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Abstract In this paper we study the geometric discrepancy of explicit constructions
of uniformly distributed points on the two-dimensional unit sphere. We show that
the spherical cap discrepancy of random point sets, of spherical digital nets and of
spherical Fibonacci lattices converges with order N−1/2. Such point sets are therefore
useful for numerical integration and other computational simulations. The proof uses
an area-preserving Lambert map. A detailed analysis of the level curves and sets of
the pre-images of spherical caps under this map is given.

Keywords Discrepancy · Isotropic discrepancy · Lambert map · Level curve · Level
set · Numerical integration · Quasi-Monte Carlo · Spherical cap discrepancy

1 Introduction

Let S
2 = {z ∈ R

3 : ‖z‖ = 1} be the unit sphere in the Euclidean space R
3 provided

with the norm ‖ · ‖ induced by the usual inner product x · y. On this sphere we
consider the Lebesgue surface area measure σ normalised to a probability measure
(
∫

S2 dσ = 1).
This paper is concerned with uniformly distributed sequences of points on S

2.
Informally speaking, a sequence of points is called uniformly distributed if every
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reasonably defined (clopen) A ⊆ S
2 gets a fair share of points as their number N

grows. Given a triangular scheme {z1,N , . . . ,zN,N }, N ≥ 1, of points on S
2 in such a

case one has

lim
N→∞

card({j : zj,n ∈ A})
N

= σ(A) (1a)

(where card denotes the cardinality of the set) or, equivalently (defined in terms of
numerical integration),

lim
N→∞

1

N

N∑

j=1

f (zj,N ) =
∫

S2
f dσ for every f continuous on S

2. (1b)

The degree of uniformity is quantified by the so-called spherical cap discrepancy.
A spherical cap C = C(w, t) centred at w ∈ S

2 with height t ∈ [−1,1] is given by
the set

C(w, t) = {
y ∈ S

2 : w · y > t
}
.

(We assume that spherical caps are open subsets of S
2.) The boundary of C(w, t)

then is

∂C(w, t) = {
y ∈ S

2 : w · y = t
}
.

Let ZN = {z0, . . . ,zN−1} ⊆ S
2 be an N -point set on the sphere S

2. The local dis-
crepancy with respect to a spherical cap C measures the difference between the pro-
portion of points in C (the empirical measure of C) and the normalised surface area
of C. The spherical cap discrepancy is then the supremum of the local discrepancy
over all spherical caps, as stated in the following definition.

Definition 1 The spherical cap discrepancy of an N -point set ZN =
{z0, . . . ,zN−1} ⊆ S

2 is

D(ZN) = sup
w∈S2

δ(ZN ;w), δ(ZN ;w) = sup
−1≤t≤1

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C(w,t)(zn) − σ
(
C(z, t)

)
∣
∣
∣
∣
∣
.

If the point set ZN is well-distributed, then this discrepancy is small. In fact, a
sequence of N -point systems (ZN)N≥1 satisfying

lim
N→∞D(ZN) = 0, (2)

is called asymptotically uniformly distributed. Using, for example, the classical
Erdös–Turán type inequality (cf. Grabner [25], also cf. Li and Vaaler [38]) or Le-
Veque type inequalities (Narcowich et al. [41]) and the fact that the set of polynomials
is dense in the set of continuous functions, one can show that (2) is equivalent to (1b).

It is known from [6] that there are constants c,C > 0, independent of N , such that
a low-discrepancy scheme {Z∗

N }N≥2 satisfies

cN−3/4 ≤ D
(
Z∗

N

) ≤ CN−3/4
√

logN. (3)



992 Discrete Comput Geom (2012) 48:990–1024

The lower bound holds for all N -point sets ZN on S
2 and there always exists an N -

point set ZN ⊆ S
2 such that the upper bound holds. The proof of the upper bound is

probabilistic in nature and is thus non-constructive. To our best knowledge, explicit
constructions of low-discrepancy schemes are not known. (In this paper we restrict
ourselves to the sphere S

2, though some of the results are known for spheres of di-
mension d ≥ 2.)

An explicit construction of points ZN with small spherical cap discrepancy has
been given in [39, 40]. For instance, in [39] it was shown that

D(ZN) ≤ C(logN)2/3N−1/3. (4)

The numerical experiments in [39] indicate a convergence rate of O(N−1/2).
In this paper we give explicit constructions of point sets ZN for which we have

D(ZN) ≤ 44
√

2N−1/2.

Our numerical results indicate a convergence rate of O((logN)cN−3/4) for some
1/2 ≤ c ≤ 1, see Tables 1, 2 below.

The spherical cap L2-discrepancy

DL2(ZN) :=
{∫ 1

−1

∫

S2

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C(w,t)(zn) − σ
(
C(z, t)

)
∣
∣
∣
∣
∣

2

dσ(w)dt

}1/2

,

which averages the local discrepancy for a spherical cap over all caps, provides a
lower bound for the spherical cap discrepancy. It is closely related to the sum of
distances and its continuous counterpart the distance integral by means of Stolarsky’s
Invariance Principle [50] for the Euclidean distance and the 2-sphere:

1

N2

N∑

j=1

N∑

k=1

|zj − zk| + 4
[
DC

L2
(z1, . . . ,zN)

]2 =
∫

S2

∫

S2
|z − w|dσ(z)dσ(w)

=: V−1
(
S

2) = 4

3
.

This gives a simple way of computing the spherical cap L2-discrepancy of point sets
on S

2. In [14] it is shown that the spherical cap L2-discrepancy of ZN can be inter-
preted as the worst-case error of an equal-weight numerical integration rule with node
set ZN for functions in the unit ball of a certain Sobolev space over S

2. It is shown in
[13] that on average (i.e., for randomly chosen points independently identically uni-
formly distributed over the sphere), the expected squared worst-case error is of the
form (4/3)N−1. Thus the expected value of the squared spherical cap discrepancy
satisfies

8E
[
D(ZN)

]2 ≥ 4E
[
DL2(ZN)

]2 = 4

3
N−1. (5)

We study the expected value and the typical asymptotic order of the spherical cap
discrepancy of random point sets in detail in Sect. 4. Among other results, we show
that there is also a constant C > 0 such that E[D(ZN)] ≤ CN−1/2.
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Point configurations maximising the sum of distances, by Stolarsky’s Invariance
Principle, have low spherical cap L2-discrepancy. It is known from [6] that low spher-
ical cap L2-discrepancy point sets satisfy relations similar to (3) except for the loga-
rithmic term introduced by the probabilistic approach. The upper bound for the spher-
ical cap discrepancy of maximum sum of distances points Ẑ∗

N obtained in [41] is
much weaker but still better than (4): For some positive constant c > 0, not depend-
ing on N ,

D
(
Z∗

N

) ≤ cN−3/8.

For point configurations Z∗
N emulating electrons restricted to move on S

2 in the
most stable equilibrium, i.e. minimising their Coulomb potential energy essentially
given by

N∑

j=1

N∑

k=1
j �=k

1

|zj − zk| ,

one can show the bound

D
(
Z∗

N

) ≤ CN−1/2 logN.

The estimate D(Z∗
N) = O(N−1/2) was conjectured by Korevaar [32] and later proved

(up to the logarithmic factor) by Götz [24]. When allowing so-called K-regular test
sets1 introduced by Sjögren [46], the estimate above is sharp in the following sense:
The upper bound holds for any K-regular test set, whereas there are some numbers
K0 and c such that to any N points z1, . . . ,zN ∈ S

2 there is a K0-regular test set B

with [24, Corollary 2]

cK0 N−1/2 ≤
∣
∣
∣
∣
∣

1

N

N∑

n=1

1B(zn) − σ(B)

∣
∣
∣
∣
∣
.

(The lower bound also applies to the explicit constructions given in this paper.)
Bounds for the spherical cap discrepancy of so-called minimal Riesz energy configu-
rations (for the concept of Riesz energy, see, e.g., Saff and Kuijlaars [45] and Hardin
and Saff [28]) can be found in [11] (for the logarithmic energy), Damelin and Grab-
ner [17, 18] (the first hyper-singular case), and [41] (sums of generalised distances).
Wagner [54] estimates the spherical cap discrepancy in terms of the Riesz energy. It
should be mentioned that there are very few known explicit constructions of point
configurations with optimal Riesz energy. In general, one has to rely on numerical
optimisation to generate such point sets. The underlying (constrained) optimisation
problem is highly nonlinear. Moreover, numerical results indicate that the number of
local minima increases exponentially with the number of points. (For the computa-
tional complexity see, e.g., Bendito et al. [9].)

1Roughly speaking, σ -measurable subsets B of S
2 whose δ-neighbourhoods ∂δB relative to S

2 satisfy
σ(∂δB) ≤ Kδ. For example, spherical caps are K1-regular for some fixed K1.
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Spherical n-designs introduced by Delsarte, Goethals and Seidel in the landmark
paper [19] are node sets for equal-weight numerical integration rules such that all
spherical polynomials of degree ≤ n are integrated exactly. Grabner and Tichy [26]
give the following upper bound of the spherical cap discrepancy of a spherical n-
design with N(n) points:

D
(
Z∗

N(n)

) ≤ Cn−1, (6)

which immediately follows from the aforementioned Erdös–Turán type inequality.
(See also Andrievskii et al. [4] for a similar form for K-regular test sets.)

