Similarly, if x = c, we define m′
x = m′

c and

M
′
x = M ′

c. Finally, if x = r , we define m′
x = m′

r +2 and M
′
x = M ′

r +2. Analogously,
if z = l, i.e. max{ml − 2, mc, mr + 2} = ml − 2, we define m′

z = ml − 2; if z = c, we

define m′
z = m′

c and M
′
z = M ′

c; if z = r , we define m′
z = m′

r + 2 and M
′
z = M ′

r + 2.
Figure13 illustrates this notation for the graph of Fig. 12a.

We have, m′
x = mx − b′

x , m′
z = mz − b′

z , M
′
x = Mx + b′

x , and M
′
z = Mz + b′

z .

Since G ′
ν is rectilinear planar, we have [m′

x , M
′
x ] ∩ [m′

z, M
′
z] = [mx − b′

x , Mx +
b′

x ] ∩ [mz − b′
z, Mz + b′

z] �= ∅. Therefore, mz − b′
z ≤ Mx + b′

x , which implies
bν = mz − Mx ≤ b′

x + b′
z ≤ b′

ν < bν , a contradiction.
We now prove that bν bends suffice. Let bx and bz be two non-negative integers

such that bx + bz = bν , bx ≥ my − Mx , and bz ≥ mz − M y . Note that bx and
bz always exist because my − Mx + mz − M y = bν − M y + my ≤ bν . Insert bx

subdivision vertices on any exposed edge of Gμx and insert bz subdivision vertices
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Fig. 13 Illustration for the proof of Property (i) of Lemma 15, on graph Gν in Fig. 12a

on any exposed edge of Gμz . Clearly no subdivision vertex has been inserted on Gμy

since bx + bz = bν . Call G ′
μx
, G ′

μy
, and G ′

μz
the resulting components (note that

G ′
μy

= Gμy ). Define m′
x , m′

z , M
′
x , M

′
z as in the first part of the proof. Suppose that

y = l, i.e. min{Ml −2, Mc, Mr +2} �= Ml −2 andmax{ml −2, mc, mr +2} �= ml −2.
Then we define m′

y = m′
l − 2 and M

′
y = M ′

l − 2. Similarly, if y = c, define m′
y = m′

c

and M
′
y = M ′

c. Finally, if y = r , we define m′
y = m′

r + 2 and M
′
y = M ′

r + 2.
Consider the plane graph G ′

ν obtained by the union of G ′
μx
, G ′

μy
, and G ′

μz
. To prove

that G ′
ν is rectilinear planar, by the representability condition in Table 1, it suffices to

show that [m′
x , M

′
x ] ∩ [m′

y, M
′
y] ∩ [m′

z, M
′
z] = [mx − bx , Mx + bx ] ∩ [my, M y] ∩

[mz − bz, Mz + bz] �= ∅. We have:

• bx ≥ my − Mx , hence my ≤ Mx + bx and [mx − bx , Mx + bx ] ∩ [my, M y] �= ∅;
• bz ≥ mz − M y , hence mz − bz ≤ M y and [my, M y] ∩ [mz − bz, Mz + bz] �= ∅;
• mz − Mx = bz + bx = bν , hence mz − bz = Mx + bx and [mx − bx , Mx + bx ] ∩

[mz − bz, Mz + bz] �= ∅.
Hence G ′

ν has a rectilinear planar representation H ′
ν ; replacing its subdivision ver-

tices with bends, we get an orthogonal representation of Gν with bν bends.
Proof of Property (ii). We show that set I ′

ν is an interval of feasible spirality values
for the orthogonal representations of Gν with bν bends. Namely, we show that any
orthogonal representation Hν of Gν with bν bends has spirality in the interval I ′

ν and
that for every value σν ∈ I ′

ν there exists an orthogonal representation of Gν with
spirality σν and bν bends.

Suppose that Gν has an orthogonal representation Hν with bν bends and let σν be
the spirality of Hν . We prove that σν ∈ I ′

ν = [max{Mx , my},min{mz, M y}]. Let bl ,
bc, and br be the number of bends in the restriction of Hν to Gμl , GμC , and Gμr ,
respectively, where bl + bc + br = bν . Let H ′

ν be the rectilinear planar representation
obtained from Hν by replacing each bend with a subdivision vertex and let G ′

ν be
the underlying graph. Clearly the spirality of H ′

ν equals σν . For any t ∈ {x, y, z}, by
Lemma 14 we can assume that all the bt bends are along an exposed edge of Gμt and,
consequently, σμ′

t
∈ [mt − bt , Mt + bt ]. By using the same notation as in the proof
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Fig. 14 The four possible cases for the proof of Property (ii) of Lemma 15

of Property (i) we define m′
x = m′

l − 2 and M
′
x = M ′

l − 2 if x = l, m′
x = m′

c and

M
′
x = M ′

c if x = c, and m′
x = m′

r +2 and M
′
x = M ′

r +2 if x = r . The values m′
y , M

′
y ,

m′
z , and M

′
z are defined analogously (see Fig. 13). Since G ′

ν is rectilinear planar, by
Table 1 we have [mx −bx , Mx +bx ]∩[my −by, M y +by]∩[mz −bz, Mz +bz] �= ∅.

The remainder of the proof exploits the following claim. For an example see
Fig. 12b, where every bend is regarded as a subdivision vertex, and where by = 0,
bx ≤ M y − Mx = 2− 0 = 2, and bz ≤ mz − my = 2+ 6 = 8 in the three rectilinear
representations of G ′

ν .

Claim 1 These relations hold: (1) by = 0; (2) bx ≤ M y − Mx ; (3) bz ≤ mz − my.

Claim Proof We prove the three relations by contradiction.

(1) If by > 0, then bx + bz < bν = mz − Mx . Hence, Mx + bx < mz − bz and
[mx − bx , Mx + bx ] ∩ [mz − bz, Mz + bz] = ∅, a contradiction.

(2) If bx > M y − Mx , then by +bz < bν − (M y − Mx ) = mz − Mx − (M y − Mx ) =
mz−M y . Hence, M y+by < mz−bz and [my−by, M y+by]∩[mz−bz, Mz+bz] =
∅, a contradiction.

(3) If bz > mz −my , then bx +by < bν −(mz −my) = mz −Mx −(mz −my) = my −
Mx . Hence, Mx +bx < my −by and [mx −bx , Mx +bx ]∩[my −by, M y +by] = ∅,
a contradiction.

We now consider spirality values of the components of H ′
ν and define related values

σμ′
x

= σμ′
x

− 2 if x = l, σμ′
x

= σμ′
x
if x = c, and σμ′

x
= σμ′

x
+ 2 if x = r . The

values σμ′
y
and σμ′

z
are defined analogously. See Fig. 13 for an illustration of the

notation σμ′
t
for t ∈ {x, y, z}. We have σμ′

t
∈ [mt −bt , Mt +bt ] for any t ∈ {x, y, z}.

Also, by Lemma 2 σν = σμ′
x

= σμ′
y

= σμ′
z
. Hence σν ∈ [mx − bx , Mx + bx ] ∩

[my − by, M y + by] ∩ [mz − bz, Mz + bz]. Note that by Relation (1) of the claim
[my − by, M y + by] = [my, M y]. We show that [mx − bx , Mx + bx ] ∩ [my, M y] ∩
[mz −bz, Mz +bz] = [max{Mx , my},min{mz, M y}].We have four cases; see Fig. 14.
Case (a): Mx < my and M y < mz (see Fig. 14a). In this case I ′

ν =
[max{Mx , my},min{mz, M y}] = [my, M y]. Refer to Fig. 15 for an illustration of
the argument that refines Fig. 14a).

Firstweprove that [mx −bx , Mx +bx ]∩[my, M y] = [my, M y].Wehave M x +bx ≥
my , or [mx − bx , Mx + bx ] ∩ [my, M y] = ∅. By Relation (2) of the claim we have
bx ≤ M y − Mx . Hence, bx ∈ [my − Mx , M y − Mx ]. We have Mx +bx ∈ [Mx +my −
Mx , Mx + M y − Mx ] = [my, M y]. It follows that [mx −bx , Mx +bx ]∩ [my, M y] =
[my, M y].
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Fig. 15 A more detailed
illustration for Case (a) in the
proof of Lemma 15. For any
value σν ∈ I ′

ν , we need to add
bx = σν − Mx =
(σν − my) + (my − Mx ) bends
to the representation of Gμx and
bz = mz − σν =
(mz − M y) + (M y − σν) bends
to the representation of Gμz

Second, we prove [my, M y] ∩ [mz − bz, Mz + bz] = [my, M y]. We have M y ≥
mz − bz , or [my, M y] ∩ [mz − bz, Mz + bz] = ∅. By Relation (3) of the claim
we have bz ≤ mz − my . Hence, bz ∈ [mz − M y, mz − my]. We have mz − bz ∈
[mz − mz + my, mz − mz − M y] = [my, M y].

It follows that [my, M y] ∩ [mz − bz, Mz + bz] = [my, M y].
Hence, [mx −bx , Mx +bx ]∩[my, M y]∩[mz −bz, Mz +bz] = [my, M y]∩[mz −

bz, Mz + bz] = [my, M y] = I ′
ν .

Case (b): Mx ≥ my and M y < mz (see Fig. 14b). In this case I ′
ν = [Mx , M y]. By the

same reasoning as in Case (a) we have [my, M y] ∩ [mz − bz, Mz + bz] = [my, M y].
We prove that [mx − bx , Mx + bx ] ∩ [my, M y] = [Mx , M y].
By Relation (2) of the claim bx ∈ [0, M y − Mx ]. We have Mx + bx ∈ [Mx , Mx +

M y − Mx ] = [Mx , M y]. It follows that [mx −bx , Mx +bx ]∩[my, M y] = [Mx , M y].
Hence, since Mx ≥ my , we have [mx −bx , Mx +bx ]∩[my, M y]∩[mz −bz, Mz +

bz] = [mx −bx , Mx +bx ]∩[my, M y]∩[my, M y]∩[mz −bz, Mz +bz] = [my, M y]∩
[Mx , M y] = [Mx , M y] = I ′

ν .
Case (c): Mx < my and M y ≥ mz (see Fig. 14c). In this case I ′

ν = [my, mz]. It
is possible to prove that [mx − bx , Mx + bx ] ∩ [my, M y] = [my, M y] as we did in
Case (a).

We prove [my, M y]∩[mz −bz, Mz +bz] = [my, mz]. By Relation (3) of the claim
bz ∈ [0, mz − my]. We have mz − bz ∈ [mz − mz + my, mz] = [my, mz].

It follows that [my, M y] ∩ [mz − bz, Mz + bz] = [my, mz].
Hence, since M y ≥ mz , we have [mx −bx , Mx +bx ]∩[my, M y]∩[mz −bz, Mz +

bz] = [mx −bx , Mx +bx ]∩[my, M y]∩[my, M y]∩[mz −bz, Mz +bz] = [my, M y]∩
[my, mz] = [my, mz] = I ′

ν .
Case (d): Mx ≥ my and M y ≥ mz (see Fig. 14d). In this case I ′

ν = [Mx , mz]. It
is possible to prove that [mx − bx , Mx + bx ] ∩ [my, M y] = [Mx , M y] as we did in
Case (b) and that [my, M y] ∩ [mz − bz, Mz + bz] = [my, mz] as we did for Case (c).

We have [mx −bx , Mx +bx ]∩ [my, M y]∩ [mz −bz, Mz +bz] = [mx −bx , Mx +
bx ]∩[my, M y]∩[my, M y]∩[mz −bz, Mz +bz] = [Mx , M y]∩[my, mz] = [Mx , mz]
since Mx ≥ my and M y ≥ mz . Hence,

[mx − bx , Mx + bx ] ∩ [my, M y] ∩ [mz − bz, Mz + bz] = [Mx , mz] = I ′
ν .

Suppose now that we are given σν ∈ I ′
ν = [max{Mx , my},min{mz, M y}]. We

show that there exists an orthogonal representation Hν of Gν with bν bends and
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with spirality σν . This is equivalent to showing that there exists a plane graph G ′
ν

obtained by adding bν subdivision vertices along some edges of Gν such that G ′
ν has

a rectilinear orthogonal representation with spirality σν . To construct G ′
ν we insert a

suitable number bz ∈ [0, bν] of subdivision vertices on an exposed edge of Gμz and
bx = bν − bz subdivision vertices on an exposed edge of Gμx (as a consequence, we
do not insert any subdivision vertex in Gμy ). Let G ′

μx
, G ′

μy
, and G ′

μz
be the resulting

graphs. Since by hypothesis Gμx , Gμy , and Gμz are rectilinear planar, we have that
also G ′

μx
, G ′

μy
, and G ′

μz
are rectilinear planar. Also, with the same reasoning as in

the proof of Property (i), the representability intervals of G ′
μx
, G ′

μy
, and G ′

μz
are

[m′
x , M ′

x ] = [mx − bx , Mx + bx ], [my, My], and [mz − bz, Mz + bz], respectively.
For any t ∈ {x, y, z} we define m′

t , M
′
t , and σμ′

t
as in the first part of the proof of

Property (ii). We now describe how to compute bx and bz , and how to set σμx , σμy ,
and σμz . Let c1 = max{Mx , my} and c2 = min{mz, M y}.

