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Abstract In this paper, the spreading process of two
XPP model droplets impacting on a plate in sequence at
low Reynolds number is numerically simulated by using
an improved smoothed particle hydrodynamics (I-SPH)
method. The I-SPH method is a coupled approach which
uses the traditional SPH (TSPH) method near the boundary
domain and uses a kernel-gradient-corrected SPH method in
the interior of fluid flow for the reason of remedying the accu-
racy and stability of TSPH. Meanwhile, an artificial stress
term and a periodic density re-initialization technique are pre-
sented to eliminate the tensile instability and restrain pressure
oscillation, respectively. A new boundary treatment is also
adopted. The ability and merit of proposed I-SPH method
combined with other techniques are first illustrated by sim-
ulating three typical examples. Subsequently, the deforma-
tion phenomena of two viscoelastic droplets impacting and
spreading on a plate in sequence are numerically investi-
gated. Particularly, the influences of the falling time interval,
Weissenberg number and other rheological parameters on the
deformation process are studied respectively. All numerical
results agree well with the available data.
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1 Introduction

In today’s industry, the free surface flow of polymer melts
plays an important role, for example the surface coating,
extrusion, container filling in the pharmaceutical industries
of polymer [1]. Almost all the non-Newtonian fluids exhibit
some special non-linear behaviors, e.g. the viscoelastic or
shear-thinning behavior, which have significant effects on
the deformation process of polymer melt. In the deforma-
tion process, the impacting and spreading of liquid droplets
on solid surfaces play a crucial role [2–4]. However, the
numerical study of two viscoelastic droplets impacting and
spreading on a plate has received little attention. In order
to illustrate the viscoelastic behaviors and complex defor-
mation process of two viscoelastic droplets impact, a suit-
able polymer model is needed. Here, the extended Pom–Pom
(XPP) model [5], which describes branched polymer melts
and the non-linear viscoelastic concentrated polymer mate-
rials, is studied. Moreover, the XPP model can degenerate
to the Oldroyd-B model, which is often used to describe the
viscoelastic polymer materials and is also considered in this
work.

In the past few decades, many numerical methods have
been proposed to solve the Navier–Stokes equations, such as
the grid-based finite difference methods (FDM), finite vol-
ume method (FVM) and finite element methods (FEM) and
so on. However, these mesh-based methods often encounter
some numerical difficulties such as serious mesh distortion
when they are used to simulate the large deformation or high
gradient problems, and the mesh generation process is expen-
sive. Moreover, the grid-based methods mentioned above
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need an extra technique to capture the complex free surface,
for example, marker and cell (MAC) [6], volume of fluid
(VOF) [7] and level set [8,9]. Although they have been suc-
cessfully applied to various free surface problems, there exist
some defects in the techniques mentioned above.

For the reasons mentioned above, various mesh-free meth-
ods have been developed for the discontinuity or large defor-
mation problems. Among these mesh-less methods [10–13],
the smoothed particle hydrodynamics (SPH) method [11,13]
is the earliest one and has been widely used which employs
Lagrangian description of motion. SPH method has several
advantages over the grid-based methods: (a) Complex free
surfaces are modeled easily and naturally without the need of
extra tracking technique; (b) It is easy to program for complex
problems compared with grid-based methods. In 1994, SPH
method was firstly used to deal with fluid dynamic problems
[14,15]. From then, it has been applied to many areas such as
viscous flows [16,17], incompressible fluids [18,19], multi-
phase flows [20–22], turbulence modeling [23], viscoelastic
flows [24,25], and viscoelastic free surface flows [4,26].

Unfortunately, SPH method has two major drawbacks,
that is, the low accuracy and numerical/tensile instability
which must be remedied before it becomes a useful and
robust tool. Therefore, some improved SPH methods based
on Taylor series expansion have been proposed for dif-
ferent dynamic problems to restore the consistency [27–
37] of the kernel and gradient particle approximations of
the conventional SPH method, for instance, the corrected
smoothed particle hydrodynamics method (CSPM) [30],
finite particle method (FPM) [36], the modified SPH (MSPH)
method [32,33] and the symmetric SPH (SSPH) method
[34,35]which are mainly applied to elastic–dynamic prob-
lems in solid materials. Although the improved methods
mentioned above have higher accuracy than traditional SPH
method, some disadvantages still exist: the local matrix
is asymmetric except for SSPH method, which can cause
numerical instability; the choice of the kernel function is
limited for solving the partial differential equations (PDEs)
with higher derivatives; FPM/MSPH method is complicated
to be extended to complex free surface flows problems, which
can be seen from their construction process [32–36]. More-
over, the corrected kernel gradient scheme [30] has been
introduced into the discretized schemes of TSPH and exten-
sively applied to viscous fluid mechanic problems [38–40] in
recent years. However, the corrected kernel gradient scheme
mentioned above has not been extended to the viscoelastic
free surface problems until now in our knowledge, and the
involved local matrix is easily singular near the boundary
region.

In this paper, a balanced improved SPH method is pro-
posed and extended to simulate the free surface flows of poly-
mer melts in this paper, which compromises the accuracy, the
stability and computational efficiency of the traditional SPH,

MSPH (or SSPH) and the kernel-gradient-correction SPH
(KGC-SPH). The proposed improved SPH method (I-SPH)
is motivated by coupling the traditional SPH (TSPH) method
with a KGC-SPH method, which possesses higher accuracy
and better stability than SPH. The KGC-SPH method is only
used in the inner region, and its construction process is based
on the particles interaction and the concept of Taylor series to
modify the TSPH, that is, directly correcting the kernel gra-
dient of the discretized momentum equation, introducing the
normal corrected kernel gradient scheme into the discretized
schemes of viscous stress and elastic stress equations. Mean-
while, an artificial stress (AS) term is proposed and added
into the discretized scheme of momentum equation to elimi-
nate the tensile instability. A periodic density re-initialization
(DR) method based on the corrected kernel estimate [32] of
a Taylor series expansion is proposed to overcome the prob-
lem of the consistency among mass, density and the occupied
area. Moreover, a new boundary condition is presented to
treat the rigid plate, which is easier to implement than those
in [4,26,40]. It is worth noting that the proposed modified
SPH method has some merits and differences over than our
previous publication works (e.g. [37,40]). The main merits
or differences lie in: (1) a coupled particle method based on
the corrected kernel gradient is first proposed and extended
to simulate viscoelastic free surface flow based on the XPP
model; (2) a new AS term is presented to eliminate the parti-
cle cluster phenomenon, which is more easily enforced than
that in [26]. Indeed, the presented improved SPH schemes for
viscoelastic constitutive model is derived from the extended
application of the improved particle method for viscous fluid
in [37,40], and the present coupled method compromises the
advantages between the traditional SPH and the improved
SPH method in [37,40].

