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Abstract Let G be an infinite graph such that the automorphism group of G contains
a subgroup K ∼= Z

d with the property that G/K is finite. We examine the homology
of the independence complex Σ(G/I) of G/I for subgroups I of K of full rank,
focusing on the case that G is the square, triangular, or hexagonal grid. Specifically,
we look for a certain kind of homology cycles that we refer to as “cross-cycles,” the
rationale for the terminology being that they are fundamental cycles of the boundary
complex of some cross-polytope. For the special cases just mentioned, we determine
the set Q(G,K) of rational numbers r such that there is a group I with the property
that Σ(G/I) contains cross-cycles of degree exactly r · |G/I | − 1; |G/I | denotes the
size of the vertex set of G/I . In each of the three cases, Q(G,K) turns out to be an
interval of the form [a, b] ∩ Q = {r ∈ Q : a ≤ r ≤ b}. For example, for the square
grid, we obtain the interval [ 1

5 , 1
4 ] ∩ Q.

Keywords Grid · Independence complex · Simplicial homology · Tiling ·
Cross-polytope

1 Introduction

An independent set in a loopless graph G is a subset of the vertex set of G such
that no two vertices in the subset are adjacent. The family of independent sets of a
graph forms a simplicial complex, the independence complex Σ(G) of G (not to be
confused with the independence complex of the cycle matroid of G).
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The purpose of this paper is to examine the homology of the independence com-
plex of certain graphs with periodic structure. We focus on the homology gener-
ated by cycles isomorphic to fundamental cycles of the boundary complex of cross-
polytopes. While such cycles do not generate all homology in general, they have a
very simple structure that allows for a nice combinatorial interpretation. In particu-
lar, almost all proofs in this paper are purely combinatorial. The general problem of
determining the full homology lies beyond the scope of this paper and is likely to be
very hard for most of the grid graphs under consideration in this paper. See Sect. 1.5
for information about known results in certain cases.

Our motivation for studying the homology of independence complexes of grids
comes from statistical physics; we refer the reader to Huijse and Schoutens [8] for
more background and further references. Put briefly, the existence of homology in
degree d −1 means that a certain supersymmetric lattice model of strongly correlated
fermions exhibits ground states in which the number of particles per vertex equals
d/n; here, n is the total number of vertices in the graph under consideration.

1.1 Grids

First, let us describe the kind of graphs that we are interested in. Start with a simple
and loopless infinite graph G = (V ,E), where V is the set of vertices, and E is the
set of edges. The graph G being loopless means that each edge joins two different
vertices, as opposed to forming a loop at one single vertex. The graph being simple
means that every pair of vertices is joined by at most one edge; there are no multiple
edges. In particular, we may identify any given edge with the vertex set consisting of
the two endpoints of the edge.

The degree in G of a vertex v is the number of edges in E containing v. We assume
that G has the following properties.

• G is locally finite, meaning that every vertex has finite degree.
• The automorphism group of G contains a copy K of Z

d as a subgroup for some
d ≥ 1, and K acts freely on the vertex set of G.

• G consists of a finite number of orbits under K .

For the purposes of this paper, we refer to the pair (G,K) as a d-grid; this terminol-
ogy is nonstandard. We will be mainly concerned with the case d = 2, but we also
consider the general case.

Throughout this paper, we fix a set of generators g1, . . . , gd of K ; hence K =
〈g1, . . . , gd〉. Refer to a subgroup I of K of maximal Z-rank d as full-dimensional.
For such a subgroup and for every vertex a ∈ V , the orbit of a under I is the set

OrbI (a) = {
κ(a) : κ ∈ I

}
.

The orbit of an edge {a, b} under I is the set

OrbI

({a, b}) = {{
κ(a), κ(b)

} : κ ∈ I
}
.

Define G/I to be the finite graph with vertices and edges being the orbits of V and E,
respectively, under I . In G/I , the endpoints of a given edge OrbI ({a, b}) are the two
vertices OrbI (a) and OrbI (b).
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It is important to note that G/I is not necessarily simple and loopless. The follow-
ing lemma clarifies the situation.

Lemma 1.1 (i) The graph G/I contains a loop if and only if there is an edge {a, b}
in G such that κ(a) = b for some κ ∈ I .

(ii) The graph G/I contains multiple edges if and only if there are two distinct
edges {a, b} and {a, c} with a common endpoint a such that κ(b) = c for some κ ∈ I .

Proof (i) By definition, G/I contains a loop if and only if there is an edge {a, b}
in G such that OrbI (a) = OrbI (b). This is equivalent to saying that there is a group
element κ such that κ(a) = b.

(ii) By definition, G/I contains multiple edges if and only if there are two
edges {a, b} and {a′, b′} in G belonging to different orbits under I such that
OrbI (a) = OrbI (a

′) and OrbI (b) = OrbI (b
′). Let μ,ν ∈ I be such that μ(a) = a′

and ν(b) = b′. Since OrbI ({a, b}) 
= OrbI ({a′, b′}), we must have that μ 
= ν. De-
fine c = μ−1(b′) and κ = μ−1 ◦ ν. We have that {a′, b′} belongs to the same orbit as
{μ−1(a′),μ−1(b′)} = {a, c}. Since

κ(b) = μ−1 ◦ ν(b) = μ−1(b′) = c,

the claim follows. �

We will restrict our attention to groups I such that G/I is indeed simple and
loopless. In this situation, also in G/I we may identify each edge with its set of
endpoints.

1.2 Cross-Cycles

The ideal goal for any grid G would be to determine the homology of Σ(G/I) for
every I . Unfortunately, this appears to be a very difficult problem in general. For this
reason, we confine ourselves to a far less ambitious project. Specifically, we focus on
a certain kind of homology cycles that we refer to as “cross-cycles.” This terminology
is chosen to align with the fact that each such cycle coincides with the fundamental
cycle of the boundary complex of a cross-polytope.

Specifically, a cross-cycle of size k in a simplicial complex Δ is an element z in
the simplicial chain group C̃k−1(Δ;Z) such that the following hold.

• We have that

z = ([a1] − [b1]
) ∧ ([a2] − [b2]

) ∧ · · · ∧ ([ak] − [bk]
)

for distinct elements a1, . . . , ak, b1, . . . , bk from the vertex set of Δ.
• Some set of the form {ai : i ∈ X} ∪ {bj : j ∈ {1, . . . , k} \ X} forms a maximal face

of Δ.

Here, [x1] ∧ [x2] ∧ · · · ∧ [xk] denotes the oriented simplex [x1, . . . , xk], which is a
generator of C̃k−1(Δ;Z) if and only if {x1, . . . , xk} is a member of Δ. In particular,
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{ai : i ∈ X} ∪ {bi : i ∈ {1, . . . , k} \ X} belongs to Δ for every X ⊆ {1, . . . , k}. See
Munkres [13, Sect. 5] for more information on simplicial homology.

