Discrete & Computational Geometry (2020) 64:838-904
https://doi.org/10.1007/s00454-020-00243-7

RICKY POLLACK MEMORIAL ISSUE

®

Check for
updates

Dynamic Planar Voronoi Diagrams for General Distance
Functions and Their Algorithmic Applications

Haim Kaplan' - Wolfgang Mulzer?(® - Liam Roditty? - Paul Seiferth? .
Micha Sharir’

Received: 4 June 2019 / Revised: 31 March 2020 / Accepted: 12 August 2020 /
Published online: 22 September 2020
© The Author(s) 2020

Abstract

We describe a new data structure for dynamic nearest neighbor queries in the plane
with respect to a general family of distance functions. These include L ,-norms and
additively weighted Euclidean distances. Our data structure supports general (convex,
pairwise disjoint) sites that have constant description complexity (e.g., points, line
segments, disks, etc.). Our structure uses O (n log>n) storage, and requires polyloga-
rithmic update and query time, improving an earlier data structure of Agarwal, Efrat,
and Sharir which required O (n®) time for an update and O (logn) time for a query
[SICOMP 1999]. Our data structure has numerous applications. In all of them, it gives
faster algorithms, typically reducing an O (n®) factor in the previous bounds to poly-
logarithmic. In addition, we give here two new applications: an efficient construction
of a spanner in a disk intersection graph, and a data structure for efficient connectiv-
ity queries in a dynamic disk graph. To obtain this data structure, we combine and
extend various techniques from the literature. Along the way, we obtain several side
results that are of independent interest. Our data structure depends on the existence and
an efficient construction of “vertical” shallow cuttings in arrangements of bivariate
algebraic functions. We prove that an appropriate level in an arrangement of a random

Editor in Charge: Janos Pach

In loving memory of Ricky Pollack, one of the founding fathers of the field, and a dear friend.

A preliminary version appeared as [35]. Work by Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul
Seiferth has been supported by Grants 1161/2011 and (with Micha Sharir) 1367/2016 from the
German-Israeli Science Foundation. Work by Haim Kaplan has also been supported by Grants 822-10
and 1841-14 from the Israel Science Foundation, and by the Israeli Centers for Research Excellence
(I-CORE) program (Center No. 4/11). Work by Wolfgang Mulzer and Paul Seiferth has also been
supported by grant MU/3501/1 from Deutsche Forschungsgemeinschaft (DFG) and by ERC StG 757609.
Work by Micha Sharir has been supported by Grant 2012/229 from the U.S.—Israel Binational Science
Foundation, by Grants 892/13 and 260/18 from the Israel Science Foundation, by the Israeli Centers for
Research Excellence (I-CORE) program (Center No. 4/11), and by the Hermann Minkowski-MINERVA
Center for Geometry at Tel Aviv University.

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-020-00243-7&domain=pdf
http://orcid.org/0000-0002-1948-5840

Discrete & Computational Geometry (2020) 64:838-904 839

sample of a suitable size provides such a cutting. To compute it efficiently, we develop
arandomized incremental construction algorithm for computing the lowest k levels in
an arrangement of bivariate algebraic functions (we mostly consider here collections
of functions whose lower envelope has linear complexity, as is the case in the dynamic
nearest-neighbor context, under both types of norm). To analyze this algorithm, we
also improve a longstanding bound on the combinatorial complexity of the vertical
decomposition of these levels. Finally, to obtain our structure, we combine our ver-
tical shallow cutting construction with Chan’s algorithm for efficiently maintaining
the lower envelope of a dynamic set of planes in R3. Along the way, we also revisit
Chan’s technique and present a variant that uses a single binary counter, with a simpler
analysis and improved amortized deletion time (by a logarithmic factor; the insertion
and query costs remain asymptotically the same).

Keywords Voronoi diagram - Dynamic structure - General distance functions

Mathematics Subject Classification 68Q25 - 68W40

1 Introduction

Nearest neighbor searching in the plane is one of the most fundamental problems
in computational geometry [8]. Given a finite set S of sifes in R?, the goal is to
construct a data structure that can find the “closest” site for any given query object.
If S is fixed, Voronoi diagrams and their many variants provide a simple and well-
understood solution [5,8], with linear storage and logarithmic query time. However, in
many applications, the set S may change dynamically as sites get inserted and deleted.
Now, we want to answer nearest neighbor queries interleaved with the updates. This
setting is much less understood.

If S consists of singleton points and distances are measured in the Euclidean met-
ric, we can achieve polylogarithmic update and query time [13,14], with O (nlog>n)
storage. However, we are often confronted with more general distance functions
(e.g., Lp-norms or additively weighted Euclidean distances). Examples include the
dynamic maintenance of a bichromatic closest pair of sites, constructing a Euclidean
minimum-weight red-blue matching, constructing a Euclidean minimum spanning
tree, computing the intersection of unit balls in three dimensions, or computing the
smallest stabbing disk of a family of simply shaped compact strictly-convex sets in the
plane; as well as computing a single-source shortest-path tree in a unit-disk graph (see
Sect. 9 for details and references). Despite the numerous motivating applications, there
has been virtually no progress on the basic problem since the 1990s. The state of the art
is work by Agarwal et al. from 1999 [3]. It provides O (n®) update and O (log n) query
time, for any fixede > 0, while using O (n' %) storage.! We present a new solution that
gives polylogarithmic update and query time, while using O (nlog>n) storage, for a
wide range of distance functions. We assemble a broad set of techniques, such as ran-

! Here and later, the constants in such bounds depend on ¢.

@ Springer

840 Discrete & Computational Geometry (2020) 64:838-904

domized incremental construction, relative (p, €)-approximations, shallow cuttings
for xy-monotone surfaces in R3, and several advanced data structuring techniques.

We now describe our notions more thoroughly. Let S be a set of n pairwise disjoint
sites. Each site is a simply-shaped compact convex region in the plane (points, line
segments, disks, etc.). Let §: R2 x R? — R>p be a continuous distance function
between points in the plane. For asite s € S, define the distanceto s, f;: R? — R>p,as
fs(x,y) =8((x,y),s) = minpeg 5((x,), p) (the minimum exists since s is compact
and § is continuous). We assume that § and the sites in S have constant description
complexity. This means that they are defined by a constant number of polynomial
equations and inequalities of constant maximum degree. Set F = {f; | s € S}.
The lower envelope Er of F is the pointwise minimum Er (x, y) = minyser f(x, y),
and its xy-projection is called the minimization diagram of F, denoted by M. The
combinatorial complexity of Er or of M is the total number of their vertices, edges,
and faces. The book by Sharir and Agarwal [49] provides a comprehensive treatment
of these concepts.

Now, given a query point ¢ € R2, in order to find a -nearest neighbor for ¢ in
S, we must identify a site s with Ep(q) = f;(g). This translates to a vertical ray
shooting query in Er: find the intersection of £ and the z-vertical line through ¢,
or, alternatively, locate ¢ in the planar map M g, where each two-dimensional face
¢ € M is labeled with the site s for which f attains the minimum over ¢. (Edges
and vertices can be labeled by the set of labels of their adjacent faces.)

The structure and the complexity of £f and of Mp, as well as algorithms for
their construction and manipulation, have been studied for several decades (again, see
[49]). To summarize, under the above assumptions, the combinatorial complexity of
Er (or of M) is O(n>*#), for any fixed ¢ > 0.2 However, in many interesting cases,
including the case where the functions f; are linear (i.e., their graphs are non-vertical
planes), the complexity of £ is O (n). The case of planes arises, after simple algebraic
manipulations, for point sites under the Euclidean distance. Then M is the Euclidean
Voronoi diagram of S. There are many variants of Voronoi diagrams, for other classes
of sites and distance functions, for which the complexity of £ remains linear; see,
e.g., the book by Aurenhammer et al. [5].

Coming back to nearest neighbor search, if we assume that £¢ has linear complexity
and can be constructed efficiently, all we need to do, in the so-called “static” case, is
to preprocess Mg for fast planar point location. Then, a query takes O (logn) time.
If sites in S can be inserted or deleted, i.e., if F changes dynamically, then £ may
change rather drastically after an update. Maintaining an explicit representation of
M thus becomes overwhelmingly expensive. Hence, the goal, in this paper and in
earlier work, is to store an implicit representation of £ that still supports efficient
vertical ray shooting in the current envelope £ (or point location in the current M).

In all the applications of dynamic nearest neighbor search that are studied in this
paper, the lower envelope £ has linear complexity. This is typically the case when
S consists of point sites, and the distance functions are typically L ,-metrics, for
1 < p < oo, or additively weighted Euclidean metrics, where each point site s € S
has a weight wy € R, and §(q, s) = |gs| + ws, where |gs| is the Euclidean distance

2 Again, the constant of proportionality depends on ¢.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 841

between ¢ and s. See, e.g., [5,38] for details concerning the linear complexity of Er
in these cases. The lower envelope also has linear complexity for general classes of
pairwise disjoint compact convex sites of constant description complexity, and for
fairly general metrics.

Our main result is an efficient data structure that dynamically maintains a set F' of
bivariate functions as above, under insertions and deletions of functions, and supports
efficient vertical ray shooting queries into £. Assuming, as above, that the complexity
of & is linear, the worst-case cost of a query, as well as the amortized expected cost
of an update, is polylogarithmic, and the storage used by the structure is O (n log>n).
As a consequence, we obtain faster solutions to all the applications mentioned above,
and many more, essentially reducing an O (n?) factor in the complexity to polyloga-
rithmic. Our results also generalize to the case where the lower envelope complexity
is not linear.

A brief context. Suppose first that all functions in F' are linear. (As noted, this applies to
point sites in the Euclidean metric.) A classical solution for this case is due to Agarwal
and Matousek [4]. They show how to maintain dynamically an implicit representation
of £, with amortized update time O (n®), for any fixed ¢ > 0; vertical ray shooting
queries take O (logn) worst-case time. Here, n denotes an upper bound on | F|. The
case of more general bivariate functions, as described above, was studied by Agarwal
etal. [3]. If £ has linear complexity, their technique has amortized update time O (n?),
for any fixed ¢ > 0, and worst-case query time O (log n), matching (asymptotically)
the result for planes [4].

For more than ten years after the work of Agarwal and Matousek [4], it was open
whether the O (n) update time can be improved. In SODA 2006, Chan [13] presented
an ingenious construction for the case of planes where both the (amortized) update
time and the (worst-case) query time are polylogarithmic. More precisely, Chan’s
structure (combined with the recent deterministic construction of shallow cuttings by
Chan and Tsakalidis [16]) supports insertions in O (log>n) amortized time, deletions in
O (log®n) amortized time, and queries in O (log”n) worst-case time. However, before
our work, it remained unknown whether a similar result (with polylogarithmic update
and query time) is possible for arbitrary bivariate functions with constant description
complexity and linear envelope complexity. We provide an algorithm that meets all
these performance goals. Along the way, we also improve the deletion time for Chan’s
data structure for planes by a factor of logn, and the bound of Agarwal et al. [3] for
the complexity of the vertical decomposition of the (< k)-level in an arrangement of
surfaces in R3 by a factor of k®. Very recently, after the original submission of our
paper, by combining a faster cutting construction with our observations, Chan [14]
further improved the amortized deletion time for the case of planes to O (log*n) and
the amortized insertion time to O (log>n).

2 Our Results and Techniques
Our data structure combines a multitude of techniques. We first give a broad overview

of how these techniques play together; see Fig. 1, where the terms in the figure are
explained below.

@ Springer

842 Discrete & Computational Geometry (2020) 64:838-904

Improved Dynamic Lower

RIC Envelopes for Planes
Relative Sh::!l”w LN Shta:!low i‘> Dynamic Lower
PR -/ cuttings —/ cuttings
approximations (without conflict lists) (with conflict lists) Envelopes for Surfaces

Generalized Dynamic
PP Nearest Neighbors

Fig.1 The main tools used for our data structure

Maybe the most crucial observation is that the whole geometric part in Chan’s data
structure [13,14] is in the construction of small shallow cuttings for planes. Thus, once
we have an analogous result for surfaces, we can maintain their dynamic lower enve-
lope, or equivalently, solve the generalized dynamic planar nearest neighbor problem.
It turns out that random sampling and the theory of relative (p, £)-approximations
easily yield a construction for the required cuttings. However, we must also find the
corresponding conflict lists quickly. For this, we present an algorithm that uses random-
ized incremental construction (RIC) for the (< k)-level in an arrangement of surfaces.
Together with an improved variant of Chan’s result, this gives the generalized nearest
neighbor data structure. We show the impact of this structure by presenting numerous
applications thereof, both old and new. In what follows, we describe the specific parts
in more detail.

The geometric core of Chan’s data structure consists of an efficient construction
of small-sized vertical shallow cuttings [12,16]. Let F be a set of n functions in R3,
identified in this paper with their graphs, and let A(F) denote the arrangement of F.
We recall the notion of a k-level in A(F), for a parameter 0 < k < n — 1. It is the
closure of the set of points ¢ such that g lies on some function graph and exactly k
graphs pass strictly below q.