A spherical n-design is the solution of a system of polynomial equations (one
for every spherical harmonic of the real orthonormal basis of the space of spherical
polynomials of degree ≤ n). Hence, a natural lower bound for the number of points
of a spherical n-design is given by the dimension of the involved polynomial space;
that is, one needs at least ≥ n2/4 points. The famous conjecture that C n2 points (for
some universal C > 0) are sufficient for a spherical n-design seems to have been
settled by Bondarenko et al. [10]. The proposed proof is non-constructive. Hardin
and Sloane [29] propose a construction of so-called putative spherical n-designs with
(1/2)n2 + o(n2) points. The variational characterisation of spherical designs intro-
duced in [48] (also cf. [26]) leads to a minimisation problem for a certain energy
functional (changing with n) whose minimiser is a spherical n-design if and only if
the functional becomes zero. Numerical results also suggest a coefficient 1/2. When
allowing more points, N(n) = (n + 1)2, interval-based methods yield, in principle,
the existence of a spherical n-design near so-called extremal (maximum determi-
nant points, cf. [47]). Due to the computational cost this approach was carried out
only for n ≤ 20. Very recently, Chen et al. [16] devised a computational algorithm
based on interval arithmetic that, upon successful completion, verifies the existence
of a spherical n-design with (n + 1)2 points and provides narrow interval enclosures
which are known to contain these nodes with mathematical certainty. The spherical
cap discrepancy of all such obtained spherical n-design with O(n2) points can then
be bounded by C′N−1/2 by (6). For the sake of completeness it should be mentioned
that the tensor product rules used by Korevaar and Meyers [33] to prove the existence
of spherical n-designs of N(n) = O(n3) points give rise to N(n)-point configurations
whose spherical cap discrepancy can be bounded by C′′[N(n)]−1/3 by (6).

From [14] it follows that the spherical cap discrepancy of a point set ZN =
{z0, . . . ,zN−1} ⊆ S

2 yields an upper bound on the integration error in certain Sobolev
spaces of functions defined on S

2 using a quadrature rule QN(f ) = 1
N

∑N−1
n=0 f (zn).

Thus, our results here provide an explicit mean of finding quadrature points for nu-
merical integration of functions defined on S

2. Our result here improves the bound
on the integration error in [12] by a factor of

√
logN .

The construction of the points on S
2 is obtained by mapping low-discrepancy

points on [0,1]2 to S
2 using an equal area transformation Φ : [0,1]2 → S

2. The same
approach has previously been used in [12] and [27], in both cases in the context of
numerical integration. The low-discrepancy points in [0,1]2 are obtained from digi-
tal nets and Fibonacci lattices, see [20, 42]. These point sets are well-distributed with
respect to rectangles anchored at the origin (0,0). However, the set

Φ−1(C(w, t)
) = {

x ∈ [0,1]2 : Φ(x) ∈ C(w, t)
}
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is, in general, not a rectangle. In fact, it is not even a convex set, although the boundary

Φ−1(∂C(w, t)
) = {

x ∈ [0,1]2 : Φ(x) ∈ ∂C(w, t)
}

is a continuous curve.
Hence, in order to prove bounds on the spherical cap discrepancy of digital nets

and Fibonacci lattices lifted to the sphere using Φ (we call those point sets spherical
digital nets and spherical Fibonacci lattices), we need to prove bounds on a general
notion of discrepancy in [0,1]2. To this end we study discrepancy in [0,1]2 with re-
spect to convex sets, the corresponding discrepancy being known as isotropic discrep-
ancy [8]. We show that digital nets and Fibonacci lattices have isotropic discrepancy
of order O(N−1/2). Using these result and some properties of the function Φ , we can
show that spherical digital nets and spherical Fibonacci lattices have spherical cap
discrepancy at most CN−1/2 for an explicitly given constant C, see Corollaries 16
and 18. Note that the best possible rate of convergence of the isotropic discrepancy is
N−2/3(logN)c for some 0 ≤ c ≤ 4, see [7] and [8, p. 107]. Hence the approach via
the isotropic discrepancy cannot give the optimal rate of convergence for the spherical
cap discrepancy.

In the following we define the equal area Lambert map Φ and show some of its
properties.

2 The Equal-Area Lambert Transform and Some Properties

The points on the sphere are obtained by using the Lambert cylindrical equal-area
projection

Φ(α, τ ) = (
2
√

τ − τ 2 cos(2πα),2
√

τ − τ 2 sin(2πα),1 − 2τ
)
, α, τ ∈ [0,1]. (7)

The area-preserving Lambert map can be illustrated in the following way. The
unit square [0,1]2 is linearly stretched to the rectangle [0,2π] × [−1,1], rolled into
a cylinder of radius 1 and height 2 and fitted around the unit sphere such that the polar
axis is the main z-axis. This way a point (α, τ ) in [0,1]2 is mapped to a point on the
cylinder which is radially projected along a ray orthogonal to the polar axis onto the
sphere giving the point Φ(α, τ ).

Axis-parallel rectangles in the unit square are mapped to spherical “rectangles” of
equal area, see Fig. 1.

The pre-image of a spherical cap centred at w with height t under the Lambert
map is the set

B(w, t) = Φ−1(C(w, t)
) = {

(α, τ ) ∈ [0,1) × [0,1] : Φ(α, τ ) ∈ C(w, t)
}

and the pre-image of the boundary of this spherical cap is

∂B(w, t) = Φ−1(∂C(w, t)
) = {

(α, τ ) ∈ [0,1) × [0,1] : Φ(α, τ ) ∈ ∂C(w, t)
}
.

The sets B(w, t) are not convex, in general. Thus, we consider a more general
class of sets which we call pseudo-convex. A definition is given in the following.
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Fig. 1 Axis-parallel rectangles in the square and their images under Φ on S
2

Definition 2 Let A be an open subset of [0,1]2 such that there exists a collection
of p convex subsets A1, . . . ,Ap of [0,1]2 with the following properties: (a) Aj ∩ Ak

is empty for j �= k; (b) A ⊆ A1 ∪ · · · ∪ Ap; (c) either Aj is a convex part of A

(Aj ⊆ A) or the complement of A with respect to Aj , A′
j = Aj \ A, is convex. Then

A is called a pseudo-convex set and A1, . . . ,Ap is an admissible convex covering for
A with p parts (with q convex parts of A).

Lemma 3 For every w ∈ S
2 and all −1 ≤ t ≤ 1, the pre-image B(w, t) of the spher-

ical cap C(w, t) centred at w with height t under the Lambert map is pseudo-convex
with an admissible convex covering with at most 7 parts. More precisely, taking into
account the number of convex parts of the pre-image, among the convex coverings
with p parts and q of which are convex, the worst case has p = 7 and q = 3 which
implies the constant 2p − q = 11.

The proof of Lemma 3 in Sect. 7 gives details how to construct admissible cover-
ings.

3 Isotropic- and Spherical Cap Discrepancy

We introduce the isotropic discrepancy of a point set and a sequence as follows. Let
λ be the Lebesgue area measure in the unit square.

Definition 4 The isotropic discrepancy JN of an N -point set PN = {x0, . . . ,xN−1}
in [0,1]2 is defined as

JN(PN) = sup
A∈A

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1A(xn) − λ(A)

∣
∣
∣
∣
∣
,

where A is the family of all convex subsets of [0,1]2.
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For an infinite sequence x0,x1, . . . ∈ [0,1]2 the isotropic discrepancy is defined
as the isotropic discrepancy of the initial N points of the sequence.

Lemma 5 Let A be a pseudo-convex subset of [0,1]2 with an admissible convex
covering of p parts with q convex parts of A. Then for any N -point set PN =
{x0, . . . ,xN−1} ⊆ [0,1]2,

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1A(xn) − λ(A)

∣
∣
∣
∣
∣
≤ (2p − q)JN(PN).

Proof Let A1, . . . ,Ap be an admissible convex covering of A with p parts. Without
loss of generality, let A1, . . . ,Aq be the convex parts of A and Aq+1, . . . ,Ap those
for which A′

j = Aj \ A (q + 1 ≤ j ≤ p) is convex. Clearly,

A =
q⋃

j=1

Aj ∪
p⋃

j=q+1

(
Aj \ A′

j

)
.

Thus,

1

N

N−1∑

n=0

1A(xn) − λ(A)

=
q∑

j=1

[
1

N

N−1∑

n=0

1Aj
(xn) − λ(Aj )

]

+
p∑

j=q+1

[
1

N

N−1∑

n=0

1Aj \A′
j
(xn) − λ

(
Aj \ A′

j

)
]

=
q∑

j=1

[
1

N

N−1∑

n=0

1Aj
(xn) − λ(Aj )

]

+
p∑

j=q+1

[
1

N

N−1∑

n=0

1Aj
(xn) − λ(Aj )

]

−
p∑

j=q+1

[
1

N

N−1∑

n=0

1A′
j
(xn) − λ

(
A′

j

)
]

.

In the last line all sets are convex and we can use the isotropic discrepancy in the
estimation

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1A(xn) − λ(A)

∣
∣
∣
∣
∣
≤ [

q + (p − q) + (p − q)
]
JN(x0, . . . ,xN−1).

�

Theorem 6 Let PN = {x0, . . . ,xN−1} ⊆ [0,1]2 and let ZN = {Φ(x0), . . . ,

Φ(xN−1)} ⊆ S
2. Then

D(ZN) ≤ 11JN(PN).
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Proof Let w ∈ S
2 and −1 ≤ t ≤ 1. A point Φ(xn) ∈ C(w, t) if and only if xn ∈

B(w, t). Thus,

N−1∑

n=0

1C(w,t)

(
Φ(xn)

) =
N−1∑

n=0

1B(w,t)(xn).

Further, since the transformation Φ preserves areas, we have

σ
(
C(w, t)

) = λ
(
B(w, t)

)
.

Hence,
∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C(w,t)

(
Φ(xn)

) − σ
(
C(w, t)

)
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1B(w,t)(xn) − λ
(
B(w, t)

)
∣
∣
∣
∣
∣
.