We have: c1 = my and c2 = M y in the case of Fig. 14a; c1 = Mx and c2 = M y

in the case of Fig. 14b; c1 = my and c2 = mz in the case of Fig. 14c; c1 = Mx and
c2 = mz in the case of Fig. 14d.

We have σν ∈ I ′
ν = [c1, c2]. We set bz = mz − σν and, consequently, bx =

bν − bz = bν − mz +σν = Mx +σν . We prove that bz (and consequently bx ) is in the
interval [0, bν]. We have bz = mz −σν ∈ [mz − c2, mz − c1] ⊆ [mz −mz, mz − Mx ],
since c2 ≤ mz and c1 ≥ Mx . Hence bz ∈ [mz − mz, mz − Mx ] = [0, bν]. We now set
σμx = Mx +bx = σν and σμz = mz −bz = σν . Notice that σν ∈ [c1, c2] ∈ [my, M y].
Hence, it is possible to set σμy = σν . By Lemma 2 we can get a rectilinear planar
representation H ′

ν of G ′
ν by a parallel composition of rectilinear planar representations

of G ′
μx
, G ′

μy
, and G ′

μz
with spirality values σμx , σμy , and σμz , respectively. By the

same lemma, the spirality of H ′
ν is σ ′

ν = σμx = σμy = σμz = σν . By replacing the
subdivision vertices of H ′

ν with bends we get an orthogonal representation of Gν with
bν bends and spirality σν .

6.2 Budget of P-Nodes with Two Children

Let μl and μr be the two children of ν, and suppose that Gμl and Gμr are recti-
linear planar with representability intervals Iμl = [ml , Ml ] and Iμr = [mr , Mr ],
respectively. The representability condition for ν given in Table 1 is expressed in
terms of the intersection between the interval [ml − Mr , Ml − mr ] and another inter-
val 
ν that depends on the type of P-node. Specifically: 
ν = [2, 4 − γ ] if ν is
of type I2Oλβ ; 
ν = [ 52 , 7

2 − γ ] if ν is of type I3dOλβ ; and 
ν = [3, 3] if ν is
of type I3dd ′ . In the following, given two non-intersecting intervals of real numbers
A1 = [m1, M1] and A2 = [m2, M2], the distance between A1 and A2 is defined as
δ(A1, A2) = min{|M1 − m2|, |M2 − m1|}.

Section 6.2.1 handles the case of a P-nodewith two children both having an exposed
egde. Section6.2.2 handles the more involved cases in which either the left child or
the right child of the P-node has no exposed edge. Note that, since the vertex-degree
is at most four, at least one of the two children of the P-node must have an exposed
edge. We start giving two simple combinatorial results (Lemmas 16 and 17), which
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will be used in the proof of Lemma 18. They provide some basic rules about the values
that some terms of the relationships in Lemma 3 can take, depending on the type of
P-nodes with two children.

Lemma 16 Let ν be a P-node of type I2Oλβ with children μl and μr . Let Gμl and Gμr

be rectilinear planar. For any rectilinear planar representation of Gμl and Gμr , and
for any d ∈ {l, r}, the following relation holds:

kd
u αd

u + kd
v αd

v = h ⇔ h ∈ [γ
2

, 2 − γ

2
],

where both h and γ
2 are either integer or semi-integer numbers.

Proof For the reader’s convenience,we summarize inTable 2 theparameters associated
with each type of P-node with two children. Based on these parameters, we analyze
three cases:

• λ = β = 1. In this case, γ = λ + β − 2 = 0, h ∈ {0, 1, 2}, and kl
u = kl

v = kr
u =

kr
v = 1 (see Table 2). Hence, kd

u αd
u + kd

v αd
v = αd

u + αd
v . Since both poles u and v

have outdegree one, both αd
u and αd

v can take either value 0 or 1, hence αd
u + αd

v

can take all and only the values in the set {0, 1, 2}.
• λ = 1 and β = 2. In this case γ = 1, h ∈ { 12 , 3

2 }, kl
u = kr

u = 1, and kl
v = kr

v = 1
2

(see Table 2). Hence, kd
u αd

u + kd
v αd

v = αd
u + 1

2α
d
v . Since we are assuming that

outdeg(u) = 1 and outdeg(v) = 2, we have αd
u ∈ {0, 1} and αd

v = 1, i.e.,
αd

u + 1
2α

d
v equals either 1

2 or 3
2 .

• λ = β = 2. In this case γ = 2, c ∈ {1}, and kl
u = kr

u = kl
v = kr

v = 1
2 (see Table

2). Hence, kd
u αd

u + kd
v αd

v = 1
2α

d
u + 1

2α
d
v . Since outdeg(u) = outdeg(v) = 2, we

have αd
u = αd

v = 1.

��

Lemma 17 Let ν be a P-node of type I3 lOλβ with children μl and μr . Let Gμl and
Gμr be rectilinear planar. For any rectilinear planar representation of Gμl and Gμr ,
the following relations hold:

kl
uαl

u + kl
vα

l
v = hl ⇔ hl ∈ [γ

2
+ 1

2
,
3

2
− γ

2
], (1)

where both hl and γ
2 + 1

2 are either integer or semi-integer numbers.

kr
uαr

u + kr
vα

r
v = hr ⇔ hr ∈ [γ

2
+ 1, 2 − γ

2
], (2)

where both hr and γ
2 + 1 are either integer or semi-integer numbers.

Proof kl
v = 1

2 , kr
v = 1, and αd

v = 1 for any d ∈ {l, r}. There are two subcases:
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Table 2 Parameters for the
P-nodes with 2 children

Type kl
u kr

u kl
v kr

v λ β γ d d ′

I2O11 1 1 1 1 1 1 0 – –

I2O12 1 1 1
2

1
2 1 2 1 – –

I2O21
1
2

1
2 1 1 1 2 1 – –

I2O22
1
2

1
2

1
2

1
2 2 2 2 – –

I3 lO11 1 1 1
2 1 1 1 0 l –

I3rO11 1 1 1 1
2 1 1 0 r –

I3 lO12
1
2

1
2

1
2 1 1 2 1 l –

I3rO12
1
2

1
2 1 1

2 1 2 1 r –

I3ll
1
2 1 1

2 1 1 1 – l l

I3lr 1 1
2

1
2 1 1 1 – l r

I3rr 1 1
2 1 1

2 1 1 – r r

• β = 1. In this case γ = 0, hl ∈ { 12 , 3
2 }, hr ∈ {1, 2}, and kl

u = kr
u = 1. We have

kd
u αd

u + kd
v αd

v = αd
u + kd

v . Since αd
u ∈ {0, 1}, we have αd

u + kd
v ∈ {kd

v , kd
v + 1}.

Since kl
v = 1

2 , we have {kl
v, kl

v +1} = { 12 , 3
2 } = { γ

2 + 1
2 ,

3
2 − γ

2 }. Hence, Relation 1
holds. Since kr

v = 1, we have {kr
v, kr

v + 1} = {1, 2} = { γ
2 + 1, 2 − γ

2 }. Hence,
Relation 2 holds.

• β = 2. In this case γ = 1, hl ∈ {1}, hr ∈ { 32 }, and kl
u = kr

u = 1
2 . Since deg(u) = 4,

αd
u = 1.Wehave kd

u αd
u +kd

v αd
v = 1

2+kd
v . Equivalently, k

d
u αd

u +kd
v αd

v ∈ { 12+kd
v , 1

2+
kd
v }. Since kl

v = 1
2 , we have { 12 + kl

v,
1
2 + kl

v} = { γ
2 + 1

2 ,
3
2 − γ

2 } = {1}. Hence,
Relation 1 holds. Since kr

v = 1, we have { 12 +kr
v,

1
2 +kr

v} = { γ
2 +1, 2− γ

2 } = { 32 }.
Hence, Relation 2 holds.

��

6.2.1 P-Nodes with Both Children Having an Exposed Edge

As mentioned at the beginning of Sect. 6, in the following we denote by m and M the
minimum and the maximum values of the interval Iν as defined in Table 1. The next
lemma gives the rule for computing the budget of a P-node with two children each
having an exposed edge, and for determining the corresponding interval of spirality
values.

Lemma 18 Let ν be a P-node with two children μl and μr , each having an exposed
edge. Let Gμl and Gμr be rectilinear planar with representability intervals Iμl =
[ml , Ml ] and Iμr = [mr , Mr ], respectively. If Gν is not rectilinear planar then: (i) the
budget for ν is bν = δ([ml − Mr , Ml −mr ],
ν); and (ii) the set of spirality values for
an orthogonal representation of Gν with bν bends is the interval I ′

ν = [m−bν, M+bν].
Proof Since by hypothesis Gν is not rectilinear planar, we have [ml − Mr , Ml −mr ]∩

ν = ∅. Figure16 illustrates the statement for a P-node ν of type I2O11, by also
showing how the interval I ′

ν of Property (ii) is defined.
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Fig. 16 Illustration of Lemma 18 for a P-node ν of type I2O11, where ml = Ml = 0 and mr = Mr = 1. In
this case 
ν = [2, 4], m = max{ml −2, mr } = −1, and M = min{Ml , Mr +2} = 0. Since Ml −mr < 2,
Gν is not rectilinear planar. By Property (i), bν = δ([ml − Mr , Ml − mr ], 
ν) = 3; by Property (ii),
I ′
ν = [m − bν , M + bν ] = [−2, 3]

Proof of Property (i). We show that bν = δ([ml − Mr , Ml − mr ],
ν). We first
prove that bν bends are necessary. Suppose for a contradiction that Gν admits an
orthogonal representation H ′

ν with b′
ν < bν bends. Denote by b′

l and b′
r the number

of bends in the restriction of H ′
ν to Gμl and to Gμr , respectively. By Lemma 14, we

can assume that all the bends b′
l (resp. b′

r ) are along an exposed edge of Gμl (resp.
Gμr ). Consider the underlying graph G ′

ν of H ′
ν obtained by replacing each bend of

H ′
ν with a subdivision vertex. G ′

ν is rectilinear planar. Also, each subdivision vertex
along an exposed edge of Gμl allows one more turn (either to the left or to the right)
in a rectilinear representation of this component, i.e., it extends the spirality interval
of Gμl by one unit, both for the minimum value and for the maximum value. The
same considerations happen for Gμr . Hence G ′

μl
and G ′

μr
are rectilinear planar with

representability intervals [ml − b′
l , Ml + b′

l ] and [mr − b′
r , Mr + b′

r ], respectively, and
the representability condition forG ′

ν is [ml −b′
l −Mr −b′

r , Ml +b′
l −mr +b′

r ]∩
ν �= ∅.
Since b′

l + b′
r = b′

ν , we have [ml − Mr − b′
ν, Ml − mr + b′

ν] ∩
ν �= ∅, which implies
δ([ml − Mr , Ml − mr ],
ν) ≤ b′

ν < bν , a contradiction.
We now prove that bν bends suffice. Let bl and br be two arbitrarily chosen non-

negative integers such that bl +br = bν . Insert bl (resp. br ) subdivision vertices on any
exposed edge ofGμl (resp.Gμr ). CallG ′

μl
andG ′

μr
the resulting components. Since by

hypothesis Gμl and Gμr are rectilinear planar, with the same argument as above, G ′
μl

andG ′
μr

are both rectilinear planarwith representability intervals [ml −bl , Ml +bl ] and
[mr − br , Mr + br ], respectively. Consider the plane graph G ′

ν obtained by the union
of G ′

μl
and G ′

μr
. Since by hypothesis bν = δ([ml − Mr , Ml − mr ],
ν), we have that

[ml −Mr −bν, Ml −mr +bν]∩
ν �= ∅. Since [ml −bl −Mr −br , Ml +bl −mr +br ] =
[ml −Mr −bν, Ml −mr +bν]we have [ml −bl −Mr −br , Ml +bl −mr +br ]∩
ν �= ∅.
It follows that G ′

ν admits a rectilinear planar representation H ′
ν . By replacing the bν

subdivision vertices of H ′
ν with bends, we get an orthogonal representation of Gν with

bν bends.
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Proof of Property (ii). Suppose without loss of generality that outdeg(u) ≤ outdeg(v).
Denote by σμl and σμr the spirality values of orthogonal representations of Gμl

and Gμr , respectively. We distinguish three cases, based on the types of ν, namely
type I2Oλβ , I3dOλβ , and type I3dd ′ . Since the proof line and the arguments for each
case are similar, we report here only the analysis for type I2Oλβ and move the analyses
of the other two cases to “Appendix C”.
Case I2Oλβ : in this case 
ν = [2, 4 − γ ], m = max{ml − 2, mr } + γ

2 , and M =
min{Ml , Mr +2}− γ

2 . We show that the set I ′
ν is an interval of feasible spirality values

for the orthogonal representations of Gν with bν bends. Suppose first that Gν has an
orthogonal representation Hν with bν bends, and let σν be the spirality of Hν .We prove
that σν ∈ [m − bν, M + bν]. Let bl and br be the number of bends in the restriction of
Hν to Gμl and to Gμr , respectively, where bl +br = bν . By Lemma 14, we can assume
that all the bl bends are along an exposed edge of Gμl and all the br bends are along an
exposed edge of Gμr . Since σμl ∈ [ml − bl , Ml + bl ] and bl ∈ [0, bν] we have σμl ∈
[ml −bν, Ml +bν]. Also, by Lemma 3we have σν = σμl −kl

uαl
u −kl

vα
l
v . By Lemma 16,

we have −kl
uαl

u − kl
vα

l
v ∈ [ γ

2 −2,− γ
2 ]. Hence, σν ∈ [ml −bν + γ

2 −2, Ml +bν − γ
2 ].