Roughly speaking (more details follow below), for suitable parameters k and r ~
n/k, avertical k-shallow r~'-cutting is a collection of pairwise openly disjoint semi-
unbounded vertical prisms, where each prism consists of all points that lie vertically
below some triangle. Furthermore, (i) these top triangles form a polyhedral terrain that
is sandwiched between the k-level and the k’-level of the arrangement, for a suitable
parameter k' close to k; (ii) the number of prisms is close to O (r); and (iii) each prism
is crossed by approximately k function graphs.

Once a fast construction of vertical shallow cuttings of sufficiently small size is
available, we can plug it into Chan’s machinery for planes [13], in almost black-box
fashion. This gives a fast data structure for dynamic maintenance of the lower envelope
in the general setting. Agarwal et al. [3] prove the existence of shallow cuttings of
optimal size for general functions, but their cuttings are not “vertical”, in the above
sense, and a direct algorithmic implementation of their ideas yields an additional O (n®)
factor for both the size and the construction time of the cutting. When applied to the
dynamic maintenance problem, this gives (amortized) update cost O (n®) rather than
polylogarithmic. Refining this bound is one of the main goals of the present paper.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 843

Thus, we design a different algorithm for computing a vertical shallow cutting.
For this, we develop several technical results that we believe to be of independent
interest. We use relative approximations [30] to show that, with high probability,
we get an e-approximation of the k-level of A(F) by choosing a random sample
S of cne 2k~ 'logn functions from F and by taking the ¢-level of A(Sy), for ¢ €
[(1+&/3)A, (1 +¢&/2)A, A = ce? log n, and c a suitable constant. This means that
any such ¢-level of A(Sy) lies between levels k and (1 + ¢)k of A(F). We show that
for random ¢, the expected complexity of the z-level is O (ne >k~ ! log?n).

Having computed such a t-level, we project it onto the xy-plane, construct the
standard planar vertical decomposition of the faces of the projection, lift each resulting
trapezoid ¢ back to a trapezoidal subface ¢* embedded in a surface on the original
level, and associate it with the semi-unbounded vertical prism that extends below ¢*.
We show that this collection of prisms is a vertical k-shallow r~!-cutting in A(F)
(with k and r & n/k as above). We denote it by Ag.

The last hurdle is to efficiently compute Ay, together with the conflict lists of its
prisms. The conflict list CL(7) of a prism © € Ay is the set of all functions f € F
whose graphs cross the interior of t. (Although the construction of Ay is performed
with respect to the sample Sk, the conflict lists are defined with respect to the whole
set F).

This leads us to the classical problem of computing the ¢ lowest levels in an arrange-
ment of n bivariate functions of constant description complexity. A standard approach
for this goes via randomized incremental construction (RIC), see, e.g., [8,42]. Here,
one adds the functions one by one, in random order, while maintaining some rep-
resentation of the first ¢ levels on the functions inserted so far. Following previous
work, we maintain a cell decomposition of the region below the z-level of the function
graphs inserted so far, and we associate with each cell a conflict list consisting of all
the remaining functions that cross it. If we run this process to completion, we get a
suitable decomposition of the ¢ shallowest levels of the “final” A(F). If we stop after
inserting the first cne ~2k~! log n functions, which serve as the desired random sample
Sk, we obtain, in addition to (a suitable decomposition of) the ¢ shallowest levels of
A(Sk), the conflict lists of its cells (with respect to the whole F).

Our decomposition of choice is (a suitable shallow portion of) the standard vertical
decomposition of an arrangement of surfaces in R? (see [19,49] for details). Each prism
extends between two consecutive levels of the current arrangement, so this decomposi-
tion differs from the vertical shallow cutting that we are after.’ Nevertheless, we show
how to transform this decomposition into a vertical shallow cutting, including the con-
struction of the desired conflict lists of its semi-unbounded prisms. A fairly intricate
analysis shows that the shallow cutting has expected complexity O (nk~! log?n).

The implementation of such a RIC for the shallowest ¢ levels of A(F) is far from
trivial. It has been considered before for the case of planes. Mulmuley [41] described
a RIC of the first ¢ levels, when the lower envelope of the planes corresponds to
the Voronoi diagram of a set of points in the xy-plane (under the standard alge-
braic manipulations alluded to above). Mulmuley’s procedure needs O (nt? log(n/t))

3 We distinguish between the two kinds of cuttings by referring to the previous one as vertical, and to the
one just introduced simply as a cutting.

@ Springer

844 Discrete & Computational Geometry (2020) 64:838-904

expected time.* Agarwal et al. [2] used a somewhat less standard randomized incre-
mental algorithm and obtained a bound of O (nlog’n + nt?) expected time. Their
algorithm works for any set of planes. It maintains a point p in each prism, such that
the level of p in A(F) is known, and it uses this information to prune away prisms
that can be ascertained not to intersect the shallowest ¢ levels of A(F). Finally, Chan
[11] obtained a bound of O (nlogn + nt?) expected time with an algorithm that can
be viewed as a batched randomized incremental construction. Unfortunately, it is not
clear how to apply some crucial components of these algorithms when F is a set of
nonlinear functions.

We present and analyze a standard randomized incremental construction algorithm
for the shallowest 7 levels of an arrangement A(F) of a set F of n bivariate functions
with constant description complexity and linear envelope complexity. Our algorithm
runs in O (ntis(t) log(n/t)logn) expected time, where s is a constant that depends
on the surfaces and A (¢) is the maximum length of a Davenport—Schinzel sequence
on ¢ symbols of order s [49].°> To get this result, we improve a bound of Agarwal et
al. [3] on the complexity of the vertical decomposition of the ¢ shallowest levels in
A(F). Agarwal et al. proved that this complexity is O (nt>*), for any fixed ¢ > 0,
via a fairly complicated charging scheme. We improve this to O (nti,(t)), with a
simpler argument, where s is a constant that depends on the algebraic complexity of
the functions of F (see a precise definition below).

Using our randomized incremental algorithm, we construct a vertical shallow cut-
ting of the first k levels in A(F), consisting of O(nk~!log?n) prisms, each with a
conflict list of size O (k). The construction time is O (nAs(logn) log3n).

Once we have an efficient mechanism for constructing vertical shallow cuttings,
we apply it, following and adapting the technique of Chan for the case of planes, to
obtain our dynamic data structure. Before that, we re-examine Chan’s data structure,
and we present it in a way that is easier to understand (in our opinion) and, at the same
time, slightly faster than the original version. Our variant follows a standard route:
we begin with a static data structure and extend it for insertions, using a (somewhat
non-standard) variant of the well-known Bentley—Saxe binary counter technique [7].
Then, we show how to perform deletions via re-insertions of planes, using a lookahead
deletion mechanism, the major innovation in Chan’s work. We believe that our analysis
sheds additional light on the inner workings of Chan’s structure. We improve the
amortized deletion time to O (log>n), i.e., by a logarithmic factor. Deletions are the
costliest operations in Chan’s structure and constitute the bottleneck in most of its
applications. As mentioned, in recent work, Chan [14] achieved a further improvement,
building upon our analysis, reducing the amortized deletion time to O (log*n) and the
amortized insertion time to O (logzn).

We finally combine our shallow cutting construction with our improved version of
Chan’s data structure, extended to more general functions, to obtain a dynamic data
structure for vertical ray shooting into the lower envelope of a dynamically chang-
ing set of bivariate functions, as above. Our (worst-case, deterministic) query time is

Y0m?)isa tight bound on the complexity of the ¢ shallowest levels in an arrangement of n planes.

5 As is well known [49], the function Ags(?) is “almost” linear, i.e., Ag(t) = tB;(¢) for some extremely
slow-growing function B () of inverse-Ackermann type.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 845

0(10g2n), the (amortized, expected) time for an insertion is O (A;(logn) logsn), and
the (amortized, expected) time for a deletion is O (A (log n) log”’n). The larger poly-
logarithmic factors are a consequence of slightly weaker bounds on the complexity of
an approximating level.

Plugging our new bounds into the applications in Agarwal et al. [3] and in Chan
[13], we immediately improve several running times, replacing a factor of n® by a
polylogarithmic factor. Some prominent examples are shown in the following table;
details follow in Sect. 9. (Constants of proportionality are suppressed in the table.)
The parameter s depends on the precise metric, and is defined in more detail later
in the paper. Concrete values of s are given in the table for the specific respective
applications.

Problem Old bound New bound
Dynamic bichromatic closest pair in n® update [3] As(logn) log5 n insertion,
general planar metric As(logn) 10g9n deletion
Minimum planar bichromatic Euclidean nte 3] n? Ag(logn) loggn
matching
Dynamic minimum spanning tree in n® update [3] As(logn) log“n update
L p-metric
Dynamic intersection of unit balls in R3 n® update [3] queries rg(logn) logsn insertion,
in logn and 10g4n Ag(logn) loggn deletion,
(depending on the queries in log“n and
precise query) 10g5 n (depending on

precise query)

A particularly fruitful application domain for our data structure can be found in disk
intersection graphs. These are defined as follows: Let S C R? be a finite set of point
sites, each with an associated weightw, > 0, p € §;asite p with weight w, represents
the disk of radius w), centered at p. The disk intersection graph for §, denoted D(S),
has the sites in S as vertices, and there is an edge pg between two sites p, g in S if
and only if |pg| < w, + wy, i.e., if the disk around p with radius w), intersects the
disk around ¢ with radius wy. If all weights are 1, we call D(S) the unit disk graph for
S. Disk intersection graphs are a popular model for geometrically defined graphs and
networks, and enjoy an increasing interest in the research community, in particular
due to applications in wireless sensor networks [10,15,27,32,34,46]. The following
table gives an overview of our results on disk graphs.

Two of the applications listed above concern finding shortest-path trees in unit disk
graphs, and BFS-trees in disk intersection graphs. Our new structures give improved
bounds almost in a black-box fashion, using the respective techniques of Cabello and
Jej¢i¢ [10] and of Roditty and Segal [46]. Very recently, Wang and Xue [51] presented a
deterministic algorithm to find the shortest-path tree in a unit disk graph in O (n log?n)
time. The other two applications are a bit more involved. First, we give a data structure
for the dynamic maintenance of the connected components in a disk intersection graph,
as disks are inserted or deleted, where we assume that all disks have radii from the
interval [1, W]. Then, we can apply our data structure in a grid-based approach that

@ Springer

846 Discrete & Computational Geometry (2020) 64:838-904

Problem Old bound New bound
Shortest-path tree in a unit disk graph nlte [10] nig(logn) loggn
Dynamic connectivity in disk n20/21 update lD2A6 (logn) loggn update
intersection graphs with radii in nl/7 query [15] logn/loglogn query
[1, W]
BFS tree in disk intersection graphs nlte [46] nig(logn) loggn
(1 4 p)-spanners for disk 114/3"'3,0_4/3 logz/3 v [27] np_QAG(log n) 10g9n

intersection graphs

gives an update time that depends on W and is polylogarithmic if W is constant. The
previous bound of Chan, Pitragcu, and Roditty [15] is only slightly sublinear (albeit
independent of W). Queries are faster in both approaches, but the bound in [15] is a
power of n whereas here it is only sub-logarithmic. Very recently, Kauer and Mulzer
[36] presented a method that improves the dependence on W. Finally, we give an
algorithm for computing a (1 + p)-spanner in a disk intersection graph, for any p > 0.
A (1 + p)-spanner for D(S) is a subgraph H of D(S) such that the shortest path
distances in H approximate the shortest path distances in D(S) up to a factor of 1+ p.
The previous construction by Fiirer and Kasiviswanathan [27] has a running time that
depends on the radius ratio W, as defined above. Our new algorithm is independent
of W and achieves almost linear running time, improving the previous algorithm by a
factor of at least n'/3.

Paper outline. Section 3 gives further background and precise definitions. In Sect. 4,
we describe how to obtain a terrain that approximates the k-level of A(F) by random
sampling, via relative (p, €)-approximations (see [30] and below). In Sect. 5, we define
avertical shallow cutting, based on our level approximation, and show how to compute
it with a randomized incremental construction of the shallowest ¢ levels in A(F). In
Sect. 6, we describe in detail the randomized incremental construction and analyze
it. Section 7 gives our improved variant of Chan’s structure for maintaining the lower
envelope of planes. Combining our cuttings with Chan’s machinery as presented in
Sect. 7, we obtain, in Sect. 8, an efficient procedure for dynamically maintaining the
lower envelope of a collection of algebraic surfaces of constant description complexity
and linear lower envelope complexity. Finally, in Sect. 9, we present several known
applications, for which we obtain better bounds, and our new applications for disk
graphs. Along the way, we also consider the case where the lower envelope complexity
of F is superlinear, and extend our analysis to this more general setup.

