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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S* and
Z, coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K, allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{G,}i>0 together with homomorphisms G; — G, ,. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

* Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.



250 A. Zomorodian and G. Carlsson

de

a° °

Lo [ab JJ1 [d%]|[2 [[cd ad]|[3 ][ ac J][4 ][ abe ||[ 5 ][ acd ]

Fig. 1. A filtered complex with newly added simplices highlighted.

terms of a set of intervals. We also derive a natural algorithm for computing this family
of intervals. Using this family, we may identify homological features that persist within
the filtration, the persistent homology of the filtered complex.

Furthermore, our interpretation makes it clear that if the ground ring is not a field, there
exists no similarly simple classification of persistent homology. Rather, the structures are
very complicated, and although we may assign interesting invariants to them, no simple
classification is, or is likely ever to be, available. In this case we provide an algorithm
for computing a single persistent group for the filtration.

In the rest of this section we first motivate our study through three examples in which
filtered complexes arise whose persistent homology is of interest. We then discuss prior
work and its relationship to our work. We conclude this section with an outline of the

paper.

1.1.  Motivation

We call a filtered simplicial complex, along with its associated chain and boundary maps,
a persistence complex. We formalize this concept in Section 3. Persistence complexes
arise naturally whenever one is attempting to study topological invariants of a space
computationally. Often, our knowledge of this space is limited and imprecise. Conse-
quently, we must utilize a multiscale approach to capture the connectivity of the space,
giving us a persistence complex.

Example 1.1 (Point Cloud Data). Suppose we are given a finite set of points X from
a subspace X € R". We call X point cloud data or PCD for short. It is reasonable
to believe that if the sampling is dense enough, we should be able to compute the
topological invariants of X directly from the PCD. To do so, we may either compute the
Cech complex, or approximate it via a Rips complex [15]. The latter complex R, (X)
has X as its vertex set. We declare a set of vertices o = {xp, x1, ..., Xz} to span a k-
simplex of R, (X) iff the vertices are pairwise close, that is, d(x;, x;) < & for all pairs
X;, xj € o. There is an obvious inclusion R.(X) — R, (X) whenever ¢ < ¢’. In other
words, for any increasing sequence of non-negative real numbers, we obtain a persistence
complex.

Example 1.2 (Density). Often, our samples are not from a geometric object, but are
heavily concentrated on it. It is important, therefore, to compute a measure of density of
the data around each sample. For instance, we may count the number of samples p(x)
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contained in a ball of size ¢ around each sample x. We may then define R} (X) C R, to
be the Rips subcomplex on the vertices for which p(x) < r. Again, for any increasing
sequence of non-negative real numbers r, we obtain a persistence complex. We must
analyze this complex to compute topological invariants attached to the geometric object
around which our data is concentrated.

Example 1.3 (Morse Functions). Given a manifold M equipped with a Morse function
f, we may filter M via the excursion sets M, = {m € M | f(m) < r}. We again choose
an increasing sequence of non-negative numbers to get a persistence complex. If the
Morse function is a height function attached to some embedding of M in R", persistent
homology can now give information about the shape of the submanifolds, as well the
homological invariants of the total manifold.

1.2.  Prior Work

We assume familiarity with basic group theory and refer the reader to [10] for an intro-
duction. We make extensive use of [16] in our description of algebraic homology and
recommend it as an accessible resource to non-specialists. There is a large body of work
on the efficient computation of homology groups and their ranks [1], [8], [9], [13].

Persistent homology groups are initially defined in [11] and [18]. The authors also
provide an algorithm that worked only for spaces that were subcomplexes of S* over Z,
coefficients. The algorithm generates a set of intervals for a filtered complex. Surpris-
ingly, the authors show that these intervals allowed the correct computation of the rank
of persistent homology groups. In other words, the authors prove constructively that per-
sistent homology groups of subcomplexes of S3, if computed over Z, coefficients, have
a simple description in terms of a set of intervals. To build these intervals, the algorithm
pairs positive cycle-creating simplices with negative cycle-destroying simplices. Dur-
ing the computation, the algorithm ignores negative simplices and always looks for the
youngest simplex. While the authors prove the correctness of the results of the algorithm,
the underlying structure remains hidden.

1.3.  Our Work

We are motivated primarily by the unexplained results of the previous work. We wish to
answer the following questions:

1. Why does a simple description exist for persistent homology of subcomplexes of
S? over Z,?

2. Does this description also exist over other rings of coefficients and arbitrary-

dimensional simplicial complexes?

Why can we ignore negative simplices during computation?

Why do we always look for the youngest simplex?

5. What is the relationship between the persistence algorithm and the standard re-
duction scheme?

hali e
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In this paper we resolve all these questions by uncovering and elucidating the structure of
persistent homology. Specifically, we show that the persistent homology of a filtered d-
dimensional simplicial complex is simply the standard homology of a particular graded
module over a polynomial ring. Our analysis places persistent homology within the
classical framework of algebraic topology. This placement allows us to utilize a standard
structure theorem to establish the existence of a simple description of persistenthomology
groups as a set of intervals, answering the first question above. This description exists
over arbitrary fields, not just Z, as in the previous result, resolving the second question.

Our analysis also enables us to derive a persistence algorithm from the standard
reduction scheme in algebra, resolving the next three questions using two main lemmas.
Our algorithm generalizes and extends the previously known algorithm to complexes
in arbitrary dimensions over arbitrary fields of coefficients. We also show that if we
consider integer coefficients or coefficients in some non-field R, there is no similar simple
classification. This negative result suggests the possibility of interesting yet incomplete
invariants of inductive systems. For now, we give an algorithm for classifying a single
homology group over an arbitrary principal ideal domain.