In this work, the deformation process of two viscoelas-
tic droplets impacting and spreading over a rigid plate in
sequence is mainly investigated using the proposed I-SPH
method combined with boundary treatment, and the influ-
ences of the falling time interval of two droplets and other
model parameters (i.e. Weissenberg number) on the defor-
mation process are discussed. The structure of this article is
organized as follows: In Sect. 2, the governing equations for
viscoelastic fluid flow are introduced; Sect. 3 describes the
I-SPH discretized scheme of the Navier–Stokes equations
based on the XPP model, including boundary conditions,
artificial viscosity (AV) and AS; The validity and necessity
of the AS and DR in the I-SPH method are tested in Sect. 4,
and the merits of proposed I-SPH combined boundary con-
dition treatment is also illustrated. Subsequently, the chal-
lenging example of single viscoelastic droplet impacting on a
plate is simulated and compared with other results. In Sect. 5,
the deformation process of two XPP droplets impacting on
a plate with different time intervals are mainly numerical
investigated using the proposed I-SPH, and the influences
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of rheological parameters on the deformation are discussed;
Conclusions and remarks are reported in Sect. 6.

2 Basic equations for the viscoelastic fluid

2.1 Governing equations

In a Lagrangian frame, the viscoelastic fluid flow is gov-
erned by the conservation of mass and momentum equations,
together with a non-linear constitutive equation. The isother-
mal, compressible fluid is usually described by the following
equations:

Dρ

Dt
= −ρ

∂vβ

∂xβ
, (1)

Dvα

Dt
= 1

ρ

∂σαβ

∂xβ
+ gα, (2)

where ρ denotes the fluid density, vβ the βth component
of the fluid velocity, σαβ the (α, β)th component of the total
stress tensor, gα the αth component of the gravitational accel-
eration and the D/Dt = ∂/∂t + vβ · (∂/∂xβ

)
is the material

derivative. The spatial coordinates xβ and time t are the inde-
pendent variables.

The total stress tensor in Eq. (2) is commonly made up
of the isotropic pressure p, the components of viscous stress
2ηsdαβ and extra stress tensor T αβ (which is the polymer
contribution stress or elastic stress of viscoelastic fluid, and
that is measured by the following Eqs. (4)–(7) in this paper)

σαβ = −pδαβ + 2ηsdαβ + T αβ, (3)

here δαβ = 1 if α = β and δαβ = 0 if α �= β. dαβ =
(1/2)

((
∂vα/∂xβ

) + (
∂vβ/∂xα

))
is the (α, β)th component

rate of deformation tensor. The ηs is the Newtonian solvent
contribution viscosity. In order to study a viscoelastic behav-
ior of polymer material, the related constitutive equation will
be given in the next subsection.

2.2 XPP model

In order to study the influence of viscoelastic behavior on
free surface in polymer flow process, we employed the fol-
lowing extended pom–pom model (XPP) in multi-mode form
[5,41,42] in the presented numerical simulations. The XPP
model has two important features: (1) the dependence of melt
rheology upon the polymer molecular structure; (2) the spec-
trum of relaxation time to be taken into account leads to two
partial differential equations, one for orientation and one for
stretch. The constitutive equation for the XPP model is

f (λ, T)T + λ0b
∇
T + G0 [ f (λ, T) − 1] I

+ α0

G0
T · T = 2λ0bG0d, (4)

where T is the viscoelastic stress of polymeric contributions,
and the function f (λ, T) is given by

f (λ, T) = 2

er
eν(λ−1)

(
1 − 1

λ

)
+ 1

λ2

(

1 − α0 IT·T
3G2

0

)

, (5)

and the symbol “
∇· ” represents the following upper-convected

derivative

∇
T = DT

Dt
− T · (∇u) − (∇u)T · T, (6)

er = λ0s/λ0b(λ0b and λ0s are the orientation and backbone
stretch relaxation time respectively), G0 is the linear relax-
ation modulus, I refers to the trace of a tensor. The constitu-
tive equation possesses the features of Giesekus model since a
non-zero second normal stress difference is predicted when
the anisotropy parameter α0 �= 0. In the XPP model, the
backbone stretch λ is related to the viscoelastic stress tensor

λ =
√

1 + |IT|
3G0

, (7)

where the symbol “|·|” represents the absolute value. The
parameter v in the exponential term in Eq. (5) is incorporated
into the stretch relaxation time to remove the discontinuity
from the gradient of the extensional viscosity. Its value is
found to be inversely proportional to the number of arms
q, v = 2/q.

Here, the following parameters are introduced, namely the
total viscosity η = ηs +ηp, ηp = G0λ0b, ε = λ0s/λ0b, β0 =
ηs/(ηs + G0λ0b).

Specially, the Eq. (2) degenerates to the equation of motion
for Oldroyd-B fluid when α0 = 0 and f (λ, T) = 1 in Eq. (4).
In addition, if β0 = 0 then the UCM model is obtained. It
should be noted that two type constitutive models, that is,
the XPP model and Oldroyd-B model, are all considered for
comparison in this paper.

2.3 Equation of state

The incompressible flows were sometimes treated as slightly
compressible flows by adopting a suitable equation of state
in many previous works (see Monaghan [14] and Morris et
al. [16]). Here, the incompressible flows are also treated as
weakly compressible flows using the following equation of
state [25]

p (ρ) = c2ρ2/2ρ0, (8)

where c is the speed of sound and ρ0 is reference density.
An artificial, lower sound speed is usually used to avoid the
instability and extremely small time steps. To keep the den-
sity variation of fluid less than 1% of the reference density,
the Mach number M (M ≡ V/c, where V is a typical ref-
erence velocity) [12,13] must be smaller than 0.1. In other

123



980 Comput Mech (2014) 53:977–999

words, the sound speed must be higher ten times than maxi-
mum fluid velocity.

3 Improved SPH scheme

In this section, an improved particle scheme is proposed
for solving the governing equation based on the viscoelastic
fluid model, which is motivated by improving the numerical
accuracy and stability of TSPH scheme (see Sect. 3.1) and
named the improved SPH (I-SPH) method (see Sect. 3.2).
The I-SPH method couples TSPH method with KGC-SPH
method, which possesses higher accuracy and better stability
than TSPH. The KGC-SPH method is achieved by improving
the TSPH with symmetric scheme, in which the construction
process is based on the particles interaction and the concept
of Taylor series, correcting the first order kernel gradient of
SPH. The TSPH scheme and I-SPH scheme for the XPP fluid
flow are described as follows.