3 Preliminaries

Let F be a family of bivariate functions f: R?> — R, and let F be a finite subset
of F. Throughout the paper, we assume that the functions in F are continuous, totally
defined, and algebraic, and that they have constant description complexity. This means
that the graph of each function is a semialgebraic set, defined by a constant number of
polynomial equalities and inequalities of constant maximum degree. We will generally

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 847

make no distinction between a function f € F and its graph {(x, y, f(x,y)) | x,y €
R}, which is a continuous xy-monotone surface, also called a terrain.

The lower envelope Ef of F is the graph of the pointwise minimum of the functions
of F. The xy-projection of £ yields a subdivision of the xy-plane called the mini-
mization diagram M of F. It can be represented by a standard doubly connected
edge list (DCEL, see, e.g., [8]). Each (two-dimensional) face f of M is labeled by
the function in F that attains the pointwise minimum over f.

When M f consists of O (| F|) faces, vertices, and edges, for any finite F C F, we
say that F has lower envelopes of linear complexity. We will mostly assume this to be
the case for the families F considered here. In particular, this assumption holds when
F is the family of all nonvertical planes, or when F is a family of distance functions
under some metric (or under some so-called convex distance function [20]), each of
which measures the distance of a point in the x y-plane to some given site (cf. Sect. 9),
where the sites are assumed to be pairwise disjoint closed convex sets.

For simplicity, we also assume that F is in general position, i.e., no more than
three functions meet at a common point, no more than two functions meet in a one-
dimensional curve, no pair of functions are tangent to each other, and no function
is tangent to the intersection curve of two other functions. For example, this holds
if the coefficients of the polynomials defining the functions in F are algebraically
independent over R [49]. Furthermore, we assume that the coordinate frame is generic,
so that the xy-projections of the intersection curves of any pair of functions in F are
also in general position, defined in an analogous sense.

Model of computation. We assume a (by now fairly standard) algebraic model of
computation, in which primitive operations that involve a constant number of functions
of F take constant time. Such operations include: computing the intersection points of
any three functions, computing (a suitable representation of) the intersection curve of
any two functions, decomposing it into connected components, finding a representative
point on each such component, computing the points of intersection between the xy-
projections of two intersection curves, testing whether a point lies below, on, or above
a function graph, and so on. This model is reasonable, because there are standard
techniques in computational algebra (see, e.g., [6,47]), and actual packages (such
as the one described by Boissonnat and Teillaud [9]), that perform such operations
exactly in constant time. Technically, these methods and packages determine the truth
value of any Boolean predicate of constant description complexity. That is, they are
not expected to provide precise values of roots of polynomial equations, but they can
determine, exactly and in constant time, any algebraic relation between such roots
and/or similar entities, expressed by a constant number of polynomial equations and
inequalities of constant maximum degree.

Shallow cuttings. Let A(F) be the arrangement of a set F' of n bivariate functions
from F in R3. The level of a point ¢ € R? in A(F) is the number of functions of F
that pass strictly below ¢. For 0 < k < n— 1, the k-level Ly (F) of A(F) is the closure
of the set of all points at level & that lie on a function in F. We denote by L4 (F)
the union of the first k levels of A(F). For given parameters k € {0,...,n — 1},
re{l,...,n},ak-shallow r~'-cutting in A(F) is a collection A of pairwise openly

@ Springer

848 Discrete & Computational Geometry (2020) 64:838-904

disjoint regions 7, each of constant description complexity, such that the union of all
T € A covers L<,(F), and such that the interior of each T € A is intersected by at
most n/r functions in F. The size of A is the number of regions in A.

In addition, we call A vertical if every region T € A is a (semi-unbounded) pseudo-
prism. A pseudo-prism 7 of this kind consists of all points that lie vertically below
some pseudo-trapezoid T on a function f € F. Such a pseudo-trapezoid is defined as
the set

T={y fxr.y) [x" =x=<x", ¥y~ (x) <y <yF)

for real numbers x~ < x* and (semi-)algebraic functions ¥, ¥T: R — R of
constant description complexity; some of these boundary constraints might be absent.
For planes, T will simply be a planar y-vertical trapezoid, and we do not insist that
T be contained in one of the input planes. Since the interior of a pseudo-prism in
a vertical k-shallow r~!-cutting is intersected by at least k functions, we must have
k < n/r.In our setting, we will set r = ©(n/k), with a sufficiently small constant of
proportionality, which is the case most relevant for all our applications.

Matougek [40] proved that for any n hyperplanes in RY, there is a k-shallow
r~!-cutting of size O(q¥/*Irl4/2]), for ¢ = kr/n + 1. For the most relevant case
k= ©(n/r), we getg = O(1) and a cutting of size O(r'9/2!), a significant improve-
ment over the general bound 0(r?) for a cutting that covers all of A(F), rather than
just L<x(F) [17].6 For example, for planes in three dimensions, we get cuttings of size
O(r) instead of O (r?). This has led to improved solutions of many range searching and
related problems (see, e.g., [16] and the references therein). Matousek [40] presented
a deterministic algorithm to construct a shallow cutting in polynomial time. If » < n?,
the running time improves to O (n logr), where § > 0 is a sufficiently small constant
depending on d. Later, Ramos [45] presented a (rather complicated) randomized algo-
rithm for d = 2, 3, that constructs a hierarchy of shallow cuttings for a geometric
sequence of O (logn) values of r (and k = ®(n/r)), in O(nlogn) overall expected
time. Recently, Chan and Tsakalidis [16] gave a deterministic algorithm for the same
task. Their algorithm can be stopped early, to obtain an O (n/r)-shallow ~!-cutting
in O (n logr) time. Interestingly, the analysis of Chan and Tsakalidis uses Matousek’s
theorem on the existence of an O (n/r)-shallow r ™~ 1 -cutting of size O (r) as ablack box.

Chan [12] was the first to point out the existence of vertical shallow cuttings for
planes in R3. Such a cutting originates from a polyhedral triangulated xy-monotone
terrain that lies entirely above L <; (F), so that each triangle T of the terrain generates a
semi-unbounded triangular prism T with T as its top face. These shallow cuttings have
many applications, in particular in Chan’s data structure for dynamic maintenance of
lower envelopes [13,14], as reviewed above. The deterministic construction of Chan
and Tsakalidis [16] constructs vertical shallow cuttings. Recently, Har-Peled et al. [29]
gave an alternative construction with additional favorable properties.”

6 These bounds are not known for general surfaces.

7 One significant difference is that the “top terrain” in [29] approximates the corresponding level k up to
any specified accuracy, whereas the structure in [16] does not.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 849

Things become technically more involved when we allow more general algebraic
functions. For example, decomposing cells of the arrangement into subcells of constant
description complexity is easy for hyperplanes (where the subcells are simplices),
using, e.g., a bottom-vertex triangulation [18,22]. For general curves or surfaces, the
only known general-purpose cell decomposition technique is vertical decomposition
[19,49]. In the plane, the complexity of such a decomposition is proportional to the
complexity of the original arrangement, and in three and four dimensions, near (but not
quite) optimal upper bounds are known [19,37]. However, in dimension five and higher,
there are significant gaps between the known upper and lower bounds [19]. Regarding
shallow cuttings for general surfaces, we are aware only of the aforementioned result
of Agarwal et al. [3], and of no work that considers vertical shallow cuttings for this
general setup.

4 Approximate k-Levels

Here and in the following section, we show the existence of vertical shallow cuttings
for surfaces. Later, we address the issue of how to efficiently compute these cuttings
and the conflict lists of their pseudo-prisms.

Let F be a family of functions as in Sect. 3, and let F be a collection of n functions
from F. Recall that we assume that the lower envelope complexity of F is linear.
Agarwal et al. [3] provide a shallow cutting for A(F), and show that, for any fixed
e>0,0<k<n-—1,and 1 <r < n, there is a k-shallow (1/r)-cutting of size
O(q**er), where ¢ = kr/n + 1 (and the constant of proportionality depends on).
This is slightly sub-optimal when ¢ is large. However, we are interested in the case
r ~ n/k,soq = O(1) and the bound becomes O (r), which is optimal. Nonetheless,
the cutting of Agarwal et al. [3] is not vertical, and is therefore useless for our purposes.

Known techniques for computing vertical shallow cuttings for planes, and the con-
flict lists of their prisms [16,29], crucially rely on the fact that if a plane intersects a
semi-unbounded prism 7, it must also intersect a vertical edge of 7. This is not true for
general functions. Thus, we use a somewhat different approach that results in cuttings
whose size is a (small) polylogarithmic factor off optimal. It is an interesting challenge
to tighten the bound. For the time being, though, we are not aware of any alternative
construction that meets our specific needs.

Let 0 < & < 1/2 be a specified error parameter,® and let 0 < k < n — 1. We will
approximate the level Ly (F) of A(F) by a terrain T (which will actually be a level in
the arrangement of some sample of F'), with the following properties (for simplicity,
we ignore in this paper the trivial issue of rounding).

1. T fully lies above Ly (F) and below L(14)x(F).
2. The complexity |Tk| of T is O (ne 2k~ log?n).
To construct T g, we use the notion of relative (P, €)-approximation (see Har-Peled and

Sharir [30] for more details): for a range space (X, R) of finite VC-dimension, and for
given parameters p, ¢ € (0, 1), aset A C X is called a relative (p, ¢)-approximation,

8 If & is constant (say, € = 1/2), the dependence on ¢ can be suppressed. Nonetheless, we include it in the
interest of precision, and in anticipation of future applications that might require closer level approximations.

@ Springer

850 Discrete & Computational Geometry (2020) 64:838-904

if, for each range R € R, we have

ey

‘IRﬂXI IROAL| _ JelRI/IX] if [R] = plX],

| X1 [Al |~ |ep if |R| < p|X]|.
As shown by Har-Peled and Sharir [30] (following Li et al. [39], see also Har-Peled’s
book [28]), for any g € (0, 1), a random sample of size

1 1 1
0 (2— (log — +log —))

e°p 4 q
is arelative (p, &)-approximation with probability at least 1 — g, where the constant of
proportionality depends linearly on the VC-dimension, but is independent of & and p.
We apply this general machinery to the range space (F, R) defined as follows. An
object o can be either a straight line, a segment, a ray, or an edge in the arrangement
of a constant number of functions of F, a face in such an arrangement, a connected
portion of such a face cut off by vertical planes orthogonal to the x-axis, or a connected
component of the intersection of such a face with a plane orthogonal to the x-axis.
Each range R € R corresponds to an object o as above, and is the set of functions of
F that intersect o. The fact that (F, R) has finite VC-dimension, follows by standard

arguments (see, e.g., [28,49]). Thus, let Sy € F be a random sample of size

= —-1 , 2
Tk = 3, logn 2

where ¢ > 0 is a suitable constant, proportional to the VC-dimension of (F, R).
By the previous discussion, we can choose ¢ such that Sy is a relative (k/(2n), £/3)-
approximation for (F, R), with probability at least 1 — 1/n®, for some sufficiently
large constant b > 1. Note that for this choice of r; to make sense, we need k =
Q(e72logn). The case of smaller k is simpler and will be treated below.

Set T, to a random level L +(Sk), where ¢ is chosen uniformly in the range

LS (145 fora=S1
— — or = — 10 .
3)" 2 g2 08"

We refer to T as an e-approximation to level Ly (F). This terminology is justified
in the following lemmas. From now on, we will assume that Sy is indeed a relative
(k/(2n), ¢ /3)-approximation. The bounds in Lemmas 4.2 and 4.3 hold notwithstand-
ing, since the assumption fails with probability at most 1/n”, so that, by making b
sufficiently large (as we can), the event of failure contributes a negligible amount to
the relevant expectation.

Lemma 4.1 The terrain T lies between levels k and (1 +)k of A(F).

Proof Let p be a point of level k in A(F), and let R‘P) denote the range of those func-
tions that pass below p. By assumption, Sy is a relative (k/(2n), £/3)-approximation

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 851

for a range space that includes R(”. Since

k k_ |R(p)|

2n n n

’

the first case in (1) implies that
») e\ kry e
IRPNS | <(1+=)]—=<[1+=)xr
3) n 3

Thus, at most (1 4+ &/3)X functions of Sy pass below p, i.e., p lies on or below Tk.
Similarly, let ¢ be a point of level (1 + &)k in A(F). By a symmetric argument, at

least
| £ 1+)krk> 1+8 N
—_— 8— p—
3 n - 2

functions of Sy pass below ¢ (using & < 1/2). Hence, ¢ lies on or above Ty, and the
lemma follows. o

Lemma 4.2 The expected number of vertices p of A(Sy) whose level in A(Sy) is
between (1 4+ &/3)A and (1 + /2) A is O (ne %k ~! 10g3n).