1.4.  Spectral Sequences

Any filtered complex gives rise to a spectral sequence, so it is natural to wonder about
the relationship between this sequence and persistence. A full discussion on spectral
sequences is outside the scope of this paper. However, we include a few remarks here
for the reader who is familiar with the subject. We may easily show that the persistence
intervals for a filtration correspond to non-trivial differentials in the spectral sequence
that arises from the filtration. Specifically, an interval of length r corresponds to some
differential d,,;. Given this correspondence, we realize that the method of spectral
sequences computes persistence intervals in order of length, finding all intervals of
length r during the computation of the E”+! term. In principle, we may use this method to
compute the result of our algorithm. However, the method does not provide an algorithm,
but a scheme that must be tailored for each problem independently. The practitioner must
decide on an appropriate basis, find the zero terms in the sequence, and deduce the nature
of the differentials. Our analysis of persistent homology, on the other hand, provides a
complete, effective, and implementable algorithm for any filtered complex.

1.5. Owutline

We begin by reviewing concepts from algebra and simplicial homology in Section 2.
We also re-introduce persistent homology over integers and arbitrary dimensions. In
Section 3 we define and study the persistence module, a structure that represents the ho-
mology of a filtered complex. In addition, we establish a relationship between our results
and prior work. Using our analysis, we derive an algorithm for computation over fields in
Section 4. For non-fields, we describe an algorithm in Section 5 that computes individual
persistent groups. Section 6 describes one implementation and some experiments. We
conclude the paper in Section 7 with a discussion of current and future work.
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2. Background

In this section we review the mathematical and algorithmic background necessary for our
work. We begin by reviewing the structure of finitely generated modules over principal
ideal domains. We then discuss simplicial complexes and their associated chain com-
plexes. Putting these concepts together, we define simplicial homology and outline the
standard algorithm for its computation. We conclude this section by describing persistent
homology.

2.1. Algebra

Throughout this paper we assume a ring R to be commutative with unity. A polynomial
f(t) with coefficients in R is a formal sum Zj’io a;t', where a; € R and ¢ is the indeter-
minate. For example, 2¢ 4+ 3 and ¢7 — 5¢? are both polynomials with integer coefficients.
The set of all polynomials f(¢) over R forms a commutative ring R[¢] with unity. If
R has no divisors of zero, and all its ideals are principal, it is a principal ideal domain
(PID). For our purposes, a PID is simply a ring in which we may compute the greatest
common divisor or gcd of a pair of elements. This is the key operation needed by the
structure theorem that we discuss below. PIDs include the familiar rings Z, Q, and R.
Finite fields Z,, for p a prime, as well as F'[¢], polynomials with coefficients from a field
F, are also PIDs and have effective algorithms for computing the gcd [6].

A gradedring is aring (R, +, -) equipped with a direct sum decomposition of Abelian
groups R = @, R;, i € Z, so that multiplication is defined by bilinear pairings R, ®
R, — R,.,.Elements in asingle R; are called homogeneous and have degree i, deg ¢ =
i forall e € R;. We may grade the polynomial ring R[] non-negatively with the standard
grading (t") = t" - R[t],n > 0. In this grading, 2¢° and 7¢* are both homogeneous of
degree 6 and 3, respectively, but their sum 2¢° + 713 is not homogeneous. The product of
the two terms, 14¢°, has degree 9 as required by the definition. A graded module M over a
graded ring R is a module equipped with a direct sum decomposition, M = P, M;, i €
Z, so that the action of R on M is defined by bilinear pairings R, ® M,, — M,,,. The
main structure in our paper is a graded module and we include concrete examples that
clarify this concept later on. A graded ring (module) is non-negatively graded if R; = 0
(M; =0)foralli < 0.

The standard structure theorem describes finitely generated modules and graded mod-
ules over PIDs.

Theorem 2.1 (Structure). If D is a PID, then every finitely generated D-module is
isomorphic to a direct sum of cyclic D-modules. That is, it decomposes uniquely into the
form

Do (EB D/d,-D) , )

i=1

ford; € D, B € Z, such that d;|d; 1. Similarly, every graded module M over a graded
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PID D decomposes uniquely into the form

n m
(@ Z“'D) ® (@ ZVfD/de) , )
i=1 j=1

where d; € D are homogeneous elements so that d;|d; 1y, a;, y; € Z, and ¥* denotes
an a-shift upward in grading.

In both cases the theorem decomposes the structures into two parts. The free portion
on the left includes generators that may generate an infinite number of elements. This
portion is a vector space and should be familiar to most readers. Decomposition (1) has a
vector space of dimension 8. The forsional portion on the right includes generators that
may generate a finite number of elements. For example, if PID D is Z in the theorem,
7./3Z = Z3; would represent a generator capable of only creating three elements. These
torsional elements are also homogeneous. Intuitively then, the theorem describes finitely
generated modules and graded modules as structures that look like vector spaces but also
have some dimensions that are “finite” in size.

2.2.  Simplicial Complexes

A simplicial complex is a set K, together with a collection S of subsets of K called
simplices (singular simplex) such that for all v € K, {v} € §,andif t C o € S, then
T € S. We call the sets {v} the vertices of K. When it is clear from context what S
is, we refer to set K as a complex. We say ¢ € S is a k-simplex of dimension k if
lol = k+1.If T C o, tis a face of o, and o is a coface of t. An orientation of a
k-simplex o, o = {vy, ..., v}, is an equivalence class of orderings of the vertices of o,
where (vo, ..., k) ~ (Vr(0), - .-, Vr(k)) are equivalent if the sign of 7 is 1. We denote
an oriented simplex by [o]. A simplex may be realized geometrically as the convex hull
of k + 1 affinely independent points in RY, d > k. A realization gives us the familiar
low-dimensional k-simplices: vertices, edges, triangles, and tetrahedra, for 0 < k < 3,
shown in Fig. 2. Within a realized complex, the simplices must meet along common faces.
A subcomplex of K is a subset L C K that is also a simplicial complex. A filtration of
a complex K is a nested subsequence of complexes @ = K’ C K!' € ... € K" = K.
For generality, we let K i = K™ foralli > m. We call K a filtered complex. We show a
small filtered complex in Fig.1.

b b
c
[ ] o—>—0 a
a b a
¢ d
vertex edge triangle tetrahedron
a [a, b] [a, b, c] [a, b, c,d]

Fig. 2. Oriented k-simplices in R3,0 < k < 3. The orientation on the tetrahedron is shown on its faces.
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Fig. 3. The dashed 1-boundary rests on the surface of a torus. The two solid 1-cycles form a basis for the
first homology class of the torus. These cycles are non-bounding: neither is a boundary of a piece of surface.