3.1 Traditional SPH (TSPH) scheme

The TSPH method [12,13] is based on the interpolation the-
ory, which is the theory of integral interpolates using a kernel
function. In TSPH method, the fluid domain � is discretized
into a finite number of particles, where all the relevant phys-
ical quantities are approximated in terms of the integral rep-
resentation over neighboring particles. Each particle carries
a mass m, velocity v, and other physical quantities depend-
ing on the problem. Any function f and its first derivative
defined at the position x= (x, y) can be usually expressed by
the following integral (see [12]).

〈 f (x)〉 =
∫

�

f
(
x′)W

(
x − x′, h

)
dx′, (9)

〈∇ f (x)〉 =
∫

�

f
(
x′)∇W dx′ − f (x)

∫

�

∇W dx′, (10)

where W represents the kernel function (or smoothing func-
tion) and h denotes the smoothing length defining the influ-
ence area of W . The kernel function W is usually required
to meet three properties (see [12–16]), namely the posi-
tive property W

(
x − x′, h

) ≥ 0, Dirac function property
limh→0 W

(∣∣x − x′∣∣ , h
) = δ(

∣
∣x − x′∣∣), normalization con-

dition
∫
�

W
(∣∣x − x′∣∣ , h

)
dx′ = 1, and the compact prop-

erty W
(∣∣x − x′∣∣ , h

)
> 0 over �, W

(∣∣x − x′∣∣ , h
) = 0 when∣

∣x − x′∣∣ > κh (where κ is a constant).
By applying integral principle by part and the divergence

theorem to Eqs. (9) and (10), the particle discretized scheme
of TSPH for a function f (x) and its first derivative at the posi-
tion x = (x, y) for particle i can be written in the condensed
forms

fi =
∑

j

m j

ρ j
f j Wi j , (11)

(
∂ f

∂xi

)
=
∑

j

m j

ρ j
( f j − fi )

∂Wi j

∂xi
, (12)

where m j and ρ j are the mass and density of the j th particle,
and f j = f

(
x j
)
. m j/ρ j represents the occupied volume by

the j th particle. The Wi j = W
(∣∣xi − x j

∣∣ , h
)
, ∂Wi j/∂xi =

−∂W ji/∂x j .
The smoothing function W is related not only with the

accuracy but also with the efficiency and stability of the
resulting algorithm. As shown in [43], the Wendland function
can produce more accurate results than the common spline
kernel functions (e.g. the cubic or quintic splines function),
which is also roughly illustrated in Sect. 4 (see Fig. 2). There-
fore, the quintic Wendland kernel function is adopted in this
work, which is

Wi j = W (r, h)

= w0

{
[2 − (r/h)]4 [(2r/h) + 1] , 0 ≤ r/h<2
0, r/h ≥ 2,

(13)

where the r = ∣∣xi − x j
∣∣ and the normalization factor w0 is

7/
(
64πh2

)
. Here, the smoothing length h is given by 1.0d0

−1.5d0, where d0 is the initial distance between neighboring
particles. The compact support domain size is 2h.

Considering the discrete gradient Eq. (12) and the fol-

lowing identity: 1
ρ

∂σαβ

∂xβ = ∂
(
σαβ/ρ

)

∂xβ + σαβ

ρ2
∂ρ

∂xβ , the particle
discretization schemes of the governing equations can be
obtained at the particle i
(

Dρ

Dt

)

i
= ρi

∑

j

m j

ρ j
(v

β
i − v

β
j )

∂Wi j

∂xβ
i

, (14)

(
Dvα

Dt

)

i
=
∑

j

m j

(
σ

αβ
i

ρ2
i

+ σ
αβ
j

ρ2
j

)
∂Wi j

∂xβ
i

+ gα, (15)

where vβ is the βth component of the fluid velocity, σαβ is
the (α, β)th component of the total stress tensor and xβ is
the component of spatial coordinate.

The particle discretization scheme of total stress Eq. (3)
can be defined as

σ
αβ
i = −pδαβ+β0η

(
κ

αβ
i + κ

βα
i

)
+ (

T αβ
)

i , (16)

where κ
αβ
i denotes the following velocity gradient

κ
αβ
i =

(
∂vα

∂xβ

)

i
=
∑

j

m j

ρ j
(vα

j − vα
i )

∂Wi j

∂xβ
i

, (17)

thus the discretized scheme of constitutive Eqs. (4) and (5)
for the XPP model is given by
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(
DT αβ

dt

)

i
= κ

αγ

i T γβ

i + κ
βγ

i T γα

i − f (λ, Ti )

λ0b
T αβ

i

− (1 − β0)η

(λ0b)
2 [ f (λ, Ti ) − 1] δαβ

− α0

(1 − β)η
T αγ

i T γβ

i + (1 − β0)η

λ0b

(
κ

αβ
i + κ

βα
i

)
,

(18)

where

f (λ, Ti ) = 2

er
ev(λ−1)

(
1 − 1

λ

)

+ 1

λ2

(

1 −
(

λ0b

3(1 − β0)η

)2

α0T αβ
i T αβ

i

)

,

λ =
√

1 + λ0b
∣∣T αα

i

∣∣

3(1 − β0)η
, (19)

3.2 I-SPH scheme

In order to restore the particle approximations consistency
and improve the numerical accuracy and stability of TSPH
method, the corrected symmetric kernel gradient scheme [40]
and the Taylor expansion concept [30–33] are considered for
the first-order derivative of Eqs. (14), (15) and (17), respec-
tively. According to Ref. [40] and the Taylor expansion con-
cept, the second order Taylor expansion of the first term in
Eq. (10) can be obtained by
∫

�

f
(
x′)∇W dx′ = f (x)

∫

�

∇W dx′

+ ∂ f (x)

∂x

∫

�

(
x ′ − x

)∇W dx′

+ ∂ f (x)

∂y

∫

�

(
y′ − y

)∇W dx′ + O(h2),

(20)

Substituting Eq. (20) into Eq. (10), we can get the follow-
ing kernel approximation scheme

〈∇ f (x)〉 = ∂ f (x)

∂x

∫

�

(
x ′ − x

)∇W dx′

+ ∂ f (x)

∂y

∫

�

(
y′ − y

)∇W dx′ + O(h2), (21)

and particle approximation scheme

〈∇ f (xi )〉= ∂ f (xi )

∂xi

∑

j=1

m j

ρ j
x ji ∇i Wi j + ∂ f (xi )

∂yi

∑

j=1

m j

ρ j
y ji ∇i Wi j ,

(22)

where x ji = x j − xi , y ji = y j − yi .