Proof Let p be a vertex of A(F), and let £5, (p) denote the level of p in A(Sk). As
follows from the proof of Lemma 4.1, the vertex p can satisfy (14¢/3)A < £g (p) <
(14¢&/2) only if the level of p in A(F) lies between k and (1 4 &) k. The probability
that p shows up in A(Sy) is’

n—3 n) log®n
rr—3 Tk n £0k3
As shown by Clarkson and Shor [23], there are O (n((1+ e)k)?) = 0 (nk?) vertices in

L <(14¢)k (F). Hence, the expected number of vertices p of A(Sy) with (1 +&/2)A <
£5,(p) < (1 +&/2)Ais at most O(ne~%k~'log>n), as claimed. O

Lemma 4.3 The expected complexity of T, over the random choices of Sy and of the
levelin [(1 +¢/3)A, (1 +¢/2)A), is

0<i1 2) 3)
g log’n |-

9 Here we use the model where we sample a subset of the prescribed size, where all such subsets are
equally likely to be drawn. One could also use an alternative common model, in which each function is
independently chosen to be in S; with probability r; /n. The calculations are slightly different in the latter
model, but they lead to the same conclusions and asymptotic bounds.

@ Springer

852 Discrete & Computational Geometry (2020) 64:838-904

Proof Since a level in A(Sg) is an xy-monotone terrain, and since each vertex of
A(Sy) appears in only three (consecutive) levels, the sum of the complexities of all the
L;(Sk), for j € [(1+¢&/3)A, (1 4+ &/2)A], is proportional to the number of vertices
in A(Sy) with level between (1 + ¢/3)A and (1 4+ &/2)A. Thus, by Lemma 4.2, the
expected complexity of a random level in this range is

O o(Ziogin)=—2L o rogin) = 0 L 1og?
. ——loe’n | = . —log'n | = —,logn |,
e gok % g-ce2logn ok 8 Sk 8

as claimed. O

Finally, we discuss the case k = O(¢~2logn). In this case, we pick ¢ uniformly at
random in the interval [k, (1 + &)k], and we set T to L;(F). By construction, it is
clear that T approximates the k-level in A(F). Furthermore, the same Clarkson—
Shor bound used in the proofs of Lemmas 4.2 and 4.3 shows that 7 has expected
complexity O (nk/e) = O(ne >k~ log?n), using our assumption on k.

Remark The same result holds for general lower envelope complexity. Suppose that
every set of m functions in F has lower envelope complexity at most (m), where we
assume (or require) that m +— 1 (m)/m is monotonically increasing. Then, given a set
F of n functions from F, for every ¢ € (0, 1/2] and forevery 0 < k <n — 1, we can
find a terrain T that lies fully between Ly (F) and L (44 (F) and that has complexity
O (Y (n/k)e = log?n). Indeed, the argument proceeds as above, with slightly adjusted
bounds. The Clarkson—Shor bound in the proof of Lemma 4.2 now shows that there
are O((1 + &)’y (n/(1 + e)k)) = O3y (n/k)) vertices in L (11e)(F), so the
expected number of vertices in A(Sy) with level between (1 + ¢/3)1 and (1 +&/2)A
is O (Y (n/k)e~%log*n). Dividing by e /6, we obtain the claimed bound.

5 From Approximate Levels to Shallow Cuttings

Having obtained an approximate level 7' as in Sect. 4, we would like to turn T into
a shallow cutting for L<x(F) by creating for each face ¢ of T a semi-unbounded
vertical pseudo-prism ¢ that consists of the points vertically below @. For brevity, we
will refer to these pseudo-prisms simply as prisms, and we denote them by 7. The only
issue is that the faces @ need not have constant complexity, so that the corresponding
prisms might be crossed by too many functions in F.

Thus, we decompose each face @ of T into sub-faces of constant complexity, using
two-dimensional vertical decomposition. More precisely, we project each face ¢ onto
the xy-plane, and we decompose the resulting projection g* into y-vertical pseudo-
trapezoids by erecting y-vertical segments from each vertex of ¢* and from each point
of vertical tangency on its boundary, extending them either into infinity or until they
hit another edge of @*. By planarity, the number of pseudo-trapezoids is proportional
to the complexity of @. We lift each resulting pseudo-trapezoid t* into a prism ,
consisting of all the points vertically below @ that project to v*.!° Our cutting Ay

10 A significant difference between the machinery used here and that for the case of planes, as in [29],
say, is that in the case of planes we only lift the vertices of the xy-map to the appropriate level (or to an

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 853

consists of all these prisms 7, and we denote by Ay the terrain formed by the ceilings
T, for T € Ay. Then, Ay is a refinement of Tx. As we will shortly show, Ay is indeed
a shallow cutting for L, (F). For each prism t € Ay, the conflict list CL(7) is the
set of functions of F that intersect t.

Lemma 5.1 Ay is a shallow cutting of the first k levels of A(F). It consists (in expec-
tation) of

_ n 1 2
O(Ax) =0 -5 log'n

prisms, and each prism in Ay intersects at least k and at most (1 + 2¢)k graphs of
functions of F.

Proof Let t € Ay and let p be vertex of the ceiling T of 7. By Lemma 4.1, the level
of pin A(F) isin [k, (1 4 &)k]. Thus, at most (1 + &)k functions in F pass below all
vertices of t. Furthermore, since T does not intersect any function in S, since Sy is
arelative (k/(2n), ¢ /3)-approximation for (¥, R), and since 7 induces a range in R,
by the second bound in (1), it follows that at most

functions of F cross 7. For any function f € F that intersects t either passes below
all vertices of T or crosses T, we get

CL(7)| < (1 + %)k — (1 4200k,

The construction of Ay ensures that | A | is proportional to the complexity of T, so,
by Lemma 4.3, it satisfies (in expectation) the bound asserted in the lemma. O

Remark More generally, Agarwal et al. [3] show the following: let ¥/ : N — Nbe such
that any m functions in F have a lower envelope of complexity v (m). Let F C F be
a set of n functions in F. Then, for any k € {1, ..., n — 1}, there exists a k-shallow
® (k/n)-cutting for F of size O (1 (n/k)). Our techniques also generalize to this case.
In particular, we obtain the following result.

Lemma5.2 For any k € {1,...,n — 1}, our sampling procedure yields a shallow
cutting Ay of the first k levels of A(F). It consists (in expectation) of O(|Ag]) =
O(E_Sw(n/k) logzn) prisms, and each prism in Ay intersects at least k and at most
(1 4 2¢e)k graphs of functions of F.

Proof We only need a more general bound on the complexity of T. By Clarkson—
Shor, in general, there are O(w(n/k)k3) vertices in L <(1y¢)k (F), so we get the bound
O (¢~ %y (n/k)log’n) in Lemma 4.2 and O (s> (n/k)log?n) in Lemma 4.3. Now,
the result follows as before. O

approximation of the level), and each triangular face is lifted to the convex hull of its vertices, which in
general is not contained in the level. In contrast, here we lift each pseudo-trapezoidal face from the xy-plane
to lie fully on the level.

@ Springer

854 Discrete & Computational Geometry (2020) 64:838-904

6 Randomized Incremental Construction of the < t Level

Again, let F be a family of bivariate functions in R3 with constant description com-
plexity and with linear lower envelope complexity. Let F be a subset of n members
of F, which we assume to be in general position, and let 0 < ¢ < n — 1. Our goal
is to construct the first ¢ levels of A(F). We describe an algorithm with expected
running time O (ntAz(t) log(n/t) logn) and with expected storage O (ntA(t)), where
s is a constant that depends on F, and A (¢) is the familiar Davenport—Schinzel bound
[49]. Our algorithm can be used to compute a vertical shallow cutting as prescribed
in Sect. 5, together with the conflict lists of its prisms.!!

We follow the standard randomized incremental construction (RIC) paradigm: we
insert the surfaces of F one at a time, in random order, and maintain, after each
insertion, the first 7 levels in the arrangement of the surfaces inserted so far (¢ stays
fixed during the process). Number the elements of F in the random insertion order as
fis..., fu,and put F; = {f1,..., fi}, fori = 1,...,n. As is standard in the RIC
approach, the algorithm maintains a decomposition (the standard vertical decompo-
sition in our case) of L <, (F;) into cells of constant description complexity (these are
not necessarily the semi-unbounded prisms of the vertical shallow cutting that we are
after—see below), and keeps the conflict list for each cell 7, i.e., the set of all functions
in F that cross 7. When the next function f; is inserted, the conflict lists can be used
to retrieve the cells that are crossed by f;y1. These cells are “destroyed”, as they no
longer appear in the new decomposition, and are partitioned by f;; into fragments.
These fragments are not necessarily valid prisms for the vertical decomposition of
L<;(F;+1), and may need to be merged and refined into the correct new cells. In addi-
tion, we have to construct the conflict lists of the new cells, which are obtained from
the conflict lists of the destroyed cells.

6.1 Computing the First t Levels

After each insertion, we maintain the vertical decomposition VD<;(F;) of L<;(F;),
the first ¢ levels of A(F;). We obtain VD, (F;) by applying two decomposition stages
to each cell of L, (F;). (We reiterate that this decomposition differs from the vertical
shallow decomposition used above, in the sense that its prisms are in general not
semi-unbounded; see below.)

We call a cell C of L<;(F;) astage-0 cell. In the first stage, we erect a vertical wall
within C through each edge e of L-,(F;) on dC. Each such wall is the union of all
maximal vertical segments that lie in (the closure of) C and pass through the points of
e. These walls partition C into stage-1 cells. Every stage-1 cell C’ has a unique ceiling
(“top” surface) and a unique floor (“bottom” surface). The ceiling and/or floor may
be undefined if C’ is unbounded. All other facets of C’ lie on the vertical walls. The
complexity of C’ may however still be arbitrarily large. Thus, in the second stage, we
take each stage-1 cell C’, project it onto the xy-plane, and apply a two-dimensional

11 In more detail, as will be described later, we run the algorithm on the entire set F, but stop it after
inserting ry functions [where ry is as given in (2)]. This will provide us with the conflict lists of the final
prisms with respect to the entire set F.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 855

vertical decomposition to the projection (C’)*. That is, as in Sect. 5, we erect a y-
vertical segment through each vertex of (C’)* and through each locally x-extremal
point on its boundary. This partitions (C’)* into y-vertical pseudo-trapezoids, and we
lift each such pseudo-trapezoid 7 back into R3 by forming the intersection (t x R)NC".
This yields a decomposition of C’ into prism-like stage-2 cells of constant description
complexity, referred to, for simplicity, just as prisms.'> More details can be found in
[19,49]. Collectively, all the stage-2 cells, over all cells C and all subcells C’, constitute
the vertical decomposition VD <;(F;).

6.1.1 Complexity of the Vertical Decomposition

As is well known, the complexity of VD, (F;) is proportional to the number of triples
(q.e,€), for e, ¢’ edges of L,(F;) and for ¢ € R?, so that ¢ belongs to the xy-
projections of e and ¢’, and the z-vertical line ¢, through ¢ meets no other surface of
F; between e and ¢’. We call (e, ') a vertically visible pair, and refer to (g, e, ¢’) as
a triple of vertical visibility. We assume that the pair (e, ¢’) is ordered so that e lies
above ¢’, i.e., we encounter e before e’ as we travel along ¢, from z = oo to z = —oo0.

The following crucial lemma, which we regard as one of the main contributions
of the paper, bounds the complexity of VD<(F;). It improves an earlier bound
of O(nt>*¢) by Agarwal et al. [3]. We define a parameter s as follows: For any
f1, f2, f3, fa € F,welets(f1, f2, f3, f4) denote the number of co-vertical pairs of
points ¢ € f1 N f2,q" € f3N fu. Then s = 59 + 2, where s is the maximum of
s(f1, f2, f3, fa), over all quadruples fi, f2, f3, fa € F. By our assumptions on F
(including general position), we have s = O(1), where the constant depends'® on
the complexity of the family F. We use A;(¢) to denote the maximum length of a
Davenport—Schinzel sequence of order s on ¢ symbols [49].

Lemma 6.1 Let F be a set of n functions of F, and let 1 <t < n — 1. The complexity
of VD<,(F) is O(nths(1)).

Proof Let e be an edge of L<,(F), and let F, € F be the functions in F that pass
vertically below some point on e. Since e is not crossed by any function of F,, each
f € F, appears below every point of e, implying that | F,| < . Let V, be the vertical
wall erected downward from e, all the way to z = —oo. Then, the complexity of
the upper envelope of F, clipped to V,, is at most Ag,(¢). Indeed, using a suitable
parametrization of e, the cross-sections of the functions in F, with V, are totally
defined univariate continuous functions, each pair of which intersect at most sq times.
This follows from the definition of sp, since the vertices of the arrangement of these
functions are exactly the intersection points of V, with edges ¢’ of L <;(F') that form co-
vertical pairs (e, ¢’) with e. Since the vertices of the upper envelope of these functions
stand in a 1-1 correspondence with the triples of vertical visibility pairs with e as the
top edge, the number of these pairs is at most A, (), as claimed.