2.3.  Chain Complex

The kth chain group Cy, of K is the free Abelian group on its set of oriented k-simplices,
where [0] = —[r] if 0 = 7 and ¢ and 7t are oriented differently. An element ¢ € C;
is a k-chain, ¢ = ), n;[0;], 0; € K with coefficients n; € Z. The boundary operator
0x: Cr — Ci_; is a homomorphism defined linearly on a chain ¢ by its action on any
simplex o = [vg, vy, ..., U] € ¢,

o =Y (=1)'[vo, vi, oy Bis o, v,

where v; indicates that v; is deleted from the sequence. The boundary operator connects
the chain groups into a chain complex C,:

k41 %
~~~—>Ck+1—>Ck—)Ck_1—>~~

We may also define subgroups of C; using the boundary operator: the cycle group
Z, = kerd and the boundary group By = im 0;;. We show examples of cycles
in Fig. 3. An important property of the boundary operators is that the boundary of a
boundary is always empty, d;dr+1 = 0. This fact, along with the definitions, implies that
the defined subgroups are nested, By € Z; C Cy, as in Fig. 4. For generality, we often
define null boundary operators in dimensions where Cy is empty.

2.4. Homology

The kth homology group is Hy = Z; /By. Its elements are classes of homologous cycles.
To describe its structure, we view the Abelian groups we have defined so far as modules

HPE

0 0 0

8y

Fig. 4. A chain complex with its internals: chain, cycle, and boundary groups, and their images under the
boundary operators.
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over the integers. This view allows alternate ground rings of coefficients, including fields.
If the ring is a PID D, Hy is a D-module and Theorem 2.1 applies: $, the rank of the free
submodule, is the Betti number of the module, and d; are its torsion coefficients. When
the ground ring is Z, the theorem above describes the structure of finitely generated
Abelian groups. Over a field, such as R, Q, or Z,, for p a prime, the torsion submodule
disappears. The module is a vector space that is fully described by a single integer, its
rank 8, which depends on the chosen field.

2.5. Reduction

The standard method for computing homology is the reduction algorithm. We describe
this method for integer coefficients as it is the more familiar ring. The method extends
to modules over arbitrary PIDs, however.

As Cy is free, the oriented k-simplices form the standard basis for it. We represent the
boundary operator d;: C; — Cj_; relative to the standard bases of the chain groups as an
integer matrix M with entries in {—1, 0, 1}. The matrix M, is called the standard matrix
representation of 0. It has m; columns and m_; rows (the number of k- and (k — 1)-
simplices, respectively). The null-space of M} corresponds to Z; and its range-space to
Bi_1, as manifested in Fig. 4. The reduction algorithm derives alternate bases for the
chain groups, relative to which the matrix for 9y is diagonal. The algorithm utilizes the
following elementary row operations on Mj:

1. exchange row i and row j,
2. multiply row i by —1,
3. replace row i by (row i) + g(row j), where ¢ is an integer and j # i.

The algorithm also uses elementary column operations that are similarly defined. Each
column (row) operation corresponds to a change in the basis for C; (Ci_). For example,
if ¢; and e; are the ith and jth basis elements for Cy, respectively, a column operation
of type 3 amounts to replacing e¢; with e; + ge;. A similar row operation on basis
elements ¢; and é; for C,_;, however, replaces ¢; by é; — gé;. We make use of this
fact in Section 4. The algorithm systematically modifies the bases of C; and C;_; using
elementary operations to reduce My to its (Smith) normal form:

by 0

where [, = rank M; = rank Mk,bi > l,and b;|b; 1 forall 1 <i < [;. Thealgorithm can
also compute corresponding bases {¢;} and {¢;} for C; and C,_;, respectively, although
this is unnecessary if a decomposition is all that is needed. Computing the normal form
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in all dimensions, we get a full characterization of Hy:

(i) The torsion coefficients of Hy_; (d; in (1)) are precisely the diagonal entries b;
greater than one.
(1) {e; | I + 1 <i < my} is a basis for Z. Therefore, rank Z;, = m; — .
(iii) {b;¢; | 1 <i < I} is a basis for B;_,. Equivalently, rank B, = rank M, =
iyt

Combining (ii) and (iii), we have
ﬂk = rank Zk — rank Bk =mi — lk — lk+1. (3)

Example 2.1. For the complex in Fig. 1, the standard matrix representation of 9; is

‘ ab bc c¢d ad ac
-1 0 0o -1 -1
1 -1 0 0 0|,
0 1 -1 0 1
0 0 1 1 0

QLo &

where we show the bases within the matrix. Reducing the matrix, we get the normal
form

‘Cd bc ab z1 2o

d—c| 1 O 0 0 O
Mi=|c—b|0 1 0 0 0},

b— o 0 1 0 0

a o o0 0 0 O

where z1 = ad — bc — ¢d — ab and 7z = ac — bc — ab form a basis for Z; and
{d —c,c — b, b — a} is abasis for By.

We may use a similar procedure to compute homology over graded PIDs. A homo-
geneous basis is a basis of homogeneous elements. We begin by representing oy relative
to the standard basis of C; (which is homogeneous) and a homogeneous basis for Z;_;.
Reducing to normal form, we read off the description provided by direct sum (2) using
the new basis {¢;} for Z;_;:

(i) zero row i contributes a free term with shift o; = deg ¢;,
(i1) row with diagonal term b; contributes a torsional term with homogeneous d; = b;
and shift y; = deg ¢é;.

The reduction algorithm requires O (m?) elementary operations, where m is the num-
ber of simplices in K. The operations, however, must be performed in exact integer
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arithmetic. This is problematic in practice, as the entries of the intermediate matrices
may become extremely large.

2.6. Persistence

We end this section with by re-introducing persistence. Given a filtered complex, the ith
complex K' has associated boundary operators 9, matrices M}, and groups Ci, Z;, Bf,
and Hf< for all i, k > 0. Note that superscripts indicate the filtration index and are not
related to cohomology. The p-persistent kth homology group of K' is

HL? = Zi /(B N Zb). )

The definition is well-defined: both groups in the denominator are subgroups of C;f” ,
so their intersection is also a group, a subgroup of the numerator. The p-persistent kth
Betti number of K' is B;”, the rank of the free subgroup of H;”. We may also define

persistent homology groups using the injection n,i’p HE — Hffp , that maps a homology

class into the one that contains it. Then im r/i‘p o~ H};’P [11], [18]. We extend this
definition over arbitrary PIDs, as before. Persistent homology groups are modules and
Theorem 2.1 describes their structure.

3. The Persistence Module