With a symmetric argument on σμr we have that σν ∈ [mr −bν + γ
2 , Mr +bν +2− γ

2 ].
It follows that σν ∈ [ml −bν + γ

2 −2, Ml +bν − γ
2 ]∩[mr −bν + γ

2 , Mr +bν +2− γ
2 ] =

[max{ml − 2, mr } + γ
2 − bν,min{Ml , Mr + 2} − γ

2 + bν] = [m − bν, M + bν].
To complete the proof it remains to show that for every σν ∈ [m − bν, M + bν],

there exists an orthogonal representation Hν of Gν with bν bends and with spirality σν .
This is equivalent to showing that there exists a plane graph G ′

ν obtained by adding bν

subdivision vertices along some edges of Gν such that G ′
ν has a rectilinear orthogonal

representation with spirality σν . To construct G ′
ν we insert a suitable number bl ∈

[0, bν] of subdivision vertices on an exposed edge of Gμl and br = bν −bl subdivision
vertices on an exposed edge of Gμr . Let G ′

μl
and G ′

μr
be the resulting graphs. Since

by hypothesis Gμl and Gμr are rectilinear planar, also G ′
μl

and G ′
μr

are rectilinear
planar. With the same reasoning as in the proof of Property (i), the representability
intervals of G ′

μl
and G ′

μr
are [ml − bl , Ml + bl ] and [mr − br , Mr + br ]. We now

describe how to compute bl and, consequently, br .
Since by hypothesisGν is not rectilinear planarwe have [ml −Mr , Ml −mr ]∩
ν =

∅, i.e., [ml − Mr , Ml − mr ] ∩ [2, 4 − γ ] = ∅. We consider two subcases:

• Ml − mr < 2. In this case, by Property (i) we have bν = δ([ml − Mr , Ml −
mr ], [2, 4 − γ ]) = 2 − Ml + mr . For example, in Fig. 16 we have γ = 0 and
bν = 3. We set bl = σν − Ml + h, where h is a number (either integer or semi-
integer) in the interval [ γ

2 , 2 − γ
2 ] such that bl ∈ [0, bν]. We first prove that such

a value h always exists.
Suppose first that σν ∈ [m−bν, m−bν +1]. In this casewe choose h = 2− γ

2 . This
implies that bl = σν−Ml +2− γ

2 ∈ [m−bν−Ml +2− γ
2 , m−bν+1−Ml +2− γ

2 ].
For example, in Fig. 16 for every σν ∈ [m − bν, m − bν + 1] = [−2,−1]
we set bl = σν − Ml + 2 − γ

2 = σν + 2. Since Ml − mr < 2 we have
ml −2 ≤ Ml −2 < mr and hence ml −2 < mr . Since m = max{ml −2, mr }+ γ

2 ,
we have m = mr + γ

2 . Also, since we have bν = 2 − Ml + mr , it follows
m − bν − Ml + 2 − γ

2 = mr + γ
2 − bν − Ml + 2 − γ

2 = 0. Hence, bl ∈ [0, 1].
Since by hypothesis Gν is not rectilinear planar, bν ≥ 1, and therefore there exists
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a value of h ∈ [ γ
2 , 2 − γ

2 ] such that bl ∈ [0, bν].
Suppose now that σν ∈ [m − bν + 2, M + bν]. In this case we choose h = γ

2 . This
implies that bl = σν−Ml + γ

2 ∈ [m−bν+2−Ml + γ
2 , M+bν−Ml + γ

2 ]. For exam-
ple, in Fig. 16σν ∈ [m−bν+2, M+bν] = [0, 3] andwe setbl = σν−Ml− γ

2 = σν .
We have m − bν + 2− Ml + γ

2 = mr + γ
2 − bν + 2− Ml + γ

2 = γ . It follows that
bl ∈ [γ, M +bν − Ml + γ

2 ]. Since Ml < mr +2 ≤ Mr +2 we have Ml < Mr +2.
Also, since M = min{Ml , Mr + 2} − γ

2 it follows that M = Ml − γ
2 . Hence,

M +bν −Ml + γ
2 = Ml − γ

2 +bν −Ml + γ
2 = bν . Hence, bl ∈ [γ, bν]. Since γ ≥ 0,

also in this case there exists a value of h ∈ [ γ
2 , 2− γ

2 ] such that bl ∈ [0, bν].We rep-
resentG ′

μl
with spirality σ ′

μl
= Ml +bl = Ml +σν −Ml +h = σν +c andG ′

μr
with

spiralityσ ′
μr

= mr −br = mr −(bν−bl) = mr −bν+bl = mr −bν+σν−Ml+h =
mr − Ml − bν + σν + h = bν − 2 − bν + σν + h = σν + h − 2. We have
σ ′

μl
−σ ′

μr
= σν +h − (σν +h −2) = 2, and by Lemma 7, G ′

ν is rectilinear planar.
It remains to show that G ′

ν admits a rectilinear planar representation with spirality
σ ′

ν = σν . Given the choice of σ ′
μl

and σ ′
μr
, by Lemma 3 every rectilinear planar

representation ofG ′
ν has spirality σ ′

ν = σ ′
μl

−kl
uαl

u −kr
uαl

v = σν +h−kl
uαl

u −kr
uαl

v .
Since h ∈ [ γ

2 , 2 − γ
2 ], by Lemma 16 there exists a value kl

uαl
u + kr

uαl
v such that

h − kl
uαl

u − kr
uαl

v = 0, and thus σ ′
ν = σν . For example, in Fig. 16, for every

σν ∈ Iν = [−2, 3], there is a rectilinear representation of Gν with σμl − σμr = 2,
bl and br chosen as described above, and spirality σν .

• ml − Mr > 4 − γ . In this case, by Property (i) we have bν = δ([ml − Mr , Ml −
mr ], [2, 4−γ ]) = ml −Mr −4+γ .We set bl = ml −σν−2+ γ

2 .Wefirst prove that
bl ∈ [0, bν].We have bl = ml −σν −2+ γ

2 ∈ [ml −M −bν −2+ γ
2 , ml −m+bν −

2+ γ
2 ]. Since Ml ≥ ml > Mr +4−γ ≥ Mr +2, we have M = Mr +2− γ

2 . Hence,
ml −M−bν−2+ γ

2 = ml −(Mr +2− γ
2 )−bν−2+ γ

2 = ml −Mr −4+γ −bν = 0.
Also, since ml − 2 ≥ ml − 4+ γ > Mr ≥ mr , we have m = ml − 2+ γ

2 . Hence,
ml − m + bν − 2 + γ

2 = ml − (ml − 2 + γ
2 ) + bν − 2 + γ

2 = bν . It follows that
bl ∈ [0, bν].
We represent G ′

μl
with spirality σ ′

μl
= ml − bl = ml − (ml − σν − 2 + γ

2 ) =
σν + 2 − γ

2 and G ′
μr

with spirality σ ′
μr

= Mr + br = Mr + bν − bl = Mr +
ml − Mr − 4 + γ − ml + σν + 2 − γ

2 = σν + γ
2 − 2. We have σ ′

μl
− σ ′

μr
=

σν + 2 − γ
2 − (σν + γ

2 − 2) = 4 − γ and, by Lemma 7, G ′
ν is rectilinear planar.

It remains to show that G ′
ν admits a rectilinear representation with spirality σ ′

ν =
σν . Given the choice of σ ′

μl
and σ ′

μr
, by Lemma 3 every rectilinear representation

of G ′
ν has spirality σ ′

ν = σ ′
μl

− kl
uαl

u − kr
uαl

v = σν + 2− γ
2 − kl

uαl
u − kr

uαl
v . Since

2 − γ
2 ∈ [ γ

2 , 2 − γ
2 ], by Lemma 16 we can set kl

uαl
u + kr

uαl
v = 2 − γ

2 , and thus
σ ′

ν = σν .

Case I3dOλβ and Case I3dd ′ : see “Appendix C”. ��

6.2.2 P-Nodes Having a Child with No Exposed Edges

Wenow consider the case of a P-node ν having a child that does not contain an exposed
edge (see Lemmas 20 and 21). Denote by μ such a child node; observe that μ is an
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Fig. 17 A P-component Gνi of type I2O22 and a plot of function σmax
νi

(b) for b = 0, 1, . . . , 5. For each
value of b, the figure depicts an orthogonal representation of (maximum) spirality σmax

νi
(b) among those

with b bends (cross vertices). The positive flexibility breakpoint is b+
νi

= 3

S-node whose children ν1, ν2, . . . , νh (h ≥ 2) (e.g., ordered from the bottom pole to
the top pole of μ) are all P-nodes of type I2O22. This is because, if one νi among
ν2, . . . , νh−1 had a pole of outdegree one, then the external edge of Gνi incident to
this pole would be part of a Q∗-node child of μ, thus contradicting the fact that μ has
no exposed edges; also, the bottom pole of ν1 (resp. of νh) coincides with the bottom
pole (resp. top pole) of ν, and has outdegree two in Gν1 (resp. in Gνh ).

For a given integer value b ≥ 0, denote by σmax
νi

(b) the maximum value of spi-
rality that any orthogonal representation of Gνi with at most b bends can have
(i ∈ {1, . . . , h}). When we consider the value b+1, the value σmax

νi
(b+1)may or may

not increase by one unit with respect to σmax
νi

(b), i.e., either σmax
νi

(b+1) = σmax
νi

(b)+1
or σmax

νi
(b +1) = σmax

νi
(b). By plotting the function σmax

νi
(b) as b increases, we define

the positive flexibility breakpoint of Gνi as the maximum number of bends b+
νi
such

that for every non-negative integer b < b+
νi
, we have σmax

νi
(b + 1) = σmax

νi
(b) + 1.

For example, Fig. 17 shows a component Gνi and a plot of the function σmax
νi

(b) for
b = 0, 1, . . . , 5. In the figure, the positive flexibility breakpoint is b+

νi
= 3 because

passing from b = 3 to b = 4 does not allow us to have an orthogonal representation
of Gνi with a larger value of spirality. The positive flexibility breakpoint of the S-node
μ is denoted as b+

μ and it is defined as the sum of the positive flexibility breakpoints

of its children, i.e., b+
μ = ∑h

i=1 b+
νi
.

Symmetrically, for a given integer b ≥ 0, let σmin
νi

(b) be the minimum value of
spirality that an orthogonal representation of Gνi with at most b bends can have
(i ∈ {1, . . . , h}). The value of σmin

νi
(b + 1) may or may not decrease by one unit

with respect to σmin
νi

(b). We define the negative flexibility breakpoint of Gνi as the
maximum number of bends b−

νi
such that for every non-negative integer b < b−

νi
, we

have σmin
νi

(b + 1) = σmin
νi

(b) − 1. For example, Fig. 18 shows the same component
Gνi as in Fig. 17 and a plot of the function σmin

νi
(b) for b = 0, 1, . . . , 4. In the figure,
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Fig. 18 A P-component Gνi of type I2O22 and a plot of function σmin
νi

(b) for b = 0, 1, . . . , 4. For each

value of b, the figure depicts an orthogonal representation of (minimum) spirality σmin
νi

(b) among those

with b bends (cross vertices). The negative flexibility breakpoint is b−
νi

= −1

the negative flexibility breakpoint is b−
νi

= 1 because passing from b = 1 to b = 2
does not allow us to have an orthogonal representation of Gνi with a smaller value
of spirality. The negative flexibility breakpoint of the S-node μ is denoted as b−

μ and
it is defined as the sum of the negative flexibility breakpoints of its children, i.e.,
b−
μ = ∑h

i=1 b−
νi
. The next lemma establishes how to compute in constant time the

positive and negative flexibility breakpoints for a P-node νi of type I2O22, given the
representability intervals of its children.

Lemma 19 Let νi be a P-node of type I2O22 with children μl and μr such that Gνi

is rectilinear planar. Let Iμl = [ml , Ml ] and Iμr = [mr , Mr ] be the representability
intervals of Gμl and Gμr , respectively. We have b+

νi
= |Mr + 2 − Ml | and b−

νi
=

|ml − 2 − mr |. Also, an orthogonal representation of Gνi with spirality σmax
νi

(b+
νi

)

(resp. with σmin
νi

(b−
νi

)) can be obtained by inserting all the bends on an exposed edge
of either Gμl or Gμr .