A standard application of the Clarkson—Shor technique implies that L <;(F) has
O3 - n/t) = O(nt?) edges. This follows by charging the edges to their endpoints

12 Each prism is bounded by at most six surfaces of constant description complexity—see below.

13 In certain applications we can, and will, derive concrete bounds on s.

@ Springer

856 Discrete & Computational Geometry (2020) 64:838-904

and by using the fact that there are O (m) vertices on the lower envelope of any m
functions of F. This already gives a (weak) bound of O(ntz)»s0 (1) =~ nt3 on the
complexity of VD, (F).

The arguments so far follow the initial part of the analysis of Agarwal et al. [3],
but the next part is new and gives a sharper bound. Fix two functions f, f’ € F, and
let y = f N f’ be their intersection curve. We cut y at each singular and locally x-
extremal point. This decomposes y into O(1) connected x-monotone Jordan subarcs.
Recall that, in addition to general position of F, we also assume a generic coordinate
frame, so that no resulting piece lies within some yz-parallel plane.

We cut these arcs further at their intersections with the level L,(F'), and we keep
those portions that lie in L <;(F'). To control the number of such portions, we relax the
problem a bit, replacing the level ¢ by a larger level ¢’ with r < ¢’ < 2t, for which the
complexity of L (F) is O (nt). Since the overall complexity of L <o;(F) is O (nt?) (as
just noted), the average complexity of a level between ¢ and 2t is indeed O (nt). Thus,
there is a level ¢’ with the above properties. We will establish the asserted upper bound
for VD~ (F), which then also applies to VD<;(F). To keep the notation simple, we
continue to denote the top level ' as t.

Let I" be the set of all Jordan subarcs of some intersection curve that lies in L <;(F)
(now with the new, potentially larger, index ¢). If y € I'" does not fully lie below
L;(F), itends in at least one vertex of L;(F’), so the number of these y € I is O (nt).
Any other y € T is charged either to one of its endpoints, or, if it is unbounded
(and x-monotone), to its intersection with a plane at infinity, say Veo: x = +o00. If y
reaches Vo, it appears there as a vertex of the first ¢ levels of the cross-sections of
the functions in F with V. An application of the Clarkson—Shor technique to this
planar arrangement shows that there are O (nt) such vertices, so this also bounds the
number of these arcs in I'. Finally, we bound the number of y € I' with a singular
or locally x-extremal endpoint by charging y to this endpoint. The number of these
points lying in L, (F) is bounded by yet another application of the Clarkson—Shor
technique. Noting that each such point is now defined by only two functions of F, this
leads to the upper bound O (nt). Thus, |I'| = O(nt).

Fix anarc y € I', and let ;£(y) be the number of edges in L <;(F) on y. In general,
w(y) = 1. We decompose y into £(y) := [u(y)/t] pieces, each consisting of at most
t consecutive edges. By general position, if e; and e, are consecutive edges along y,
the set of functions of F that appear below e; and the set of functions that appear
below e differ exactly by the third function incident to the common endpoint of e
and e;. This implies that, for a piece § of y, the overall number of functions that appear
below § is at most 2¢. Some of these functions are now only partially defined. Arguing
as above, the number of vertically visible pairs whose top edge lies on § is at most
Aso+2(2t) = O(As(1)). Hence, the overall number of triples of vertical visibility in
L (F)is

0051+ Y 60 = 065 Y. (M + 1)
yel yel !
1
= 00(t) - (; Y)+ |F|).
yell

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 857

We have already seen that [I'| = O(nt). Furthermore, Zyer‘ u(y) is simply the

number of edges in L<;(F), which, as already argued, is O (nt?). It follows that the
number of vertically visible pairs in L<;(F) is O (ntis(t)). O

Remark Our analysis also works if the lower envelope complexity is not necessarily
linear. Let ¥/ : N — N be such that any m functions in F have a lower envelope of
complexity at most ¥ (m). Then we obtain the following bound.

Lemma 6.2 Let F be a family of functions with lower envelope complexity bounded
by Y (m), let F be a set of n functions of F, and let 1 <t < n — 1. The complexity of
VD (F) is O (> (n/1) A5 (1)).

Proof The proof proceeds exactly as the proof of Lemma 6.1, but with more general
bounds for the various structures associated with A(F). In particular, by the Clarkson—
Shor technique, the overall complexity of L<y,(F) now is O3y (n/1)), and hence
we can find a level 1 < t' < 2r such that L, has complexity O(t*y(n/1)). The
arguments for bounding |I"| remain valid, but now the complexity of the first 7 levels
of the planar arrangement on V,, and the number of singular or locally x-extremal
points in L, are both O(tzlﬂ(n / 1)).14 Proceeding with these bounds as before, we
obtain the claimed result. O

The randomized incremental construction. Although the high-level description of
the randomized incremental construction is fairly routine, the finer details are some-
what intricate, and their description is rather lengthy. We present the construction,
with full details, in Appendix A. As we will show, the expected running time of the
procedure is proportional to the expectation of

> (1 +[CL(x)]) logn. (4)

tell*

where IT* is the set of all prisms that are generated during the incremental process,
and where CL(7) is the conflict list of prism 7.

6.2 Analysis

We now bound the expected value of (4). Let IT be the set of all possible pseudo-
prisms. That is, we consider all possible sets Fj of at most six surfaces in F, and
for each such Fp, we construct the entire vertical decomposition VD(Fy) and add the
resulting prisms to IT.

We associate two weights with each prism t € II. The first weight wq(7) is the
size of its conflict list, that is wo(tr) = |CL(7)|. The second weight w™ (t) equals the
number of surfaces that pass fully below t. For simplicity, we focus on prisms that are
defined by exactly six functions; the treatment of prisms defined by fewer functions

14 To be precise, the bound on the complexity of the first # levels of the planar arrangement on Vs is only
0(12k s (n/t)), where Ay is a Davenport—Schinzel factor that accounts for the maximum number of times
two surfaces intersect. However, this is dominated by the other contributions, so we ignore this refinement
here.

@ Springer

858 Discrete & Computational Geometry (2020) 64:838-904

Fig. 2 A schematic illustration of a prism with three lower defining functions. The solid lines represent
actual intersections between surfaces, the dotted lines represent shadow edges or vertical edges. To belong
to L<;(F};), at most ¢ — 4 lower non-defining functions may belong to F;

is fully analogous. Let E(7) denote the set of defining functions of . As just said, we
only consider the case |E(t)| = 6.

Following a standard approach to the analysis of RICs, we proceed in two steps.
First, we estimate the probability that a prism with given weights ever appears in
L -;(F;). Then, we estimate the number of prisms t with weights w™(tr) < a and
wo(t) < b, using the Clarkson—Shor technique and several other considerations.
Finally, we combine the bounds to get the desired estimate on the expected running
time and storage of the algorithm.

Estimating the probability of a prism to appear. For the first step, let t € I be a
prism with six defining functions and with w™(t) = a, wo(r) = b. That is, T has
w™ (1) = alower surfaces and wo(t) = b crossing surfaces. Neither of w™ (7)), wo(7)
counts any of the defining functions of 7, although some of these functions might pass
below 7. The number of such ‘lower’ defining functions is always between 1 and 5,
because the floor is always such a lower function, and the ceiling is always excluded;
see Fig. 2.

The prism t appears in some VD, (F;) if and only if (i) the last function in E(7),
denoted as fg, is inserted before any of the b crossing surfaces; and (ii) atmost ' = r—§&
of the a lower non-defining surfaces are inserted before fg, where & > 1 is the number
of defining functions of t that pass below t, one of which is the floor of t.

The probability p, of this event can be calculated as follows. Restrict the random
insertion permutation to the a + b + 6 relevant surfaces (the a surfaces below 7, the b
surfaces crossing t, and the six surfaces in E(7)). To get a restricted permutation that
satisfies (i) and (ii), we first choose which function in E(7) is fg, then we choose some
Jj < min{a, '} of the a lower surfaces to precede fg, then we mix these j surfaces
with the five in E(7)\{ f¢}, and finally we place the remaining a — j lower surfaces
and all b crossing surfaces after fg. We thus get

min {a,t’} . .
B a\(j+3)(@a+b-—j)!
pr = /go 6<j> @ibi o) . (5)

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 859

We rewrite and bound each summand in (5) as follows.

6<a)(j+5)!(a+b—j)!
J (a+b+6)
_6al(j+9)!@+b—)
~ jla—= Dl a+b+6)!

6 la—j+D---(a—j+b) G+D---(j+5)
a+b+6 (a+1)---(a+b) (a+b+1)---(a+b+)5)

__ 6 a—j+b\’ i+s5 N
“a+b+6 a+b a+b+5

. 5
6 .< j+3).EJWWM[

<
“a+b+6 a+b+5
Let
Cap(j) = 6 Nk S-e_jb/(‘H'b)
@ a+b+6 \a+b+5

be our bound on the jth summand of (5). Note that with a, b fixed, ¢, 5(x) peaks at
x =5(a+b)/b—5 = 5a/b (the positive root of the derivative of ¢, ;(x) satisfies
5+ —b(x+ 5)5/(a + b) = 0). We estimate p, by replacing the sum by an
integral. That is,

min {a,t'}

min {a,t’} . .
+5)a+b—)
pe= Y 6<‘f>(] AR A)
j=0

pr; J (a+b+6)!

min {a,t'}+1 6
e / Gap(x) dx ©
0

. / 5
L /mm{a,t }+1 i e_xh/(a+h) dx:
a+b+6J a+b+3 |

IA

to justify the inequality between the sum and the integral in (6), it suffices to note that,
forx € [j, j+ 1],

. . 5
Pab (/) _ (JHSY —bj-x)/atb) ~ platb) _
@ap(x) \x+5 - -

for every j > 0. To estimate the integral, we substitute y = xb/(a + b). The upper
limit in the integral becomes

= (min{a, '} +1) - ——,
c:= (minfa,t'} + 1) >

@ Springer

860 Discrete & Computational Geometry (2020) 64:838-904

and we get

6e(a + b) Cly(a+b)/b+5\ _,
Pr S —————) e Vdy
b(a+b+6) Jy a+b+5

6e(a + b) a+b \’ [€ b\
= . y+ e Vdy
ba+b+6) \ba+b+5) J a+b
6e [€ 5b 1\’
< — Vdy. 7
_b6/0(y+a+b>e Y 0

The integral in (7) is at most

/ (v +5)e Y dy = 0(1).
0

Thus, !’ Pr = O(l/b6). For large ¢, we cannot improve this bound. However, if ¢ is
sufficiently small, bounding the integral in (7) by an absolute constant may be wasteful.
For a < t we will not refine the bound and use p, = O(1/b%). Consider now the
casea >t >t',s0c = (min{a, '} + 1)b/(a +b) = b(t' +1)/(a + b). As is easily
checked, the function ¢(y) = (y 4+ 5b/(a + b)) e~ is increasing on [0, S5a/(a + b)],
so when

b(t'+1) S5a , Sa
Cc = =<) =
a+b T a+b b

we bound the integral in (7) by c¢(c), and get'®

5
6e b(t'+1) (b(t’ + 6)) bW+ /@ +h)

< — .
Pr=06""0a5xb \axb

0 1° o ht/a@) Z o ©
(a + b)° ab)’

Thus, we can bound p; in terms of a and b. Denoting this bound by p(a, b), we have

0(1/b%, fora <bt/5ora<t,

8
0(t°/a®), fora > bt/Sanda > 1. ®

pla,b) = {

(Unless b is very small, the constraint ¢ < f or @ > ¢ is subsumed by the other
respective constraint.)

Bounding the number of prisms of small weights. We next estimate the number of
prisms 7 € IT with w™(r) < a and wo(r) < b. We denote this quantity as N<,, <p.

15 Technically, we should write this as O (1/(b + 1)6), to cater also for the case b = 0. We gloss over this
trifle issue, as is common in other works too, to simplify the notation.

16 Again, we should write a + 1 in the final expression.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 861

We also use the notation N, 5 for the number of prisms v € IT with w™ (r) = a and
wo(t) = b.

Lemma 6.3 The number of prisms t with w=(t) < a and wo(t) < b is O(nb>), for
a < b, and O(nab*i(a/b)), fora > b.

Proof Set p = 1/b, and let R C F be a random sample of size pn.

Case I1: a < b. We assume thatb < n/10,s0 p = 1/b > 10/n. Fix a prism t € II,
defined by six functions, with w™(tr) =i and wo(r) = j, withi <a, j < b. Let g,
be the probability that R contains (i) the defining set E(7); (ii) none of the j crossing
functions; and (iii) none of the i lower functions. By elementary probability,

()

a+b—ln_np_k 5 np —1 a+b—1 np 5 np —1
- 11 T = (-, T
o n—6—k 1=0n_l o n—k o "

IV

(8 -3) -260)

this follows since we set p = 1/b and assumed that @ < b and b < n/10, so that
n—k>n—a—-—b>n—-2b >n/2andnp —1 > np —5 > np/2. If the
event holds, T becomes a prism in VD<g(R). By Lemma 6.1, the number of such
prisms is O(|R|) = O(n/b). This yields, as a variant of the Clarkson—Shor theory,
Ney<p = O (nb?). This bound also holds trivially if b > n/10, since there are at
most O (n%) prisms in total.