After appropriate relabeling, one may replace the second condition with the con-
dition that the set {a1, a2, . . . , ak} be a maximal face of Δ. Since z is a cycle and no
nonzero multiple of z is a boundary in C̃k−1(Δ;Z), we obtain that z generates an
infinite cyclic subgroup of H̃k−1(Δ;Z). In particular, H̃k−1(Δ;Z) has nonzero rank.

For a general complex Δ, all homology is not necessarily generated by cross-
cycles. In particular, a complete description of all cross-cycles in Δ is not necessar-
ily sufficient to completely describe the homology of Δ or even the set of degrees
with nonvanishing homology. Nevertheless, in the case of independence complexes
of graphs, cross-cycles admit a nice combinatorial interpretation that makes them
particularly interesting; see Proposition 3.1.

1.3 Possible Ratios of Elements in Cross-Cycles

Let (G,K) be a d-grid. For a full-dimensional subgroup I of K , define |G/I | to be
the number of vertices in G/I . Our goal is to examine possible sizes of cross-cycles
in Σ(G/I), expressed in terms of the size of the vertex set of G/I . More precisely,
we define Q(G,K) to be the set of rational numbers r with the following property:

• There exists a full-dimensional subgroup I of K such that G/I is simple and loop-
less and such that Σ(G/I) contains a cross-cycle of size exactly r · |G/I |.

Note that r is the ratio of elements from the vertex set of G/I in any set appearing in
the cross-cycle. As we will see, if there exists one subgroup I with the above property,
then there are infinitely many such subgroups; see Sect. 3.2. In particular, there are
no “pathological” values in Q(G,K).

1.4 Main Results

As already mentioned, we focus on 2-grids. Specifically, we consider the square grid
Sq, the triangular grid Tri, and the hexagonal grid Hex; see Fig. 1 for illustrations.
This selection of grids is quite natural, the three grids being the most important and
well-studied 2-grids in the literature. In each case, there is a natural action of K = Z

2

on the grid as illustrated in Fig. 2.
For real numbers a ≤ b, write [a, b] = {r : a ≤ r ≤ b}. The following theorem is

the main result of this paper.

Theorem 1.2 The following hold.

• Q(Sq,K) = [ 1
5 , 1

4

] ∩ Q.

• Q(Tri,K) = [ 1
7 , 1

5

] ∩ Q.

• Q(Hex,K) = [ 1
4 , 5

18

] ∩ Q.

For example, for every rational number between 1/5 and 1/4, there is a group I

such that there are cross-cycles of size r · |Sq/I | in Σ(Sq/I). Note that |Sq/I | and
|Tri/I | both equal |Z2/I |, whereas |Hex/I | equals 2 · |Z2/I |; see Fig. 2. We prove the
different parts of Theorem 1.2 in Sects. 5, 6, and 7.
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Fig. 1 From left to right the square grid Sq, the triangular grid Tri, and the hexagonal grid Hex

Fig. 2 The free group with
generators g1 and g2 acting on
Sq, Tri, and Hex

1.5 Related Work

Independence complexes of graphs are important objects, mainly because they co-
incide with flag complexes, which are simplicial complexes in which any given set
σ is a face if and only if every subset of σ of size two is a face. For example, the
barycentric subdivision of any simplicial complex is a flag complex. For a random
selection of results on flag complexes from the viewpoint of independence in graphs,
see Ehrenborg and Hetyei [2], Engström [3], Kozlov [12], and Živaljevič [16].

The homology of independence complexes of grids tends to be hard to compute in
general, but there are exceptions. Huijse, Halverson, Fendley, and Schoutens [9, 10]
analyzed the homology of the independence complex of square grids and obtained a
concrete formula in the case that the subgroup I is generated by two vectors (−m,m)

and (a, b) such that m ≥ 1 and a + b is a nonzero multiple of 3. The authors related
the homology to certain rhombus tilings [11] that we will discuss in some detail
in Sect. 5. Their method relies on the assumption that one of the generators of I

is of the form (±m,±m); as of today, it remains unclear whether it is possible to
extend their method to arbitrary groups I . Bousquet-Mélou, Linusson, and Nevo [1]
examined the homology of other square grids with free and cylindrical boundary con-
ditions. Fendley and Schoutens [5] computed the (co-)homology of the independence
complex of octagon–square and enneagon–triangle grids; see Sect. 8 for discussion.
For numerical estimates on the homology for various grids, see Engström [4] and van
Eerten [15].

Fundamental cycles of cross-polytopes are important in the work of Shareshian
and Wachs [14] on the matching and chessboard complexes, which are independence
complexes on the line graph of complete and bipartite graphs, respectively.
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2 Basic Properties of Full-Dimensional Subgroups

Throughout this section, (G,K) is a d-grid. The proof of the following lemma is
completely straightforward.

Lemma 2.1 For every finite set {I1, . . . , Ir} of full-dimensional subgroups of K , the
intersection

⋂
j Ij is a full-dimensional subgroup of K .

Let OrbI (a) denote the orbit containing the vertex a. Given a subgroup I of K , we
have that G/I is loopless if and only if OrbI (a) is an independent set in G for each
vertex a. Moreover, G/I is simple if and only if there is at most one edge between a

and OrbI (b) for every a, b ∈ V .

Lemma 2.2 There exists a full-dimensional subgroup I of K such that G/I is simple
and loopless.

Proof By Lemma 1.1, it suffices to show that there is a full-dimensional subgroup I

of K such that the following hold for each vertex a ∈ V :

(i) For every vertex b adjacent to a, we have that b /∈ OrbI (a).
(ii) For every two distinct vertices b and c, both adjacent to a, we have that c /∈

OrbI (b).

Let A be a subset of V consisting of one vertex from each orbit in G under K . Note
that properties (i) and (ii) hold for each vertex a ∈ V if and only if they hold for
each vertex a ∈ A. By assumption, A is finite, and each vertex a ∈ A has finitely
many neighbors. In particular, there are finitely many pairs (a, b) to consider in (i)
and finitely many pairs (b, c) to consider in (ii). Since K acts freely on G, there are
finitely many group elements κ ∈ K , all nonzero, such that κ(a) = b for some pair
(a, b) as in (i) or κ(b) = c for some pair (b, c) as in (ii). Let S be the set of such group
elements κ . Since S is finite and does not contain the zero element, we immediately
deduce that there is a number s > 0 such that S ∩ (s · K) = ∅. In particular, (i) and
(ii) hold for I = s · K . �

Lemma 2.3 Let I be a full-dimensional subgroup of K . If G/I is simple and loop-
less, then G/J is simple and loopless for every full-dimensional subgroup J of I .

Proof Suppose that a and b are adjacent elements such that b ∈ OrbJ (a). Since I

contains J , this implies that b ∈ OrbI (a). Analogously, if a has at least two neighbors
in OrbJ (a), then the same is true in OrbI (a). �

3 Basic Properties of Cross-Cycles

We examine the structure of cross-cycles, proving different simple results about their
behavior. First, we present a characterization of cross-cycles.
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Proposition 3.1 Let G be a finite simple and loopless graph, and let A :=
{a1, . . . , ak} and B := {b1, . . . , bk} be disjoint vertex sets in G of size k. Then
z := ∧k

i=1([ai] − [bi]) is a cross-cycle in Σ(G) if and only if the following hold.