Proof We prove that b+
νi

= |Mr + 2 − Ml |. The proof that b−
νi

= |ml − mr − 2| is
symmetric. Consider a rectilinear planar representation Hνi of Gνi with maximum
value of spirality, that is spirality σmax

νi
(0) which, by Table 1

is σmax
νi

(0) = min{Ml − 1, Mr + 1}. Let σμl and σμr be the spirality values of the
left and the right orthogonal components of Hνi , respectively. By Lemma 7, we know
that σμl − σμr = 2. Also, by Lemma 3, σmax

νi
(0) = σμl − 1 = σμr + 1. By Table 1,

either σμl = Ml or σμr = Mr (possibly both). Three cases are possible:

• σμl = Ml and σμr = Mr . Note that, since σμl = σμr + 2, in this case we have
|Mr + 2 − Ml | = 0. We show that if we are allowed to subdivide an edge of Gνi

with exactly one degree-2 vertex, so to obtain a graph G ′
νi
, the maximum value

of spirality that a rectilinear planar representation H ′
νi
of G ′

νi
equals σmax

νi
(0). In
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other words, we show that σmax
νi

(1) = σmax
νi

(0). By Lemma 14, we can assume
that the degree-2 vertex subdivides an exposed edge, which belongs either to Gμl

or to Gμr . Suppose that this degree-2 vertex is inserted along an exposed edge of
Gμl . Denote by G ′

μl
and G ′

μr
the left component and the right component of G ′

νi
,

respectively. The maximum spirality of a rectilinear planar representation of G ′
μl

is Ml + 1, while the maximum spirality of a rectilinear planar representation of
G ′

μr
remains Mr , because G ′

μr
coincides with Gμr . Assume for a contradiction

that G ′
νi
admits a rectilinear planar representation H ′

νi
with spirality σmax

νi
(0) + 1,

and denote by σ ′
μl

and σ ′
μr

the spirality values of the left and right components of
H ′

νi
. We should have that σmax

νi
(0)+1 = σ ′

μl
−1 and σmax

νi
(0)+1 = σ ′

μr
+1. Now,

σmax
νi

(0)+1 = Ml and σmax
νi

(0)+1 = (Mr +1)+1, which implies that G ′
μr

should
have a rectilinear planar representation with spirality Mr + 1, a contradiction. A
symmetric argument applies if we subdivide an exposed edge of Gμr . Hence,
b+
νi

= 0 = |Mr + 2 − Ml |.
• σμl = Ml and σμr < Mr . Subdivide an exposed edge of Gνl with a degree 2-
vertex, and call G ′

νi
the graph resulting from Gνi after this subdivision. As in

the previous case, denote by G ′
μl

and G ′
μr

the left and the right components of
G ′

νi
, where G ′

μr
coincides with Gμr . We show that G ′

νi
admits a rectilinear planar

representation with spirality σ ′
ν = σmax

νi
(0)+1. Since we have added a subdivision

vertex on an exposed edge of Gμl , there exists a rectilinear planar representation
H ′

μl
of G ′

μl
with spirality σ ′

μl
= Ml + 1. Also, since σμr < Mr , there exists

a rectilinear planar representation of G ′
μr

with spirality σ ′
μr

= σμr + 1. Hence,
σ ′

μl
− σ ′

μr
= 2 and therefore, by Lemma 7, we can merge the representations H ′

μl
and H ′

μr
into a rectilinear planar representation H ′

νi
of G ′

νi
. The spirality of H ′

νi
is

σ ′
νi

= σmax
νi

(0)+1. By replacing the subdivision vertex of H ′
μl

with a bend, we get
an orthogonal representation of Gνi with one bend and with spirality σmax

νi
(0)+1,

i.e., σmax
νi

(1) = σmax
νi

(0)+1. Iterate this procedure until σ ′
μr

= Mr , i.e., until σ ′
νi

=
Mr +1. Denote by b the number of bends added in total. By Lemma 3, the spirality
of the resulting orthogonal representation is σmax

νi
(b) = Ml +b−1 = Mr +1, and

hence b = Mr +2−Ml . If we consider the rectilinear representation H ′
νi
where the

b bends are replaced with degree-2 vertices, its left and right components have the
maximum possible spirality in their representability intervals. Hence, the previous
case applies, and inserting exactly one subdivision vertex to G ′

νi
does not result

into a graph that admits a rectilinear planar representation with spirality greater
than the one of H ′

νi
. It follows that b+

νi
= Mr + 2 − Ml .

• σμl < Ml and σμr = Mr . With a symmetric argument as in the previous case,
b+
νi

= Ml − (Mr + 2).

��
The next lemma gives the rule for computing the budget of a P-node with two chil-

dren such that the left one has no exposed edge, and for determining the corresponding
interval of spirality values.

Lemma 20 Let ν be a P-node with two children μl and μr , such that μl has no
exposed edge. Let Gμl and Gμr be rectilinear planar with representability intervals
Iμl = [ml , Ml ] and Iμr = [mr , Mr ], respectively. If Gν is not rectilinear planar
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then: (i) the budget for ν is bν = δ([ml − Mr , Ml − mr ], [3, 3]); and (ii) the interval
of spirality values for an orthogonal representation of Gν with bν bends is I ′

ν =
[m − bν, M + min{b+

μl
, bν}] if Ml − mr < 3 and I ′

ν = [m − min{b−
μl

, bν}, M + bν]
if ml − Mr > 3.

Proof Since by hypothesis Gν is not rectilinear planar, by Table 1 we have 3 /∈ [ml −
Mr , Ml −mr ]∩
ν = ∅, where
ν = [3, 3]. In other words, 3 /∈ [ml − Mr , Ml −mr ].
Proof of Property (i). We first prove that bν = δ([ml − Mr , Ml −mr ], [3, 3]) bends are
necessary. Suppose for a contradiction that Gν admits an orthogonal representation
H ′

ν with b′
ν < bν bends. Let b′

l and b′
r be the number of bends in the restriction

of H ′
ν to Gμl and to Gμr , respectively. By Lemma 14, we can assume that all the

bends b′
r are along an exposed edge of Gμr . Consider the underlying graph G ′

ν of H ′
ν

obtained by replacing each bend of H ′
ν with a subdivision vertex. G ′

ν is rectilinear
planar. Let G ′

μl
and G ′

μr
be the left and right component of G ′

ν , respectively. Hence
G ′

μr
is rectilinear planar with representability interval [mr −b′

r , Mr +b′
r ]. About G ′

μl
,

its representability interval I ′
μl

= [p, q] is such that [p, q] ⊆ [ml − b′
l , Ml + b′

l ]. In
particular [p, q] = [ml − b′

l , Ml + b′
l ] when b−

μl
≥ b′

l and b+
μl

≥ b′
l . By Table 1, the

representability condition for G ′
ν is [p − Mr − b′

r , q − mr + b′
r ] ∩ [3, 3] �= ∅. Since

p ≥ ml −b′
l and q ≤ Ml +b′

l we have [p − Mr −b′
r , q −mr +b′

r ] ⊆ [ml −b′
l − Mr −

b′
r , Ml +b′

l −mr +b′
r ], and therefore [ml −b′

l −Mr −b′
r , Ml +b′

l −mr +b′
r ]∩[3, 3] �= ∅.

This equals to say that [ml − Mr − b′
ν, Ml − mr + b′

ν] ∩ [3, 3] �= ∅, which implies
that δ([ml − Mr , Ml − mr ], [3, 3]) ≤ b′

ν < bν , a contradiction.
We now prove that bν bends suffice. Insert bν subdivision vertices on any exposed

edge of Gμr , and let G ′
μr

be the resulting component. Since Gμr is rectilinear planar
by hypothesis, G ′

μr
is also rectilinear planar and its representability interval is [mr −

bν, Mr + bν]. Consider the plane graph G ′
ν obtained by the union of Gμl and G ′

μr
.

Since by hypothesis bν = δ([ml − Mr , Ml − mr ], [3, 3]), we have that [ml − Mr −
bν, Ml − mr + bν] ∩ [3, 3] �= ∅. It follows that G ′

ν is rectilinear planar. Consider any
rectilinear representation H ′

ν of G ′
ν and replace each of its subdivision vertices with a

bend. Since by construction G ′
ν has bν subdivision vertices, the resulting orthogonal

representation has at most bν bends.
Proof of Property (ii). Since by hypothesis 3 /∈ [ml − Mr , Ml − mr ] we have two
cases: either Ml − mr < 3 or Mr − ml > 3. For each of them, we must show that
every orthogonal representation of Gν with bν bends has spirality σν in the interval I ′

ν

and that for every value σν ∈ I ′
ν there exists an orthogonal representation of Gν with

bν bends and spirality σν . We show the argument for the case Ml − mr < 3 (the other
case is treated analogously).

By Table 1we have M = min{Ml −1, Mr +2} andm = max{ml −1, mr +2}. Since
Ml < mr +3 ≤ Mr +3, we have Ml −1 < Mr +2 and since ml −3 ≤ Ml −3 < mr ,
we have ml − 1 < mr + 2. Hence, M = Ml − 1 and m = mr + 2.

Suppose first that Gν has an orthogonal representation Hν with bν bends. We prove
that σν ∈ [m − bν, M + min{b+

μl
, bν}]. Let σν be the spirality of Hν , and let σμl and

σμr be the spirality values of the restrictions Hμl and Hμr of Hν to Gμl and Gμr ,
respectively. By Lemma 7 we have σμl − σμr = 3. Let bl and br be the number of
bends in Hμl and Hμr , respectively. Clearly, bl +br = bν .We now prove the following
claim. ��
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Claim 2 bl ∈ [0,min{b+
μl

, bν}].
Claim Proof Suppose for a contradiction that bl /∈ [0,min{b+

μl
, bν}]. Clearly, bl ∈

[0, bν], and thus, under this hypothesis, it must be min{b+
μl

, bν} = b+
μl

and bl ∈
[b+

μl
+ 1, bν]. We show that there exists an orthogonal representation H ′

ν of Gν with
less than bν bends, which is impossible by definition of budget bν . We will denote by
H ′

μl
and H ′

μr
the restrictions of H ′

ν to Gμl and to Gμr , respectively. Also, b
′
l and b′

r will
denote the number of bends of H ′

μl
and H ′

μr
, while σ ′

μl
and σ ′

μr
will denote the spirality

values of H ′
μl

and H ′
μr
, respectively. We distinguish two cases: (a) bl = b+

μl
+ 1 and

(b) bl ∈ [b+
μl

+ 2, bν].
In case (a), we set b′

l = bl − 1 = b+
μl

and b′
r = br . By definition of positive

flexibility breakpoint it is possible to set σ ′
μl

= σμl . Also, we set σ ′
μr

= σμr . Since
σ ′

μl
− σ ′

μr
= σμl − σμr = 3, by Lemma 7, H ′

ν exists and it has b′
l + b′

r = bν − 1 < bν

bends, a contradiction.
In case (b), we set b′

l = bl − 2 and b′
r = br + 1. Again by definition of positive

flexibility breakpoint, it is possible to set σ ′
μl

= σμl − 1. Also, since Gμr has an
exposed edge, by Lemma 14 we can use such an edge to place the extra bend of the
right component. It follows that, we can set σ ′

μr
= σμr − 1. Therefore, σ ′

μl
− σ ′

μr
=

σμl − σμr = 3 and, by Lemma 7, H ′
ν exists and it has b′

l + b′
r < bl + br = bν bends,

a contradiction.

Since Gν is of type I3ll , by Lemma 3 and Table 2 we have σν = σμl −1 = σμr +2.
By the claim we have bl ∈ [0,min{b+

μl
, bν}], hence ml − min{b+

μl
, bν} ≤ σμl ≤

Ml+min{b+
μl

, bν} andhenceσν ∈ [ml−min{b+
μl

, bν}−1, Ml+min{b+
μl

, bν}−1]. Also,
br ∈ [0, bν] andσν ∈ [mr −bν+2, Mr +bν+2]. Henceσν ≥ max{ml−min{b+

μl
, bν}−

1, mr −bν +2}. By Property (i), bν = δ([ml − Mr , Ml −mr ], [3, 3]) = 3− Ml +mr ,
hence, mr − bν + 2 = mr − 3+ Ml − mr + 2 = Ml − 1 ≥ ml −min{b+

μl
, bν} − 1. It

follows that σν ≥ mr −bν +2. Also, σν ≤ min{Ml +min{b+
μl

, bν}−1, Mr +bν +2}.
Since by hypothesis Ml − 1 ≤ mr + 2 ≤ Mr + 2 and since min{b+

μl
, bν} ≤ bν , we

have Ml +min{b+
μl

, bν} − 1 ≤ Mr + bν + 2 and σν ≤ Ml +min{b+
μl

, bν} − 1. Hence,
σν ∈ [mr − bν + 2, Ml + min{b+

μl
, bν} − 1] = [m − bν, M + min{b+

μl
, bν}] = I ′

ν .
It remains to show that for every σν ∈ I ′

ν = [m−bν, M +min{b+
μl

, bν}], there exists
an orthogonal representation Hν of Gν with bν bends and with spirality σν . With the
same notation and arguments as in Lemma 18, we show how to set the number of bends
bl and br that can be assigned to the left and right component to guarantee the existence
of Hν . By Property (i), bν = δ([ml − Mr , Ml −mr ], [3, 3]) = 3− Ml +mr . By setting
bl = σν −Ml +1 and br = bν −bl , we have bl ∈ [m−bν −Ml +1, M +min{b+

μl
, bν}−

Ml + 1], and hence bl ∈ [mr + 2− bν − Ml + 1, Ml − 1+min{b+
μl

, bν} − Ml + 1] =
[0,min{b+

μl
, bν}], i.e., bl ∈ [0,min{b+

μl
, bν}].