Case 2: a > b. Again, we assume that b < n/10, so we have p = 1/b > 10/n.
Also, we require that n is more than a large enough constant. We put &y = 2a/b and
& = &) + v, where v is the number of defining functions of 7 that pass below 7. As
before, fix a prism 7 € I, defined by six functions, with w™ (t) =i and wo(t) = j,
i < a, j < b. The probability ¢, that T appears in VD¢ (R) is the probability that
R contains (i) the defining set E(t); (ii) none of the j crossing functions; and (iii) at
most &y of the i lower functions. Similarly to Case 1, the probability that (i) and (ii)
hold is at least (p/2)°(1 — p/2)? = (1/b°). Conditioned on (i) and (ii) holding, (iii)
is the event that when choosing np — 6 out of n — 6 — j functions, we obtain at most
&p of the i lower functions. The number of the lower functions in the sample follows
a hypergeometric distribution, with expected value

np —6 <. np <i.11p<£
n—6-—b " 9 —

i .
n—6—j 9

)

S

using our assumption that » < n/10 and that n is large enough. Now, the Chernoff
bound for the hypergeometric distribution (see [21] and [43, Thm. 5.2 and Cor. 4.4])

@ Springer

862 Discrete & Computational Geometry (2020) 64:838-904

Ad
a= bt/5
V)
ay~=ntpt----
:
v/ |
: :
1 1
(I): (H): DN\ a+ b=n—6
t I . :
I ! :
VI] | -~
VD 5 bo=5n/t b= n/2 b

Fig.3 The decomposition of the (a, b)-range into subranges

implies that the failure probability, of choosing more than &y = 2a/b lower functions,
is at most e~4/100) < ,=1/10 Hence, we have qgr = Q (1/b6). To complete the
Clarkson—Shor analysis, we need an upper bound on the number of prismsin VD <¢ (R).
By Lemma 6.1, this is O (§1;(§)|R]). The analysis thus yields

Neg,<p = O(bnp - £45(6)) = O(b°(n/b)(a/b)as(a/b))
= O(nab*is(a/b)),

as asserted. Again, the bound holds trivially if b > n/10 or if n is constant. O

Remark As usual, the bounds generalize to superlinear lower envelope complexity.
Lety: N — Nbe such that any m functions in F have a lower envelope of complexity
at most ¥ (m), and suppose that m +— 1 (m)/m is monotonically increasing. Then we
obtain the following bound.

Lemma 6.4 The number of prisms T withw™ (t) < a and wo(t) < bis 0(b61,0(n/b))
fora < b, and O(a*b*yr(n/a)rs(a/b)) fora > b.

Proof The reasoning is analogous to that in the proof of Lemma 6.3, but we replace the
bounds from Lemma 6.1 with the bounds from Lemma 6.2. In particular, in Case 1, the

vertical decomposition VD<g(R) has O (y(n/b)) prisms, and in Case 2, the vertical
decomposition VD<¢ (R) has

0((a/b)*y (n/b)(b/2a))rs(2a/b)) = O((a/b)*y (n/a)rs(a/b))

prisms. (Since we assumed that v (m) /m is increasing, we have ¥ (n/2a) < ¥ (n/a).)
O

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 863

We can now combine all the bounds derived so far, and bound (i) the expected
number of prisms that are ever generated in the RIC, and (ii) the expected overall size
of their conflict lists, which, as explained above, dominates the running time of the
algorithm (with an additional logarithmic factor). The expected number of prisms is
simply

D ope=Y_> pla,b)Ney. ©)
b

tell a

Similarly, the expected overall size of the conflict lists is

Y wo(t)pe =YY bp(a,b)Nas. (10)

tell a b

We bound these sums separately for pairs (a, b) within each of the six regions depicted
in Fig. 3. Together, these regions cover the entire range a, b > 0,a +b <n — 6. As
will follow from the forthcoming analysis, the most expensive prisms are those for
which (a, b) lies in region (I) or region (IV).

Region (I) In this region, 5 < b < 5n/t and 0 < a < bt/5. We cover the region
by vertical slabs of the form S; := {(a,b) | bj—1 < b < bj}, for j > 1, where
b;j=5- 27 for J =0,...,[log(n/k)]. Within each slab §;, the maximum value of
pr is 0(1/1;?71) = 0(1/257), and we bound > (@.byes; Na.b bY N<b;/5,<p; which,
by Lemma 6.3, is

O(n(bjt/5)bjas(t/5)) = O(nbjtrs(1)) = 02> ntrs(1)).

Hence, the contribution of S; to (9) is at most

O(ntkbj(t)>’
2J

and, summing this over j, we get that the contribution of region (I) to (9) is O (ntA(2)).
Similarly, the contribution of §; to (10) is at most

0(19,- . ’”;f”) = O(ntrs(1)).

We need to multiply this bound by the number of slabs, which, as is easily checked,
is O(log(n/t)). Hence, the contribution of region (I) to (10) is O (nt A (¢) log(n/t)).

Region (II) In this region, 5n/t <b <n/2and0 < a < n—6—b. Here too we cover
the region by vertical slabs of the form S} = {(a, b) | b;._l <b< b;}, for j > 1,
where b} = (5n/t) -2/, for j =0, ..., [log(¢/10)]. Within each S;, the maximum
value of p; is 0(1/(b;71)6) = 0(t%/(n®2%7)), and we bound Z(a,b)es} Ny by

@ Springer

864 Discrete & Computational Geometry (2020) 64:838-904

NSn—b}_l —6.<b), which, by Lemma 6.3, is (upper-bounding n — b’._, — 6 by n)

j—1
O (n*B))*xs (/b)) = O(n*(n/)* 25 15(1/27)) = 02 nOhs(1) /17).

Hence, the contribution of S; to (9) is at most O (t2x,(¢)/237), and, summing this
over j, we get that the contribution of region (II) to (9) is O (t2hs(1)) = O (nthrs(t)).
Similarly, the contribution of S} to (10) is at most

O(B11s(1)/237) = O (nt 2s(1)/2%),

and, summing this over j, we get that the contribution of region (II) to (10) is
O (nt 1g(1)).

Region (IIT) In this region, n/2 < b < nand 0 < a < n — 6 — b. We treat this
region as a single entity. The maximum value of p, here is O(1/1°), and we bound
Z(a.pyeq) Na,b by the overall number of prisms, which is O (n®), getting a negligible
contribution to (9) of only O(1). A similar argument shows that the contribution of
this region to (10) is O (n), again negligible compared with the other regions.

Region (IV) In this region, t < a <ag~nand 0 < b < 5a/t. We cover the region
by horizontal slabs of the form S}/ ={(a,b) | aj_1 <a < aj}, for j > 1, where

aj =1t - 2/, for j =0, ..., log(ap/t)] = O(log(n/t)). Within each slab S}’, the
maximum value of p; is 0(t6/a?_1) = 0(1/2%), and we bound Z(u,b)es_’/ Ng,p by
N<a;,<5a4;/¢ Which, by Lemma 6.3, is

O(naj(5a;/0)*xs(t/5)) = O(najis(t)/t*) = 0(2>nt s(1)).

Hence, the contribution of S}’ to (9) is at most

nt Ag(t)
o(75)

and, summing this over j, we get that the contribution of region (IV) to (9) is
O (nthg(t)). Similarly, the contribution of S}’ to (10) is at most

O(E . nt)LA:(t)

; Y) = O(nt As(1)).

Since the number of slabs is O (log(n/t)), region (IV) contributes O (nt A (t) log(n/t))
to (10).

Region (V) In this region, ag < a <nand0 < b < n —a — 6. We treat this region as
a single entity. The maximum value of p, in this region is O (t®/n®), and we bound
> @.byev) Na,p by

Nep <snye = O(n>(5n/1)*xs(1/5)) = O (1) /1%).

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 865

Hence, the contribution of region (V) to (9) is at most O (12)4(1)) = O(nt As(t)). For
the contribution to (10), we multiply this bound by O(n/t), an upper bound on b in
this region, and get

O((n/1) - 25(0)) = O(nt As(1)),

Region (VI) Finally, we consider this region, which is given by 0 < a < r and
0 < b < 5. Here we upper-bound p, simply by 1, and bound Z(a,b)e(VI) Ngp by
N<; <5, whichis O (nt As(t)). Hence, the contribution of region (VI) to (9) is at most
O (nt As(1)). Since b is bounded by a constant in this region, the same expression also
bounds the contribution of region (VI) to (10).

In conclusion, taking the additional logarithmic factor into account, we have the
following main result of this section.

Theorem 6.5 The first t levels of an arrangement of the graphs of n continuous
totally defined algebraic functions of constant description complexity, for which
the complexity of the lower envelope of any m functions is O(m), can be con-
structed by a randomized incremental algorithm, whose expected running time is
O (nt Lg(t) log(n/t) logn), and whose expected storage is O (nt As(t)).

The result for superlinear lower envelope complexity is as follows.

Theorem 6.6 The first t levels of an arrangement of the graphs of n continuous totally
defined algebraic functions of constant description complexity, for which the complex-
ity of the lower envelope of any m functions is at most ¥ (m), where m +— ¥ (m)/m
increases monotonically, can be constructed by a randomized incremental algorithm,
with expected running time

O (Y (n/H)rs(t) log(n /1) logn),

and expected storage O (t*y (n/t)r(1)).

Proof We again consider the six regions for (a,b), but with the bounds from
Lemma 6.4. In region (I), the bound on N<bj1/5,<b; within a slab §; is O(26jt2 .
¥ (n/(271))As(1)), so the contribution of S; is atmost O (1> (n/(271)) A(t)), resulting
in a total contribution of O (tzlﬂ (n/t)As(2)) for region (I) to the number of prisms, and
O(IZw(n/t)ks (t)log(n/t)) to the conflict size. In region (II), the bound on anéb}
within a slab S’ is O(y(1) - n%237(r)/1*). Thus, the bound for region (II) fol-
lows as before. The argument for region (III) is also the same. In region (IV), the
bound on N<4; <sa;/i is O(t?2% 4 (n/(127))As(1)), so the contribution of the slab
S}’ is O(t>y (n/(127))A4(1)). By our assumption on v, this sums to a total contribu-
tion of 0(t21/f(n/t)ks(t)) to the number of prisms and of O(tzw(n/t)ks (t) log(n/t))
to the conflict size. In region (V), the bound on N<j <5,/ is O(W(l)néks (t)/t4),
and the argument proceeds as before. Finally, in region (VI), the bound on N<; <5 is
O (129 (n /1) (1)). The claim follows. O

@ Springer

866 Discrete & Computational Geometry (2020) 64:838-904

7 Improved Dynamic Maintenance of Lower Envelopes for Planes

We present our interpretation of Chan’s technique for dynamically maintaining the
lower envelope of a set H of non-vertical planes in R? under insertions and deletions.
In the next section, we will combine this structure with the results from the previous
sections to obtain a data structure that supports polylogarithmic update and query
time for maintaining the lower envelope of general surfaces. As before, maintaining
the lower envelope means that we can efficiently answer point location queries, each
specifying a point ¢ € R? and asking for the lowest plane above ¢.

Our exposition proceeds in three steps: We begin with a static structure, then develop
a simple variant (with a not so simple analysis) of a standard technique for handling
insertions, and finally describe how to perform deletions. With the help of a simple
charging argument in the analysis of the static structure, we also improve Chan’s
original (amortized) deletion time by a logarithmic factor, from O (log®n) to O (log>n),
the first improvement in more than ten years. Subsequently to this work, Chan found an
additional improvement, resulting in amortized deletion time O (log*n) and amortized
insertion time O (log”n) [14]. This further improvement is based on the improvement
presented in this section, combined with an improved algorithm for the data structure
used in the static case.

7.1 A Static Structure

Let H be a fixed set of n non-vertical planes in R3. We fix a constant kg > 1, and
define the sequence k; = 27 ko, for j=0,1,...,m, where m = |log(n/ko)]. We
have k,, € (n/2, n].