Comparing Eq. (22) with Eq. (12), it leads to

∂ f (xi )

∂xi

∑

j=1

m j

ρ j
x ji

∂Wi j

∂xi
+ ∂ f (xi )

∂yi

∑

j=1

m j

ρ j
y ji

∂Wi j

∂xi

=
∑

j=1

m j

ρ j
( f j − fi )

∂Wi j

∂xi
, (23)

∂ f (xi )

∂xi

∑

j=1

m j

ρ j
x ji

∂Wi j

∂yi
+ ∂ f (xi )

∂yi

∑

j=1

m j

ρ j
y ji

∂Wi j

∂yi

=
∑

j=1

m j

ρ j
( f j − fi )

∂Wi j

∂yi
, (24)

This system can be rewritten in the form of matrix equation
as

A

( ∂ f (xi )
∂xi

∂ f (xi )
∂yi

)

=

⎛

⎜⎜
⎝

∑
j=1

m j

ρ j
( f j − fi )

∂Wi j
∂xi

∑
j=1

m j

ρ j
( f j − fi )

∂Wi j
∂yi

⎞

⎟⎟
⎠ , (25)

where A = ∑
j=1

m j
ρ j

⎛

⎝
x ji

∂Wi j
∂xi

y ji
∂Wi j
∂xi

x ji
∂Wi j
∂yi

y ji
∂Wi j
∂yi

⎞

⎠.

Adopting the idea in [34,35], we use “(xα
j − xα

i )Wi j ”
instead of “∂Wi j/∂xα

i ” in Eq. (25), and Eq. (25) becomes

( ∂ f (xi )
∂xi

∂ f (xi )
∂yi

)

=
∑

j=1

m j

ρ j
( f j − fi )

⎛

⎝
∂W̃ C S

i j /∂xi

∂W̃ C S
i j /∂yi

⎞

⎠ , (26)

where
(

∂W̃ C S
i j /∂xi

∂W̃ C S
i j /∂yi

)

= (
As)−1

((
x j − xi

)
Wi j(

y j − yi
)

Wi j

)

,

As =
⎛

⎝

∑N
j=1

m j
ρ j

x ji x ji Wi j
∑N

j=1
m j
ρ j

y ji x ji Wi j
∑N

j=1
m j
ρ j

x ji y ji Wi j
∑N

j=1
m j
ρ j

y ji y ji Wi j

⎞

⎠ . (27)

Note that the kernel gradient correction procedure mentioned
above is different from that in [30], and its (i.e. Eq. (27))
advantages have been discussed in [35,37,40].

Applying the corrected kernel gradient scheme (27) to
the discretized schemes (14), (15) and (17), we can get the
following KGC-SPH scheme for the viscoelastic fluid flow
based on the XPP model.
(

Dρ

Dt

)

i
= ρi

∑

j

m j

ρ j
(v

β
i − v

β
j )

∂W̃ C S
i j

∂xβ
i

, (28)

(
Dvα

Dt

)

i
=
∑

j

m j

(
σ

αβ
i

ρ2
i

+ σ
αβ
j

ρ2
j

)
∂W̃ C S

∂xβ
i

+ gα, (29)

κ
αβ
i =

(
∂vα

∂xβ

)

i
=
∑

j

m j

ρ j
(vα

j − vα
i )

∂W̃ C S
i j

∂xβ
i

(30)
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It should be noted that the corrected scheme (29) men-
tioned above is different from those in [38–40]. The corrected
scheme Eq. (29) of momentum equation restores the fea-
ture of particles interaction in the KGC-SPH method, which
can reduce the serious defect of particles cluster (or tensile
instability) when the viscoelastic droplet impacting on plate.
Moreover, the correction of KGC-SPH method without ker-
nel derivative (see (27)) has some merits of SSPH method
(see [34,35]).

The I-SPH method is motivated by improving the numer-
ical accuracy and stability of TSPH scheme, which is based
on the idea of coupling TSPH method with the KGC-SPH
method. We use TSPH near the free surface (or boundary
particles) and use the KGC-SPH in the interior fluid field,
and the boundary particles or free surface particles may be
identified by particle densities (see [44]).

The coupled I-SPH approximate schemes of the XPP
model are obtained by using Eqs. (14)–(17) for the boundary
particles and using Eqs. (28)–(30) for the interior particles,
that is
(

Dρ

Dt

)

i
= ρi

∑

j

m j

ρ j
(v

β
i − v

β
j )Hβ

i j , (31)

(
Duα

Dt

)

i
=
∑

j

m j

(
σ

αβ
i

ρ2
i

+ σ
αβ
j

ρ2
j

)

Hβ
i j + gα. (32)

κ
αβ
i =

(
∂vα

∂xβ

)

i
=
∑

j

m j

ρ j
(vα

j − vα
i )Hβ

i j (33)

where

Hβ
i j =

⎧
⎨

⎩

(
∂Wi j/∂xβ

i

)
, i ∈ boundary particles

(
∂W̃ C S

i j /∂xβ
i

)
, i ∈ interior particles

(34)

At the end of each time-step, the position of each particle is
updated using

Dxα
i

Dt
= vα

i (35)

3.3 Density re-initialization (DR) technique

In the SPH method, each particle has a fixed mass. If the num-
ber of particles is constant, mass conservation is intrinsically
satisfied. However, the consistency between mass, density
and the occupied area could not be enforced exactly (see
[16]) if the evolved particle density is determinated by the
evolution Eq. (1) for simulating the weakly compressible
flows.