The pre-images are pseudo-convex in the sense of Definition 2 by Lemma 3. Apply-
ing Lemma 5 with the constant 2p − q = 11 from Lemma 3 we arrive at the result. �

We have now reduced the problem of proving bounds on the spherical cap discrep-
ancy to prove bounds on the isotropic discrepancy of points in the square [0,1]2. We
will study this problem in Sect. 5.

4 Spherical Cap Discrepancy of Random Points Sets

Let (M, M) be a measurable space, and let P be a probability on it. Let further
Xn, n ≥ 0, denote a sequence of independent, identically distributed (i.i.d.) random
variables on a probability space (Ω, A,P) with values in M , and let C ⊆ M denote
a class of subsets of M . To avoid measurability problems we will assume throughout
the rest of this section that the class C is countable. Let A ⊆ M be an arbitrary set.
Then C is said to shatter A if to every possible subset B of A there exists a set C ∈ C
such that

C ∩ A = B.

For k ≥ 1 the kth shattering coefficient SC (k) of C is defined as

SC (k):= max
x1,...,xk∈M

card
{{x1, . . . , xk} ∩ C : C ∈ C

}
.

The Vapnik–Červonenkis dimension (VC-dimension) of C is defined as

v(C) := min
k

{
k : SC < 2k

}
.

(Here we use the convention that the minimum of the empty set is ∞.) A class C with
finite VC-dimension is called a Vapnik–Červonenkis class (VC class). The theory of
VC classes is of extraordinary importance in the theory of empirical processes in-
dexed by classes of functions. For example, a class C is uniformly Glivenko–Cantelli
if and only if it is a VC class, see [53]. We will use the following theorem, which
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is a combination of results of Talagrand [51, Theorem 6.6] and Haussler [30, Corol-
lary 1], and has already been used by Heinrich et al. [31] in the context of probabilistic
discrepancy theory.

Theorem 7 (See [31, Theorem 2]) There exists a positive number K such that, for
each VC class C and each probability P and sequence Xn, n ≥ 0, as above, the
following holds: For all s ≥ K

√
v(C) we have

P

{

sup
C∈C

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C(Xn) − P(C)

∣
∣
∣
∣
∣
≥ s√

N

}

≤ 1

s

(
Ks2

v(C)

)v(C)

e−2s2
.

In our setting we will have M = S
2, M will denote the sigma-field generated by

the class of spherical caps, P will stand for the normalised Lebesgue surface area
measure σ , and C will denote the class of all spherical caps for which the centre
w is a vector of rational numbers and the height t is also a rational number (this
restriction is necessary to assure that the class C is countable; of course, the spherical
cap discrepancy with respect to this class is the same as the discrepancy with respect
to the class of all spherical caps). In the sequel we assume that the i.i.d. random
variables Xn, n ≥ 0, are uniformly distributed on S

2. We will write ZN = ZN(ω) for
the (random) point set {X0, . . . ,XN−1} = {X0(ω), . . . ,XN−1(ω)}.

The following proposition asserts that the class C is a VC class (the proof of this
and the subsequent results of this section can be found in Sect. 7).

Proposition 8 The class C has VC dimension 5.

Using Theorem 7 and Proposition 8 we can prove the following results:

Theorem 9 There exist constants C1,C2 such that for N ≥ 1,

C1√
N

≤ E
[
D(ZN)

] ≤ C2√
N

.

Remark The existence of such a constant C1 for the lower bound follows directly
from (5); we can choose C1 = 6−1/2.

Theorem 10 For any ε > 0 there exist positive constants C3(ε),C4(ε) such that for
sufficiently large N ,

P
{
C3 ≤ √

ND(ZN) ≤ C4
} ≥ 1 − ε.

Theorem 10 shows that the typical discrepancy of a random set of N points is of
order N−1/2. However, actually much more is true, since by classical results any VC
class Ĉ on a measurable space (M̂, M̂) is a so-called Donsker class, which essentially
means that for every probability measure P̂ and every sequence Vn, n ≥ 0, of i.i.d.
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random variables having law P̂ the empirical process indexed by sets

αN(C) = √
N

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C(Vn) − P(C)

∣
∣
∣
∣
∣
, C ∈ Ĉ,

converges weakly to a centred, bounded Gaussian process B(C), which has covari-
ance structure

EB(C1)B(C2) = P(C1 ∩ C2) − P(C1)P (C2), C1,C2 ∈ Ĉ.

This weak convergence could, for example, be used to prove the existence of a limit
distribution of

√
ND(ZN) as N → ∞; however, to keep this presentation short and

self-contained we will not pursue this method any further, and refer the interested
reader to [2, 21, 22, 52] and the references therein.

Remark The upper bounds in Theorems 9 and 10 follow from Theorem 7. However,
since no concrete value for the constant K in Theorem 7 is known, the value of the
constants C2 and C4 in Theorem 9 and Theorem 10, respectively, is also unknown. It
is possible that the decomposition technique from [1] can be used to achieve a version
of Theorems 9 and 10 with explicitly known constants in the upper bound.

Finally, the following theorem describes the asymptotic order of a typical infinite
sequence of random points.

Theorem 11 We have

D(ZN) = O
(√

log logN√
N

)

as N → ∞, almost surely.

Theorem 11 is a so-called bounded law of the iterated logarithm, and follows eas-
ily from Theorem 6 and Philipp’s law of the iterated logarithm (LIL) for the isotropic
discrepancy of random point sets in the plane. More precisely, Philipp [44] proved
that for a sequence of i.i.d. uniformly distributed random variables Yn, n ≥ 0, on the
unit square (writing PN for the (random) point set {Y0, . . . , YN−1}), the law of the
iterated logarithm

lim sup
N→∞

NJN(PN)√
2N log logN

= 1

2
a.s.

holds. Together with Theorem 6 this implies for ZN = {Φ(Y0), . . . ,Φ(YN−1)} ⊆ S
2

that

lim sup
N→∞

ND(ZN)√
2N log logN

≤ 11

2
a.s.,

which proves Theorem 11 (it is necessary to observe that the image of a sequence
of i.i.d. uniformly distributed random variables on the unit square under the area-
preserving Lambert map is a sequence of i.i.d. uniformly distributed random variables
on the sphere). It is easy to see that Theorem 11 is optimal, except for the value of
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the implied constant. More precisely, let C∗ denote a fixed spherical cap with area
2π (which means that C∗ is a hemisphere, and has normalised surface area measure
σ(C∗) = 1/2). Then clearly the random variables

1C∗
(
Φ(Yn)

)− σ
(
C∗), n ≥ 0,

have expected value 0 and variance 1/4. Thus, by the classical law of the iterated
logarithm for sequences of i.i.d. random variables,

lim sup
N→∞

| 1
N

∑N−1
n=0 1C∗(Φ(Yn)) − 1/2|√

2N log logN
= 1

2
a.s.,

and since

D(ZN) ≥
∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C∗
(
Φ(Yn)

)− σ
(
C∗)

∣
∣
∣
∣
∣
,

we finally arrive at

lim sup
N→∞

ND(ZN)√
2N log logN

≥ 1

2
a.s.,

which proves the optimality of Theorem 11. We remark that it should also be possible
to prove Theorem 11 without using Theorem 6 and Philipp’s LIL for the isotropic
discrepancy, by deducing it directly from the bounded LIL for empirical processes
on VC classes of Alexander and Talagrand [3]. We conjecture that Theorem 11 can
be improved to

lim sup
N→∞

ND(ZN)√
2N log logN

= 1

2
a.s.,

but this seems to be very difficult to prove.

5 Point Sets with Small Isotropic Discrepancy

In this section we investigate the isotropic discrepancy of (0,m,2)-nets and Fibonacci
lattices. In particular we show that the isotropic discrepancy of those point sets con-
verges with order O(N−1/2). Note that the best possible rate of convergence of the
isotropic discrepancy is N−2/3(logN)c for some 0 ≤ c ≤ 4, see [7] and [8, p. 107].
Whether (0,m,2)-nets and/or Fibonacci lattices achieve the optimal rate of conver-
gence for the isotropic discrepancy is an open question.

5.1 Nets and Sequences

We give the definition of (0,m,2)-nets in base b in the following.

Definition 12 Let b ≥ 2 and m ≥ 1 be integers. A point set Pbm ⊆ [0,1)2 consisting
of bm points is called a (0,m,2)-net in base b, if for all nonnegative integers d1, d2
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with d1 + d2 = m, each of the elementary intervals

2∏

i=1

[
ai

bdi
,
ai + 1

bdi

)

, 0 ≤ ai < bdi (ai an integer),

contains exactly 1 point of Pbm .

It is also possible to construct nested (0,m,2)-nets, thereby obtaining an infinite
sequence of points.

Definition 13 Let b ≥ 2 be an integer. A sequence x0,x1, . . . ∈ [0,1)2 is called
a (0,2)-sequence in base b, if for all m > 0 and for all k ≥ 0, the point set
xkbm,xkbm+1, . . . ,x(k+1)bm−1 is a (0,m,2)-net in base b.

Explicit constructions of (0,m,2)-nets and (0,2)-sequences are due to Sobol’ [49]
and Faure [23], see also [20, Chap. 8].

The following is a special case of an unpublished result due to Gerhard Larcher.
For completeness we include a proof here.

Theorem 14 For the isotropic discrepancy JN of a (0,m,2)-net PN in base b (N =
bm) we have

JN(PN) ≤ 4
√

2b−�m/2� ≤ 4
√

2b√
N

.