Let ν1, . . . , νh be the children of μl . Since Gμl has no exposed edge, each Gνi

(i = 1, . . . , h) is a parallel component of type I2O22 and Lemma 19 applies. We
distribute the bl bends on the components Gνi in such a way that the number of bends
assigned to Gνi is at most b+

νi
(i = 1, . . . , h). This is always possible, because, as

showed above, bl ∈ [0,min{b+
μl

, bν}]. The bends assigned to each Gνi are inserted on
an exposed edge according to the procedure in the proof of Lemma 19. The graph G ′

μl
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obtained from Gμl by regarding each bend as a subdivision vertex admits a rectilinear
planar representation H ′

μl
with spirality σ ′

μl
= Ml +bl = Ml +σν − Ml +1 = σν +1.

We now place br bends along an exposed edge of Gμr . The graph G ′
μr

obtained
from Gμr by regarding each bend as a subdivision vertex admits a rectilinear planar
representation H ′

μr
with spirality σ ′

μr
= mr −br = mr − (bν −bl) = mr −bν +σν −

Ml + 1 = (mr − Ml + 1) − bν + σν = bν − 2 − bν + σν = σν − 2. It follows that
σ ′

μl
− σ ′

μr
= σν + 1 − (σν − 2) = 3 and, by Lemma 11, G ′

ν is rectilinear planar and
it admits a rectilinear planar representation H ′

ν obtained by combining in parallel H ′
μl

and H ′
μr
. By Lemma 3, H ′

ν has spirality σ ′
ν = σ ′

μl
−kl

u
′
αl

u
′−kl

u
′
αl

v
′
. Since u and v have

degree four, we have αl
u
′ = αl

v
′ = αr

u
′ = αr

v
′ = 1. Also, by Table 2, kl

u
′ = kr

u
′ = 1

2 .
Hence, σ ′

ν = σν + 1 − 1 = σν . Replacing the subdivision vertices of H ′
ν with bends

we get an orthogonal representation of Gν with bν bends and spirality σν .
The proof of Lemma 21 considers the case where the right child of a P-node with

two children has no exposed edge. The proof is symmetric to that of Lemma 20, hence
it is omitted.

Lemma 21 Let ν be a P-node with two children μl and μr , such that μr has no
exposed edge. Let Gμl and Gμr be rectilinear planar with representability intervals
Iμl = [ml , Ml ] and Iμr = [mr , Mr ], respectively. If Gν is not rectilinear planar,
then: (i) the budget for ν is bν = δ([ml − Mr , Ml − mr ], [3, 3]); and (ii) the interval
of spirality values for an orthogonal representation of Gν with bν bends is I ′

ν =
[m − min{b−

μr
, bν}, M + bν] if ml − Mr > 3 and I ′

ν = [m − bν, M + min{b+
μr

, bν}]
if Ml − mr < 3.

6.3 Budget of the Root

We finally show how to compute the budget of the root ρ of T . Recall that ρ is the
Pr -node describing the parallel composition of the reference edge e = (u, v) with the
rest of the graph. If e is a dummy edge, the budget of ρ is zero, because e does not need
to be drawn. Thus we assume that the graph is biconnected and e is a real edge. Let η
be the child of ρ that does not correspond to e, and let u′ and v′ be the alias vertices
associatedwith the poles u and v of Gη. If Gη is rectilinear planar with representability
interval Iη, by the root condition in Table 1 we know that G is rectilinear planar if
and only if Iη ∩ 
ρ �= ∅. Recall that 
ρ is defined as follows: (i) 
ρ = [2, 6] if u′
coincides with u and v′ coincides with v; (ii) 
ρ = [3, 5] if exactly one of u′ and v′
coincides with u and v, respectively; (iii) 
ρ = 4 if none of u′ and v′ coincides with
u and v. We prove the following.

Lemma 22 Let e = (u, v) be the reference edge of G and let ρ be the root of T with
respect to e. Let η be the child of ρ that does not correspond to e. Suppose that Gη is
rectilinear planar with representability interval Iη. If G is not rectilinear planar then
bρ = δ(Iη,
ρ).

Proof See Fig. 19 for an illustration of the statement.
Let fint be the internal face of G incident to e. Note that H is an orthogonal

representation of G if and only if the following two conditions hold: the restriction
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Hη of H to Gη is an orthogonal representation; the number A of right turns minus
left turns of any simple cycle of G in H containing e and traversed clockwise in H is
equal to 4. We have A = ση − σe + αu′ + αv′ , where: ση is the spirality of Hη; σe is
the spirality of e; for w ∈ {u′, v′}, αw = 1, αw = 0, and αw = −1 if the angle formed
by w in fint equals 90o, 180o, or 270o, respectively.

Since G is not rectilinear planar, H must contain some bends. Denote by b the
number of bends of H . Each of these b bends placed along an edge of Gη contributes
to increase or decrease ση by at most one unit, therefore increasing or decreasing A
by at most one unit. Also placing this bend along e contributes to increase or decrease
A by at most one unit. Hence, without loss of generality, we can assume that all the b
bends are placed along e, which implies that Hη does not contain any bend. It follows
that ση ∈ Iη = [mη, Mη] and σe ∈ [−b, b]. We now show that if b is the minimum
value such that A = 4 then b = bρ . Observe that when b is minimum, we have
|σe| = b, and therefore |σe| > 0.

Consider first Case (i) in the definition of
ρ , i.e.,
ρ = [2, 6]. Since in this case the
alias vertices coincide with the poles, we have αu′ ∈ [−1, 1], αv′ ∈ [−1, 1], and hence
αu′ + αv′ ∈ [−2, 2]. Since ση + αu′ + αv′ + σe = 4 there are two possible subcases
for any possible choice of the values ση, αu′ , and αv′ : either (a) ση + αu′ + αv′ < 4 or
(b) ση + αu′ + αv′ > 4.

• Case (a). The maximum value for ση + αu′ + αv′ is Mη + 2. Hence Mη + 2 < 4,
which implies Mη < 2. It follows that bρ = δ(Iη,
ρ) = 2− Mη. Also, since b is
the minimum value such that A = 4 and ση + αu′ + αv′ < 4, we have that b = σe

and Mη + 2 + b = 4, which implies b = 2 − Mη = bρ . Therefore, an orthogonal
representation of G with b bends is constructed by placing b bends along e and
choosing ση = Mη.

• Case (b). The minimum value for ση + αu′ + αv′ is mη − 2. Hence mη − 2 > 4,
which implies mη > 6. It follows that bρ = δ(Iη,
η) = mη − 6. Also, since b is
the minimum value such that A = 4 and ση +αu′ +αv′ > 4, we have that b = −σe

and mη − 2 − b = 4, which implies b = mη − 6 = bρ . Therefore, an orthogonal
representation of G with b bends is constructed by placing b bends along e and
choosing ση = mη.

The proofs for Case (ii) (
ρ = [3, 5]) and Case (iii) (
ρ = 4) are analogous,
observing that in Case (ii) we have αu′ + αv′ ∈ [−1, 1] and in Case (iii) we have
αu′ + αv′ = 0. ��

Table 3 summarizes how to compute bν and I ′
ν for the different types of nodes ν.

6.4 Optimality of the Approach

Our bottom-up algorithm incrementally computes for each node ν of T the budget
of bends needed to realize an orthogonal representation of Gν . We prove that, the
total budget at the level of the root of T corresponds to the number of bends of a
bend-minimum orthogonal representation of G. More formally, for a node ν of T , the
cumulative budget Bν of ν is the sum of the budgets of all nodes in the subtree of T
rooted at ν. If ν is a leaf of T , Bν = bν = 0. If ν is an internal node with children
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Fig. 19 Illustration of Lemma 22. We have Iη = [−1,−1] and: in Case (i), 
ρ = [2, 6] and bρ =
δ(Iη, 
ρ) = 3; in Case (ii), 
ρ = [3, 5] and bρ = δ(Iη, 
ρ) = 4; in Case (iii), 
ρ = 4 and bρ =
δ(Iη, 
ρ) = 5

Table 3 Summary of how to compute bν and I ′
ν for the different types of nodes ν. In the formulas, we have

γ = λ + β − 2 and φ(·) is such that φ(r) = 1 and φ(l) = 0. Values m and M are computed as shown in
Table 1

P-node with two children, each having an exposed edge—Lemma 18

Budget δ([ml − Mr , Ml − mr ], 
ν)

Representability Interval [m − bν , M + bν ]
P-node with three children (each child has an exposed edge)—Lemma 15

Budget mz − Mx

Representability Interval [max{Mx , my},min{mz , M y}]
P-node with two children, such that μd , with d ∈ {l, r} has no exposed
edge—Lemma 20 if d = l and Lemma 21 if d = r

Budget bν = δ([ml − Mr , Ml − mr ], [3, 3])
Representability Interval If d = l:

[m − bν , M + min{b+
μl

, bν }] if Ml − mr < 3

[m − min{b−
μl

, bν }, M + bν ] if ml − Mr > 3.

If d = r :

[m − min{b−
μr , bν }, M + bν ] if ml − Mr > 3

[m − bν , M + min{b+
μr , bν }] if Ml − mr < 3.

Pr -node (the root ρ)

Budget bρ = δ(Iη, 
ρ)

μ1, μ2, . . . , μh then Bν = bν + ∑
i=1,...,h Bμi . Hence, the cumulative budget Bρ of

the root corresponds to the total number of bends at the end of the bottom-up visit.

Theorem 3 Let G be a plane series–parallel 4-graph, let T be an SPQ∗-tree of G,
and let ρ be the root of T . The cumulative budget Bρ computed by the bottom-up visit
equals the number of bends of a bend-minimum orthogonal representation of G.
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Proof We prove that once the algorithm has processed a node ν in the bottom-up visit,
the cumulative budget Bν equals the number of bends of a bend-minimum orthogonal
representation of Gν . This implies that once the algorithm has visited the root ρ of T ,
the cumulative budget Bρ equals the number of bends of a bend-minimum orthogonal
representation of Gρ = G. The proof is by induction on the depth of the subtree
of T rooted at ν.
Base Case. For a leaf ν of T (ν is a Q∗-node), the statement is trivial, as Bν = 0.
Inductive Case. Let ν be a node of T that is not a leaf. Denote by μ1, μ2, . . . , μh

the children of ν. By the inductive hypothesis, each Bμi (i = 1, . . . , h) corresponds
to the number of bends of a bend-minimum representation of Gμi . By definition,
Bν = bν + ∑

i=1,...,h Bμi , where bν is the minimum number of bends that must be
used in addition to

∑
i=1,...,h Bμi to realize an orthogonal representation ofGν (bν = 0

if ν is an S-node). Budget Bν corresponds to the minimum number of bends of any
orthogonal representation Hν of Gν with the property that the number of bends b(Hμi )

of the restriction Hμi of Hν to Gμi is such that b(Hμi ) ≥ Bμi (i ∈ {1, . . . , h}). Let H ′
ν

be any bend-minimum orthogonal representation of Gν , and let H ′
μi

be the restriction
of H ′

ν to Gμi . Since, by the inductive hypothesis, there is no orthogonal representation
of Gμi with less bends than Bμi , we have b(H ′

μi
) ≥ Bμi , and hence, by the previous

observation, b(H ′
ν) ≥ Bν . On the other hand, since H ′

ν is bend-minimum for Gν , we
also have b(H ′

ν) ≤ Bν , i.e., b(H ′
ν) = Bν . ��

7 Bend-Minimization in Linear Time

The bottom-up visit described above, equips each node ν of T with three information:
the budget bν , the cumulative budget Bν , and, if ν �= ρ, an interval I ′

ν = [m′
ν, M ′

ν]
of all possible spirality values that an orthogonal representation of Gν with Bν bends
can have. Once the bottom-up visit of T has been completed, our algorithm performs
a top-down visit of T to suitably add to G a number Bρ of subdivision vertices, so that
the resulting graph G ′ admits a rectilinear planar representation.

At the beginning of the top-down visit, the root ρ is considered. Let η be the child
of ρ that does not correspond to e. If I ′

η ∩ 
ρ �= ∅, the algorithm selects an arbitrary
value ση ∈ I ′

η ∩ 
ρ as target spirality value for a representation of G ′
η within a

rectilinear planar representation of G ′. If, vice versa, I ′
η ∩ 
ρ = ∅, according to the

proof of Lemma 22, the algorithm subdivides e with be = δ(I ′
η,
ρ) bends and sets

the target spirality value ση as either ση = M ′
η (if M ′

η is smaller than the infimum of

ρ) or ση = m′

η (if m′
η is larger than the supremum of 
ρ). In the next step of the

top-down visit, the algorithm considers node η, for which the target spirality value ση

has been previously fixed. If η is an S-node then bη = 0, i.e., no subdivision vertices
must be added in this step. If η is a P-node and bη > 0, the algorithm suitably adds
bη subdivision vertices along some edges of Gη. To do so, it applies the procedures
described in the second part of the proof of Property (ii) of Lemma 15, of Lemma 18,
or of Lemmas 20 and 21, depending on whether η is a P-node with three children, a
P-node with two children both having an exposed edge, or a P-node with two children
one of which has no exposed edge. Then, the algorithm sets the spirality values for
each child of η. Namely, we distinguish the following cases:
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Case 1: η is an S-node, with childrenμ1, . . . , μh (i ∈ {1, . . . , h}). Let I ′
μi

= [m′
i , M ′

i ]
be the representability interval of μi (assuming that any orthogonal representation of
Gμi will have Bνi bends). We must find a value σμi ∈ [m′

i , M ′
i ] for each i = 1, . . . , h

such that
∑h

i=i σμi = ση. To this aim, initially set σμi = M ′
i for each i = 1, . . . , h

and consider s = (
∑h

i=i σμi ) − ση. By Lemma 1, s ≥ 0. If s = 0 we are done.
Otherwise, iterate over all i = 1, . . . , h and for each i decrease both σμi and s by the
value min{s, M ′

i − m′
i }, until s = 0.