In order to overcome this problem, we use a second-order
accuracy particle approximation scheme based on Taylor
series expansion (see [32–34,44]) to periodically re-initialize
the density field. According to the Taylor series expansion
idea in [37,40], the function value and its first derivatives at

the particle i can be calculated as

fi =
∑

j

m j

ρ j
f j W̃i j (36)

⎧
⎪⎪⎨

⎪⎪⎩

(
∂ f
∂x

)

i
= ∑

j
m j
ρ j

f j

(
∂W̃i j
∂xi

)

(
∂ f
∂y

)

i
= ∑

j
m j
ρ j

f j

(
∂W̃i j
∂yi

) (37)

where the corrected kernelW̃i j and its derivative
∂W̃i j
∂xi

,
∂W̃i j
∂yi

are given by

(
W̃i j ,

∂W̃i j
∂xi

,
∂W̃i j
∂yi

)T =
⎛

⎝
∑

j

A (xi ) Vj

⎞

⎠

−1

×
(

Wi j ,
∂Wi j
∂xi

,
∂Wi j
∂yi

)T
, (38)

and the local coefficient matrix is

A (xi ) =

⎛

⎜⎜⎜
⎝

Wi j x ji · Wi j y ji · Wi j

∂Wi j
∂xi

x ji · ∂Wi j
∂xi

y ji · ∂Wi j
∂xi

∂Wi j
∂yi

x ji · ∂Wi j
∂yi

y ji · ∂Wi j
∂yi

⎞

⎟⎟⎟
⎠

. (39)

In this work, the idea of calculating the function value men-
tioned above is extended to re-initialize the density field, and
let f j = ρ j in Eq. (36).

ρi =
∑

j

m j W T ay
i j , (40)

where the corrected kernel function W T ay
i j is given by

W T ay
i j = B

⎡

⎣
∑

j

A (ri ) Vj

⎤

⎦

−1

W, (41)

B = (1, 0, 0) , W =
⎛

⎝
Wi j

∂Wi j/∂xi

∂Wi j/∂yi

⎞

⎠ (42)

Here x ji = x j − xi , y ji = y j − yi , and Vj is replaced by
m j/ρ j . The particle approximations scheme Eqs. (40)–(42)
possess C0, C1 consistency for boundary regions or irregu-
larly distributed particles (see [32]).

When the DR method is applied in above SPH or I-SPH
method, an 3 × 3 invertible matrix should be solved for
each fluid particle, thus, the computing time is increased
slightly. Considering the computational cost and the effi-
ciency of using periodic DR, we can apply this procedure
every fixed (about 20–50, see Sect. 4.2) time steps in our
numerical simulations. Specially, to keep that the corrected
particle approximations Eq. (40) at least have C0 consis-
tency on the whole domain, the matrix

∑
j A (ri ) Vj may be

replaced by
∑

j Wi j Vj if the matrix in Eq. (41) is singular
(it occurs occasionally).
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3.4 Artificial viscosity (AV) model

According to previous works [16,45], an artificial viscos-
ity term is usually adopted to increase the stability of TSPH
method. The AV is first introduced to enhance the numeri-
cal stability and accuracy in the simulations of strong shock
problems [45]. On the other hand, the AV term guarantees the
conservation of angular momentum without external force
when it is added into the momentum equation of TSPH
schemes. For this reason, the AV term is usually also consid-
ered and employed in the SPH simulations of viscous or vis-
coelastic fluid flows problems with large deformation, which
can be found in recent works [4,26]. Through the simula-
tions of viscoelastic droplet impact problem in [4,26] and our
numerical simulation experience of using TSPH or improved
SPH method, we find that it is necessary to employ an AV
term in the discrete momentum equation Eq. (30) for improv-
ing the numerical stability (see Sect. 4.2).

In this work, the following AV term (see [11,12]) is chosen
and added into the discrete momentum equation Eq. (30) of
I-SPH method, which is

Πi j =
{ −αΠ c̄i j φi j +βΠφ2

i j
ρ̄i j

, vi j · ri j < 0

0, vi j · ri j ≥ 0
(43)

where

φi j = hui j · ri j
∣
∣ri j

∣
∣2 + 0.01h2

, c̄i j = ci + c j

2
, ρ̄i j = ρi + ρ j

2
,

and vi j = vi − v j , ri j = ri − r j . (44)

The 0.01h2 term is used to prevent numerical divergence
when two particles get too close to each other. The αΠ and
βΠ are usually chosen approximately equal to 1. In the AV,
the first term associated with αΠ involves shear and bulk
viscosity, while the second term associated with βΠ is simi-
lar to the von-Neumann–Richtmeyer viscosity for resolving
shocks and is very important in preventing unrealistic particle
penetration, especially for particles that are approaching each
other at high speed. It is noting that the AV term mentioned
above bears no relation to real fluid viscosity (see [45]).

3.5 Artificial stress (AS) model

In 1995, the “tensile instability” was first investigated in
details by Swegle et al. [46], who pointed that the phenom-
enon of unphysical clustering of particles arises when the
standard SPH method is applied to Euler problem. At present,
a number of methods have been proposed to remove the ten-
sile instability in elastic dynamics of solid materials. The
artificial stress method [47,48] is one of the most successful
approaches, which is successfully extended and applied to
non-Newtonian fluid free surface flows [4,26]. In [47,48], it
is considered that “tensile instability” is mainly caused by

tension (positive stress in tension), so that the adopted AS
term [4,26] is only related to the positive stress. As pointed
out in [46], the “tensile instability” is related to the sign of
both the stress and the second derivative of the kernel func-
tion, which implies that the instability is not only caused
by the tension but also the compression (negative stress in
compression). Therefore, we extend the conclusions in [46–
48] and use the following AS term to eliminate the “tensile
instability” (or “particles cluster phenomenon”)

f n
i j

(
Sαβ

i + Sαβ
j

)
, (45)

where fi j = Wi j
(∣∣ri − r j

∣∣ , h
)
/Wi j (d0, h), n is an expo-

nential factor and is often chosen to be 4 so that the repulsive
force increases as r(h ≤ r ≤ 2h) decreases from d0 to zero.
The components of the AS tensor Sαβ

i is given as

Sαβ
i =

{
−bσ

αβ
i /ρ2, i f

(∑
j W

′′αβ
i j

)
· σ

αβ
i > 0

0, other
, (46)

where b is a positive parameter (0 < b < 1), and the W
′′αβ
i j =

∂2Wi j/
(
∂xα · ∂xβ

)
.

Indeed, the key aim of the AS term mentioned above is to
introduce a repulsive force to prevent two neighboring fluid
particles from getting too close when the two particles are
in a state of tensile or compressible force, and subject to
an attraction when two neighboring particles far from each.
Moreover, the form of proposed AS term is simpler than the
artificial stress form in [26], and it is more easily extended
and applied to 3D problem.

Introducing the Ki j = f n
i j

(
Sαβ

i + Sαβ
j

)
, the AV term

Eq. (43) and the AS term Eq. (45) are added to the discretized
momentum equation (32) of I-SPH, it leads to

(
Dvα

Dt

)

i
=

∑

j

m j

⎛

⎝
σ

αβ
i

ρ2
i

+
σ

αβ
j

ρ2
j

− Πi j δ
αβ +Ki j

⎞

⎠ Hβ
i j +gα.