In this section we take a different view of persistent homology in order to understand its
structure. Intuitively, the computation of persistence requires compatible bases for H;

and Hffp .Itis not clear when a succinct description is available for the compatible bases.
We begin this section by combining the homology of all the complexes in the filtration
into a single algebraic structure. We then establish a correspondence that reveals a simple
description over fields. Most significantly, we illustrate that the persistent homology of
a filtered complex is simply the standard homology of a particular graded module over
a polynomial ring. A simple application of the structure theorem (Theorem 2.1) gives
us the needed description. We end this section by illustrating the relationship of our
structures to the persistence equation (equation (4)).

Definition 3.1 (Persistence Complex). A persistence complex C is a family of chain
complexes {C!};~o over R, together with chain map’s f':C! — C/*!, so that we have
the following diagram:

fZ

0 1
o lie

Cg—>Cl—>

Our filtered complex K with inclusion maps for the simplices becomes a persistence
complex. Below, we show a portion of a persistence complex, with the chain complexes
expanded. The filtration index increases horizontally to the right under the chain maps
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f*, and the dimension decreases vertically to the bottom under the boundary operators 9.

Lol

r° f! r?
o) —— o} —— ¢}
S

10 f! 12
ot —— o} —— ¢
o el e

,° f! f?
o) —— o) —— &

Definition 3.2 (Persistence Module). A persistence module M is afamily of R-modules
M, together with homomorphisms ¢’: M' — M +1,

For example, the homology of a persistence complex is a persistence module, where ¢’
simply maps a homology class to the one that contains it.

Definition 3.3 (Finite Type). A persistence complex {C!, f} (persistence module
(M, ¢'}) is of finite type if each component complex (module) is a finitely generated
R-module, and if the maps f* (¢', respectively) are isomorphisms for i > m for some
integer m.

As our complex K is finite, it generates a persistence complex C of finite type, whose
homology is a persistence module M of finite type. We showed in the Introduction how
such complexes arise in practice.

3.1. Correspondence

Suppose we have a persistence module M = {M‘, ¢'};~o over ring R. We now equip
R[] with the standard grading and define a graded module over R[t] by

o0
a(M) =P M,

i=0
where the R-module structure is simply the sum of the structures on the individual
components, and where the action of 7 is given by

t-m®m',m*, .. =0, 0"(m"), o' (m"), p*(m?), ...).

That is, ¢ simply shifts elements of the module up in the gradation.
Theorem 3.1 (Correspondence). The correspondence « defines an equivalence of cat-

egories between the category of persistence modules of finite type over R and the category
of finitely generated non-negatively graded modules over R[t].
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The proof is the Artin—Rees theory in commutative algebra [12].

Intuitively, we are building a single structure that contains all the complexes in the
filtration. We begin by computing a direct sum of the complexes, arriving at a much larger
space that is graded according to the filtration ordering. We then remember the time each
simplex enters using a polynomial coefficient. For instance, simplex a enters the filtration
in Fig. 1 at time 0. To shift this simplex along the grading, we must multiply the simplex
using ¢. Therefore, while a exists at time 0, ¢ - a exists at time 1, 2 - a at time 2, and so
on. The key idea is that the filtration ordering is encoded in the coefficient polynomial
ring. We utilize these coefficients in Section 4 to derive the persistence algorithm from
the reduction scheme in Section 2.5.

3.2.  Decomposition

The correspondence established by Theorem 3.1 suggests the non-existence of simple
classifications of persistence modules over a ground ring that is not a field, such as Z.
It is well known in commutative algebra that the classification of modules over Z[]
is extremely complicated. While it is possible to assign interesting invariants to Z[¢]-
modules, a simple classification is not available, nor is it ever likely to be available.

On the other hand, the correspondence gives us a simple decomposition when the
ground ring is a field F. Here, the graded ring F[¢] is a PID and its only graded ideals are
homogeneous of form (¢), so the structure of the F[7]-module is described by sum (2)
in Theorem 2.1:

<@ D F[r]) ® (@ zY F[r]/(r"f)) : (5)
i=1 j=I
We wish to parametrize the isomorphism classes of F[f]-modules by suitable objects.

Definition 3.4 (P-Interval). A P-interval is an ordered pair (7, j) with0 <i < j €
7>*° = 7. U {+00}.

We associate a graded F[¢]-module to a set S of P-intervals via a bijection Q. We
define Q(i, j) = X/ F[t]/(t/~") for P-interval (i, j). Of course, Q(i, +00) = X! F[t].
For a set of P-intervals S = {(iy, j1), (i2, j2), - - ., (in, Ju)}, We define

0S) =P 0. jn.
=1

Our correspondence may now be restated as follows.

Corollary 3.1. The correspondence S — Q(S) defines a bijection between the finite
sets of P-intervals and the finitely generated graded modules over the graded ring F|[t].
Consequently, the isomorphism classes of persistence modules of finite type over F are
in bijective correspondence with the finite sets of P-intervals.



Computing Persistent Homology 261

3.3. Interpretation

Before proceeding any further, we recap our work so far and relate it to prior results.
Recall that our input is a filtered complex K and we are interested in its kth homology.
In each dimension the homology of complex K’ becomes a vector space over a field,
described fully by its rank ﬂ,i. We need to choose compatible bases across the filtration in
order to compute persistent homology for the entire filtration. So, we form the persistence
module corresponding to K, a direct sum of these vector spaces. The structure theorem
states that a basis exists for this module that provides compatible bases for all the vector
spaces. In particular, each P-interval (i, j) describes a basis element for the homology
vector spaces starting at time i until time j — 1. This element is a k-cycle e that is
completed at time i, forming a new homology class. It also remains non-bounding
until time j, at which time it joins the boundary group By. Therefore, the P-intervals
discussed here are precisely the so-called k-intervals utilized in [11] to describe persistent
Z,-homology. That is, while component homology groups are torsionless, persistence