Case 2: η is a P-node with three children, μl , μc, and μr . By Lemma 2, it suffices to
set σμl = ση + 2, σμc = ση, and σμr = ση − 2.
Case 3: η is a P-node with two children, μl and μr . Let u and v be the poles of η. By
Lemma 3, σμl and σμr must be determined in such a way that σμl = ση +kl

uαl
u +kl

vα
l
v

and σμr = ση − kr
uαr

u − kr
vα

r
v . The values of kl

u , kl
v , kr

u , kr
v are fixed by the indegree

and outdegree of u and v. Hence, it suffices to choose the values of αl
u , α

l
v , α

r
u , α

r
v such

that they are consistent with the type of η and yield σμl ∈ I ′
μl

and σμr ∈ I ′
μr
. Since

each αd
w (w ∈ {u, v}, d ∈ {l, r}) is either 0 or 1, there are at most four combinations

of values to consider.
Case 4: η is a Q∗-node. In this case the algorithm does nothing, as no further subdi-
vision vertices must be added.
In the subsequent steps of the top-down visit, for every node ν the algorithm applies
the same procedure as for η to determine a target spirality value σν and to suitably
distribute the bν subdivision vertices along the edges of Gν .

Theorem 4 Let G be an n-vertex plane series–parallel 4-graph. There exists an O(n)-
time algorithm that computes a bend-minimum orthogonal representation of G.

Proof If G is biconnected let e be any edge of G on the external face; otherwise, let
e be a dummy edge added on the external face to make G biconnected. Let T be
an SPQ∗-tree of G with respect to e. The algorithm executes the bottom-up and the
top-down visits described above. Once the top-down visit is completed and Bρ subdi-
vision vertices have been suitably inserted in G, a rectilinear planar representation of
the subdivision of G is easily computed from the spirality values of each component
and from the values of the angles at the poles of each component. From this repre-
sentation we obtain a bend-minimum orthogonal representation of G by replacing the
subdivision vertices with bends. Since the obtained orthogonal representation has Bρ

bends, by Theorem 3 it has the minimum number of bends.
We now analyze the time complexity of the algorithm. T can be computed in O(n)

time and it consists of O(n) nodes [4]. For a node ν of T that is not a Q∗-node, we
denote by nν the number of children of ν.

Consider first the bottom-up visit. Let ν be a visited node of T . If ν is a Q∗-node
then bν = 0 and, by Table 1, I ′

ν = Iν is computed in O(1) time (we can assume that
the length � of the chain of edges represented by ν is stored at ν during the construction
of T ). If ν is an S-node, we still have bν = 0 and, by Table 1, I ′

ν = Iν is computed
in O(nν) time. If ν is a P-node with three children, by Lemma 15 bν and I ′

ν are
computed in O(1) time. If ν is a P-node with two children each having an exposed
edge, by Lemma 18 bν and I ′

ν are computed in O(1) time. Suppose now that ν is a
P-node with an S-node child that has no exposed edge, and assume that this S-node
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is the left child μl of ν. By Lemma 20, bν and I ′
ν can be computed in O(1) time if

we know the flexibility breakpoints (positive and negative) of μl . By Lemma 19, the
flexibility breakpoints ofμl can be computed in O(nμl ) time. By Lemma 21, the same
reasoning applies if the right child of ν is an S-node with no exposed edge. Finally, if
ν coincides with the root ρ of T , by Lemma 22 bν is easily computed in O(1) time. In
summary, for each S-node ν of T , the bottom-up visit requires O(nν) time to compute
bν , I ′

ν , and the flexibility breakpoints of ν if needed. For any other type of node, the
visit takes O(1) time. Thus, the bottom-up visit requires O(n) overall time.

In the top-down visit, for every non-leaf node ν of T , the algorithm spends O(bν)

time to add bν subdivision vertices. Also, we should consider the extra time t required
to decide what are the edges along which these bends must be added and what is the
target spirality value for each child of ν. Namely, if ν is the root, t = O(1). If ν is an
S-node, t = O(nν) by Case 1 of the top-down visit described above. If ν is a P-node
with three children, by Case 2 of the top-down visit and by Lemma 15, t = O(1). If ν

is a P-node with two children each having an exposed edge, by Case 3 of the top-down
visit and by Lemma 18, t = O(1). Finally, if ν is a P-node with two children, one of
which is an S-node μ with no exposed edge, by Case 3 and by Lemmas 20 and 21,
t = O(nμ). Hence, since Bρ = ∑

ν bν = O(n) [21], the top-down visit takes O(n)

overall time, and a rectilinear planar representation of the subdivision of G is easily
computed in O(n) time from the spirality values of each component and from the
values of the angles at the poles of each component.

��

8 Conclusions and Open Problems

We proved that there exists an optimal linear-time algorithm that computes a bend-
minimumorthogonal drawingof a plane series–parallel 4-graph; this result solves, for a
popular andwidely studied family of plane graphs, a question opened for over 30 years,
thus shedding new light on the complexity of computing orthogonal drawings of plane
graphs with the minimum number of bends. It is also worth remarking that, despite
the sophisticated analysis and key ingredients needed to prove our main theorem, the
resulting bend-minimization algorithm is relatively easy to implement, as at every
node of the SPQ∗-tree it just requires to apply some simple formulas, as summarized
in Tables 1 and 3. We conclude by suggesting two open problems:

– Problem 1. Our result holds for the series–parallel graphs that are also called
two-terminal, which are either biconnected or which can be made biconnected
with the addition of a single edge. Can we extend Theorem 4 to 1-connected plane
4-graphs whose biconnected components are two-terminal series–parallel graphs,
also known as partial 2-trees? Here themain difficulty of extending our approach is
to succinctly describe the possible spirality values for those components that con-
tain cut-vertices. In fact, a cut-vertex requires the imposition of some constraints
at its angles, in order to correctly compose the different biconnected components
that contain it. These constraints forbid some vertex angles, and in turns some
spirality values that an orthogonal representation can take.
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– Problem 2. Is it possible to find a linear-time algorithm for the bend-minimization
problem of triconnected plane 4-graphs? A positive answer to this question,
together with our result, could be used to solve the problem of computing a bend-
minimum orthogonal drawing of a general plane 4-graph in linear time.
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A Analysis of theMissing Cases in the Proof of Theorem 1

Case 4: indegν(u) > 1 and indegν(v) > 1. We analyze the three non-symmetric
subcases, depending on the outdegree of u and of v, i.e., outdegν(u) = outdegν(v) =
1, or outdegν(u) = 1 and outdegν(v) = 2 (symmetrically outdegν(u) = 2 and
outdegν(v) = 1), or outdegν(u) = outdegν(v) = 2. In all these cases, for a pole
w ∈ {u, v}, the angles defined by Sub(Hν, H ′

ν) around w in H ′′ are the same as in H ′
(note that if outdegν(w) = 2, the angles at w are all right angles, and they coincide
both in H and H ′). Hence, Property (H1) holds for u and v in H ′′. About Property (H2),
we analyze the different subcases separately:

• outdegν(u) = outdegν(v) = 1 (see Fig. 5a). Each of the two poles u and v has
a single alias vertex, denoted as u′ and v′, respectively. Let Pl (resp. Pr ) be the
path of H obtained by concatenating pl (resp. pr ) with the segments u′u and
vv′. Analogously, let P ′

l (resp. P ′
r ) be the path of H ′ obtained by concatenating p′

l
(resp. p′

r ) with the segments u′u and vv′. Using the same notation as in the previous
cases, we have σ(Hν) = n(Pl) = n(Pr ) and σ(H ′

ν) = n(P ′
l ) = n(P ′

r ). Hence,
since σ(Hν) = σ(H ′

ν), we have n(Pl) = n(Pr ) = n(P ′
l ) = n(P ′

r ), which implies
that N90( f ′′

l ) − N270( f ′′
l ) = N90( fl) − N270( fl) and N90( f ′′

r ) − N270( f ′′
r ) =

N90( fr ) − N270( fr ). Hence, Property (H2) holds for f ′′
l and f ′′

r .
• outdegν(u) = 1 and outdegν(v) = 2 (see Fig. 5b). The pole u has a single alias
vertex u′, while v has two alias vertices v′ and v′′. Let Pl (resp. Pr ) be the path of
H obtained by concatenating pl (resp. pr ) with the segments u′u and vv′ (resp.
vv′′). Analogously, let P ′

l (resp. P ′
r ) be the path of H ′ obtained by concatenating

p′
l (resp. p′

r ) with the segments u′u and vv′ (resp. vv′′). Since σ(Hν) = σ(H ′
ν),

we have n(Pl )+n(Pr )
2 = n(P ′

l )+n(P ′
r )

2 . Also, since all the angles at v are right angles,
we have n(Pr ) = n(Pl)+1 and n(P ′

r ) = n(P ′
l )+1, which implies n(Pl) = n(P ′

l )

and n(Pr ) = n(P ′
r ). Hence, N90( f ′′

l ) − N270( f ′′
l ) = N90( fl) − N270( fl) and

N90( f ′′
r ) − N270( f ′′

r ) = N90( fr ) − N270( fr ), i.e., Property (H2) holds for f ′′
l and

f ′′
r .
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• outdegν(u) = outdegν(v) = 2 (see Fig. 5c). Each of the two poles u and v has
two alias vertices, denoted as {u′, u′′} and {v′, v′′}, respectively. Let Pl (resp. Pr )
be the path of H obtained by concatenating pl (resp. pr ) with the segments u′u
and vv′ (resp. u′′u and vv′′). Analogously, let P ′

l (resp. P ′
r ) be the path of H ′

resulting from the concatenation of p′
l (resp. p′

r ) with the segments u′u and vv′

(resp. u′′u and vv′′). Since σ(Hν) = σ(H ′
ν), we have

n(Pl )+n(Pr )
2 = n(P ′

l )+n(P ′
r )

2 .
Also, since all the angles at u and v are right angles, we have n(Pr ) = n(Pl) + 2
and n(P ′

r ) = n(P ′
l ) + 2. This implies that n(Pl) = n(P ′

l ) and n(Pr ) = n(P ′
r ),

which in turns implies that N90( f ′′
l ) − N270( f ′′

l ) = N90( fl) − N270( fl) and
N90( f ′′

r ) − N270( f ′′
r ) = N90( fr ) − N270( fr ). Hence, Property (H2) holds for f ′′

l
and f ′′

r .

B Analysis of theMissing Cases in the Proof of Lemma 8

Case 2: λ = 1 and β = 2, i.e., Gν is of type I2O12. We prove that Iν = [max{ml −
2, mr } + 1

2 ,min{Ml , Mr + 2} − 1
2 ]. Assume first that Gν is rectilinear planar and

let Hν be a rectilinear planar representation of Gν with spirality σν . Let Hμl and
Hμr be the representations of Gμl and Gμr contained in Hν , and let σμl and σμr be
their corresponding spirality values. By Lemma 7, σμl − σμr ∈ [2, 3], i.e., σμl ∈
[2 + σμr , 3 + σμr ]. Since σμl ∈ [ml , Ml ] and σμr ∈ [mr , Mr ], we have σμl ≥
max{ml , mr +2}. Suppose, w.l.o.g, that outdegν(v) = 2 and outdegν(u) = 1.We have
kr

u = kl
u = 1, kr

v = kl
v = 1

2 , α
l
u ∈ [0, 1], αr

u ∈ [0, 1], and αl
v = αr

v = 1. By Lemma 3,
σν = σμl −αl

u − 1
2α

l
v . Since−αl

u − 1
2α

l
v ≥ − 3

2 , we have σν ≥ max{ml , mr +2}− 3
2 . It

follows thatσν ≥ max{ml−2, mr }+ 1
2 .Analogously, sinceσμr ∈ [σμl −3, σμl −2], we

haveσμr ≤ min{Ml −2, Mr }. ByLemma3,σν = σμr +αr
u+ 1

2α
r
v . Sinceαr

u+ 1
2α

r
v ≤ 3

2 ,
we have σν ≤ min{Ml − 2, Mr } + 3

2 . It follows that σν ≤ min{Ml , Mr + 2} − 1
2 ,

hence σν ∈ Iν .
Assume vice versa that k is a semi-integer in the interval Iν = [max{ml −2, mr }+

1
2 ,min{Ml , Mr + 2} − 1

2 ]. We show that Gν has a rectilinear planar representation
with spirality σν = k. Since k ∈ [ml − 3

2 , Ml − 1
2 ] we have k + 1

2 ≤ Ml and
k + 3

2 ≥ ml , i.e., [k + 1
2 , k + 3

2 ] ∩ [ml , Ml ] �= ∅. Also, since ml and Ml are both
integer numbers while k is semi-integer, it is impossible to have k + 1 = ml = Ml . It
follows that k + 1

2 ∈ [ml , Ml ] or k + 3
2 ∈ [ml , Ml ]. With the same reasoning, we have

k ∈ [mr + 1
2 , Mr + 3

2 ] and [k − 3
2 , k − 1

2 ] ∩ [mr , Mr ] �= ∅. Hence, k − 3
2 ∈ [mr , Mr ]

or k − 1
2 ∈ [mr , Mr ]. We now prove that k + 3

2 ∈ [ml , Ml ] or k − 3
2 ∈ [mr , Mr ].