• The edges of G(A ∪ B) are {a1, b1}, . . . , {ak, bk}.
• Some set of the form {ai : i ∈ X}∪ {bj : j ∈ {1, . . . , k} \X} is maximal with respect

to set inclusion among independent sets in G (i.e., the set forms a maximal face of
Σ(G)).

Proof Suppose that z is a cross-cycle in Σ(G). Since

z = ±∂

(
[aj ] ∧ [bj ] ∧

∧

i 
=j

([ai] − [bi]
))

,

we have that aj and bj are adjacent for every j ∈ {1, . . . , k}. Moreover, expanding z,
we note that every set of the form {ai : i ∈ X} ∪ {bj : j ∈ {1, . . . , k} \ X} is an inde-
pendent set. By definition, one of these sets is a maximal independent set. Conversely,
one easily checks that z is a cross-cycle if the given conditions hold. �

3.1 Bounds on the Size of Cross-Cycles

There are a multitude of ways to provide bounds on the size of cross-cycles. We
present some quite elementary bounds that will turn out to be useful in later sections.

Throughout this section, G = (V ,E) is a finite simple and loopless graph. For a
vertex x in G, the star Starx with center x is the vertex set consisting of x along with
all its neighbors, i.e.,

Starx := {x} ∪ {
y : {x, y} ∈ E

}
.

Proposition 3.2 Suppose that X is a set of vertices in G such that Starx ∩ Stary = ∅
whenever x, y ∈ X and x 
= y. Then all cross-cycles in Σ(G) have size at least |X|.
Proof Let z := ∧

i∈Y ([ai] − [bi]) be a cross-cycle in Σ(G). By Proposition 3.1, we
may assume that A := {ai : i ∈ Y } is a maximal independent set in G. As a conse-
quence, A ∩ Starx is nonempty for every x ∈ X, because otherwise A ∪ {x} would be
an independent set properly containing A, contradicting the maximality of A. This
immediately yields that |A| ≥ |X|. �

Proposition 3.3 Suppose that the degree of each vertex in G is at least δ and at
most ε. Then every cross-cycle has size at most |G| · ε

2(ε+δ−1)
. In particular, if δ = ε,

then every cross-cycle has size at most |G| · δ
4δ−2 .

Proof Suppose that there is a cross-cycle of size k. Let A and B be sets as in Propo-
sition 3.1, and let C := V \ (A ∪ B). By Proposition 3.1, there are at least 2k(δ − 1)

edges from A ∪ B to C. It follows that C consists of at least 2k(δ − 1)/ε vertices. As
a consequence,

|G| = |A ∪ B| + |C| = 2k + |C| ≥ 2k + 2k(δ − 1)

ε
= k · 2(ε + δ − 1)

ε
. �
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Proposition 3.4 Suppose that V can be written as a disjoint union of sets {Ci : i ∈ Y }
such that each Ci has the following property for some integer ki .

• The induced subgraph G(D) has a vertex of degree at least two whenever D is a
subset of Ci of size at least ki + 1.

Then all cross-cycles in Σ(G) have size at most 1
2

∑
i∈Y ki .

Proof Let z be a cross-cycle, and let X be the set of vertices appearing in the cycle.
By Proposition 3.1, G(X) is a perfect matching, meaning that every vertex has degree
one. As a consequence, X ∩ Ci consists of at most ki elements for each i ∈ Y . �

3.2 Cross-Cycles in Grids

Let (G,K) be a d-grid. We show that there are infinitely many groups J such that
G/J contains a cross-cycle of size r · |G/J | whenever r ∈ Q(G,K).

Proposition 3.5 Let I be a full-dimensional subgroup of K such that G/I is simple
and loopless. Let r be a rational number. Suppose that Σ(G/I) contains a cross-cycle
of size r · |G/I |. Then Σ(G/J ) contains a cross-cycle of size r · |G/J | whenever J

is a full-dimensional subgroup of I .

Proof Let A := {a1, . . . , ak} and B := {b1, . . . , bk} be vertices in G/I such that z :=∧k
i=1([ai] − [bi]) is a cross-cycle in Σ(G/I) and such that k = r · |G/J |. We may

assume that A is a maximal independent set in G/I . Let A′ and B ′ be the union
of all orbits under I containing some element from A and B , respectively. Since
G/I is simple and loopless, G(A′ ∪ B ′) is a perfect matching, and each edge is of
the form {a, b} with a ∈ A′ and b ∈ B ′. Moreover, A′ is a maximal independent set
in G, because every c in V (G) is adjacent to some element in OrbI (a). In particular,
whenever G/J is simple and loopless, the sets {OrbJ (a) : a ∈ A′} and {OrbJ (b) :
b ∈ B ′} satisfy Proposition 3.1. Applying Lemma 2.3, we are done. �

The assumption about G/I being simple is essential. Namely, let G be the graph
with vertex set {0,1} × Z and with an edge between (s, i) and (t, j) whenever
|j − i| ≤ 1 and s 
= t . With the natural action on G by Z, we have that G/Z is
a graph with two vertices joined by three edges. In particular, Σ(G/Z) contains a
cross-cycle of size 1 = 1

2 · |G/Z|. However, for k ≥ 2, Σ(G/kZ) does not contain
any cross-cycles of size 1

2 · |G/kZ|, because G/kZ is not a perfect matching; apply
Proposition 3.3.

Corollary 3.6 Let I be a full-dimensional subgroup of K such that G/I is simple
and loopless. If every full-dimensional subgroup J of I has the property that Σ(G/J )

contains no cross-cycle of size r · |G/J |, then r /∈ Q(G,K).

Proof Suppose that G/I ′ contains a cross-cycle of size r · |G/I ′| for some full-
dimensional group I ′ such that G/I ′ is simple and loopless. By Proposition 3.5,
G/J ′ contains a cross-cycle of size r · |G/J ′| whenever J ′ is a full-dimensional sub-
group of I ′. In particular, this is true for the intersection J of I and I ′, which is a
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full-dimensional subgroup of K by Lemma 2.1. However, J is also a subgroup of I ,
which is a contradiction to the assumption about I . �

3.3 Disjoint Unions of Graphs and Similar Constructions

Finally, we show how properties of cross-cycles are preserved when “joining” two
graphs.

Lemma 3.7 Let G = (V ,E) be a finite graph such that V is the disjoint union of
the two sets U and W with the property that there are no edges between U and W .
Then z is a cross-cycle in Σ(G) if and only if z = z1 ∧ z2, where zi is a cross-cycle
in Σ(Gi) for i ∈ {1,2}. In particular, there are cross-cycles of size k in Σ(G) if and
only if there are integers k1 and k2 summing to k such that there are cross-cycles of
size ki in Σ(Gi) for i ∈ {1,2}.