appears as torsional and free elements of the persistence module.

Our interpretation also allows us to ask when e+ Bi is a basis element for the persistent
groups Hy”. Recall (4). As e ¢ Bl forall [ < j, we know that e ¢ B,"” for [ + p < j.
Along with / > i and p > O, the three inequalities define a triangular region in the
index-persistence plane, as drawn in Fig. 5. The region gives us the values for which the
k-cycle e is a basis element for Hi‘p . In other words, we have just shown a direct proof
of the k-Triangle Lemma in [11], which we restate here in a different form.

Lemma 3.1. Let 7T be the set of trian%rles defined by ‘P-intervals for the k-dimensional
persistence module. The rank ,3,1("’ of Hy" is the number of triangles in T containing the

point (I, p).

- DS
LV. \XQ 57
(i, 0) (G, 007" index (I)
P20 _

g 57
= v
(e} 7 . .
N Y (i, 0) G.0)

5 (i,j—1)

Fig.5. Theinequalities p > 0,/ > i,and [+ p < j define a triangular region in the index-persistence plane.
This region defines when the cycle is a basis element for the homology vector space.
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Consequently, computing persistent homology over a field is equivalent to finding the
corresponding set of P-intervals.

4. Algorithm for Fields

In this section we devise an algorithm for computing persistent homology over a field.
Given the theoretical development of the last section, our approach is rather simple: we
simplify the standard reduction algorithm using the properties of the persistence module.
Our arguments give an algorithm for computing the P-intervals for a filtered complex
directly over the field F', without the need for constructing the persistence module. This
algorithm is a generalized version of the pairing algorithm shown in [11].

4.1. Derivation

We use the small filtration in Fig. 1 as a running example and compute over Z,, although
any field will do. The persistence module corresponds to a Z;[¢]-module by the corre-
spondence established in Theorem 2.1. Table 1 reviews the degrees of the simplices of
our filtration as homogeneous elements of this module.

Throughout this section we use {e;} and {é;} to represent homogeneous bases for Cy
and C;_1, respectively. Relative to homogeneous bases, any representation My of d; has
the following basic property:

deg é; + deg My (i, j) = deg e, 6)
where M, (i, j) denotes the element at location (7, j). We get

|ab bc cd ad ac

d|l 0 0 1t t 0

My=|c¢c| 0 1 ¢t 0 2], @)
b |t t 0 0 O
alt 0 0 2 P

for 9; in our example. The reader may verify (6) using this example for intuition, e.g.,
M (4,4) =+t%as deg ad —deg a =2 — 0 = 2, according to Table 1.

Clearly, the standard bases for chain groups are homogeneous. We need to represent
d: Cp — Cy_; relative to the standard basis for C; and a homogeneous basis for Z;_;.
We then reduce the matrix and read off the description of Hy according to our discussion
in Section 2.5. We compute these representations inductively in dimension. The base
case is trivial. As 9y = 0, Zy = Cy and the standard basis may be used for representing
d1. Now, assume we have a matrix representation M} of 9 relative to the standard basis

Table 1. Degree of simplices of filtration in Fig.1.

a b ¢ d ab bc cd ad ac abc acd
o o0 1 1 1 1 2 2 3 4 5
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_\L 07
0

* * 0
* 0

| % * 0o --- 0]

Fig. 6. The column-echelon form. An * indicates a non-zero value and pivots are boxed.

{ej} for C; and a homogeneous basis {¢;} for Z;_;. For induction, we need to compute
a homogeneous basis for Z; and represent 9, relative to Ci4; and the computed basis.
We begin by sorting basis ¢; in reverse degree order, as already done in the matrix in (7).
We next transform M, into the column-echelon form Mk, a lower staircase form shown
in Fig. 6 [17]. The steps have variable height, all landings have width equal to one, and
non-zero elements may only occur beneath the staircase. A boxed value in the figure
is a pivot and a row (column) with a pivot is called a pivot row (column). From linear
algebra, we know that rank M} = rank B;_; is the number of pivots in an echelon form.
The basis elements corresponding to non-pivot columns form the desired basis for Z;.
In our example, we have

o
U
S
o
Q
Sy
o
2
i8]

dl[t] o 0o o0 o0

My =|c|lt [1] 0 0 of, ®)
b0 t [t] 0 0
al0 0 7 0 0

where z; =ad —cd —t -bc—t -aband z; = ac —t* - bc — t? - ab form a homogeneous
basis for Z;.

The procedure that arrives at the echelon form is Gaussian elimination on the columns,
utilizing elementary column operations of types 1 and 3 only. Starting with the leftmost
column, we eliminate non-zero entries occurring in pivot rows in order of increasing row.
To eliminate an entry, we use an elementary column operation of type 3 that maintains
the homogeneity of the basis and matrix elements. We continue until we either arrive at
a zero column, or we find a new pivot. If needed, we then perform a column exchange
(type 1) to reorder the columns appropriately.

Lemma 4.1 (Echelon Form). The pivots in column-echelon form are the same as the
diagonal elements in normal form. Moreover, the degree of the basis elements on pivot
rows is the same in both forms.

Proof. Because of our sort, the degree of row basis elements ¢; is monotonically de-
creasing from the top row down. Within each fixed column j, deg e; is a constant c.
By (6), deg M (i, j) = ¢ — deg ¢;. Therefore, the degree of the elements in each col-
umn is monotonically increasing with row. We may eliminate non-zero elements below
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pivots using row operations that do not change the pivot elements or the degrees of the
row basis elements. We then place the matrix in diagonal form with row and column
swaps. O

The lemma states that if we are only interested in the degree of the basis elements,
we may read them off from the echelon form directly. That is, we may use the following
corollary of the standard structure theorem to obtain the description.

Corollary 4.1. Let My be the column-echelon form for 9y relative to bases {e;} and
{é:} for Cyx and Zy_y, respectively. If row i has pivot My(i, j) = t", it contributes
Rdeg & F[t1/t" to the description of Hi_1. Otherwise, it contributes .98 G Flr]. Equiva-
lently, we get (deg ¢;, deg é; +n) and (deg ¢é;, 00), respectively, as P-intervals for Hy_.

In our example, M (1,1) =1 in (8). As deg d = 1, the element contributes X' Z,[¢]/(t)
or P-interval (1, 2) to the description of Hy.

We now wish to represent dx4| in terms of the basis we computed for Z;. We begin