Proof Let PN = {x0, . . . ,xbm−1}. Let k = �m/2� and consider a subcube W of
[0,1)s of the form

W =
[

c1

bk
,
c1 + 1

bk

)

×
[

c2

bk
,
c2 + 1

bk

)

with 0 ≤ ci < bk (ci an integer) for i = 1,2. The cube W has volume b−2k and is the
union of bm−2k elementary intervals of order m. Indeed,

W =
bm−2k−1⋃

v=0

([
c1

bk
,
c1 + 1

bk

)

×
[

c2

bk
+ v

bm−k
,
c2

bk
+ v + 1

bm−k

))

.

So W contains exactly bm−2k points of the net. The diagonal of W has length
√

2/bk .
Let now A be an arbitrary convex subset of [0,1]2. Let W ◦ denote the union

of cubes W fully contained in A and let W denote the union of cubes W having
nonempty intersection with A or its boundary. The sets W and W ◦ are fair with
respect to the net, that is,

1

N

N−1∑

n=0

1W(xn) = λ(W) and
1

N

N−1∑

n=0

1W ◦(xn) = λ
(
W ◦).
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We have

1

N

N−1∑

n=0

1A(xn) − λ(A) ≤ 1

N

N−1∑

n=0

1W(xn) − λ(W) + λ(W \ A) = λ(W \ A)

and

1

N

N−1∑

n=0

1A(xn) − λ(A) ≥ 1

N

N−1∑

n=0

1W ◦(xn) − λ
(
W ◦)− λ

(
A \ W ◦) = −λ

(
A \ W ◦).

Since the set A is convex, the length of the boundary of A is at most the circum-
ference of the unit square, which is 4. Further we have

W \ A ⊆ {
x ∈ [0,1]2 \ A : ‖x − y‖ ≤ √

2b−k for some y ∈ A
}

and therefore

λ(W \ A) ≤ λ
({

x ∈ [0,1]2 \ A : ‖x − y‖ ≤ √
2b−k for some y ∈ A

}) ≤ 4
√

2b−k,

where the last inequality follows from the fact that the outer boundary of the enclosing
set has length at most 4 (which is the circumference of the square [0,1]2). Moreover,

A \ W ◦ ⊆ {
x ∈ A : ‖x − y‖ ≤ √

2b−k for some y ∈ [0,1]2 \ A
}

and therefore

λ
(
A \ W ◦) ≤ λ

({
x ∈ A : ‖x − y‖ ≤ √

2b−k for some y ∈ [0,1]2 \ A
}) ≤ 4

√
2b−k,

since, by the convexity of A, the boundary of A has length at most 4 (which is the
circumference of the square [0,1]2).

Thus we obtain
∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1A(xn) − λ(A)

∣
∣
∣
∣
∣
≤ 4

√
2b−k

and hence the result follows. �

Note that the above result only applies when the number of points N is of the
form N = bm (notice that choosing m = 1 only yields a trivial result, hence one
usually chooses a small base b and a ‘large’ value of m). In the following we give an
extension where the number of points can take on arbitrary positive integers.

Theorem 15 For the isotropic discrepancy JN of the first N points PN =
{x0, . . . ,xN−1} of a (0,2)-sequence in base b, we have

JN(PN) ≤ 4
√

2
(
b2 + b3/2) 1√

N
.
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Proof Let N ∈ N have base b expansion N = N0 + N1b + · · · + Nmbm. Let PN =
{x0, . . . ,xN−1} denote the first N points of a (0,2)-sequence in base b. For 0 ≤ k ≤
m with Nk > 0 and 0 ≤ � < Nk the point set

Qk,� = {xNmbm+···+Nk+1b
k+1+�bk , . . . ,xNmbm+···+Nk+1b

k+1+(�+1)bk−1}
is a (0, k,2)-net in base b by Definition 13. Thus PN is a disjoint union of such
(0, k,2)-nets:

PN =
⋃

0≤k≤m
Nk>0

⋃

0≤�<Nk

Qk,�.

We have the following triangle inequality for the isotropic discrepancy (which is an
analogue to the triangle inequality for the star-discrepancy [34, p. 115, Theorem 2.6]):

JN(PN) ≤
m∑

k=0
Nk>0

Nk−1∑

�=0

bk

N
Jbk (Qk,�).

This inequality holds, since for a spherical cap C we have

1

N

N−1∑

n=0

1C(xn) − λ(C) =
m∑

k=0
Nk>0

Nk−1∑

�=0

bk

N

(
1

bk

∑

x∈Qk,�

1C(x) − λ(C)

)

.

Thus we can use Theorem 14 to obtain

JN(PN) ≤
m∑

k=0
Nk>0

Nk−1∑

�=0

bk

N
4
√

2b−�k/2� = 4
√

2
m∑

k=0
Nk>0

Nk−1∑

�=0

b�k/2�

N
= 4

√
2

∑m
k=0 Nkb

�k/2�
∑m

k=0 Nkbk

≤ 4
√

2(b − 1)

m∑

k=0

b�k/2�

bm
≤ 4

√
2
b(b − 1)√

b − 1
b−m/2 ≤ 4

√
2
b3/2(b − 1)√

b − 1

1√
N

.

The estimate follows from the identity (a − 1)(a + 1) = a2 − 1. �

Corollary 16

(1) Let PN be a (0,m,2)-net in base b and let ZN = Φ(PN) ⊆ S
2. Then the spherical

cap discrepancy D(ZN) is bounded by

D(ZN) ≤ 44
√

2b−�m/2�.

(2) Let PN be the first N points of a (0,2)-sequence in base b and let ZN =
Φ(PN) ⊆ S

2. Then the spherical cap discrepancy D(ZN) is bounded by

D(ZN) ≤ 44
√

2
(
b2 + b3/2) 1√

N
for all N.
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Table 1 Comparison of the effect of two different normalisations of the value D̃(ZN ) computing
maxw∈ZN

δ(ZN ;w), cf. Definition 1, for a digital net ZN based on a two-dimensional Sobol’ point set

m 6 7 8 9 10 11 12 13

N = 2m 64 128 256 512 1024 2048 4096 8192

N3/4D̃(ZN )√
logN

0.8829 0.8436 0.8279 0.8632 0.8518 1.2128 1.2285 0.9546

N3/4D̃(ZN )
logN

0.4329 0.3829 0.3515 0.3456 0.3235 0.4392 0.4259 0.3180

m 14 15 16 17 18 19 20 21

N = 2m 16384 32768 65536 131072 262144 524288 1048576 2097152

N3/4D̃(ZN )√
logN

0.7925 0.8862 1.0331 0.8337 0.8562 0.9854 1.1167 1.1463

N3/4D̃(ZN )
logN

0.2544 0.2748 0.3102 0.2428 0.2424 0.2715 0.2999 0.3004

Note that item (2) improves upon Theorem 11 by a factor of
√

log logN and hence,
asymptotically, spherical digital sequences are better than random sequences almost
surely.

The numerical experiments shown in Table 1 seem to suggest that the correct order
of the spherical cap discrepancy of spherical digital nets is

(logN)c

N3/4
for some 1/2 ≤ c ≤ 1.

In those experiments we calculated an approximation from below of the spherical
cap discrepancy of the members of a sequence of spherical digital nets ZN based on
two-dimensional Sobol’ point sets by explicit numerical computation of

D̃(ZN) = max
w∈ZN

δ(ZN ;w).

5.2 Fibonacci Lattices

The Fibonacci numbers Fm are given by F1 = 1,F2 = 1 and Fm = Fm−1 + Fm−2 for
all m > 2. A Fibonacci lattice is a point set of Fm points in [0,1)2 given by

f m :=
(

n

Fm

,

{
nFm−1

Fm

})

, 0 ≤ n < Fm,

where {x} = x − �x� denotes the fractional part for nonnegative real numbers x. The
set

Fm := {f 0, . . . ,f Fm−1}
is called a Fibonacci lattice point set.

The spherical Fibonacci lattice points are then given by

zn = Φ(f n), 0 ≤ n < Fm,
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and the point set

ZFm = {z0, . . . ,zFm−1}
is the spherical Fibonacci lattice point set.

In the following we prove a bound on the isotropic discrepancy of Fibonacci lat-
tices, see also [35–37].

Lemma 17 For the isotropic discrepancy JFm of a Fibonacci lattice Fm we have

JFm(Fm) ≤
⎧
⎨

⎩

4
√

2/Fm if m is odd,

4
√

8/Fm if m is even.

Proof Consider the case of odd integers m first. From [43, Theorem 3] it follows that
for m ∈ N the Fibonacci lattice F2m+1 can be generated by the vectors

a2m+1 = (
Fm/F2m+1, (−1)m−1Fm+1/F2m+1

)
,

b2m+1 = (
Fm+1/F2m+1, (−1)mFm/F2m+1

)
.

This means that

F2m+1 = {ua2m+1 + vb2m+1 : u,v ∈ Z} ∩ [0,1)2.

Let

U(y) = {
y + x ∈ [0,1]2 : x = sa2m+1 + tb2m+1,0 ≤ s, t < 1

}
.

We call U(f n) a unit cell (belonging to the point f n). Note that the area of a unit cell
is 1/F2m+1 and each unit cell contains exactly one point of the lattice, see [43].

Since a2m+1 ⊥ b2m+1, it follows that the minimum distance between points of the
Fibonacci lattice is

dmin(F2m+1) = min
{‖a2m+1‖,‖b2m+1‖

} =
√

F 2
m + F 2

m+1

F2m+1
= 1√

F2m+1
.

Thus the diameter of a unit cell is
√

2/F2m+1.
Let now A be an arbitrary convex subset of [0,1]2. Let W ◦ denote the union of

all unit cells fully contained in A and let W denote the union of all unit cells with
nonempty intersection with A or its boundary.