Suppose for a contradiction that k + 3
2 /∈ [ml , Ml ] and k − 3

2 /∈ [mr , Mr ]. In that
case k + 1

2 ∈ [ml , Ml ] and k − 1
2 ∈ [mr , Mr ]. Consequently, k + 1

2 = Ml and
k − 1

2 = mr . Hence, Ml − mr = 1 and, by the representability condition, Gν is not
rectilinear planar, a contradiction. As in the previous case, a rectilinear representation
of Gν with spirality k is obtained by combining in parallel a representation Hμl of
Gμl with spirality σμl and a representation Hμr of Gμr with spirality σμr , for two
suitable values σμl and σμr . Based on the previous considerations, we distinguish the
following subcases.
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• Case 2.1: k + 3
2 /∈ [ml , Ml ]. This implies that k + 1

2 ∈ [ml , Ml ] and k − 3
2 ∈

[mr , Mr ], and therefore we set σμl = k + 1
2 and σμr = k − 3

2 .
• Case 2.2: k − 3

2 /∈ [mr , Mr ]. This implies that k + 3
2 ∈ [ml , Ml ] and k − 1

2 ∈
[mr , Mr ], and therefore we set σμl = k + 3

2 and σμr = k − 1
2 .

• Case 2.3: k + 3
2 ∈ [ml , Ml ] and k − 3

2 ∈ [mr , Mr ]. We set σμl = k + 3
2 and

σμr = k − 3
2 .

Note that, in all the three subcases we have σμl − σμr ∈ [2, 3], hence by Lemma 7
there exists a rectilinear planar representation Hν of Gν that contains Hμl and Hμr .
It remains to prove that the spirality σν of Hν is equal to k. Suppose, w.l.o.g, that
outdegν(u) = 1 and outdegν(v) = 2. We have kr

u = kl
u = 1 and kr

v = kl
v = 1

2 . Since
Gν is rectilinear planar, αl

u ∈ [0, 1] and αl
v = 1. By Lemma 3, σν = σμl − αl

u − 1
2α

l
v .

In Case 2.1 we have σν = k + 1
2 − αl

u − 1
2α

l
v; choosing αl

u = 0 and αl
v = 1 we have

σν = k. In Cases 2.2 and 2.3 we have σν = k + 3
2 − αl

u − 1
2α

l
v; choosing αl

u = 1 and
αl

v = 1 we have σν = k.

C Analysis of theMissing Cases in the Proof of Lemma 18

Case I3dOλβ : recall that in this case λ = 1 and β ∈ {1, 2}. Assume, without loss of
generality, that indeg(v) = 3 and indeg(u) = 2. Also, assume d = l (the case d = r is
treated symmetrically). In this case
ν = [ 52 , 7

2 −γ ], m = max{ml − 3
2 , mr +1}+ γ

2 ,
and M = min{Ml − 1

2 , Mr + 2} − γ
2 . We show that set I ′

ν is an interval of feasible
spirality values for the orthogonal representations of Gν with bν bends. Suppose first
that Gν has an orthogonal representation Hν with bν bends, and let σν be the spirality
of Hν . We prove that σν ∈ [m − bν, M + bν]. Let bl and br be the number of bends
in the restriction of Hν to Gμl and to Gμr , respectively, where bl + br = bν . By
Lemma 3, we have σν = σμl − kl

uαl
u − kl

vα
l
v . By Relation 1 of Lemma 17, we have

−kl
uαl

u−kl
vα

l
v ∈ [− 3

2+ γ
2 ,− γ

2 − 1
2 ]. Hence, by the same reasoning as in the case I2Oλβ ,

σν ∈ [ml −bν − 3
2 + γ

2 , Ml +bν − γ
2 − 1

2 ]. Also, by Relation 2 of Lemma 17, we have
kr

uαr
u+kr

vα
r
v ∈ [ γ

2 +1, 2− γ
2 ]. Hence,σν ∈ [mr −bν+ γ

2 +1, Mr +bν+2− γ
2 ]. It follows

that σν ∈ [ml −bν − 3
2 + γ

2 , Ml +bν − γ
2 − 1

2 ]∩[mr −bν +1+ γ
2 , Mr +bν +2− γ

2 ] =
[max{ml − 3

2 , mr +1}+ γ
2 −bν,min{Ml − 1

2 , Mr +2}− γ
2 +bν] = [m −bν, M +bν].

It remains to show that for every σν ∈ [m −bν, M +bν], there exists an orthogonal
representation Hν of Gν with bν bends and with spirality σν . With the same notation
as in the previous case, we show how to compute the values bl and br . Also, we show
how to compute the spirality for the rectilinear planar representations of G ′

μl
and G ′

μr
,

within their representability intervals [ml −bl , Ml +bl ] and [mr −br , Mr +br ]. Since
by hypothesis Gν is not rectilinear planar we have [ml − Mr , Ml − mr ] ∩ 
ν = ∅,
i.e., [ml − Mr , Ml − mr ] ∩ [ 52 , 7

2 − γ ] = ∅. We analyze the two possible subcases:

• Ml − mr < 5
2 . By Property (i), bν = δ([ml − Mr , Ml − mr ], [ 52 , 7

2 − γ ]) =
5
2 − Ml + mr . We set bl = σν − Ml + hl , where hl is a number (either integer or
semi-integer) in the interval [ γ

2 + 1
2 ,

3
2− γ

2 ] such that bl ∈ [0, bν].Wefirst prove that
such a value hl always exists for any given σν ∈ [m −bν, M +bν]. If σν = m −bν ,
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we choose hl = 3
2 − γ

2 . This implies that bl = m − bν − Ml + 3
2 − γ

2 . Since
Ml − mr < 5

2 , we have ml − 5
2 ≤ Ml − 5

2 < mr , and therefore ml − 3
2 < mr + 1.

Since m = max{ml − 3
2 , mr + 1} + γ

2 , we have m = mr + 1 + γ
2 . Also, since

bν = 5
2 − Ml +mr , we have bl = m −bν − Ml + 3

2 − γ
2 = mr +1+ γ

2 −bν − Ml +
3
2 − γ

2 = 0. If σν ∈ [m − bν + 1, M + bν], we choose hl = γ
2 + 1

2 . This implies
that bl = σν − Ml + γ

2 + 1
2 ∈ [m − bν + 1− Ml + γ

2 + 1
2 , M + bν − Ml + γ

2 + 1
2 ].

We have m − bν + 1 − Ml + γ
2 + 1

2 = mr + 1 + γ
2 − bν + 1 − Ml + γ

2 + 1
2 =

( 52 + mr − Ml) − bν + γ = γ . Since Ml < mr + 5
2 ≤ Mr + 5

2 we have
Ml − 1

2 < Mr + 2. Also, since M = min{Ml − 1
2 , Mr + 2} − γ

2 it follows
that M = Ml − 1

2 − γ
2 . Hence, M + bν − Ml + γ

2 + 1
2 = Ml − 1

2 − γ
2 +

bν − Ml + γ
2 + 1

2 = bν . It follows that bl ∈ [γ, bν]. Since γ ≥ 0, also in this
case there exists a value of hl ∈ [ γ

2 + 1
2 ,

3
2 − γ

2 ] such that bl ∈ [0, bν]. We
represent G ′

μl
with spirality σ ′

μl
= Ml + bl = Ml + σν − Ml + hl = σν + hl

and G ′
μr

with spirality σ ′
μr

= mr − br = mr − (bν − bl) = mr − bν + bl =
mr − bν + σν − Ml + hl = bν − 5

2 − bν + σν + hl = σν + hl − 5
2 . We have

σ ′
μl

−σ ′
μr

= σν +hl −(σν +hl − 5
2 ) = 5

2 and, by Lemma 9, G ′
ν is rectilinear planar.

It remains to show that G ′
ν admits a rectilinear planar representation with spirality

σ ′
ν = σν . Given the choice of σ ′

μl
and σ ′

μr
, by Lemma 3 every rectilinear planar

representation ofG ′
ν has spiralityσ ′

ν = σ ′
μl

−kl
uαl

u−kl
uαl

v = σν+hl −kl
uαl

u−kr
uαl

v .

Since hl ∈ [ γ
2 + 1

2 ,
3
2 − γ

2 ], by Relation 1 of Lemma 17 there exists a value
kl

uαl
u + kr

uαl
v such that hl − kl

uαl
u − kr

uαl
v = 0, and thus σ ′

ν = σν .
• ml − Mr > 7

2 − γ . In this case, by Property (i) we have bν = ml − Mr − 7
2 + γ .

We set bl = ml − σν − 3
2 + γ

2 . As before, we first prove that bl ∈ [0, bν]. We have
bl ∈ [ml −M −bν − 3

2 + γ
2 , ml −m+bν − 3

2 + γ
2 ]. Since Ml ≥ ml > Mr + 7

2 −γ ≥
Mr + 5

2 , we have Ml − 1
2 ≥ Mr + 2. It follows that M = Mr + 2 − γ

2 . Hence,
ml −M−bν− 3

2+ γ
2 = ml −(Mr +2− γ

2 )−bν− 3
2+ γ

2 = ml −Mr − 7
2+γ −bν = 0.

Also, since ml − 5
2 ≥ ml − 7

2 + γ > Mr we have ml − 3
2 ≥ Mr + 1 ≥ mr + 1. It

follows that m = ml − 3
2 + γ

2 . Hence, ml − m + bν − 3
2 + γ

2 = ml − (ml − 3
2 +

γ
2 )+bν − 3

2 + γ
2 = bν . It follows that bl ∈ [0, bν]. We represent G ′

μl
with spirality

σ ′
μl

= ml −bl = ml −(ml −σν− 3
2+ γ

2 ) = σν+ 3
2− γ

2 andG ′
μr

with spiralityσ ′
μr

=
Mr +br = Mr +bν −bl = Mr +ml −Mr − 7

2 +γ −ml +σν + 3
2 − γ

2 = σν + γ
2 −2.

We have σ ′
μl

− σ ′
μr

= σν + 3
2 − γ

2 − (σν + γ
2 − 2) = 7

2 − γ and, by Lemma 9,
G ′

ν is rectilinear planar. Also, by Lemma 3 every rectilinear planar representation
of G ′

ν has spirality σ ′
ν = σ ′

μl
− kl

uαl
u − kl

uαl
v = σν + 3

2 − γ
2 − kl

uαl
u − kl

uαl
v . By

Relation 1 of Lemma 17, we can set kl
uαl

u + kr
uαl

v = 3
2 − γ

2 , and thus σ ′
ν = σν .