with the standard matrix representation My of O0g41. AS 0 dkr1 = 0, MMy = 0, as
shown in Fig. 7. Furthermore, this relationship is unchanged by elementary operations.
Since the domain of 9; is the codomain of 9, the elementary column operations we
used to transform M, into echelon form M; give corresponding row operations on Mj.|.
These row operations zero out rows in My that correspond to non-zero pivot columns
in Mk, and give a representation of 0y relative to the basis we just computed for Z.
This is precisely what we are after. We can get it, however, with hardly any work.

Lemma 4.2 (Basis Change). 7o represent o4 relative to the standard basis for Cy
and the basis computed for Zy, simply delete rows in My that correspond to pivot
columns in M.

Proof. 'We only used elementary column operations of types 1 and 3 in our variant of
Gaussian elimination. Only the latter changes values in the matrix. Suppose we replace
column i by (column i) 4+ g(column j) in order to eliminate an element in a pivot row
J» as shown in Fig. 7. This operation amounts to replacing column basis element e;

my_;x ny my xm,

Fig.7. As 0x0k+1 = 0, My Mi+1 = 0 and this is unchanged by elementary operations. When Mj, is reduced
to echelon form M; by column operations, the corresponding row operations zero out rows in My that
correspond to pivot columns in M.
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by e; + ge; in M. To effect the same replacement in the row basis for 0y, we need
to replace row j with (row j) — g(row i). However, row j is eventually zeroed-out, as
shown in Fig. 7, and row i is never changed by any such operation. O

Therefore, we have no need for row operations. We simply eliminate rows correspond-
ing to pivot columns one dimension lower to get the desired representation for di4 in
terms of the basis for Z;. This completes the induction. In our example, the standard
matrix representation for 9, is

] abc acd
ac t t
ad | 0 I
M=lcal o
be | 13 0
ab | 0

To get a representation in terms of C, and the basis (z;, z2) for Z; we computed earlier,
we simply eliminate the bottom three rows. These rows are associated with pivots in M,
according to (8). We get

where we have also replaced ad and ac with the corresponding basis elements z; =
ad —bc —cd —ab and 7, = ac — bc — ab.

4.2. Algorithm

Our discussion gives us an algorithm for computing P-intervals of an F[t]-module
over field F. It turns out, however, that we can simulate the algorithm over the field
itself, without the need for computing the F[t]-module. Rather, we use two significant
observations from the derivation of the algorithm. First, Lemma 4.1 guarantees that if we
eliminate pivots in the order of decreasing degree, we may read off the entire description
from the echelon form and do not need to reduce to normal form. Second, Lemma 4.2
tells us that by simply noting the pivot columns in each dimension and eliminating the
corresponding rows in the next dimension, we get the required basis change.

Therefore, we only need column operations throughout our procedure and there is
no need for a matrix representation. We represent the boundary operators as a set of
boundary chains corresponding to the columns of the matrix. Within this representation,
column exchanges (type 1) have no meaning, and the only operation we need is of type
3. Our data structure is an array 7" with a slot for each simplex in the filtration, as shown
in Fig. 8 for our example. Each simplex gets a slot in the table. For indexing, we need
a full ordering of the simplices, so we complete the partial order defined by the degree
of a simplex by sorting simplices according to dimension, breaking all remaining ties
arbitrarily (we did this implicitly in the matrix representation.) We also need the ability
to mark simplices to indicate non-pivot columns.
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a b ¢ d ab bc cd ad ac abc acd
1 2 5.6 7 8 9 10

0 3 4
L [«[s[s A 0] 1]

Lovh

b ¢ d ad ac

-a -b —c

Fig. 8. Data structure after running the algorithm on the filtration in Fig.1. Marked simplices are in bold
italic.

Rather than computing homology in each dimension independently, we compute
homology in all dimensions incrementally and concurrently. The algorithm, as shown in
Fig. 9, stores the list of P-intervals for Hy in Ly.

When simplex o/ is added, we check via procedure REMOVEPIVOTROWS to see
whether its boundary chain d corresponds to a zero or pivot column. If the chain is
empty, it corresponds to a zero column and we mark o/: its column is a basis element
for Z, and the corresponding row should not be eliminated in the next dimension. Oth-
erwise, the chain corresponds to a pivot column and the term with the maximum index
i = maxindexd is the pivot, according the procedure described for the F[t]-module.
We store index j and chain d representing the column in 7'[i]. Applying Corollary 4.1,
we get P-interval (deg o', deg o/). We continue until we exhaust the filtration. We then
perform another pass through the filtration in search of infinite P-intervals: marked
simplices whose slot is empty.

We give the function REMOVEPIVOTROWS in Fig. 10. Initially, the function computes
the boundary chain d for the simplex. It then applies Lemma 4.2, eliminating all terms

COMPUTEINTERVALS (K) {
fork =0todim(K) L, = @;
for j=0tom — 1{
d = REMOVEPIVOTROWS (6/);
if (d = ¥) Mark o/
else {
i = maxindex d; k = dimo/;
Store j and d in T'[i];
Ly = Ly U {(dego’, dego )}
}
}
forj=0tom —1{
if o/ is marked and T'[j] is empty {
k =dimo/; Ly = Ly U {(dego’, 00)}
}
}
1

Fig. 9. Algorithm COMPUTEINTERVALS processes a complex of m simplices. It stores the sets of P-intervals
in dimension k in L.
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chain REMOVEPIVOTROWS (o) {

k =dimo;d = 00;

Remove unmarked terms in d;

while (d # 0) {
i = maxindex d;
if T[i] is empty, break;
Let g be the coefficient of o/ in T[i];
d=d—q 'T[i];

}

return d;

}

Fig. 10. Algorithm REMOVEPIVOTROWS first eliminates rows not marked (not corresponding to the basis for
Zi_1), and then eliminates terms in pivot rows.

involving unmarked simplices to get a representation in terms of the basis for Z;_;.
The rest of the procedure is Gaussian elimination in the order of decreasing degree,
as dictated by our discussion for the F[¢]-module. The term with the maximum index
i = maxd is a potential pivot. If T[i] is non-empty, a pivot already exists in that row,
and we use the inverse of its coefficient to eliminate the row from our chain. Otherwise,
we have found a pivot and our chain is a pivot column. For our example filtration in