We have

1

F2m+1

F2m+1−1∑

n=0

1A(f n) − λ(A) ≤ 1

F2m+1

F2m+1−1∑

n=0

1W(f n) − λ(W) + λ(W \ A)

= λ(W \ A)
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and

1

F2m+1

F2m+1−1∑

n=0

1A(f n) − λ(A) ≥ 1

F2m+1

F2m+1−1∑

n=0

1W ◦(f n) − λ
(
W ◦)− λ

(
A \ W ◦)

= −λ
(
A \ W ◦).

Since the set A is convex, the length of the boundary of A is at most the circum-
ference of the unit square, which is 4. Further we have

W \ A ⊆ {
x ∈ [0,1]2 \ A : ‖x − y‖ ≤ √

2/F2m+1 for some y ∈ A
}

and therefore

λ(W \ A) ≤ λ
({

x ∈ [0,1]2 \ A : ‖x − y‖ ≤ √
2/F2m+1 for some y ∈ A

})

≤ 4
√

2/F2m+1,

where the last inequality follows since the outer boundary of enclosing set has length
at most 4 (which is the circumference of the square [0,1]2).

On the other hand,

A \ W ◦ ⊆ {
x ∈ A : ‖x − y‖ ≤ √

2/F2m+1 for some y ∈ [0,1]2 \ A
}

and therefore

λ
(
A \ W ◦) ≤ λ

({
x ∈ A : ‖x − y‖ ≤ √

2/F2m+1 for some y ∈ [0,1]2 \ A
})

≤ 4
√

2/F2m+1,

since, by the convexity of A, the boundary of A has length at most 4 (which is the
circumference of the square [0,1]2).

Thus we obtain
∣
∣
∣
∣
∣

1

F2m+1

F2m+1−1∑

n=0

1A(f n) − λ(A)

∣
∣
∣
∣
∣
≤ 4

√
2

F2m+1
.

Now, we consider even integers n = 2m with m ≥ 2. Using the identity
FmF2m−1 − Fm−1F2m = (−1)m−1Fm, we obtain FmF2m−1 ≡ (−1)m−1 ×
Fm (mod F2m). Consequently,

(
k

F2m

,

{
kF2m−1

F2m

})

=
(

Fm

F2m

,

{
(−1)m−1Fm

F2m

})

for k = Fm.

Thus the Fibonacci lattice has the equivalent generating vector

a2m =
(

Fm

F2m

,
(−1)m−1Fm

F2m

)

.
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Analogously, using the equality Fm+1F2m−1 − FmF2m = (−1)mFm−1, we obtain the
generating vector

b2m =
(

Fm+1

F2m

,
(−1)mFm−1

F2m

)

.

The area of the parallelogram spanned by a2m and b2m is
∣
∣
∣
∣det

(
Fm/F2m (−1)m−1Fm/F2m

Fm+1/F2m (−1)mFm−1/F2m

)∣
∣
∣
∣ = FmFm−1 + FmFm+1

F 2
2m

= 1

F2m

.

Thus the parallelogram spanned by a2m and b2m does not contain any point of the
Fibonacci lattice in its interior (i.e. is a unit cell of the Fibonacci lattice, see [15, 43]).
Thus, we have

F2m = {ua2m + vb2m : u,v ∈ Z} ∩ [0,1)2.

Let

U(y) = {
y + x ∈ [0,1]2 : x = sa2m+1 + tb2m+1,0 ≤ s, t < 1

}
.

We call U(f n) a unit cell (belonging to the point f n). Note that the area of a unit cell
is 1/F2m+1 and each unit cell contains exactly one point of the lattice.

Now,

‖a2m‖2 = 2F 2
m

F 2
2m

and

‖b2m‖2 = F 2
m+1 + F 2

m−1

F 2
2m

>
F 2

m + Fm(2Fm−1)

F 2
2m

>
2F 2

m

F 2
2m

= ‖a2m‖2.

Further, it can be checked that ‖a2m + b2m‖,‖a2m − b2m‖ > ‖a2m‖. Thus the mini-
mum distance between points of the Fibonacci lattice is

dmin(F2m) = ‖a2m‖ =
√

2Fm

F2m

.

The diameter of a unit cell is given by ‖a2m + b2m‖. Using the relations Fm =
Fm−1 + Fm−2, F 2

m + F 2
m−1 = F2m−1 and F2m = (2Fm−1 + Fm)Fm, we obtain

F 2
2m‖a2m + b2m‖2 = (Fm + Fm+1)

2 + (Fm − Fm−1)
2

= 2F2m + 4F2m−1 + 2F 2
m < 8F2m.

Thus the diameter of a unit cell is bounded by

‖a2m + b2m‖ ≤
√

8

F2m

.

The result now follows by using the same arguments as in the previous case. �
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Table 2 Comparison of the effect of two different normalisations of the value D̃(ZFm) computing
maxw∈ZFm

δ(ZFm ;w), cf. Definition 1, for spherical Fibonacci points ZFm

m 17 18 19 20 21 22 23 24

Fm 1597 2584 4181 6765 10946 17711 28657 46368

F
3/4
m D̃(ZFm)√

logFm
0.6729 0.6373 0.6228 0.6661 0.6953 0.6890 0.7427 0.6900

F
3/4
m D̃(ZFm)

logFm
0.2477 0.2273 0.2156 0.2243 0.2279 0.2203 0.2318 0.2105

m 25 26 27 28 29 30 31 32

Fm 75025 121393 196418 317811 514229 832040 1346269 2178309

F
3/4
m D̃(ZFm)√

logFm
0.6957 0.7249 0.7531 0.7205 0.8562 0.7455 0.7862 0.8082

F
3/4
m D̃(ZFm)

logFm
0.2076 0.2118 0.2157 0.2024 0.2361 0.2019 0.2092 0.2115

Corollary 18 Let Fm be a Fibonacci lattice and let ZFm = Φ(Fm) ⊆ S
2. Then the

spherical cap discrepancy D(ZFm) is bounded by

D(ZFm) ≤
⎧
⎨

⎩

44
√

2/Fm if m is odd,

44
√

8/Fm if m is even.

The numerical experiments shown in Table 2 seem to suggest that the correct order
of the spherical cap discrepancy of spherical Fibonacci lattice points is

(logFm)c

F
3/4
m

for some 1/2 ≤ c ≤ 1.

In those experiments we calculated an approximation from below of the spherical cap
discrepancy of the members of a sequence of spherical Fibonacci point configurations
ZFm by explicit numerical computation of

D̃(ZFm) = max
w∈ZFm

δ(ZFm;w).

6 Level Curves of the Distance Function and Their Properties

The Euclidean distance of two points on S
2, given by w = Φ(u, v) and z = Φ(α, τ ),

can be written as

‖w − z‖2 = 2(1 − w · z)
= 2

[
1 − (1 − 2v)(1 − 2τ)
︸ ︷︷ ︸

2(v+τ−2vτ)

−4
√

(1 − v)v(1 − τ)τ cos
(
2π(u − α)

)]
.
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The well-defined boundary curve of a spherical cap C(w, t) has the implicit repre-
sentation

F(α, τ):=‖w − z‖2 − 2(1 − t) = 0, where z = Φ(α, τ ) moves on ∂C(w, t). (8)

(Here,
√

2(1 − t) is the distance from the centre w to a point on the bound-
ary of C(w, t).) Relation (8) describes a level curve Cw of the distance function
‖w − Φ(α, τ )‖ (for w fixed) in the parameter space which is the unit square, cf.
Fig. 2. For further references we record that for each w there are, in general, two
exceptional levels,

r2
w = 2(1 − tw) = ‖w − p‖2 = 4v,

ρ2
w = 2

(
1 − t ′w

) = 2(1 + tw) = ‖w + p‖2 = 4(1 − v),

where the boundary of the spherical cap centred at w passes through the North Pole
(p) and the South Pole (−p), respectively, which may coincide if w is on the equator.
For these level curves the singular behaviour at the poles imposed by the parameteri-
sation Φ plays a role.

Suppose u = 1/2. Because the sign of the difference u − α is absorbed by the
cosine function in the distance function, a level curve (a level set) is symmetric with
respect to the vertical line α = u. The shape of the curves (sets) does not change when
the point w is rotated about the polar axis except a part moving outside the left side of
the unit square enters at the right side (“wrap around”). This “modulo 1” behaviour
complicates considerations regarding convexity of the pre-image of a spherical cap
centred at w under the distance function. Similarly and in the same sense, the level
curves (sets) are symmetric with respect to the vertical line α = u ± 1/2 mod 1
which passes through the parameter point of the antipodal point −w = Φ(u ± 1/2
mod 1,1 − v). When identifying the left and right sides of the unit square [0,1]2, we
get the “cylindrical view”. Clearly, all level curves except the critical ones associated
with the distance to one of the poles are closed on the open cylinder. Thus, the critical
level curves separate the open cylinder into three parts corresponding to the cases
when neither pole is contained in the spherical cap centred at w, only one pole is
contained in the spherical cap, and both poles are contained in the spherical cap. In
both the first and the last case the level curve cannot escape the level set bounded by
a critical curve (and the boundary of the cylinder). It is closed even in the unit square
provided the level set is contained in its interior. In the middle case the level curves
wrap around the cylinder; that is, start at the left side of the unit square and end at its
right side at the same height; cf. Fig. 2.