(47)

Compared our previous researches (e.g. [4,37,40]) with the
proposed coupled method combined with other techniques,
the main merit is that the present method compromises the
advantages between the traditional SPH and other improved
SPH method including our previous works and is more easily
extended to applied than other improved SPH methods by
observing their construction process (see [37]). Moreover,
the I-SPH method combined with a new AS term and a DR
technique is first proposed and extended to viscoealstic free
surface flows based on the XPP model in this paper.

3.6 Time integration scheme

Here, we choose the predictor–corrector scheme to solve
the system of ordinary differential equations (18), (31), (35)
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and (47) due to that the predictor–corrector scheme possesses
second-order accuracy and better stability. The predictor step
consists of an Eulerian explicit evaluation of all quantities for
each particle

K̃n+1
i = Kn

i + �t

2
�n

i , (48)

where Ki represents the vector of the unknown variables(
ρi , v

α
i , T α

i , xα
i

)
and �i denotes the vector of right-hand sides

of Eqs. (18), (31), (35) and (47). In the corrected step, the
updated value of Ki at the end of each time step is given by

Kn+1
i = Kn

i + �t

2

(
�n

i + �̃n+1
i

)
, (49)

As is well known, the time step and space step must satisfy
the well-known Courant–Friedrichs–Lewy (CFL) condition
for the purpose of ensuring the numerical stability. According
to [44], we may choose the following stability condition

�t ≤ min

[
0.25

h

c
, 0.125

h2

υ0

]
, (50)

where υ0 = η/ρ0 is the kinematic viscosity.

3.7 Boundary condition treatment

In most engineering problems, the physical boundary might
be the surface of rigid bodies enclosing fluid or enclosed
by fluid, fully or partially. The boundary can be stationary
or in motion. The treatment of boundary conditions in SPH
method has an important effect on the numerical results.

Several methods for treating rigid wall boundary condi-
tions have been presented in previous work. There are mainly
two methods, i.e. (1) the solid walls may be simulated by
particles, which enforces repulsive force by employing an
artificial repulsive force (see [12]) on inner fluid particles to
prevent them from penetrating the wall. (2) The wall bound-
ary conditions can also be modeled either by fixed particles
[13] or by virtual particles that mirror the physical proper-
ties of inner fluid particles. The above methods of boundary
treatment have been discussed in 2009 [49], and the literature
shows that the virtual particles approach have better stability
and affectivity than the artificial repulsive force method. So
the boundary particles in this work do not employ an artifi-
cial repulsive force instead of adopting the virtual particles
on approaching real particles to prevent fluid particles from
penetrating rigid wall.

As shown in Fig. 1, the virtual particles are used to imple-
ment the boundary conditions on a rigid wall, which are
located right on the rigid wall, namely “rigid particles”. The
rigid particles have fixed density and positions with at least a
range of depth comparable with the compact support of the
kernel used in the computations. In this paper, the initial dis-
tance between neighboring rigid particles is set to d0/2 along
the x-axis and equal to d0 along the y-axis (d0as the initial

Fluid particles

2h

Fig. 1 The sketch of rigid particles

distance between neighboring fluid particles) for the better
of preventing fluid particles from penetrating rigid wall.

The density of wall particles is not evolved and the non-
slip condition is enforced on the solid wall and the positions
of rigid particles remain fixed in time. The pressure and elas-
tic stress on the wall particles are calculated according to the
following approximation formulation

Li =
∑

j

L j
(
2h − ri j

)
/
∑

j

(
2h − ri j

)
. (51)

where i represents the index of a wall particles and j denotes
the index of its neighboring fluid particles only. The Li rep-
resents the vector of variables

(
p, T αβ

)
i .

The boundary treatment mentioned above is feasible to
prevent fluid particles from penetrating rigid wall (see Sect. 4)
and possesses higher computational efficiency than that of
proposed boundary treatment in [4,26], thus it is valid and
easier to be implemented than those in [4,26].

Moreover, the following total stress-free condition must
be satisfied in the computational domain for surface particles

σ · n = 0, (52)

where n denotes a unit normal vector to the surface. In this
paper, the surface tensor is neglected and a Dirichlet bound-
ary condition of zero pressure is given to the surface particles.
This condition, i.e. Eq. (52), is satisfied naturally by the I-
SPH method.

4 Numerical tests

In this section, some benchmark examples will be solved
and compared with other numerical results to verify the
accuracy of proposed I-SPH approach combined with the
boundary condition treatment to simulate the viscoelastic
fluid flow. Meanwhile, the validities of AV, AS and DR
technique are also illustrated by simulating a single droplet
impacting on plate based on the Oldryod-B fluid. Noting
that the Oldroyd-B fluid model is considered in this section,
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Fig. 2 Particle distributions
obtained using different
techniques: a TSPH with cubic
spline kernel; b TSPH with
quintic Wendland kernel; c
I-SPH with quintic Wendland
kernel and artificial stress
(I-SPH-AS).
(Re = 100, t = 0.2 s)

which can be obtained from the XPP constitutive model with
α0 = 0, f (λ, τ ) = 1 in Eq. (5).

4.1 The accuracy of the I-SPH method

Example 1: Taylor–Green flow

In this subsection, the 2-D Taylor–Green flow (see [50]) of
Newtonian fluid is first simulated to investigate the accuracy
of the I-SPH method and the merit of the quintic Wendland
kernel function. The Taylor–Green flow is a periodic array of
decaying vortices in the plane, and its velocity components
are given

u = −Uebt cos(2πx) sin(2πy),

v = Uebt sin(2πx) cos(2πy). (53)

where U = 1m/s is the velocity scale, the computational
periodic domain is performed on [0, L] × [0, L] with L =
1 m, the kinematic viscosity υ0 = 0.01 m2/s and corre-
sponding to the Reynolds number Re = U L/υ0 = 100; b =
−8π2/Re is the decay rate of the velocity field.

Figure 2 shows the comparisons of particle distributions
obtained using different numerical methods for the Taylor–
Green flow. It can be observed that the TSPH results possess
more obvious instability than the other numerical results.
Meanwhile, we can know that the quintic Wendland kernel
function has better stability than the conventional cubic spline
kernel from Fig. 2a, b. The particle distributions obtained by

Fig. 3 The velocity profiles obtained using different methods at x/L =
0.0 m. (Re = 100, t = 0.2 s)

I-SPH method combined the artificial stress (I-SPH-AS) are
more uniform than those obtained by the TSPH method due
to the effect of AS technique combining with the corrected
symmetric kernel gradient scheme and the quintic Wendland
kernel function. Moreover, the tensile instability is well elim-
inated by the I-SPH method for simulating fluid flow which
can be found from Fig. 2c. The effect of AS will be discussed
in Sect. 4.2.