Fig. 8, the marked O-simplices {a, b, c, d} and 1-simplices {ad, ac} generate P-intervals
Ly = {(0,00), (0, 1), (1,1),(1,2)} and L; = {(2, 4), (3, 5)}, respectively.

4.3. Discussion

From our derivation, it is clear that the algorithm has the same running time as Gaussian
elimination over fields. That is, it takes O (m?) in the worst case, where m is the number
of simplices in the filtration. The algorithm is very simple, however, and represents the
matrices efficiently. In our preliminary experiments we have seen a linear time behavior
for the algorithm.

5. Algorithm for PIDs

The correspondence we established in Section 3 eliminates any hope for a simple classi-
fication of persistent groups over rings that are not fields. Nevertheless, we may still be
interested in their computation. In this section we give an algorithm to compute the per-
sistent homology groups H,” of a filtered complex K for a fixed i and p. The algorithm
we provide computes persistent homology over any PID D of coefficients by utilizing a
reduction algorithm over that ring.

To compute the persistent group, we need to obtain a description of the numerator
and denominator of the quotient group in (4). We already know how to characterize
the numerator. We simply reduce the standard matrix representation M ,’c of a,§ using the
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reduction algorithm. The denominator, B;;’p = B;'fp N Z}'{, plays the role of the boundary
group in (4). Therefore, instead of reducing matrix M, ;, we need to reduce an alternate

matrix M, ,’{fl that describes this boundary group. We obtain this matrix as follows:

1. We reduce matrix M ,’c to its normal form and obtain a basis {z/} for Zf(, using fact
(ii) in Section 2.5. We may merge this computation with that of the numerator.

2. We reduce matrix M, |} to its normal form and obtain a basis {b'} for B,"” using
fact (iii) in Section 2.5.

3. Let N = [{b'} {z/}] = [B Z], that is, the columns of matrix N consist of the
basis elements from the bases we just computed, and B and Z are the respective
submatrices defined by the bases. We next reduce N to normal form to find a basis
{u?} for its null-space. As before, we obtain this basis using fact (ii). Each u? =
[a? ¢1], where a?, ¢9 are vectors of coefficients of (b}, {7}, respectively. Note
that Nu? = Ba? + Z¢9 = 0 by definition. In other words, element Ba? = —Z¢14
is belongs to the span of both bases. Therefore, both {Ba?} and {Z¢?} are bases
for By” = B,"” N Z,. We form a matrix M,", from either.

We now reduce M ,ifl to normal form and read off the torsion coefficients and the rank of

BZ"" . It is clear from the procedure that we are computing the persistent groups correctly,
giving us the following.

Theorem 5.1.  For coefficients in any PID, persistent homology groups are computable
in the order of time and space of computing homology groups.

6. Experiments

In this section we discuss experiments using an implementation of the persistence al-
gorithm for arbitrary fields. Our aim is to elucidate further the contributions of this
paper. We look at two scenarios where the previous algorithm would not be applica-
ble, but where our algorithm succeeds in providing information about a topological
space.

6.1. Implementation

We have implemented our field algorithm for Z, for p a prime, and Q coefficients. Our
implementation is in C and utilizes GNU MP, a multiprecision library, for exact compu-
tation [14]. We have a separate implementation for coefficients in Z, as the computation
is greatly simplified in this field. The coefficients are either O or 1, so there is no need for
orienting simplices or maintaining coefficients. A k-chain is simply a list of simplices,
those with coefficient 1. Each simplex is its own inverse, reducing the group operation to
the symmetric difference, where the sum of two k-chains ¢, disc+d = (cUd)—(c N d).
We use a 2.2 GHz Pentium 4 Dell PC with 1 GB RAM running Red Hat Linux 7.3 for
computing the timings.
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Fig. 11. A wire-frame visualization of dataset K, an immersed triangulated Klein bottle with 4000 triangles.

6.2. Data

Our algorithm requires a persistence complex as input. In the Introduction we discussed
how persistence complexes arise naturally in practice. In Example 1.3 we discussed gen-
erating persistence complexes using excursion sets of Morse functions over manifolds.
We have implemented a general framework for computing complexes of this type. We
must emphasize, however, that our persistence software processes persistence complexes
of any origin.

Our framework takes a tuple (K, f) as input and produces a persistence complex
C(K, f) as output. K is a d-dimensional simplicial complex that triangulates an under-
lying manifold, and f:vert K — R is a discrete function over the vertices of K that
we extend linearly over the remaining simplices of K. The function f acts as the Morse
function over the manifold, but need not be Morse for our purposes. Frequently, our
complex is augmented with a map ¢ : K — R¢ that immerses or embeds the manifold
in Euclidean space. Our algorithm does not require ¢ for computation, but ¢ is often
provided as a discrete map over the vertices of K and is extended linearly as before.
For example, Fig. 11 displays a triangulated Klein bottle, immersed in R>. For each
dataset, Table 2 gives the number s; of k-simplices, as well as the Euler characteristic
X =, (= 1)Ks;. We use the Morse function to compute the excursion set filtration for
each dataset. Table 3 gives information on the resulting filtrations.

Table2. Datasets. Kis the Klein bottle, shown in Figure 11. E is potential around
electrostatic charges. J is supersonic jet flow.

Number s of k-simplices

0 1 2 3 4 X
K 2,000 6,000 4,000 0 0 0
E 3,005 52,285 177,067 212,327 84,451 1
J 17,862 297,372 1,010203 1217319 486,627 1
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Table 3. Filtrations. The number of simplices in the filtration

K| = Zi si, the length of the filtration (number of distinct values

of function f), time to compute the filtration, and time to compute
persistence over Z coefficients.

K| Length Filtration (s) Persistance (s)
K 12,000 1,020 0.03 < 0.01
E 529,225 3,013 3.17 5.00
J 3,029,383 256 24.13 50.23

6.3. Field Coefficients

A contribution of this paper is the generalization of the persistence algorithm to arbitrary
fields. This contribution is important when the manifold under study contains torsion.
To make this clear, we compute the homology of the Klein bottle using the persistence
algorithm. Here, we are interested only in the Betti numbers of the final complex in the