Let w be the North or the South Pole Then the level curves are horizontal lines in
the unit square which are smooth curves. Moreover, the pre-image of a spherical cap
centred at one of these poles is a convex set (a rectangle).
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Let w be Different from Either Pole (that is, 0 < v < 1) We use the signed curva-
ture of the implicitly given level curve to determine the segments where it is convex
(concave). First, we collect the partial derivatives up to second order:

Fα(α, τ) = −16π
√

(1 − v)v(1 − τ)τ sin
(
2π(u − α)

)
, (9a)

Fτ (α, τ ) = 4

(

1 − 2v − (1 − 2τ)

√
(1 − v)v√
(1 − τ)τ

cos
(
2π(u − α)

)
)

, (9b)

Fαα(α, τ ) = 32π2
√

(1 − v)v(1 − τ)τ cos
(
2π(u − α)

)
, (9c)

Fατ (α, τ ) = −8π(1 − 2τ)

√
(1 − v)v√
(1 − τ)τ

sin
(
2π(u − α)

)
, (9d)

Fττ (α, τ ) = 2

(1 − τ)τ

√
(1 − v)v√
(1 − τ)τ

cos
(
2π(u − α)

)
. (9e)

We observe that the partial derivatives involving differentiation with respect to τ

become singular as τ approaches 0 (North Pole) or 1 (South Pole).
The signed curvature at a point (α, τ ) of Cw is given by

κ = κ(α, τ ) = FααF 2
τ − 2FατFαFτ + FττF

2
α

(F 2
α + F 2

τ )3/2
. (10)

First, we discuss the denominator. Substituting the relations (9a) and (9b), we
obtain

F 2
α + F 2

τ = 16

(

1 − 2v − (1 − 2τ)

√
(1 − v)v√
(1 − τ)τ

cos
(
2π(u − α)

)
)2

+ 162π2(1 − v)v(1 − τ)τ
[
sin

(
2π(u − α)

)]2
.

A necessary condition for the vanishing of F 2
α + F 2

τ is sin(2π(u − α)) = 0; that is,
either α = u or α = u±1/2 mod 1. In the first case one has cos(2π(u−α)) = 1 and,
therefore, F 2

α + F 2
τ = 0 if and only if τ = v. In the second case one has cos(2π(u −

α)) = −1 and, therefore, F 2
α + F 2

τ = 0 if and only if τ = 1 − v. It follows that the
denominator of the curvature formula (10) vanishes if and only if z = Φ(α, τ ) (on the
boundary of the spherical cap centred at w = Φ(u, v)) coincides with w (that is, the
spherical cap degenerates to the point w) or z coincides with the antipodal point of
w (that is, the closed spherical cap is the whole sphere). In either of these cases the
pre-image of the spherical cap under Φ is convex.

Suppose that the spherical cap is neither a point nor the whole sphere. Then F 2
α +

F 2
τ �= 0. For the numerator in (10) we obtain after some simplifications:

FααF 2
τ − 2FατFαFτ + FττF

2
α

= 512π2
√

(1 − v)v(1 − τ)τ

(

1 − 2v − (1 − 2τ)

√
(1 − v)v√
(1 − τ)τ

cos
(
2π(u − α)

)
)2

× cos
(
2π(u − α)

)
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+ 512π2(1 − v)v

√
(1 − v)v√
(1 − τ)τ

cos
(
2π(u − α)

)[
sin

(
2π(u − α)

)]2

− 1024π2(1 − v)v(1 − 2τ)

(

1 − 2v − (1 − 2τ)

√
(1 − v)v√
(1 − τ)τ

cos
(
2π(u − α)

)
)

× [
sin

(
2π(u − α)

)]2
.

The right-hand side above can be written as a polynomial in x = cos(2π(u − α)) as
follows:

FααF 2
τ − 2FατFαFτ + FττF

2
α = Ax(1 − 2v − BHx)2 + A2Bx(1 − x2)

512π2(1 − τ)τ

− 2ABH(1 − 2v − BHx)
(
1 − x2),

where

A = 512π2
√

(1 − v)v(1 − τ)τ , B =
√

(1 − v)v√
(1 − τ)τ

, H = 1 − 2τ.

Reordering with respect to falling powers of x, we observe that the coefficient of x2

vanishes, and after simplifications we arrive at

FααF 2
τ − 2FατFαFτ + FττF

2
α = −AB

(

BH 2 + A

512π2(1 − τ)τ

)

x3

+ A

(

2B2H + (1 − 2v)2 + AB

512π2(1 − τ)τ

)

x − 2ABH(1 − 2v).

The coefficient of x3 does not vanish for 0 < v < 1 and 0 < τ < 1. Hence, we divide
and get

−FααF 2
τ − 2FατFαFτ + FττF

2
α

AB(BH 2 + A

512π2(1−τ)τ
)

= x3 + p x + q=:Q(τ ;x)=:Q(x),

where (using the definitions of A, B , and H )

p = p(τ) = − (1 − 2v)2 + B2(1 + 2H 2)

B2(1 + H 2)
, q = q(τ) = 2(1 − 2v)(1 − 2τ)

B(1 + H 2)
.

We observe that p(1 − τ) = p(τ) and q(1 − τ) = −q(τ). Hence, Q(τ ;x) = −Q(1 −
τ ;−x) for all x. In particular, if ξ is a zero of Q(τ ; ·), then so is −ξ a zero of
Q(1 − τ ; ·) and vice versa. The monic polynomial Q of degree 3 with real coeffi-
cients has either one or three real solutions (counting multiplicity). With the help of
Mathematica we find that the discriminant of the polynomial Q is positive:

discr(Q) = −4p3 − 27q2 > 0;
that is, the polynomial Q has three distinct real roots.
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Table 3 The number of real
zeros of Q in the intervals
(−1,0) and (0,1) as it follows
from Sturm’s theorem

Range of σ(−1) σ (0) σ (1) (−1,0) (0,1)

v τ

0 < v < 1/2 0 < τ < 1/2 2 2 1 0 1

0 < v < 1/2 1/2 < τ < 1 2 1 1 1 0

1/2 < v < 1 0 < τ < 1/2 2 1 1 1 0

1/2 < v < 1 1/2 < τ < 1 2 2 1 0 1

For v = 1/2 the polynomial Q reduces to

Q(x) = x3 + px, where p = −1 + 2H 2

1 + H 2
= −1 + 2(1 − 2τ)2

1 + (1 − 2τ)2
.

The solutions ±1 (if τ = 1/2) correspond to Φ(α, τ ) = ±w and can be discarded,
since we assumed that the spherical cap is neither a point nor the whole sphere. The
solution zero yields that cos(2π(u − α)) = 0, which in turn shows that the zeros of
the curvature (10) form the vertical lines at α = u ± 1/4 mod 1 if v = 1/2.

Let v �= 1/2. Suppose Q has a zero at ±1. Then

0 = Q(1) = 1 + p + q = ± (1 − 2v + BH)2

B2(1 + H 2)
= ±

(1 − 2v +
√

(1−v)v√
(1−τ)τ

(1 − 2τ))2

B2(1 + H 2)
,

which can only happen when τ = v. This implies that Φ(α, τ ) = w, which is ex-
cluded by our assumptions. Suppose Q has a zero at 0. Since v �= 1/2, this can only
happen when τ = 1/2.

Having established that −1, 0 (except when τ = 1/2), and 1 cannot be zeros of the
polynomial Q, we use Sturm’s theorem to show that the polynomial Q has precisely
one solution either in the interval (−1,0) or in the interval (0,1) if τ �= 1/2, cf.
Table 3. First, we generate the canonical Sturm chain by applying Euclid’s algorithm
to Q and its derivative:

p0(x) = Q(x) = x3 + px + q,

p1(x) = Q′(x) = 3x2 + p,

p2(x) = p1(x)q0(x) − p0(x) = −2p

3
x − q,

p3(x) = p2(x)q1(x) − p1(x) = −p − 27q2

4p2
= −4p3 − 27q2

4p2
= discr(Q)

4p2
> 0,

p4(x) = 0.

Let σ(x) denote the number of sign changes (not counting a zero) in the sequence
{
p0(x),p1(x),p2(x),p3(x)

}
.

For x = 0 we obtain the canonical Sturm chain {q,p,−q,discr(Q)/(4p2)} and we
conclude that σ(0) = 2 for (1/2−v)(1/2−τ) > 0 and σ(0) = 1 otherwise. For x = 1
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we have

p0(1) = 1 + p + q = − (1 − 2v + BH)2

B2(1 + H 2)
< 0,

p1(1) = 3 + p = 2 + H 2

1 + H 2
− (1 − 2v)2

B2(1 + H 2)
> 0 iff (1 − τ)τ < 3(1 − v)v,

p2(1) = −2p

3
− q = 2[B2(1 + 2H 2) + (1 − 2v)2 − 3BH(1 − 2v)]

3B2(1 + H 2)
> 0,

p3(1) = discr(Q)

4p2
> 0.

(The positivity of p2(1) has been verified using Mathematica.) Hence, in all three
cases p1(1) < 0, p1(1) = 0, and p1(1) > 0, one gets σ(1) = 1. For x = −1 we have

p0(−1) = −1 − p + q = (1 − 2v + BH)2

B2(1 + H 2)
> 0,

p1(−1) = 3 + p = 2 + H 2

1 + H 2
− (1 − 2v)2

B2(1 + H 2)
> 0 iff (1 − τ)τ < 3(1 − v)v,

p2(−1) = 2p

3
− q = −2[B2(1 + 2H 2) + (1 − 2v)2 + 3BH(1 − 2v)]

3B2(1 + H 2)
< 0,

p3(−1) = discr(Q)

4p2
> 0.

Here, we obtain σ(−1) = 2. Thus, by Sturm’s theorem, the difference σ(−1) − σ(0)

gives the number of real zeros of Q in the interval (−1,0] and σ(0) − σ(1) is the
number of zeros in (0,1], see Table 3.