Proof Suppose that z1 and z2 are cross-cycles in Σ(G1) and Σ(G2), respectively.
Since there are no edges between G1 and G2, one easily checks that z1 ∧ z2 satisfies
the conditions in Proposition 3.1. Conversely, given a cross-cycle z := ∧

i ([ai] −
[bi]), Proposition 3.1 yields that each pair {ai, bi} must form an edge either in G1
or in G2. Hence we may write z = z1 ∧ z2, where zi is a cycle in Σ(Gi) for each
i ∈ {1,2}. Again, it is straightforward to check that z1 and z2 satisfy the conditions in
Proposition 3.1. �

Lemma 3.8 Let G = (V ,E) be a finite graph and assume that V is the disjoint
union of two nonempty sets U and W with the property that every u in U and w in
W are joined by an edge. Then z is a cross-cycle in Σ(G) if and only if either of the
following holds.

• z is a cross-cycle in either Σ(G(U)) or Σ(G(W)).
• z = [a] − [b], where a ∈ U and b ∈ W , and either all vertices in U \ {a} are

adjacent to a or all vertices in W \ {b} are adjacent to b.

Proof This is again a straightforward consequence of Proposition 3.1. �

4 General Properties of Q(G,K)

We consider the following general question.

For which subsets R of Q is there a grid (G,K) such that Q(G,K) = R?

In this section, we provide a partial answer to this question, proving that such a graph
exists whenever R is a closed interval [a, b] ∩ Q such that 0 < a ≤ b < 1

2 and also
when R = { 1

2 }. We also provide an example demonstrating that Q(G,K) is not al-
ways of the form [a, b] ∩ Q.

Theorem 4.1 For every d-grid (G,K), we have that Q(G,K) ⊆ (0, 1
2 ) unless G is

a perfect matching, in which case Q(G,K) = { 1
2 }. Moreover, for every two rational
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numbers a and b such that 0 < a ≤ b < 1
2 , there is a graph G such that Q(G,K) =

[a, b] ∩ Q.

Proof Throughout this proof, I is a group such that G/I is simple and loopless; such
an I exists by Lemma 2.2. First, note that Σ(G/I) contains more than just the empty
set. In particular, 0 /∈ Q(G,K). Also, note that if G contains an isolated vertex, then
Σ(G/I) is a cone and has no nonvanishing homology. As a consequence, there are
no cross-cycles in Σ(G/I). From now on, we always assume that all vertices in G

have degree at least one.
By Proposition 3.3, Σ(G/I) has a cross-cycle of size |G/I |

2 only if G/I is a perfect
matching. Now, G/I is a perfect matching if and only if G itself is a perfect matching,
because the homomorphism G → G/I is degree-preserving. Clearly, Σ(G/I) is then
the boundary of a cross-polytope of dimension |G/I |

2 . As a consequence, Q(G,K) =
1
2 in this case. Another application of Proposition 3.3 hence yields the first statement
in the theorem.

For the second statement, let a and b be rational numbers such that 0 ≤ a ≤ b < 1
2 ;

we can write a = p1/q and b = p2/q for integers p1,p2, q such that 2 ≤ p1 ≤ p2 ≤
q/2. Define a graph G1 as the disjoint union of the following three pieces.

• The first piece H1 consists of p1 − 2 copies of K2, the complete graph on two
vertices. The number of vertices in H1 is 2p1 − 4.

• The second piece H2 consists of p2 −p1 +1 copies of K2 and an additional vertex
adjacent to all other vertices in H2. The number of vertices in H2 is 2p2 −2p1 +3.

• The third piece H3 is a complete graph on q − 2p2 + 1 vertices.

Applying Lemma 3.7, we obtain that the one cross-cycle (up to sign) in Σ(H1) has
size p1 − 2. By the same lemma, all cross-cycles in Σ(H3) have the same size one.
Applying Lemmas 3.7 and 3.8, we obtain that Σ(H2) has cross-cycles of size one
and p2 − p1 + 1 but of no other sizes. By Lemma 3.7, we may conclude that Σ(G1)

contains cross-cycles of size

(p1 − 2) + 1 + 1 = p1

and

(p1 − 2) + (p2 − p1 + 1) + 1 = p2.

Moreover, the number of vertices in G1 is

(2p1 − 4) + (2p2 − 2p1 + 3) + (q − 2p2 + 1) = q.

Now, let G be the infinite graph with one disjoint copy G
(i)
1 of G1 for each i ∈ Z.

Let K ∼= Z be the group generated by the automorphism τ acting on G by mapping
G

(i)
1 to G

(i+1)
1 in the natural manner for all i ∈ Z.

Let r be a rational number such that a ≤ r ≤ b; we can write r = ka+(m−k)b
m

for
some integers k and m satisfying 0 ≤ k ≤ m. In fact, there are infinitely many ways
to express r in this manner: replace k and m with T k and T m for any integer T . It is
clear that Gm := G/〈τm〉 consists of m disjoint copies of G1. Applying Lemma 3.7
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Fig. 3 The graph G in
Proposition 4.2. One “period” of
G is marked in grey

(or Proposition 3.5 applied to G1 and 〈τm〉), we obtain that Σ(Gm) contains cross-
cycles of size kp1 +(m−k)p2. Since Gm contains mq vertices, we obtain the fraction

kp1 + (m − k)p2

mq
= ka + (m − k)b

m
= r;

hence r ∈ Q(G,K). Conversely, another application of Lemma 3.7 yields that there
are no cross-cycles of Σ(Gm) of size below mp1 or above mp2; hence r /∈ Q(G,K)

unless a ≤ r ≤ b. As a consequence, Q(G,K) = [a, b] ∩ Q. �

We proceed with an example showing that Q(G,K) is not necessarily of the form
[a, b] ∩ Q. Let G be the infinite graph constructed in the following manner. Start
with the infinite path P∞; this graph has vertex set Z and edge set {{i, i + 1} : i ∈ Z}.
For each k ∈ Z, add two vertices xk and yk and the three edges {3k, xk}, {3k, yk},
and {xk, yk}. The resulting graph is G. Consider the group K ∼= Z generated by the
automorphism τ acting on G by mapping i to i + 3 for all i ∈ Z and by mapping xk

and yk to xk+1 and yk+1, respectively, for all k. See Fig. 3 for an illustration.

Proposition 4.2 With G defined as above, we have that Q(G,K) = { 1
5 , 2

5 }.

Proof Let m ≥ 1. Write Gm := G/〈τm〉. Let z be a cross-cycle of size k in Σ(Gm),
and let {ai, bi} be the corresponding pairs; 1 ≤ i ≤ k. By Proposition 3.1, we
may assume that A := {a1, . . . , ak} is a maximal independent set in Gm. Write
B := {b1, . . . , bk}.