Next, we construct a sequence {A ;} > of vertical shallow cuttings, for j = m +
1,...,0,as follows: the shallow cutting A, consists of a single prism t that covers
all of R? and has conflict list CL(7) = H (the shallowness is vacuously satisfied here).
Next, we set H,, = H and n,, = n, and we start with j = m. In round j, we have
aset H; C H of n; < n surviving planes, and we construct a vertical k j-shallow
(akj/nj)-cutting A ; for A(H;), for a suitable constant & > 1 (the same constant
for all rounds; see Sect. 3, and also [16,29]). The reason for using this hierarchy
of cuttings will become clear when we discuss deletions, in Sect. 7.3. That is, A ;
consists of O(n;/k;) semi-unbounded vertical prisms whose ceilings form the faces
of a polyhedral terrain A ;. The terrain A ; lies fully above level k ;, and the conflict list
CL(7) of eachprism T € A, consisting of the planes from H; that cross 7, is of size at
most ak ;. After constructing A ;, we identify the set H* C H; of planes that belong
to more than c log n conflict lists in all cuttings A, ..., A constructed so far;!7 here
c is some sufficiently large constant that we will specify later. We remove the planes
in H* from the conflict lists of A ; (but not from those of the higher levels A 1, for
J' > Jj), and we set Hj_| = Hj\HX and nj_1 = |H;_1| for the next round. This

17 We note, for the expert reader, that this is the point where our construction improves over Chan’s original
result, since Chan’s pruning strategy considers each cutting individually. Our approach ensures that each
plane appears in O (log n) conflict lists in a substructure, whereas in Chan’s structure the bound is O (logzn).
Lemma 7.1 shows that the more aggressive pruning does not remove too many planes.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 867

pruning mechanism ensures that each plane of H appears in at most ¢ logn (pruned)
conflict lists, within the current hierarchy of cuttings, which is crucial for the efficiency
of the dynamic algorithm, to be presented in the next two subsections. Note that A i1
is not necessarily “lower” than A ;, since the former cutting is constructed with respect
to a potentially smaller set of planes (and can therefore contain points that lie above
Kj, even though it approximates a lower-indexed level). We stop after performing the
pruning step for Ag. The conflict lists of Ay will be used for answering queries. (To
support deletions, we will also need the conflict lists of A j, for j > 1; see below.)
We denote by DV the structure consisting of the shallow cuttings A 11, Ay, - .., Ag
and the pruned conflict lists of their prisms. We write S(D!) for the set of surviving
planes in D (those that were not pruned at any stage), and C(D") = H for the
initial set of planes. We say that S (DW) is stored in DV and that C(DV) was used
to construct DV, The planes in C(DM)\S(DW) are the pruned planes in D1V, We
emphasize again that in general a pruned plane still shows up in some conflict lists of
some of the cuttings A ; (for indices j higher than the one at which it was pruned). The
difference is that the stored planes are kept only in D)), whereas the pruned planes
are also passed to subsequent substructures, as we will soon describe. The following
lemma bounds the size of S(DV).

Lemma 7.1 For any ¢ € (0, 1) there exists a sufficiently large (but constant) choice
of ¢ (the coefficient in the threshold clog n, beyond which we prune planes), such that
ISP = (1 =)

Proof Define the potential ®(j) as the total “stored size” of the conflict lists of
Ap, ..., Aj, after the pruning step in round j, and set ®(m + 1) = 0. By the stored
size of a conflict list CL(7), of some prism t of some cutting, we mean the number of
planes in CL(7) that have not been pruned yet, at any of the steps m, m — 1, ..., j.!3
Since A j has O (n/k;) prisms, and each conflictlist of A ; has O (k) planes, the over-
all size of the conflict lists of A; is O(n;) = O(n). Hence, in round j, we increase
® by at most yn, for some fixed y > 0, where the increase is caused by the conflict
lists of the prisms of the new cutting. If a plane 4 is pruned at this stage, then & lies
in at least ¢ logn conflict lists of all stages processed so far (including those at the
present stage), and has to be removed from the stored size count of these prisms, so
this decreases @ by at least ¢ logn. Since @ is initially O and is never negative, and
since we increase it by at most yn logn units throughout the construction, it follows
that we prune at most ¢{n planes, if we choose ¢ > y/¢. O

We fix the fraction { = 1/32, and use the corresponding coefficient ¢ in the construc-
tion. We set HY = H and H® = c(DWN\SDWV) = H\S(DWD) (that is, H®
consists of the planes that we have pruned). As just argued, we have |H®| < ¢n.
We repeat the process with the set H®), obtaining an analogous structure D® and a
remainder set H®) = C(D(z))\S(D(z)) = H(z)\S(D(z)) of at most §2n planes that
were pruned in D . Proceeding in this manner, for s < log; /e = (1/5)logn steps,
we obtain the complete target (static) structure D = (D(l), D@ ., D(S)), where

18 Some of these planes might be pruned, later, from the conflict lists of some lower-indexed cuttings, and
then they will no longer be counted in the stored size of 7.

@ Springer

868 Discrete & Computational Geometry (2020) 64:838-904

DY) involves only a constant number of planes. Thus, in the last step, the overall size
of the conflict lists is (much) smaller than c logn, so all of these planes are stored,
and the process can ‘safely’ terminate. By construction, the sets S(D®)) are pairwise
disjoint and their union is H. For each i, let m; = [log(|[H"|/kg)| = O(logn) be
the number of cuttings in DY The overall size of DO, including the conflict lists, is

o [HO]

0
kj

ki | = 0(HD|m;) = 0(H |logn).

j=0
Since by Lemma 7.1, we have |[H®| < ¢i=!n, the overall size of D is O (nlogn)."”
Using the algorithm of Chan and Tsakalidis [16], we construct each cutting A ;, includ-
ing its associated conflict lists, in any D@ in O(|H®|logn) time. Summing over
j» we can construct D@ in O (|H®|log?n) time, and summing over i, recalling that
|H®| decreases geometrically with i, we get a total running time O (n log?n).”° We
write this bound as an logzn, for a suitable concrete coefficient a.

Answering a query is easy: Given g € R?, we iterate over all O (log) substructures
D@ and we find the prism 7 of the cutting Ao in P® whose xy-projection contains
q (or possibly O(1) prisms, if the query ¢ is not in general position and falls on the
boundary of several such prisms). This takes O(logn) time, with a suitable point-
location structure for the xy-projection of Ag. We then search the conflict list CL(t)
of 7, in brute force, for the lowest plane over g (or possibly planes, in case when g
is not in general position). This requires O (kg) = O (1) time. We return the plane (or
planes) lowest over ¢ among all O (log 1) candidates. The query time is thus O (log?n).
The correctness of this procedure is obvious, and follows from the property that the
ceilings of the prisms in Ao (for any D;) pass above level kg > 1 of A(H®), so the
lowest plane of H® over g belongs to the conflict list of the corresponding prism.

7.2 Handling Insertions

Here, we explain how to maintain the lower envelope of a set H of non-vertical
planes in R3 under insertions, where the notion of maintenance is as defined in the
preceding section. For simplicity, at each point in time, we denote the current number
of planes in the data structure by n. Furthermore, we use N to denote the power of 2
satisfyingn € [N, 2N). Whenever n becomes too large, we double the value of N. Our
structure uses a variant of a standard technique, introduced by Bentley and Saxe [7]
and later refined in Overmars and van Leeuwen [44] (see also Erickson’s notes [26]).
Specifically, we maintain a sequence Z = (B;,, B;,, ..., B;,) of structures, where
0 <ip < iy < ... < ir. The indices i; are not fixed, are not necessarily contiguous,
and may change after each insertion. Informally, we have an infinite sequence of bins,
indexedby0, 1,2, ...,and i, is the index of the bin that stores Bij, forj=0,1,...,k.

19 Note that if we did not have to account for the conflict lists, the sum would have been O(n). Later, we
will reduce the storage, including the conflict lists, to linear, by representing the conflict lists implicitly.

20 We note, again, that the recent improvement of Chan [14] comes from decreasing the running time of
this preprocessing step to O (n logn), while the rest of the algorithm remains essentially unchanged.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 869

We refer to I5; as the structure at location (or bin) i. Lemma 7.2 below shows that i,
and thus also k, are O (logn). Each B,-j is a substructure D™ of some static structure
D, as in Sect. 7.1, constructed over some subset of H. We maintain the following
invariants.

(I1) For each occupied index i, we have 21 =1 < |S(B;)| < 2.
(I2) The sets S(B;), over the occupied indices i, are pairwise disjoint, and their union
is H.

For each plane & € H, we say that h is stored at location i if h € S(B;).

Inserting a plane To insert a plane &, we determine the smallest index of an empty
bin, i.e., the smallest integer j > 0 that is not in the sequence (ig, i, ..., k). If j =0,
we store & in a trivial structure By of size 1. Otherwise, we have (ip, ...,ij—1) =
O,...,j — 1), and we set H; := {h} U U{;& S(B;). Assuming inductively that
invariants (I1) and (I2) hold prior to the insertion of /2, we have

j-1 j-1

|Hj| =1 +Z|S(Bl~)| > 1+22"*1 >2/71 and (11)
i=0 i=0
j—1 j—1

|Hjl =1+ [SB) <1+ 2/ =2/ (12)
i=0 i=0

We construct over H; astatic structure D, as in Sect. 7.1. Recall that D is a sequence of a

logarithmic number of substructures, DV, D@ .. D where (recall Lemma 7.1)
log |Hj| J i .
s <logy, |Hj| = I < =< <j,
log(1/¢) — log(1/¢) 5
by (12) and our choice of ¢ = 1/32. We remove the current structures By, ..., B;_|
from Z. Then, for each substructure D™ constructed for H j.foru=1,...,s,weset

Bi, := D" for i, = [log |S(D™)|], and add B;, to Z.

We have C(DV) = H;. By Lemma 7.1 and (11), [S(DV)| > (1 —¢)|H;| > (1 —
£)2/71 > 2772 (recall that ¢ = 1/32), so it follows that D! is placed in bin j or j —1.
Moreover, by Lemma 7.1, we have | S(D®+D)| < ¢ |C(D®™)| < ¢|S(D™)|/(1 - ¢),
so the corresponding indices satisfy

iut1 = [log|S(DU“TV)] < 1+ log |S(D“FD))|

Z1S(DW)]
T
= log |S(D(u))| —log 15.5 < [log |S(’D(u))|'| —log15.5 = i, — log 15.5,

<l+1lo =1+ log|S(D"™)| —log31

since ¢ = 1/32. That is, since both i, and i,,4 are integers, i, 41 < i, — 4. Hence,
each structure D™ is assigned a different index i < j (with a gap of at least three
empty bins between consecutive occupied ones) and invariants (I1) and (I2) hold by
construction ((I1) follows from the definition of the indices i,).

@ Springer

870 Discrete & Computational Geometry (2020) 64:838-904

Answering a query To answer a query g, we find in each substructure 3; of Z the
prism (or prisms, in case of a non-generic query) of the corresponding lowest-index
cutting Ay whose xy-projection contains the query point g, and we search over the
at most ko planes of its conflict list for the lowest ones over g. We output the lowest
among all these planes, over all substructures. This takes O (logn) time per structure,
as in the static case.

The correctness of this procedure follows from invariant (I2). Indeed, if 2 is a lowest
plane over aquery pointg,thenh € S (DY) for some unique i (by invariant (I12)). Since
h is stored at D), it has not been pruned from any conflict list of this substructure. Let ©
be a prism of the lowest-indexed cutting A of D) whose x y-projection contains g. By
construction, the ceiling of t lies above the ko-level of the corresponding arrangement,
which implies that 2 must lie in T over ¢. This, and the fact that / has not been pruned,
implies that 2 belongs to the (pruned) conflict list CL(7), so the query will encounter
h, and thus will output it as the correct answer. The following lemma bounds the size
of 7.

Lemma 7.2 The largest index of an occupied bin is at most log N + 1, and thus the
number of structures in T is at most log N + 2.

Proof By definition, the number of planes in the structure satisfies n < 2N and, by
invariant (I1), the largest index i € Z satisfies

271 < |SBi)| <n <2N or i<1+1log2N)=1logN +2,

thatis i < log N + 1 (since log N is an integer). O

Running time We now bound the running time of our insertion-only structure. In
particular, we are going to show that the deterministic amortized cost of an insertion
is O(log’n) and the deterministic worst-case cost of a query is still O (log’n), as in
the static case.

Indeed, the bound on the query time is immediate by Lemma 7.2 and the observation
preceding it, because log N = O (logn). To analyze the amortized insertion cost, we
use a charging argument. Each plane 4 that is currently stored in Z holds b(w — i)
credits, each worth a logzN units, where i is the current unique location (bin index)
of the structure ; for which & € S(15;), and w := log N + 2 bounds, by Lemma 7.2,
the maximum length of Z. Here a is the coefficient of the bound an log’n for the
construction time of the static structure on n planes (see Sect. 7.1), and b is some
absolute constant to be fixed shortly. Note that the number of credits held by a plane
h is larger when the bin index where # is stored is smaller.

We define the potential WV of the structure as the overall number of units of credit
that its planes hold. The amortized cost of an insertion is defined to be bw credits,
that is, abw log?> N units. When a new plane is inserted, we give it bw credits, that
is, abw log? N units of credit. The unit size depends on N, so the whole charging
scheme has to be updated every time N is doubled. Specifically, when N is doubled,
the increase in the size of a credit is

alog?(2N) —alog’?N = a(1 +log N)* — alog’N = a(1 + 2log N).