filtration for illustrative purposes. The non-orientability of the Klein bottle is visible in
Fig. 11. The change in triangle orientation at the parametrization boundary leads to a
rendering artifact where two sets of triangles are front-facing. In homology, the non-
orientability of the Klein bottle manifests itself as a torsional 1-cycle ¢ where 2¢ is a
boundary (indeed, it bounds the surface itself.) The homology groups over Z are

Ho(K) = Z,
H] (K) =7 X Zz,
H.(K) = {0}.
Note that 8; = rank H; = 1. We now use the “height function” as our Morse function,

f = z, to generate the filtration in Table 3. We then compute the homology of dataset K
with field coefficients using our algorithm, as shown in Table 4.

Over Z,, we get 1 = 2 as homology is unable to recognize the torsional boundary
2c¢ with coefficients 0 and 1. Instead, it observes an additional class of homology 1-
cycles. By the Euler—Poincaré relation, x = ), ;, so we also get a class of 2-cycles to
compensate for the increase in 8; [16]. Therefore, Z,-homology misidentifies the Klein
bottle as the torus. Over any other field, however, homology turns the torsional cycle
into a boundary, as the inverse of 2 exists. In other words, while we cannot observe

Tabled. Field coefficients. The Betti numbers of K computed
over field F and time for the persistence algorithm. We use a
separate implementation for Z; coefficients.

F Bo Bi B2 Time (s)

7y 1 2 1 0.01

74 1 1 0 0.23

Zs 1 1 0 0.23
Z3203 1 1 0 0.23

Q 1 1 0 0.50
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torsion in computing homology over fields, we can deduce its existence by comparing
our results over different coefficient sets. Similarly, we can compare sets of P-intervals
from different computations to discover torsion in a persistence complex.

Note that our algorithm’s performance for this dataset is about the same over arbitrary
finite fields, as the coefficients do not get large. The computation over QQ takes about twice
as much time and space, since each rational is represented as two integers in GNU MP.

6.4. Higher Dimensions

A second contribution of this paper is the extension of the persistence algorithm from
subcomplexes of S* to complexes in arbitrary dimensions. We have already utilized
this capability in computing the homology of the Klein bottle. We now examine the
performance of this algorithm in higher dimensions. For practical motivation, we use
large-scale time-varying volume data as input. Advances in data acquisition systems and
computing technologies have resulted in the generation of massive sets of measured or
simulated data. The datasets usually contain the time evolution of physical variables, such
as temperature, pressure, or flow velocity at sample points in space. The goal is to identify
and localize significant phenomena within the data. We propose using persistence as the
significance measure.

The underlying space for our datasets is the four-dimensional space—time manifold.
For each dataset, we triangulate the convex hull of the samples to get a triangulation. Each
complex listed in Table 2 is homeomorphic to a four-dimensional ball and has x = 1.
Dataset E contains the potential around electrostatic charges at each vertex. Dataset
J records the supersonic flow velocity of a jet engine. We use these values as Morse
functions to generate the filtrations. We then compute persistence over Z, coefficients
to get the Betti numbers. We give filtration sizes and timings in Table 3. Figure 12
displays B, for dataset J. We observe a large number of two-dimensional cycles (voids),
as the co-dimension is 2. Persistence allows us to decompose this graph into the set of
‘P-intervals. Although there are 730,692 P-intervals in dimension 2, most are empty as
the topological attribute is created and destroyed at the same function level. We draw the
502 non-empty P-intervals in Fig. 13. We note that the P-intervals represent a compact
and general shape descriptor for arbitrary spaces.

For the large data sets, we do not compute persistence over alternate fields as the
computation requires in excess of 2 gigabytes of memory. In the case of finite fields
Z,, we may restrict the prime p so that the computation fits within an integer. This is
a reasonable restriction, as on most modern machines with 32-bit integers, it implies
p < 2'% — 1. Given this restriction, any coefficient will be less than p and representable
as a 4-byte integer. The GNU MP exact integer format, on the other hand, requires at
least 16 bytes for representing any integer.

7. Conclusion

We believe the most important contribution of this paper is a reinterpretation of persistent
homology within the classical framework of algebraic topology. Our interpretation allows
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Fig. 12. Graph of /3{ for datasxet J, where f is the flow velocity.

Fig.13. The 502 non-empty P-intervals for dataset J in dimension two. The amalgamation of these intervals
gives the graph in Figure 12.
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us to:

1. establish a correspondence that fully describes the structure of persistent homology
over any field, not only over Z;, as in the previous result,

2. and relate the previous algorithm to the classic reduction algorithm, thereby ex-
tending it to arbitrary fields and arbitrary-dimensional complexes, not just sub-
complexes of S? as in the previous result.

We provide implementations of our algorithm for fields, and show that they perform
quite well for large datasets. Finally, we give an algorithm for computing a persistent
homology group with fixed parameters over arbitrary PIDs.

Our software for n-dimensional complexes enables us to analyze arbitrary-dimen-
sional point cloud data and their derived spaces. One current project uses this imple-
mentation for feature recognition using a novel algebraic method [2]. Another project
analyzes the topological structures in a high-dimensional data set derived from natural
images [7]. Yet another applies persistence to derived spaces to arrive at compact shape
descriptors for geometric objects [3], [5]. Future theoretical work includes examining
invariants for persistent homology over non-fields and defining multivariate persistence,
where there is more than one persistence dimension. An example would be tracking a
Morse function as well as density of sampling on a manifold. Finally, we have recently
reimplemented the algorithm using the generic paradigm. This implementation will soon
be a part of the CGAL library [4].
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