Suppose that there is a j such that 3j − 3 ∈ A, whereas 3j /∈ A. If 3j ∈ B , then
3j − 1 ∈ A by the maximality of A. Moreover, for the same reason, either xj or yj

belongs to A. Yet, this is a contradiction, because 3j would then have two neighbors
in A. Hence 3j /∈ B . Since 3j − 2 is adjacent to 3j − 3, which belongs to A, we
cannot have that 3j − 1 ∈ A. However, this means that the two neighbors of 3j − 1
are outside A, which contradicts the maximality of A.

As a consequence, either A contains 3Zm or A has empty intersection with 3Zm.
In the former case, A must be equal to 3Zm and hence have size m, the set 3Zm being
a maximal independent set in Gm. In the latter case, the graph obtained by removing
the set 3Zm is a perfect matching on 4m elements. As a consequence, A must have
size 2m. Since |G/I | = 5m, we conclude that Q(G,K) ⊆ { 1

5 , 2
5 }. Conversely, the two

pairings {{3j,3j + 1} : j ∈ Zm} and {{xj , yj }, {3j + 1,3j + 2} : j ∈ Zm} are easily
seen to satisfy Proposition 3.1, which yields that Q(G,K) ⊇ { 1

5 , 2
5 }. �

The above construction can be refined in several ways. For example, replacing
the piece on the vertex set {xk, yk} with a perfect matching Hk of size n and adding
edges from each vertex in Hk to the vertex 3k, we obtain a graph G with the property
that Q(G,K) = { 1

2n+3 , n+1
2n+3 }. Replacing Hk with an arbitrary graph may yield more
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complicated patterns such as a set Q(G,K) of the form {q} ∪ ([a, b] ∩ Q). Instead of
going into detail on this matter, let us state a question about the general structure of
Q(G,K).

Does every grid (G,K) have the property that Q(G,K) equals
⋃k

i=1[ai, bi] ∩ Q

for some rational numbers a1, b1, . . . , ak, bk such that ai ≤ bi for 1 ≤ i ≤ k?
In particular, is Q(G,K) always a closed set?

5 The Square Grid

Recall that Sq is the infinite square 2-grid illustrated on the left in Fig. 1 with a group
K ∼= Z

2 acting on Sq as illustrated on the left in Fig. 2. We identify K with Z
2 and

let (a, b) denote the group element ga
1gb

2 . Let u := (u1, u2) and v := (v1, v2) be two
linearly independent vectors in Z

2. Note that |Sq/〈u,v〉| equals |u1v2 − u2v1|. Write
Σu,v := Σ(Sq/〈u,v〉).

To avoid misconceptions, we state already at this point that we label elements in
Z

2 according to the matrix convention; this should be clear from the way we defined
g1 and g2 in Fig. 2. We label the vertices of Sq in the same manner.

For the special case u = (m,0) and v = (0, n), Fendley, Schoutens, and van Eerten
[6] studied properties of Σm,n := Σu,v in the context of the “hard-square model,” a
well-studied model of statistical mechanics. They stated a conjecture about the Euler
characteristic of Σm,n, which the author of the present paper settled in a previous
paper [11]. Specifically, the Euler characteristic of the more general complex Σu,v

was related to certain rhombus tilings of the plane. We will not go into detail on this
result, but we will need to make use of the very same rhombus tilings, which are
defined in the following manner.

• The entire plane is tiled.
• The corners of each rhombus all belong to Z

2.
• Each rhombus has side length

√
5, meaning that each side is parallel to and has the

same length as either (1,2), (−1,2), (2,1), or (−2,1).
• The intersection of two rhombi is either empty, a common corner, or a common

side.

One easily checks that a rhombus tiling is uniquely determined by the set of rhombus
corners in the tiling. From now on, we always identify a tiling with this set.

We refer to a rhombus of area k as a k-rhombus. Up to translation, there are six
kinds of rhombi in which all corners are integer points and all sides have length

√
5:

two 3-rhombi, two 4-rhombi, and two 5-rhombi; see Fig. 4. Note that the 5-rhombi
are squares. We restrict our attention to tilings of the plane with 4- and 5-rhombi (i.e.,
the four rightmost rhombi in Fig. 4); see Fig. 5 for an example. We refer to tilings
with 4- and 5-rhombi as balanced. We say that a rhombus tiling is (u, v)-invariant if
the tiling is invariant under the two translations x �→ x + u and x �→ x + v.

As alluded to above, the Euler characteristic of Σu,v can be expressed in terms of
balanced (u, v)-invariant rhombus tilings [11]. The proof of this correspondence re-
lied on a matching on Σu,v with the property that all balanced (u, v)-invariant rhom-
bus tilings modulo 〈u,v〉 remained unmatched. Readers familiar with discrete Morse
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Fig. 4 Six different rhombi

Fig. 5 Portion of a balanced rhombus tiling

theory [7] may ask whether this matching reveals any information about the topology
of Σu,v . The answer is that the matching does not correspond to a discrete Morse
function. In particular, we cannot use discrete Morse theory to deduce that the rhom-
bus tilings correspond to nonvanishing cycles in the homology of Σu,v .

Yet, as we will see in this section, each tiling does correspond to such a nonvanish-
ing cycle, in fact a cross-cycle, though there might be linear dependencies between
some of the cycles. As already mentioned, Huijse et al. [8, 10] have managed to
express the full homology in terms of rhombus tilings for certain choices of u and v.

5.1 Lower Bound on Q(Sq,K)

We demonstrate that Q(Sq,K) contains every rational number r between 1
5 and 1

4 .
For any element x ∈ Z

2, define e(x) := x + (0,1) (east), n(x) := x + (−1,0) (north),
w(x) := x + (0,−1) (west), and s(x) := x + (1,0) (south); recall our matrix conven-
tion for rows and columns.

Proposition 5.1 For each k ≥ 1, if there is a balanced (u, v)-invariant rhombus tiling
ρ with exactly k congruence classes modulo 〈u,v〉, then there exists a cross-cycle of
size k.

Proof Let ρ be a balanced (u, v)-invariant rhombus tiling with k congruence classes
modulo 〈u,v〉; we identify ρ with this set of congruence classes. Let se(ρ) be the
set obtained by applying se= s◦e to each element in ρ. For an element x ∈ ρ, let x̂

be the unique element in ρ ∩ {s2e(x),se2(x)}. It is clear that x̂ is the only neighbor
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Fig. 6 The partition of ρ ∪ se(ρ) into edges {x̂,se(x)} as described in the proof of Proposition 5.1; ρ is
the rhombus tiling in Fig. 5. Black points represent elements of ρ, whereas white points represent elements
of se(ρ)

of se(x) in ρ. As a consequence, the partition

ρ ∪ se(ρ) =
⋃

x∈ρ

{
x̂,se(x)

}

into edges has the property that there are no edges between elements from different
edges; see Fig. 6 for an illustration. In particular, since ρ and se(ρ) are maximal in
Σu,v , Proposition 3.1 applies. �

Remark Using the same method as in the above proof, one obtains the same property
for the cycle

zwρ :=
∧

x∈ρ

([
x̃
] − [

sw(x)
])

,

where x̃ is the unique element in ρ ∩ {s2w(x),sw2(x)}. Let Rk
u,v be the fam-

ily of balanced (u, v)-invariant rhombus tilings with exactly k congruence classes
modulo 〈u,v〉. An interesting problem is to examine the rank of the subgroup of
H̃k−1(Σu,v;Z) generated by {zeρ, zwρ : ρ ∈ Rk

u,v} and relate this rank to the size of
Rk

u,v .