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 871

We have 2N planes in the structure at this moment, and each of them carries at most bw
credits. Hence, updating the overall amount of credit in the structure in this doubling
costs O(Nw log N) units, which is O (N logzN). There are only O (logn) doubling
steps, and the N’s that they involve are powers of 2, implying that the overall additional
cost of updating the credit distribution during doublings of N is O (nlog®n). In what
follows we ignore this issue of updating the credit size, whose cost will be subsumed
by the overall cost of the insertions, and just use the number of credits in our charging
scheme.?!

We recall that, when inserting a new plane 4, we destroy a prefix of j substructures
in Z, put all their planes, including £, in a subset H;, compute a new static structure D
for H, and spread its substructures D into some subset of bins with indices from Jj
downwards. Sett = | H;|. As noted above, by the analysis in Sect. 7.1, the real cost of
the insertion is at most at logzt, or, in other words, at most ¢ credits. The main claim
in the complexity analysis of insertions is the following lemma.

Lemma 7.3 With the above notations, for a sufficiently large choice of the constant b,
we have

atlogzt + AV < abw logzN, (13)

where AV = Wt — W~ where W and W™ are, respectively, the values of the
potential just after and just before the insertion.

Proof Consider the sequence DL DO . DO of substructures that we construct
over H;, where s = Llogw |Hj|]. Recall that by (11) and (12), we have that 2/-1 <
t = |Hj| < 2. In particular, s < (1/5)logr < j/5 < j. As already noted, by
Lemma 7.1, [S(DM)| > (1—-¢)r > (1—¢) 277!, and consequently (since ¢ = 1/32),
the structure D is placed either in bin j or bin j — 1. Furthermore, the lower bound
in invariant (I1) shows that before the insertion, at least le:—lz 27141 >2/72 > 1/4

planes of H; were stored atbinsi = 0, 1, ..., j—2 (the +1is for bin 0, which contains
exactly one plane). Since |S(D(l))| > (1 —¢)t, it follows that at least /4 — ¢t among
the planes that were stored inbinsi =0, 1, ..., j —2,end up at B; or B following

the insertion. These planes release at least bt (1/4 — ¢) credits, that is, they decrease
W by at least these many credits.

The technical issue that we need to address is that some planes in D@ ..., DW
may require more credits than what they had before the insertion, if they end up in
smaller-indexed bins than the bins in which they were stored before the insertion. We
claim that the overall amount of this extra credit is much smaller than the amount of
released credit, so the released credit (more than) suffices to fill in the required extra
credit, thereby making each plane hold the correct amount of credit, with change to
spare. That is, the insertion does cause W to decrease.

To show this, let (j — 1) — j; be the bin index in which we put DD for2 <i <s.
In the worst case, each plane of DY was stored in bin j — 1 before the insertion and
now requires bj; additional credits. (Note that 4 does not participate in this argument:

21 Again, Chan’s improvement [14] is reflected in this scheme by reducing the size of a credit to O (log N),
leaving the rest of the analysis unchanged.

@ Springer

872 Discrete & Computational Geometry (2020) 64:838-904

it cannot release any credit since it did not exist before the insertion; nevertheless, the
credits that it gets as it is being inserted more than suffice for any bin / is eventually
placed in.) Summing up, we get that the number of additional credits that we need
to give the planes is at most b ;_, ji|S (D). From the definition of the insertion
mechanism, we get that (j —1)— j; = [log |S(D)|], so the total number of additional
credits that we need to give these planes is at most

b IS =b) (j ~ 1~ log [SD)1)ISDD)|

i=2 i=2 (14)

<53 (j - 1 = log [SDD)))|SDD)).
i=2

Since the function x — (j — 1 — logx)x is increasing for 0 < x < 2/-1=1/In2 »
272442 and |S(D(i))| < ;i_lt < 2773 for everyi = 2,...,s and for ¢ = 1/32,
we can bound the last expression in (14) by replacing |S(DV)| with ¢/~ 'z, for every
i=2,...,s,s0 we get that

N

by (j = 1=1log|SOD)SDD) <by (j — 1 ~log(c""'n)¢" 1.

=2 i=2

Since t > 277!, we can bound the right-hand side by

_bt2§i_l logé_i—l — bt log%Z(l — 1)§-i—1 < Sbl‘Zlé‘l = %
i=2 i=2 =

We conclude that, for ¢ = 1/32, the sum is smaller than bt /6, so we still have more

than
1 1 bt 5bt
bt|-—— | —— = —
4 32 6 96

free credits. By construction, this free creditis ¥~ — W™ = — AW, to which we add
the bw credits we gave h upon insertion. Hence, if b is large enough, say at least 20,
we have bw — AW > t. Since the real insertion cost is at most ¢ credits, it follows that
the released credit suffices to pay for the real insertion cost (with change to spare),
and the lemma follows. O

Corollary 7.4 The overall cost of n insertions is O (nlog>n).

Proof As already mentioned, we ignore the changes in the size of the credits caused by
doublings of N; as noted, this adds only O (n logZn) to the overall cost. We add up the
inequalities (13), over all insertions, and get that the overall actual cost of the insertions
plus Wenal — Winitial, 18 at most O (nw logzn) =0 log3n). Since Weinal — Yinitial > 0,
this also bounds the actual cost of n insertions. m|

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 873

We note that Chan’s recent improvement [14] follows from this corollary, simply by
reducing the size of a single credit to O (log N), and leaving the rest of the analysis
intact. The following lemma summarizes the properties of our insertion-only structure.

Lemma 7.5 The deterministic amortized cost of an insertion is O(log>n), and the
deterministic worst-case cost of a query is O (log”n).

7.3 Handling Deletions

Finally, we describe how to maintain the lower envelope of a set H of non-vertical
planes in R3 under insertions and deletions. As before, we denote the current number
of planes in the data structure by n, and we use N to denote the power of 2 with
n € [N,2N). Now we add a global rebuilding mechanism: whenever the number
of updates (insertions and deletions) since the last global rebuild becomes N /2, we
completely rebuild the data structure from scratch for the current set H, and we adjust
(double or half) the value of N, if needed, to restore the size range invariant.?? We will
argue later that the overall cost of the rebuildings is subsumed in (and actually much
smaller than) the cost of the other steps of the algorithm.

The basic organization of the data structure is the same as in Sect. 7.2, consisting of
a sequence of bins Z = (B;,, B;,, ..., B;,), where 0 < iy < i < ... < i, occupied
by substructures of some static structures. For each such substructure, we continue to
denote by C(B;) the set of planes that it was constructed from, and by S(B;) € C(B;)
the subset of planes that survived (are stored) in it

Insertions and queries are performed in much the same way as in Sect. 7.2, although
some aspects of their implementation and analysis are different; see below for details.
We delete a plane & by visiting each substructure B; with 7 € C(B;), and marking
h as deleted in each conflict list of B; that contains & (note that this is done also
for substructures in which £ has not survived the initial construction, because it was
pruned at some level of the hierarchy). Each plane can get marked, at the time it is
deleted, up to 0(10g2n) times, once for each conflict list that contains it at the time
when the deletion takes place. (Recall that, at each B; with i € C(B;), h appears in
at most O (logn) (pruned) conflict lists, over the entire hierarchy constructed at 53;.)

Actual removal of h, albeit possibly only from some of the substructures, takes
place during a global rebuild or when pieces of the data structure are rebuilt, either
during an insertion of a new plane, or at certain steps of the procedure where conflict
lists are purged and their elements are reinserted; see below for details.

For a substructure B;, we denote by A(B;) C S(B;) the set of active planes in B;,
defined as those planes that (a) are in S(B;), (b) have not been (marked as) deleted,
and (c) have not been reinserted into other substructures due to the lookahead deletion
mechanism, which we describe next. When a substructure 5; is created, we have
A(B;) = S(B;). Once B; is created, its associated sets C(I3;) and S(3;), as well as
all non-purged conflict lists CL(7) of prisms t in (any hierarchical stage within) 5;,

22 Note that the actual value of n does not have to change much, when the sequence of insertions and
deletions is reasonably balanced.

23 We remind the reader that 3 ; may also contain non-stored, i.e., pruned planes.

@ Springer

874 Discrete & Computational Geometry (2020) 64:838-904

remain fixed, until 3; is destroyed (in arebuild triggered by an insertion or a reinsertion,
or in a global rebuild). On the other hand, conflict lists may be marked as purged by
the lookahead deletion mechanism, and the set A([5;) of active planes in I3; may get
smaller, due to deletions and the purging of conflict lists.

Lookahead deletions When too many planes in a conflict list CL(7), for some prism
7, are (marked as) deleted, the real lower envelope of H might rise too high, and the
lowest (undeleted) plane over a query point g (with g lying in the projection of t) does
no longer have to belong to CL (7). (Note that if t belongs to the lowest-indexed cutting
of some structure B;, which is the only kind of prisms we access when processing a
query, its ceiling lies above level kg of the corresponding set of planes, so, even after
ko — 1 deletions from that set, the lowest plane over ¢ still belongs to CL(t), but a
larger number of deletions may cause the difficulty just noted to arise.)

To avoid this situation, which might cause us to miss the correct answer to a query,
we use the following lookahead deletion mechanism. Suppose that, for some prism t
in a cutting A; of some substructure 3;, at least |CL(7)|/(2c) planes in CL(7) have
been marked as deleted,* where o > 1 is our cutting parameter (i.e., each prism of A;
is intersected by at most ak; = 2/akq planes, for any i). Then we purge the conflict
list CL(t), and we reinsert (only) the planes in CL(7) N A([3;), one by one, using
the standard insertion algorithm. After this, A(53;) contains no more elements from
CL(7), but elements from CL(7) may still appear in other conflict lists of 53; and in
S(B;). We keep the purged prism 7 in 5;; whenever a query accesses T (when t is
a prism of the lowest-indexed cutting of some substructure), it realizes that CL(7) is
purged and simply skips it. A plane & may be reinserted many times due to the purging
of a conflict list, but only once for each substructure 3; in which it is active (prior
to the operation). Also, the planes in C(15;)\S(B;), and the planes marked as deleted
will never be reinserted when a conflict list is purged.

As mentioned, queries and insertions are handled as in Sect. 7.2. For queries, while
processing a substructure B3; and searching in the conflict list of some prism t of the
lowest-indexed cutting Ag of 5;, we only consider planes in CL(7) N A(15;), and report
the lowest among them over the query point. As we will show later, in Lemma 7.6,
this suffices to retrieve the correct overall lowest plane. That is, the plane that is lowest
over g among the reported planes is the overall lowest plane over g.

To insert a plane &, we take, as in Sect. 7.2, the largest contiguous prefix Z’ of
occupied bins in Z, of some length j, discard the existing structures in Z’, set>
H; = {h} U Ul]:_(: A(B;), construct a new static structure for H;, and spread its
substructures within some bins of Z’, according to the rules of Sect. 7.2. A plane
h € Hj is active after the insertion (only) at the bin where it is stored.

Since we perform the reconstruction of the structure only on the active planes in
the various destroyed substructures, the planes marked as deleted really disappear at
this step, but only from the structures stored at the bins of Z’; such a plane might still

24 Note that CL(7) can also contain planes from C(13;)\S(3;), and that these planes also count for this
test.

25 Note the difference between this step and the insertion in the insert-only case, discussed in Sect. 7.2,
where H; includes all the planes in the sets S(55;). In contrast, here only the active planes are considered.

@ Springer

Discrete & Computational Geometry (2020) 64:838-904 875

show up (marked as deleted) in substructures B, with larger bin indices £, which have
not been touched by this instance of the insertion procedure.

It is easy to prove, by induction on the number of operations, that the following
invariants are maintained:

(D1) For each i, we have 2/~ < |S(B;)| < 2'.
(D2) The sets A(B;) € S(BB;) are pairwise disjoint, and their union is H.

Indeed, invariant (D1) is the same as invariant (I1), and its maintenance is argued as in
Sect. 7.2. Invariant (D2) follows because, by induction, a plane # is active, before the
current operation, at exactly one bin. If we delete / then the invariant continues to hold,
as h no longer belongs to H. If we purge / from a conflict list in some substructure 3;,
it is no longer active in B;, but its reinsertion makes it active again, at the unique bin
where it is stored. The same reasoning applies to all planes that were active at the bins
that were destroyed by the reinsertion, and a similar reasoning holds when we insert
(rather than reinsert) a plane.

Note though that the lower bound (11) of Sect. 7.2 does not have to hold now, as
the number of active planes may be much smaller that the number of stored planes.
The upper bound (12) remains valid, and so does Lemma 7.2. The correctness of the
data structure is a consequence of the following lemma.

Lemma7.6 Letq € R? andleth € H be a(non-deleted) plane on the lower envelope
of H over q (for most queries, h is unique). Let B; be the unique substructure for
which h € A(B;). Then h belongs to the conflict list CL(t) of the prism t of the
lowest-indexed cutting Ao of BB;, whose xy-projection contains q, and t has not been
marked as purged.

Proof The second part of the claim is an immediate consequence of the first part, since
h is active in B;.

Assume to the contrary that i ¢ CL(z).Letg™ be the point on /2 over ¢. By assump-
tion, ¢ T lies on the lower en