Figure 3 shows the velocity profiles at x/L = 0.0 obtained
using different numerical methods with Re = 100, t = 0.2 s
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(b)

xy
T

(a)

Fig. 4 Comparisons of different numerical results for the Oldroyd-B fluid flow Re ≈ 0.03: a u(y); b T xy(y)

The I-SPH results of velocity component u(y) are much
closer to the analytical solutions than the other results, and
the TSPH results appear small oscillations in Fig. 3. On the
other hand, we can get that the proposed I-SPH combined
with the AS term has higher accuracy and better stability
than the TSPH method.

Example 2: Poiseuille flow

In order to further demonstrate the capacity of the pro-
posed I-SPH method for solving viscoelstic fluid flow, Fig. 4
show the comparisons of the numerical results obtained using
different numerical methods for the Poiseuille flow based on
the Oldroyd-B fluid with different physical parameters. The
planar flow involves flow between two stationary parallel, the
infinite plates located at y = 0 and y = L0. The Poiseuille
flow describes that the initially stationary fluid is driven by
a body force F paralleling to the x-axis and then removes.
The analytical solutions of Poiseuille for the Oldroyd-B fluid
have been given in [3,12].

In this simulation, all the non-dimensional physical quan-
tities are set as: the characteristic velocity U = F L2

0/8υ0,
and corresponding to the Reynolds number Re = U L0/υ0,
the Weissenberg number W e = (λobU )/L0; the ratio of vis-
cosity β0 = 0.3, the number of fluid particles is 31 × 61
and the other parameters values are: L0 = 1, ρ0 = 1, the
sound speed c = 10Umax, the smoothing length h = 1.1d0,
the time step dt = 10−4. Moreover, the kinematic viscos-
ity υ0 = 2, the body force F = 1 corresponding to the
Re ≈ 0.03, the relaxation time λob = 0.2 corresponding to
the W e = 0.012 in Fig. 4. The techniques of DR, AV and AS
are all not adopted for the I-SPH method in this subsection.

From Fig. 4, it can be found that the I-SPH results are much
closer to the analytical solutions than the TSPH results. It is
worth noting that the shear elastic stress obtained using TSPH
method has small oscillation near the boundary, which will

lead to instability versus time. Meanwhile, the overshoot-
ing phenomenon appears for Oldroyd-B fluid. Seeing Fig. 4,
the advantages of the proposed I-SPH method over the TSPH
method can be obtained as: (1) the I-SPH has higher accuracy
than the TSPH for simulating the viscoelastic fluid flow; (2)
the I-SPH method for capturing the overshooting phenom-
enon of velocity is more accurate than the TSPH method.

4.2 The validity of some techniques

In this subsection, the validity and necessity of DR, AV and
AS introducing in the I-SPH method are discussed.

Example 1: Stretching of a Newtonian fluid droplet [44]

All the physical quantities are the same as those in [44],
the reference density ρ0 = 1,000 kg m−3, the viscosity η =
0.001 kg m−1s−1, and the speed of sound c = 1,400 ms−1.
The initial geometry of the water drop is a circle of radius
R = 1 m with its center located at the origin (x = 0, y = 0).
There is no external forces but a initial velocity field vx

0 =
−A0x, v

y
0 = A0 y with A0 = 100 s−1 and the initial pres-

sure field p0 = (1/2) ρ0 A2
0

[
R2 − (

x2 + y2
)]

. The number
of fluid particles is 1961, and the time step dt = 10−5 s. Dur-
ing the stretching process of water dropwhich should remain
elliptical shape and the value of semi-minor axis times semi-
major axis should remain constant. We let “M” denote the
interval time step of the periodic DR of TSPH-DR, and the
TSPH-DR method becomes the TSPH method if M = ∞.

Figure 5 shows the numerical results of the semi-minor
axis obtained using TSPH-DR method with different M. We
can see that the better results belong to M = 10 and 20.
In fact, the more uniformly distributed the particles are, the
better the numerical accuracy is. The accuracy of numerical
results using TSPH can be improved by periodic DR with
appropriate “M”. In a word, the effect of the DR method
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Fig. 5 Comparisons of numerical results obtained using TSPH-DR
method about the semi-minor axis varying with time

used in the TSPH method is obvious. Observing the results
of Fig. 5 and considering the computational cost and the effect
of TSPH-DR with different “M”, we choose the interval time
step M = 25 in all the following numerical simulations.

Example 2: Evolution of a square Newtonian fluid patch [44]

The deformation process of rotation of a free surface
square fluid patch is numerically illustrated to test the advan-
tages of the AV and AS. The initial rotation velocity vx

0 =
ωy, v

y
0 = −ωx (ω = 100 denotes an arbitrary angular veloc-

ity), the initial pressure field P0 = 0, and the other parame-
ters are the same as in Fig. 5. The number of fluid particles
is 51 × 51, and the time step dt = 5 × 10−6 s.

The shape of a square fluid patch obtained using different
numerical methods are illustrated in Fig. 6 at t = 0.016 s.
The parameters of AV and AS are αI I = 0.1, βI I = 0.2, b =
0.1. Comparing with the Fig. 6a–d, we can know that the

(c)
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3 (d)

x

y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2
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(a) (b)

Fig. 6 The deformation process of a square fluid patch obtained by different methods at t = 0.016 s: a TSPH; b I-SPH-AV; c TSPH-AV; d
TSPH-AS

123



988 Comput Mech (2014) 53:977–999

(a) I-SPH (b) I-SPH –AV

(c) I-SPH -AS       (d) I-SPH -AV-AS

Fig. 7 The particles distributions of an Oldroyd-B drop impacting on plate obtained by different methods at dimensionless time t ≈ 2.1

(a) I-SPH-AV-AS    (b) I-SPH-AV-AS-DI

Fig. 8 The pressure distribution of an Oldroyd-B drop impacting on plate at dimensionless time t ≈ 1.8

non-physical phenomenon of particles location for the TSPH
method is improved by TSPH-AV, TSPH-AS and I-SPH-AV
methods. Although the instability is improved by the AV and
AS models, respectively (see Fig. 6c, d), the particles distri-
bution is not uniform for the TSPH-AS results (see Fig. 6d)
due to the influence of AS, which can reduce the numerical
accuracy. The I-SPH-AV results are the best among these
results in Fig. 6, which the stretching deformation of four
corners is uniform due the effect of the I-SPH method com-
bined with the AV. As a result, it is necessary to adopt the AV
in the I-SPH method.