Proposition 5.2 (Jonsson [11, Theorem 2.6]) Let a, b, c, d be arbitrary nonnegative
integers such that a + b ≥ 1 and c + d ≥ 1. Write x := a(1,2) + b(2,1) and y :=
c(−1,2) + d(−2,1). If 〈u,v〉 is a subgroup of 〈x, y〉, then there are (u, v)-invariant
rhombus tilings such that the number of 4-rhombi and 5-rhombi modulo 〈u,v〉 equals
ac + bd and ad + bc, respectively.

Corollary 5.3 With assumptions and notation as in Proposition 5.2, there are cross-
cycles of size r · |Sq/〈u,v〉| in Σu,v , where 1

r
= ad+bc

(a+b)(c+d)
+ 4. In particular,

Q(Sq,K) ⊇ [ 1
5 , 1

4 ] ∩ Q.
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Fig. 7 Partition of Sq into stars. The black points form the set X in the proof of Lemma 5.4

Proof This is an immediate consequence of Propositions 5.1 and 5.2. For the last
statement, let p and q be positive integers such that 1

5 ≤ p
q

≤ 1
4 . Choosing a = 1,

b = 0, c = 5p − q , and d = q − 4p, we obtain that r = p
q

. �

5.2 Upper Bound on Q(Sq,K)

It remains to prove that Q(Sq,K) ⊆ [ 1
5 , 1

4 ] ∪ Q.

Lemma 5.4 The following hold.

• If 〈u,v〉 is contained in 〈(1,2), (−2,1)〉 or 〈(2,1), (−1,2)〉, then all cross-cycles
in Sq/〈u,v〉 have size at least 1

5 · |Sq/〈u,v〉|.
• If 〈u,v〉 is contained in 〈(1,2), (−1,2)〉 or 〈(2,1), (−2,1)〉, then all cross-cycles

in Sq/〈u,v〉 have size at most 1
4 · |Sq/〈u,v〉|.

As a consequence, Q(Sq,K) ⊆ [ 1
5 , 1

4 ] ∩ Q.

Proof For the first statement, we want to apply Proposition 3.2. Using symmetry, we
may assume that 〈u,v〉 is contained in 〈(1,2), (−2,1)〉.

Note that the star Starx contains x and the four neighbors e(x), n(x), w(x),
and s(x). Define X to be the subset of Vu,v consisting of all (a, b) such that
a + 2b ≡ 0 (mod 5). This is well defined, because (1,2) and (−2,1) satisfy this
condition. By Proposition 3.2, we need only prove that Starx and Starx′ are disjoint
whenever x and x′ are distinct elements in X. Clearly, x and x′ are not neighbors.
Suppose that x and x′ have a common neighbor t . This would mean that x − x′ is
plus or minus one of the vectors (−1,1), (2,0), (1,1), and (0,2). As a consequence,
|(1,2) · (xi − xj )| ∈ {1,2,3,4}. This contradicts the fact that (1,2) · (x − x′) is di-
visible by five, which concludes the proof of the first statement. See Fig. 7 for an
illustration.

For the second statement, we want to apply Proposition 3.4. Using symmetry, we
may assume that 〈u,v〉 is contained in 〈(1,2), (−1,2)〉.
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Fig. 8 Partition of Sq into sets Cr,s

Table 1 The polynomial
∑

k≥0 rank H̃k(Σm,n;Z)tk for small m and n. In all known cases, the homology
is torsion-free

n = 2 3 4 5 6 7 8 9 10

m = 2 1 t 3t t t2 t3 3t3 t3 t4

3 t 4t t t3 4t3 t3 t5 4t5 t5

4 3t t 7t3 2t3 + t4 t4 + 4t5 2t5 + t6 t6 + 8t7

5 t t3 2t3 + t4 9t4 t5

For each point (r, s) ∈ Vu,v such that 2r + s is divisible by four, form the set
Cr,s := {(r, s), (r, s + 1), (r + 1, s), (r + 1, s + 1)}. This means that we partition the
whole of Sq/〈u,v〉 into squares as illustrated in Fig. 8. Since 2r + s is divisible
by four when (r, s) = (1,2) or (−1,2), this is well defined. One easily checks that
Cr,s satisfies Proposition 3.4 with kr,s = 2; Sq(Cr,s) is a square graph. The second
statement follows.

For the final statement, apply Corollary 3.6. �

Combining Corollary 5.3 and Lemma 5.4, we obtain the main result of this section.

Theorem 5.5 We have that Q(Sq,K) = [ 1
5 , 1

4 ] ∩ Q.

5.3 More on the Homology of Σu,v

While Huijse et al. [8, 10] found a formula for the homology of Σu,v for large classes
of groups 〈u,v〉, the rectangular case u = (m,0) and v = (0, n) remains unsolved.
Using computer, we have calculated the homology of Σm,n := Σu,v for small values
of m and n; see Table 1. Note that the reduced Euler characteristic of Σm,n is −1
whenever m and n are coprime. By results from a previous paper [11], this is always
true and is a consequence of the following fact.
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Proposition 5.6 (Jonsson [11, Theorem 2.7]) Whenever m and n are coprime, there
are no balanced ((m,0), (0, n))-invariant rhombus tilings.

By Proposition 5.6, Proposition 5.1 does not tell us anything about the homol-
ogy of Σm,n when m and n are coprime. Given the simplicity of the Euler char-
acteristic, one may ask whether the homology is equally simple. Clearly, as Ta-
ble 1 illustrates, the homology is not always that of a sphere in odd dimension; for
(m,n) ∈ {(4,5), (4,7)}, there is homology in two different degrees. The possibility
remains that the homology is always concentrated in just a few degrees for m and n

coprime.

6 The Triangular Grid

This section is devoted to the triangular grid Tri.

Lemma 6.1 We have that Q(Tri,K) ⊇ [ 1
7 , 1

5 ] ∩ Q.

Proof Recall the definition of the generators g1 and g2 of K from Fig. 2; g1 means
moving one step down, whereas g2 means moving one step in the south–east direc-
tion. Identify one point as the origin (0,0), and define (i, j) := gi

1 ◦ g
j

2 (0,0).
Let α and β be nonnegative integers such that α + β ≥ 2. Write q := 5α + 7β ,

and define u := (2,1) and v := (q,0). It is clear that Tri/〈u,v〉 contains q vertices.
Moreover, the set of neighbors of a given vertex x is

x + {
(−1,0), (1,0), (0,1), (0,−1), (−1,1), (1,−1)

}

= x + {
(−1,0), (1,0), (−2,0), (2,0), (−3,0), (3,0)

}
.