Having established that the polynomial Q has to every 0 < τ < 1 precisely one
zero in the interval (−1,1) (cf. Table 3 and previous considerations), it follows that
to each such zero x = x(τ) there correspond two values of α by means of the trigono-
metric equation

cos
(
2π(u − α)

) = x(τ). (11)

Because of the continuity of the coefficients in the polynomial Q (if 0 < τ < 1), the
zero x(τ) is also changing continuously and so are the solutions α1 and α2. A jump
can happen when they are taken modulo 1. We further record that along the vertical
lines α = u ± 1/4 mod 1 one has

κ(u ± 1/4, τ ) = −16π2 (1 − v)v(1 − 2v)(1 − 2τ)

[1 − 4(1 − v)v(1 − 4π2(1 − τ)τ )]3/2

which vanishes at τ = 1/2, and along the vertical lines α = u± 1/2 mod 1 and α = u

one has

κ(u, τ ) = κ(u ± 1/2, τ ) = −8π2
√

(1 − v)v(1 − τ)τ

|(1 − 2v)
√

(1 − τ)τ + (1 − 2τ)
√

(1 − v)v|
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which vanishes only as τ → 0 or τ → 1 (if 0 < v < 1). When identifying the left
and right sides of the unit square, these two lines separate the two solutions of (11)
in such a way that in each part the points at which κ(α, τ ) vanishes form a connected
curve varying about the “base lines” α = u ± 1/4 mod 1. It follows that these curves
(together with the boundary of the cylinder) divide the cylinder into two parts in each
of which the curvature κ(α, τ ) has the same sign. The shapes of these curves do not
change when w is rotated about the polar axis. We may fix u = 1/2 and because of the
symmetries (including relation Q(τ ;x) = −Q(1 − τ ;−x)) it suffices to consider the
curve of the zeros of κ(α, τ ) for 0 < v < 1/2 (recall that these curves are vertical lines
for v = 1/2) and 0 < τ < 1/2 which lies in the strip 0 < α < 1/2. We know that the
zero x = x(τ) of Q (we are interested in) in the given setting is in (0,1) (cf. Table 3).
Using ẋ to denote the derivative of x with respect to τ , implicit differentiation gives

Q′(x(τ)
)
ẋ(τ ) = −ṗ(τ ) x(τ ) − q̇(τ ), (12)

where it can be easily seen that Q′(x(τ )) < 0, since x(τ) is simple and Q(x) has a
negative global minimum for positive x. For τ ’s in (0,1/2) at which ẋ(τ ) vanishes,
one has

x(τ) = −q̇(τ )/ṗ(τ ) = 1 − 6(1 − τ)τ

1 − 6(1 − v)v

1 − 2v

1 − 2τ

√
(1 − v)v

(1 − τ)τ
, (13)

which follows by substituting

ṗ(τ ) = − (1 − 6(1 − v)v)(1 − 2τ)

2(1 − v)v(1 − 2(1 − τ)τ )2
,

q̇(τ ) = (1 − 6(1 − τ)τ )(1 − 2v)

2(1 − τ)τ (1 − 2(1 − τ)τ )2

√
(1 − τ)τ

(1 − v)v
.

For the second derivative of x at such τ ’s we get

Q′(x(τ)
)
ẍ(τ ) = −p̈(τ )x(τ ) − q̈(τ )

= 1 − 2v

4((1 − τ)τ )3/2
√

(1 − v)v[1 − 2τ(2 − τ(3 − 2τ))] .

The square-bracketed expression is strictly monotonically decreasing on (0,1/2) and
evaluates to zero at τ = 1/2. Thus, the left-hand side has to be positive for all critical
τ in (0,1/2) which in turn implies that ẍ(τ ) < 0 at such τ ’s. We conclude that x(τ)

has a single maximum in (0,1/2), since it cannot be constant as can be seen from
(13) by evaluating x(τ) at that τ ′ at which 1 − 6(1 − τ ′)τ ′ = 0 and x(τ) → ∞ as
τ → 1/2. By (11) (recall u = 1/2)

− cos
(
2πα(τ)

) = x(τ)

and it follows that α(τ) has a single maximum in (0,1/2).
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Proposition 19 The set of zeros of κ(α, τ ) and the horizontal sides of the unit square
divide the unit square either into three parts of equal sign of κ(α, τ ) or in four parts,
cf. Fig. 2.

Using the trigonometric method, we obtain an explicit expression of the zero of Q

in (−1,1). The change of variable x = 2
√−p/3 cos θ gives the equivalence

Q(x) = 0 if and only if cos(3θ) = 3q

2p

√
3

−p

and therefore

x(τ) = 2
√−p(τ)/3 cos

(
1

3
arccos

(
3q(τ)

2p(τ)

√
3

−p(τ)

)

− 2π

3

)

.

(The discarded solutions are either smaller or larger than the given one. By our rea-
soning, they have to lie outside the interval (−1,1).) A limit process shows that
x(τ) → 0 as τ → 0 or τ → 1. Hence, when moving towards the upper or lower
side of the square along the curve of zeros of the curvature, one approaches the cor-
responding “base line” α = u ± 1/4 mod 1.

Eliminating the trigonometric term, along a level curve with parameter t (cf. (8))
we have

FααF 2
τ − 2FατFαFτ + FττF

2
α = −16π2

[(
1

(1 − τ)2
+ 1

τ 2

)

X3

− 8

(

1 + 3
(1 − v)v

(1 − τ)τ
(1 − 2τ)2

)

X + 64(1 − v)v(1 − 2v)(1 − 2τ)

]

,

where X = t − (1 − 2v)(1 − 2τ). Reordering the terms and using the substitution
G = t − (1 − 2v), we arrive at

FααF 2
τ − 2FατFαFτ + FττF

2
α = − 16

(1 − τ)2τ 2

[
G3 − 2G

(
3 + G2 + 3Gt − 3t2)τ

+ 2
(
2t + 6G2t − 2t3 + 3G

(
3 − t2))τ 2 − 4

(
5t − 3t3 + 3G

(
1 + t2))τ 3+16tτ 4].

(14)

The zeros of the numerator of the curvature (10) are determined by a polynomial in τ

of degree 4. Thus, there can be at most four pairs (symmetry with respect to α = u) of
points on the level set at which the curvature vanishes. For the sake of completeness,
in a similar way one obtains

(
F 2

α + F 2
τ

)3/2 = 1

(1 − τ)3τ 3

[
(G − 2tτ )2 − 16π2(1 − τ)2τ 2

× (
G2 − 4Gtτ − 4τ

(
1 − t2 − τ

))]3/2
.
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The critical curves when the boundary of the spherical cap passes through a pole
are of particular interest. In the case of the North Pole (that is, t = 1 − 2v, or equiva-
lently G = 0), the curvature along the corresponding level curve reduces to

κ(τ) = −16π2 (1 − 2v)(1 − τ)[2(1 − v)v − (1 + 6(1 − v)v)τ + 2τ 2]
[(1 − 2v)2 − 16π2(1 − τ)2τ(τ − 4(1 − v)v)]3/2

. (15)

For given 0 < τ < 1, the corresponding value(s) of α can be obtained from the rela-
tion

cos
(
2π(u − α)

) = (1 − 2v)τ

2
√

(1 − v)v(1 − τ)τ
. (16)

From (8) it follows that the range for τ is (0, τ1] with τ1 = 4v(1 − v). For future
reference we record that for 0 < v < 1 with v �= 1/2 the curvature (15) vanishes only
for

τv = 1

4

(
1 + 6(1 − v)v −

√
1 − 4(1 − v)v

(
1 − 9(1 − v)v

))
. (17)

(The other solution lies outside the interval [−1,1] as one can verify with Mathemat-
ica.)

Proposition 20 The curves of zeros of the curvature (10) (as functions of τ ) assume
their extrema at τv and 1 − τv with τv given in (17).

Proof Suppose that u = 1/2 and 0 < v < 1/2. Then 0 < τv < 1/2. On observing
that the right-hand side of (16) for τ = τv is also the zero x(τv) in the interval (0,1)

of the polynomial Q, it can be verified with the help of Mathematica that the right-
hand side of (12) vanishes and therefore ẋ(τv) = 0; that is, the zero x(τ) is extremal
at τ = τv . Using the symmetry relation Q(τ ;x) = −Q(1 − τ ;−x), the zero x(τ) is
also extremal at τ = 1− τv . By means of (16) this translates into extrema of the curve
of zeros of the curvature (10). A shift in u (rotation of w about the polar axis) does
not change the shape of the level curves and the general result follows. �

Substituting (17) into the right-hand side of (16) gives the extremal value a zero
of Q in (−1,1) can assume, also cf. (13):

x(τv) = 1 − 2v
√

1 + 2(1 − v)v +√
1 − (1 − v)v(9(1 − 2v)2 − 5)

.

It can be shown that x(τv) is a strictly monotonically decreasing function in v which
is symmetric with respect to v = 1/2. Hence |x(τv)| ≤ x(0+) = 1/

√
2. Using this

bound in (16) yields that |α − (u ± 1/4)| ≤ 1/8 (when wrapping around).
When moving along the critical level curve towards the lower side of the unit

square, which is associated with the North Pole, we have

lim
τ→0

κ(τ) = −32π2 1 − 2v

|1 − 2v|3 (1 − v)v, 0 < v < 1, v �= 1/2.
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We conclude that the critical level curve with t = 1 − 2v (associated with the North
Pole) has precisely one symmetric (in the cylindrical view) pair of intersection points
with the curves of zeros of the curvature function (10) at τ = τv in the strip 0 < τ < 1.
A similar result holds for the level curve associated with the South Pole (t = −(1 −
2v)).