Case I3dd ′ : assume that d = l (the case d = r is symmetric). In this case kl
v = 1

2 ,

kr
v = 1, 
ν = [3, 3], m = max{ml −1, mr +2}− φ(d ′)

2 , and M = min{Ml −1, Mr +
2} − φ(d ′)

2 . Since both u and v have degree four, in any rectilinear representation of
Gμl and Gμl we have αl

u = αr
u = αl

v = αr
v = 1. If d ′ = l then kl

u = 1
2 and kr

u = 1;
hence kl

uαl
u + kl

vα
l
v = 1 and kr

uαr
u + kr

vα
r
v = 2. If d ′ = r then kl

u = 1 and kr
u = 1

2 ;
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hence kl
uαl

u + kl
vα

l
v = kr

uαr
u + kr

vα
r
v = 3

2 . We show that set I ′
ν is an interval of feasible

spirality values for the orthogonal representations of Gν with bν bends. Suppose first
that Gν has an orthogonal representation Hν with bν bends, and let σν be the spirality
of Hν . We prove that σν ∈ [m − bν, M + bν]. Let bl and br be the number of bends
in the restriction of Hν to Gμl and to Gμr , respectively, where bl + br = bν . By
Lemma 3, we have σν = σμl − kl

uαl
u − kl

vα
l
v = σμr + kr

uαr
u + kr

vα
r
v . Suppose first

d ′ = l. In this case σν = σμl − 1 = σμr + 2. Hence, by the same reasoning as in the
case I2Oλβ , σν ∈ [ml − bν − 1, Ml + bν − 1] and σν ∈ [mr − bν + 2, Mr + bν + 2].
Therefore, σν ∈ [ml − bν − 1, Ml + bν − 1] ∩ [mr − bν + 2, Mr + bν + 2] =
[max{ml −1, mr +2}−bν,min{Ml −1, Mr +2}+bν]. Since d ′ = l, we have φ(d ′)

2 = 0
and σν ∈ [max{ml −1, mr +2}−bν,min{Ml −1, Mr +2}+bν] = [m −bν, M +bν].
Suppose now d ′ = r . In this case σν = σμl − 3

2 = σμr + 3
2 . Hence, σν ∈ [ml − bν −

3
2 , Ml +bν − 3

2 ]∩[mr −bν + 3
2 , Mr +bν + 3

2 ] = [max{ml − 3
2 , mr + 3

2 }−bν,min{Ml −
3
2 , Mr + 3

2 }+bν] = [max{ml −1, mr +2}− 1
2 −bν,min{Ml −1, Mr +2}− 1

2 +bν].
Since d ′ = r , we have φ(d ′)

2 = 1
2 and σν ∈ [max{ml −1, mr +2}− 1

2 −bν,min{Ml −
1, Mr + 2} − 1

2 + bν] = [m − bν, M + bν].
It remains to show that for every σν ∈ [m −bν, M +bν], there exists an orthogonal

representation Hν of Gν with bν bends and with spirality σν . With the same notation
as in the previous cases, we show how to compute the values bl and br . Also, we show
how to compute the spirality for the rectilinear planar representations of G ′

μl
and G ′

μr
,

within their representability intervals [ml −bl , Ml +bl ] and [mr −br , Mr +br ]. Since
by hypothesis Gν is not rectilinear planar we have [ml − Mr , Ml − mr ] ∩ 
ν = ∅,
i.e., [ml − Mr , Ml − mr ] ∩ [3, 3] = ∅. We analyze the two possible subcases:

• Ml −mr < 3. By Property (i), bν = δ([ml −Mr , Ml −mr ], [3, 3]) = 3−Ml +mr .
Suppose first that d ′ = l. By setting bl = σν − Ml + 1, we have bl ∈ [0, bν].
Namely, bl ∈ [m −bν − Ml +1, M +bν − Ml +1]. Since Ml < mr +3 ≤ Mr +3
we have Ml − 1 < Mr + 2. Also, since M = min{Ml − 1, Mr + 2}, we have
M = Ml − 1. Since ml − 3 ≤ Ml − 3 < mr we have ml − 1 < mr + 2.
Also, since m = max{ml − 1, mr + 2}, we have m = mr + 2. Hence,
bl ∈ [mr + 2 − bν − Ml + 1, Ml − 1 + bν − Ml + 1] = [0, bν].
We represent G ′

μl
with spirality σ ′

μl
= Ml + bl = Ml + σν − Ml + 1 = σν + 1

and G ′
μr

with spirality σ ′
μr

= mr − br = mr − (bν − bl) = mr − bν + σν −
Ml + 1 = (mr − Ml + 1) − bν + σν = bν − 2 − bν + σν = σν − 2. We have
σ ′

μl
− σ ′

μr
= σν + 1 − (σν − 2) = 3 and, by Lemma 11, G ′

ν is rectilinear planar.
Also, given the choice of σ ′

μl
and σ ′

μr
, by Lemma 3 every rectilinear planar repre-

sentation of G ′
ν has spirality σ ′

ν = σ ′
μl

− kl
uαl

u − kl
uαl

v = σν + 1 − 1 = σν .

Suppose now that d ′ = r . By setting bl = σν − Ml + 3
2 we have bl ∈ [0, bν].

Namely, bl ∈ [m − bν − Ml + 3
2 , M + bν − Ml + 3

2 ]. Since Ml < Mr + 3
we have Ml − 3

2 < Mr + 3
2 . Also, since M = min{Ml − 3

2 , Mr + 3
2 }, we have

M = Ml − 3
2 . Since ml − 3 < mr we have ml − 3

2 < mr + 3
2 . This implies that

m = max{ml − 3
2 , mr + 3

2 } = mr + 3
2 . Hence, bl ∈ [mr + 3

2 − bν − Ml + 3
2 , Ml −

3
2 + bν − Ml + 3

2 ] = [0, bν].
We represent G ′

μl
with spirality σ ′

μl
= Ml +bl = Ml +σν − Ml + 3

2 = σν + 3
2 and
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G ′
μr

with spirality σ ′
μr

= mr − br = mr − (bν − bl) = mr − bν +σν − Ml + 3
2 =

(mr − Ml + 3
2 ) − bν + σν = bν − 3

2 − bν + σν = σν − 3
2 . We have

σ ′
μl

− σ ′
μr

= σν + 3
2 − (σν − 3

2 ) = 3 and, by Lemma 11, G ′
ν is rectilinear

planar.
Also, by Lemma 3 every rectilinear planar representation of G ′

ν has spirality
σ ′

ν = σ ′
μl

− kl
uαl

u − kl
uαl

v = σν + 3
2 − 3

2 = σν .
• ml − Mr > 3. In this case, by Property (i) we have bν = ml − Mr − 3.
Suppose first that d ′ = l. By setting bl = ml − σν − 1, we have bl ∈ [0, bν].
Namely, bl ∈ [ml − bν − M −1, ml − m + bν −1]. Since Ml ≥ ml > Mr +3, we
have Ml − 1 ≥ Mr + 2. This implies that M = min{Ml − 1, Mr + 2} = Mr + 2.
Since ml > Mr + 3 ≥ mr + 2, we have ml − 1 ≥ mr + 2, which implies that
m = max{ml − 1, mr + 2} = ml − 1. Hence, bl ∈ [ml − bν − Mr − 2 − 1, ml −
ml − 1 + bν + 1] = [0, bν].
We represent G ′

μl
with spirality σ ′

μl
= ml − bl = ml − ml + σν + 1 = σν + 1

and G ′
μr

with spirality σ ′
μr

= Mr + br = Mr + bν − bl = Mr + bν − (ml −
σν − 1) = Mr + bν − ml + σν + 1 = σν + bν − bν − 2 = σν − 2. We have
σ ′

μl
− σ ′

μr
= σν + 1 − (σν − 2) = 3 and, by Lemma 11, G ′

ν is rectilinear planar.
Also, by Lemma 3 every rectilinear planar representation of G ′

ν has spirality σ ′
ν =

σ ′
μl

− kl
uαl

u − kl
uαl

v = σν + 1 − 1 = σν .

Suppose now that d ′ = r . By setting bl = ml − σν − 3
2 we have bl ∈ [0, bν].

Namely, bl ∈ [ml − bν − M − 3
2 , ml − m + bν − 3

2 ]. Since Ml > Mr + 3, we
have Ml − 3

2 ≥ Mr + 3
2 . This implies that M = min{Ml − 3

2 , Mr + 3
2 } = Mr + 3

2 .
Since ml > mr + 3, we have ml − 3

2 ≥ mr + 3
2 . This implies that m = max{ml −

3
2 , mr + 3

2 } = ml − 3
2 . Hence, bl ∈ [ml − bν − M − 3

2 , ml − m + bν − 3
2 ] =

[ml − bν − Mr − 3
2 − 3

2 , ml − ml − 3
2 + bν + 3

2 ] = [0, bν].
We represent G ′

μl
with spirality σ ′

μl
= ml − bl = ml − ml +σν + 3

2 = σν + 3
2 and

G ′
μr

with spirality σ ′
μr

= Mr +br = Mr +bν −bl = Mr +bν − (ml −σν − 3
2 ) =

σν + bν − bν − 3
2 = σν − 3

2 . We have σ ′
μl

− σ ′
μr

= σν + 3
2 − (σν − 3

2 ) = 3 and,
by Lemma 11, G ′

ν is rectilinear planar.
Also, by Lemma 2 every rectilinear planar representation of G ′

ν has spirality σ ′
ν =

σ ′
μl

− kl
uαl

u − kl
uαl

v = σν + 3
2 − 3

2 = σν .

D Glossary of Symbols and Terminology

See Tables 4 and 5.
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Table 4 Glossary of the main symbols used in the paper

Notation Short description

G Graph (with vertex-degree at most four)

H Orthogonal representation

Na( f ) Number of a◦ angles in face f of an orthogonal representation

T SPQ∗-tree
Gν Pertinent graph of the node ν in an SPQ∗-tree (component of G)

Hν Orthogonal representation of a component Gν

σ (Hν) or σν Spirality of an orthogonal representation Hν (component of H )

Puv Simple path from u to v in a component

Su′v′
Spine of a component with poles u and v (u′ and v′ being alias
vertices associated with u and v)

n(P) Number of right turns minus left turns along an oriented path P

Au Set of the alias vertices of a pole u

Sub(Hν , H ′
ν) Orthogonal representation obtained from H by substituting Hν

with H ′
ν

αw
l , αw

r Binary coefficients used to denote the leftmost and the rightmost
external angles at a pole w of a component

(the value 0 denotes a 180◦ angle, while the value 1 denotes a 90◦
angle)

kw
l , kw

r Coefficients that take value 1 or 1/2, based on the
indegree/outdegree of a pole w in the left/right child

of a P-node with two children

Iν Representability interval of a node ν, i.e., the set of spirality values
that can be taken from a rectilinear

representation of Gν

M, m Maximum and minimum values of the representability interval of a
node

I2Oλβ , I3dOλβ , I3dd ′ Different types of P-nodes with two children, where
1 ≤ λ ≤ β ≤ 2 and d ∈ {l, r} (refer to Fig. 10)

φ(d) Binary function defined on the values d ∈ {l, r} and such that
φ(l) = 0 and φ(r) = 1


ρ Interval associated with the root ρ of an SPQ∗-tree: 
ρ = [2, 6] if
each pole of ρ coincides with its alias vertex;


ρ = [3, 5] if only one pole of ρ coincides with its alias vertex;

ρ = 4 if each pole of ρ is distinct from its alias vertex
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Table 4 continued

Notation Short description

δ(A1, A2) Distance between two non-intersecting intervals of real numbers
A1 and A2

bν Budget of a node ν, i.e., number of extra bends added to those of
the children of ν to guarantee

the existence of an orthogonal representation of Gν

Bν Cumulative budget of a node ν, i.e., sum of the budgets of all nodes
in the subtree rooted at ν

I ′
ν Set of spirality values that an orthogonal representation of Gν with

bν extra bends can take

σmax
ν (b), σmin

ν (b) Maximum and minimum spirality value for an orthogonal
representation Hν with at most b bends

b+
ν Positive flexibility breakpoint of Gν , i.e., the maximum number of

bends such that

for every b < b+
ν , we have σmax

ν (b + 1) = σmax
ν (b) + 1

b−
ν Negative flexibility breakpoint of Gν , i.e., the maximum number of

bends such that

for every b < b−
ν , we have σmin

ν (b + 1) = σmin
ν (b) − 1

Table 5 Glossary of the main terminology

Terminology Short description

k-graph A graph whose vertices have degree at most k.

Orthogonal drawing Drawing of a graph where each vertex is represented as
a point of the plane and each edge

as a sequence of horizontal and vertical segments.

Bend Contact point between a vertical and a horizontal
segment along an edge of an orthogonal drawing

Orthogonal representation Description of the “shape” of an orthogonal drawing,
i.e., angles at the vertices

and sequences of left/right bends along the edges; vertex
and bend coordinates are not specified

Rectilinear drawing/representation Orthogonal drawing/representation without bends

Planar orthogonal drawing/representation Orthogonal drawing/representation without edge
crossings

Rectilinear planar graph A graph that admits a rectilinear planar drawing

Series–parallel graph A graph obtained in an inductive way by means of
series- and parallel-compositions

SPQ∗-tree Rooted tree whose nodes describe the structure of a
series–parallel graph in terms of

its series- and parallel-compositions

S-node Node of an SPQ∗-tree associated with a
series-composition that is not a chain of edges
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Table 5 continued

Terminology Short description

P-node Node of an SPQ∗-tree associated with a
parallel-composition

Q∗-node Leaf of an SPQ∗-tree, associated with either an edge or
a chain of edges

Reference edge A designated edge for an SPQ∗-tree; the root of the tree
corresponds to the parallel-composition

between the reference edge and the rest of the graph

Poles of a node ν The two terminal vertices for the composition
represented by the node ν of an SPQ∗-tree

Pertinent graph or component of a node ν The subgraph Gν induced by the leaves of the subtree of
an SPQ∗-tree rooted at ν

Alias vertex of a pole Dummy vertex associated with a pole of a node ν of an
SPQ∗-tree. This vertex may or may not

coincide with the pole, depending on its
indegree/outdegree in the component that ν represents

Orthogonal component Restriction of an orthogonal representation to a
component of the graph

Spirality of an orthogonal component A measure of how much an orthogonal component is
rolled-up

Representability condition of a node ν A Boolean condition that is true if and only if the
component Gν is rectilinear planar

Representability interval of a node ν Interval of the spirality values that a rectilinear
representation of Gν can take

Exposed edge For a child μ of a P-node, if μ is a Q∗-node then all the
edges of μ are exposed edges;

if μ is an S-node, the exposed edges of μ are those
corresponding to leaf-children of μ, if any
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