As a consequence, since q ≥ 10, Tri/〈u,v〉 is simple and loopless. Note that we may
identify Tri/〈u,v〉 with the graph Cq,3 with vertex set Zq and with an edge between
i and j if and only if i − j ∈ {±1,±2,±3} (modulo q). The independence complex
of Cq,3 appears in Kozlov’s work [12, Question 3] as C 4

q .
Define

A := {
5i : 0 ≤ i ≤ α − 1

} ∪ {
5α + 7j : 0 ≤ j ≤ β − 1

}

and

B := A + 1 = {
5i + 1 : 0 ≤ i ≤ α − 1

} ∪ {
5α + 7j + 1 : 0 ≤ j ≤ β − 1

};
these are subsets of the vertex set Zq of Cq,3. It is clear that A is a maximal inde-
pendent set in Cq,3 (as is B) and that Cq,3(A ∪ B) is a perfect matching. Hence the
conditions in Proposition 3.1 are satisfied. It follows that Cq,3 contains a cross-cycle
of size |A| = α + β , which yields that

α + β

5α + 7β
∈ Q(Tri,K).
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Fig. 9 The set A ∪ B in the proof of Lemma 6.1; black points represent elements in A, whereas white
points represent elements in B . Note the induced tiling of the plane into parallelograms

Fig. 10 Partition of Tri into stars. The black points form the set Z in the proof of Lemma 6.2

In particular, for any positive integers p and q such that 1
7 ≤ p

q
≤ 1

5 , the choice α =
7p − q and β = q − 5p yields that p

q
∈ Q(Tri,K). �

It might be worth noting that the set A∪B in the proof of Lemma 6.1, lifted to Tri,
has the shape illustrated in Fig. 9.

Lemma 6.2 We have that Q(Tri,K) ⊆ [ 1
7 , 1

5 ] ∩ Q.

Proof Suppose that r ∈ Q(Tri,K). To show that r ≥ 1
7 , consider the partition of Tri

into stars as illustrated in Fig. 10; let Z be the set of centers. This partition is clearly
periodic, and any group I such that Z is invariant under I has the property that Tri/I
has no cross-cycles of size below |Tri/I |/7; apply Proposition 3.2 and use the fact that
every seventh element of Tri belongs to Z. Applying Corollary 3.6, we obtain that r

must be at least 1
7 .

To show that r ≤ 1
5 , suppose that we are given a cross-cycle z of size k in Tri/I .

Let X be the set of vertices that are present in z, and let Y be the remaining set of
vertices; we have that |X| = 2k and |Y | = |Tri/I | − 2k. It is clear that an element y in
Y cannot be adjacent to more than four elements in X. Namely, the neighborhood of
y is a six-gon, meaning that every induced subgraph on five vertices in this neighbor-
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Fig. 11 The situation around
the vertices y and y1 in the
proof of Lemma 6.2. The black
points represent elements in X,
the white points represent
elements in Y , and the grey
points represent points with an
unknown status

hood contains a vertex of degree two. We want to show that at most one third of the
elements in Y are adjacent to four elements in X. Since each element in X has five
neighbors in Y , this will yield that

5 · 2k ≤
(

3 · 2

3
+ 4 · 1

3

)
· |Y |

⇐⇒ 10k ≤ 10

3
· (|Tri/I | − 2k

)

⇐⇒ k ≤ 1

5
· |Tri/I |.

Here, the left-hand side of the first two rows counts the number of edges xy such that
x ∈ X and y ∈ Y .

To obtain the desired result, let Y4 be the set of vertices in Y with four neighbors
in X. Let y be an element in Y4. One easily checks that the only possibility is that
X ∩ Stary is a union of two edges {a, b} and {c, d}; up to rotation, the situation is
as in Fig. 11. Let y1 and y2 be the two neighbors of y in Y . Inspecting Fig. 11, one
readily verifies that y1 /∈ Y4 and that the same is true for all neighbors of y1 except y.
Namely, there is no room for two disjoint edges from X in the neighborhood of any of
these neighbors. By symmetry, the same is true for y2. Since each element in Y4 has
two neighbors in Y \ Y4 and since no element in Y \ Y4 has more than one neighbor
in Y4, it follows that 2|Y4| ≤ |Y \ Y4|. Here, the left-hand side counts the number of
edges yy′ such that y ∈ Y4 and y′ ∈ Y \ Y4. This concludes the proof. �

Combining Lemmas 6.1 and 6.2, we obtain the following result.

Theorem 6.3 We have that Q(Tri,K) = [ 1
7 , 1

5 ] ∩ Q.

7 The Hexagonal Grid

We proceed with the hexagonal grid Hex.

Lemma 7.1 We have that Q(Hex,K) ⊇ [ 1
4 , 5

18 ] ∩ Q.

Proof Let α,β be nonnegative integers, not both zero, and consider the matching on
Hex illustrated in Fig. 13; the building blocks of this matching are given in Fig. 12. We
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Fig. 12 Building blocks of the
matching on Hex in Fig. 13.
Each block consists of 72
vertices. In block X, there are 20
matched pairs, whereas block Y
contains 18 matched pairs

Fig. 13 Periodic matching on Hex using the building blocks in Fig. 12. This matching satisfies Proposi-
tion 3.1

thus have a repeating pattern consisting of α columns of “X” blocks followed by β

columns of “Y” blocks. One easily checks that this matching satisfies Proposition 3.1;
black points represent elements in A, and white points represent elements in B .

Now, each “X” block contains 20 matched pairs, each “Y” block contains 18
matched pairs, and the number of vertices in each block is 72. As a consequence,
if I is a full-dimensional group that leaves the given matching invariant, then the
number of pairs in the induced matching on Hex/I equals |Hex/I | times

20α + 18β

72α + 72β
= 1

36
· 10α + 9β

α + β
.

In particular, for any positive integers p and q such that 1
4 = 9

36 ≤ p
q

≤ 10
36 = 5

18 ,
the choice α = 36p − 9q and β = 10q − 36p yields that the number of pairs equals
p
q

· |Hex/I |. By Proposition 3.1, we are done. �

Lemma 7.2 We have that Q(Hex,K) ⊆ [ 1
4 , 5

18 ] ∩ Q.

Proof Suppose that r ∈ Q(Hex,K). To show that r ≥ 1
4 , consider the partition of

Hex into stars as illustrated in Fig. 14; let Z be the set of centers. Proceeding as in the
proof of Lemma 6.2, we deduce that r is at least 1

4 .
To show that r ≤ 5

18 , suppose that we are given a cross-cycle z of size k in Hex/I .
Let X be the set of vertices that are present in z, and let Y be the remaining set of
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Fig. 14 Partition of Hex into
stars. The large points form the
set Z in the proof of Lemma 7.2

Fig. 15 On the left, a hexagon
from the set H in the proof of
Lemma 7.2. On the right, the
situation around the vertices y1
and y2. The color conventions
for vertices are the same as in
Fig. 11; black vertices belong
to X

vertices; we have that |X| = 2k and |Y | = |Hex/I | − 2k. We want to show that at
most half of the elements in Y have the property that all three neighbors belong to X.
Since each element in X has two neighbors in Y , this will yield that

2 · 2k ≤
(

2 · 1

2
+ 3 · 1

2

)
· |Y |

⇐⇒ 4k ≤ 5

2
· (|Hex/I | − 2k

)

⇐⇒ k ≤ 5

18
· |Hex/I |.