Proposition 21 Let 0 < v < 1/2. Then the level curves with t in the range −(1 −
2v) ≤ t ≤ 1 − 2v have precisely one symmetric (in the cylindrical view) pair of in-
tersection points with the curve of zeros of the curvature function (10). For t in the
ranges −1 < t < −(1 − 2v) or 1 − 2v < t < 1 there are either no intersection points,
one pair of tangential points, or two pairs.

The analogous result holds for 1/2 < t < 1. (For v = 1/2 the level curves for
distance

√
2 are the verticals at α = u ± 1/4 mod 1 and coincide with the curve of

zeros of κ(α, τ ) and also coincide with the critical curves. The other level curves have
no intersections.)

Proof Without loss of generality assume that u = 1/2. We have already established
that either critical level curve has precisely one pair of symmetric (with respect to
α = u) intersection point with the two curves of zero curvature about the base lines
α = u ± 1/4 at the values τ = τv and τ = 1 − τv . These parameter values also give
the position of the extrema of the zero curves, cf. Fig. 2. The left zero curve Z is
increasing for τ in (0, τv), decreasing for τ in (τv,1 − τv) and increasing again for τ

in (1 − τv,1).
Let −(1 − 2v) < t < 1 − 2v and Γt denote the left half of the corresponding

level curve starting at the left side at some point (0, τ1) and ending at some point
(u, τ2). (The other half is symmetric.) We note that the part where the zero curve is
increasing is contained in the regions separated off by the critical level curves. Thus,
an intersection between Z and Γt can only occur for τ in the interval [tv,1 − tv].
The curvature along Γt changes continuously (cf. (14) and subsequent formula) from
negative to positive value. Hence, there is an intersection point of Z and Γt and the Γt

cannot change abruptly. In particular, both Z and Γ0
2 pass through (1/4,1/2), which

is their only intersection point because for τ �= 1/2 the vertical line α = 1/4 separates
both curves. A Γt with 0 < t < 1 − 2v (−(1 − 2v) < t < 0) has to intersect Z in the
strip 1/4 < α < 1/2 (0 < α < 1/4). Inspecting the partial derivatives of F (cf. (9a)–
(9e)) (9c), (9d), (9e)) it follows that the gradient of F at the intersection point, which
is the outward normal at the level curve Γt , points into the upper left part; that is, the
tangent vector at Γt at the intersection point shows to the right whereas the tangent
vector at Z at this point shows to the left. Moreover, if 0 < t < 1 − 2v, then the curve
Γ0 separates Z and Γt for τ ≥ 1/2 and in the remaining part both curves Z and Γt

bend away from each other because Z is decreasing with growing τ and the curvature
along Γt becomes positive. Consequently, there is only one intersection point of Γt

and Z . A similar argument holds for −(1 − 2v) < t < 0.

2The spherical cap is the half-sphere.
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Let 1 − 2v < t < 1. Let Γt denote the left half of the level curve. For t sufficiently
close to 1 there is no intersection with Z and the level curve is convex. If Γt and
Z intersect in only one point, then the level curve is still convex, since the curva-
ture function κ(α, τ ) has positive sign in the section between Z and the vertical line
α = u. In this case Z and Γt share a common tangent at the intersection point. If
the curvature along Γt changes its sign to negative, then it has to become positive
again, since it is positive when crossing the vertical α = u. But after changing back
to positive curvature, both curves are bending away from each other. So, there can be
no other intersection point.

By symmetry with respect to the line α = u one has pairs of symmetric intersection
points.

Shifting u does not change the form of the curves and their relative positions. This
completes the proof. �

7 Proofs

Proof of Lemma 3 For t = 1 the spherical cap is a point and for t = −1 it is the whole
sphere. Their pre-images (a point and the whole unit square) are convex. So, we may
assume that −1 < t < 1.

Case (i): Let w be either the North or the South Pole. Then the pre-images of the
boundary of spherical caps centred at w are horizontal lines in the unit square. Hence,
the pre-image of such a spherical cap is convex.

Case (ii): Let w be on the equator (that is, v = 1/2). We know that the curvature
(10) vanishes along the lines α = u ± 1/4 mod 1. First, suppose that u = 1/4. Then
the pre-image of any spherical cap centred at w with boundary points at most Eu-
clidean distance

√
2 away from w is convex. For a larger spherical cap C it follows

that its complement C with respect to the sphere (centred at the antipodal point −w)
has the property that points on the boundary have distance ≤ √

2 from −w. Hence,
the pre-image of C is convex. When rotating w about the polar axis (that is, shift-
ing u), the vertical boundaries of the square cut these convex sets into two parts. We
conclude that the pre-image of a spherical cap centred at w or its complement with
respect to the sphere is the union of at most two convex sets.

Case (iii): Let w be neither the poles nor located at the equator. Without loss
of generality we may assume that w is in the upper half of the sphere; that is,
0 < v < 1/2. (Otherwise we can use reflection with respect to the equator.) First,
let us consider the canonical position u = 1/2. Let −(1 − 2v) ≤ t ≤ 1 − 2v. Then,
by Proposition 21, there are precisely two (symmetric) points along the level curve at
which the curvature vanishes, say at (α1, τt ) and (α2, τt ). This yields a decomposition
of the unit square into three vertical rectangles such that either the part above or below
the level curve is convex. Let 1 − 2v < t < 1. By Proposition 21 the level curve is al-
ready convex or there are two pairs of symmetric points at which the curvature along
the level curve vanishes and a sign change occurs. Hence, there are numbers τ1 < τ2
such that the level curve is convex for τ ≤ τ1 and convex for τ ≥ t2. The remaining
middle part can be covered by a convex isosceles trapezoid which in turn can be split
by some vertical line contained in the level set associated with the level curve. Thus,
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Table 4 Worst-case admissible convex covering with p part and q of which are convex. The vertical lines
show canonical positions of the vertical borders of [0,1]2

p q 2p − q

A 4 2 6

B 5 3 7

C 7 3 11

D 6 3 9

E 6 4 8

one has again two convex polygons which are divided into a convex and non-convex
part by the level curve. A similar argument holds for −1 < t < −(1 − 2v).

A shift of u does not increase the number of vertical rectangles needed for 0 ≤ t ≤
1 − 2v. (In fact, one may even reduce the number of elements of the partition.) In the
case 1 − 2v < t < 1 one may need to use a covering of the pre-image of the spherical
cap with up to 7 pieces. A more precise analysis is listed in Table 4. �

Proof of Proposition 8 Radon’s theorem (see e.g. [5, Theorem 4.1]) states that any
set of d +2 points from R

d can be partitioned into two disjoint subsets whose convex
hulls intersect. Particularly, let A denote a set of 5 points on the sphere. Then by
Radon’s theorem there exists a partitioning of A into disjoint subsets whose convex
hulls intersect. Thus the set A cannot be shattered by the class of half-spaces. Since
every spherical cap is the intersection of the sphere with an appropriate half-space, the
set A can also not be shattered by the class of spherical caps. Thus, the VC dimension
of the class of spherical caps is at most 5.

On the other hand, let the set Â consist of the points of a regular simplex, which
lie on the sphere. Then some simple considerations show that the set Â is shattered
by the class of spherical caps. Thus, the VC dimension of the class of spherical caps
(and therefore of course also the VC dimension of the class C of spherical caps for
which the centre w and the height t are rational numbers, which was used in Sect. 4)
equals 5. �

Proof of Theorem 9 As mentioned directly after the statement of Theorem 9, the
lower bound in the theorem follows directly from (5). To prove the upper bound we
use Theorem 7. By Proposition 8 the VC dimension of the class C in Sect. 4 is 5.
For simplicity we assume that the constant in Theorem 7 is an integer. Then, for any
s ≥ 2K ,

P

{

D(ZN) ≥ s√
N

}

≤ 1

s

(
Ks2

5

)5

e−2s2
,
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and consequently we have

E
(
D(ZN)

) ≤ 2K√
N

+
∞∑

s=2K

(
(s + 1)√

N
· P

{

D(ZN) ≥ s√
N

})

≤ 2K√
N

+
∞∑

s=2K

s + 1

s
√

N

(
Ks2

5

)5

e−2s2

≤ K̂√
N

for some appropriate constant K̂ . This proves the theorem. �

Proof of Theorem 10 Let C∗ ⊆ C denote a hemisphere, i.e. a spherical cap whose
normalised surface area measure is σ(C∗) = 1/2. By the central limit theorem, for
any t ≥ 0,

P

{∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C∗(Xn) − σ
(
C∗)

∣
∣
∣
∣
∣
≤ tN−1/2

}

→
√

2√
π

∫ t

−t

e−2u2
du as N → ∞,

and consequently, for any given ε > 0 and sufficiently small C3(ε) > 0,

P

{∣
∣
∣
∣
∣

1

N

N−1∑

n=0

1C∗(Xn) − σ
(
C∗)

∣
∣
∣
∣
∣
≤ C3N

−1/2

}

≤ ε/2

for sufficiently large N . Since D(ZN) ≥ | 1
N

∑N−1
n=0 1C∗(Xn) − σ(C∗)|, this implies

P
{
D(ZN) ≤ C3N

−1/2} ≤ ε/2 (18)

for sufficiently large N .
On the other hand, by Theorem 7 for any given ε > 0 and sufficiently large C4(ε),

P

{

D(ZN) ≥ C4√
N

}

≤ ε/2 (19)

for sufficiently large N . Combining (18) and (19) we obtain

P

{
C3√
N

≤ D(ZN) ≤ C4√
N

}

≥ 1 − ε

for sufficiently large N , which proves Theorem 11. �
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