Let Y3 be the set of vertices in Y with all three neighbors in X. Let H be the set
of hexagons in Hex/I with the property that exactly one of the six vertices of the
hexagon, y, belongs to Y3 and the other two elements, y1 and y2, belong to Y \ Y3

and are adjacent to each other. Up to rotation and reflection, the situation is as in the
picture on the left in Fig. 15.

First, we show that every vertex in Y \ Y3 belongs to at most two hexagons in H.
Consider a hexagon H1 such as the one on the left in Fig. 15 and look at the hexagon
H2 just to the right of H1 as illustrated in the picture on the right in Fig. 15. With
notation as in that picture, note that z1 and z2 must both be vertices in X for H2 to
belong H. However, if this is the case, then the hexagons H3 and H4 do not belong
to H, because y1 and y2 do not belong to Y3. The desired claim follows.

Next, we show that every vertex in Y3 belongs to at least one hexagon in H. Up
to rotation and reflection, the situation is as in the picture on the left in Fig. 16. If
z1 /∈ X, then H2 belongs to H. Hence assume that z1 ∈ X. This yields the situation in
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Fig. 16 On the left, the
situation around a vertex y in
Y3. On the right, the same
situation but with the additional
assumption that z1 ∈ X

Fig. 17 On the left, the octagon–square grid. On the right, the enneagon–triangle grid

the picture on the right in Fig. 16. Now, if z2 ∈ X, then H1 belongs to H. If z2 does
not belong to X, then z3 ∈ X and hence H3 ∈ H. This yields the desired claim.

To summarize, since each element in Y3 belongs to at least one hexagon in H
and since each hexagon in H contains exactly one element from Y3, we have that
|Y3| ≤ |H|. Moreover, since each element in Y \ Y3 belongs to at most two hexagons
in H and since each hexagon in H contains exactly two elements from Y \ Y3, we
also have that 2|H| ≤ 2|Y \ Y3|. As a consequence, |Y3| ≤ |Y \ Y3|, which concludes
the proof. �

Combining Lemmas 7.1 and 7.2, we obtain the following result.

Theorem 7.3 We have that Q(Hex,K) = [ 1
4 , 5

18 ] ∩ Q.

8 Some Other 2-Grids

Fendley and Schoutens [5] computed the (co-)homology of the independence com-
plex of octagon–square and enneagon–triangle grids (see Fig. 17); in each case, all
homology is concentrated in one single degree.

Our object is to consider a generalization of the octagon–square grid. Fix d ≥ 1
and define a d-grid G in the following manner; see the picture on the left in Fig. 18 for
an illustration. For each integer vector x ∈ Z

d , we have four vertices wx,nx, sx, ex in
G, and each of wx and ex is adjacent to both nx and sx . In addition, for each x ∈ Z

d ,
sx is adjacent to nx+g1 , where g1 = (1,0, . . . ,0). Equivalently, for each x ∈ Z

d , nx is
adjacent to sx−g1 . There might be additional edges in G, but there are no other edges
containing nx or sx for any x. We assume that G is invariant under any transformation
x �→ x + y (which maps nx to nx+y , and so on).

Theorem 8.1 With G defined as above, Q(G,K) = { 1
4 }. In particular, this is true for

the octagon–square 2-grid.
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Fig. 18 From left to right, the local shape of the graph G in Theorem 8.1, a partition of G into stars, a
partition of G into sets Ci satisfying Proposition 3.4, and a matching satisfying Proposition 3.1

Proof We illustrate the constructions of the proof in Fig. 18. Let I be a full-dimension
subgroup of Z

d . Define X := {nx : x ∈ I }. It is clear that X satisfies Proposition 3.2,
because no nx is adjacent to any ny . As a consequence, G/I has no cross-cycles of
size below |Zd/I | = 1

4 · |G/I |.
Next, define Cx := {ex, nx,wx, sx}. It is clear that {Cx : x ∈ I } satisfies Proposi-

tion 3.4 with kx = 2, which immediately yields that G/I has no cross-cycles of size
above 1

4 · |G/I |.
Finally, one readily verifies that {(sx, nx+g1) : x ∈ I } satisfies Proposition 3.1,

which yields that G/I contains cross-cycles of size 1
4 · |G/I |. �

Using discrete Morse theory [7], it is not hard to prove that Σ(G/I) is homotopy
equivalent to a wedge of spheres of dimension 1

4 |G/I | − 1. For the octagon–square
2-grid OctSq, Fendley and Schoutens [5] proved that Σ(OctSq/(mZ × nZ)) is ho-
motopy equivalent to a wedge of 2m + 2n − 1 spheres of dimension mn − 1.

For the enneagon–triangle grid EnnTri, Fendley and Schoutens demonstrated
that EnnTri/I is homotopy equivalent to a wedge of αI spheres of dimension
1
4 |EnnTri/I | − 1, where αI equals the number of perfect matchings on the hexagonal
grid obtained by identifying each triangle in EnnTri/I with a vertex. Their construc-
tion is easily seen to imply the following result.

Theorem 8.2 We have that Q(EnnTri,K) = { 1
4 }.

9 Concluding Remarks

We have computed Q(G,K) for a small selection of 2-grids (G,K). In each case, the
outcome was a full interval of rational numbers. As we observed in Sect. 4, Q(G,K)

is not always such an interval. Nevertheless, the possibility remains that there exists
a reasonably general family of grids, including our examples, with this property.

An important problem for any given grid G is whether cross-cycles tell us “es-
sentially” everything about possible degrees with nonzero homology. More precisely,
suppose that r is a rational number such that r /∈ Q(G,K). We say that the group I

is sparse if the smallest nonzero element in I is large in terms of Euclidean norm.
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• Is it true that Σ(G/I) has no homology in degree r · |G/I | − 1 if I is sparse
enough?

• Even better, is there an ε > 0 such that Σ(G/I) has no homology in degree
s · |G/I | − 1 whenever |s − r| < ε if I is sparse enough?

Conversely, for r ∈ Q(G,K), one may ask whether for each ε > 0, we have that
Σ(G/I) has homology in degree s · |G/I | − 1 for some s such that |s − r| < ε

whenever I is sparse enough. This question is closely related to the question as to
whether the behavior of Σ(G/I) is “fragile” in the sense that a small modification of
I may result in a substantially different homology.

We are particularly interested in finding the answers to these questions for the
square, triangular, and hexagonal grids.
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