Example 3: Deformation of a single Oldroyd-B fluid droplet
impacting on plate [3,26]

In order to further investigate the necessity of the DR tech-
nique including that the AV and AS have been simultaneously
added into the proposed I-SPH method, a single Oldroyd-B
fluid droplet impact problem (see [3,26]) is studied by the
I-SPH method combined with other techniques (see Figs. 7,
8). The initial parameters of drop are chosen as: Its initial
diameter and velocity are D = 0.02 m and U0 = −1 m s−1,
respectively. The total viscosity is η = 4 Pa · s, the ratio of
Newtonian viscosity and total viscosity is β0 = 0.5, the ref-
erence density is ρ0 = 103 kg m−3, the speed of sound is
c = 12 m s−1, the gravitational force acts downwards with
gy = −9.81 m s−2, λ0b = 0.02 s. For the simulations, the
number of fluid particles is set to 1,981, the smoothing length
h = 1.4d0. The time-step is 1 × 10−5s; The AV parameters

αΠ = 1 and βΠ = 1 for all cases in this work. To remove
the tensile instability, the AS coefficient b = 0.5. The dimen-
sionless parameters Reynolds number and Weissenberg num-
ber are introduced as Re = ρDU0/η, W e = λ0bU0/D, and
corresponding to Re = 5, W e = 1 in Figs. 7 and 8.

Figure 7 shows the particles distributions of an Oldroyd-
B drop impacting on plate obtained by different methods at
dimensionless time t ≈ 2.1. It can be seen that the droplet
fractures unrealistically for the problem of Oldroyd-B droplet
impacting without the AS term (see Fig. 7a, b), and the simu-
lations may be eventually diverge. The tensile instability can
be well eliminated by the AS in Fig. 7c, d, which indicates
that the necessity of AS added into the I-SPH or I-SPH-
AV method for simulating the problem of droplet impact.
The pressure distribution of an Oldroyd-B drop impacting on
plate is illustrated in Fig. 8 at dimensionless time t ≈ 1.8. The
phenomenon of pressure oscillations for the I-SPH method
combined with other techniques is weakened, due to the
effect of density re-nationalization.

Observing Figs. 5, 6, 7, and 8, we can get that: (1) the
problem of pressure oscillations can be effectively reduced
by the density re-nationalization technique, and the numeri-
cal accuracy is improved; (2) the particle distributions with
AV are more uniform than those without it, the numerical
accuracy and stability are improved, and the phenomenon of
unphysical clustering is weakened; (3) the tensile instability
can be eliminated by the AS. In a word, the three techniques
mentioned are valid and necessary in the simulation of TSPH
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Table 1 Comparisons of
consumed CPU time using
different methods for simulating
Oldroyd-B droplet problem
(corresponds to the case of
Fig. 7)

Dimensionless
time of drop
falling

TSPH CPU time
(s)

I-SPH CPU time
(s)

I-SPH-AV-AS
CPU time (s)

I-SPH-AV-AS-DR
CPU time (s)

1.5 1215.32 1958.66 1985.66 1986.73

2.5 2161.98 3412.77 3507.43 3509.12

3.5 3038.72 4745.35 5025.35 5026.81

4.5 4016.55 6083.19 7762.17 7763.63

or I-SPH for the free surface flows. It is worth noting that the
parameters of artificial viscosity and AS should be appropri-
ately chosen for simulating different fluid flow problems.

Moreover, the numerical results mentioned above also
show that the proposed boundary treatment is feasible and
valid. The artificial viscosity coefficients αΠ = 1 and
βΠ = 1 and the AS coefficient b = 0.25 (for the Newtonian
droplet), b = 0.7 (for the viscoelastic droplet) are chosen in
the following numerical simulations.

An improved numerical method has its advantages and
disadvantages. The merits of proposed I-SPH method over
than the TSPH method have been demonstrated in the sec-
tion, and the disadvantage of proposed method is that it owns
greater computational cost than the TSPH method due to the
obtained local matrix in I-SPH method. Table 1 shows that
the consumed CPU time of the I-SPH method combined with
other techniques and the TSPH method by simulating a single
Oldroyd-B droplet impact problem (2,821 fluid particles, 903
virtual particles and the other simulation parameters corre-
spond to the case of Fig. 7) in our computer. It can be observed
that the CPU time of the proposed I-SPH method or I-SPH-
AV-AS method is around 1.6 times than that of the Traditional
SPH method. We can also know that the techniques of AS,
artificial viscosity and DR technique occupy small computa-
tional cost from Table 1. As is well-known that the neighbor
particle search technique has important influence on the CPU
time of SPH or I-SPH method (see [12,45]), and a dynamic
cells neighbor particle search method (see [12]) is adopted to
enhance the computational efficency in the proposed particle
method.

5 Numerical investigation of two viscoelastic droplets
impacting on plate

According to References [1–4], the problem of droplet
impacting on plate is an interesting and challenging case,
which is often used to test the validity and capacity of pro-
posed numerical method for simulating free surface. Only a
single droplet falling on a rigid plate is considered in [3,4,42],
and two droplets successively impacting problem is more
complex than one droplet case (see [51]). Here, the deforma-
tion process of two intermiscible viscoelastic droplets falling

yg

yg

U

U
tt

D2

D1

l

H

Fig. 9 The initial sketch of two droplets impacting on a plate

on a rigid plate in sequence is numerically predicted using the
presented particle method for the purpose of demonstrating
the capacity of proposed I-SPH combined with other tech-
niques and displaying the complex non-linear viscoelastic
behavior of polymer melts. Moreover, we know that the XPP
model is affected by the stress singularity lower than some
other rheological models based on phenomenological theory
at higher Weissenberg number, and the XPP model can pro-
vide a good fitting to the rheological behaviors of branched
polymer melts. According to Reference [42]. Thus the XPP
model with some varied rheological parameters is mainly
considered, and the Newtonian and Oldroyd-B model fluid
are also presented for comparison.

The initial sketch of two droplets impacting on a plate in
sequence is shown in Fig. 9. The initial parameters are set
as: the droplet diameter D = 0.02 m; the height of the first
falling droplet i.e. “D1” to the plate is H = 0.04 m, and the
height of the second droplet i.e. “D2” to the plate is H+D
(the droplets D1 and D2 have same diameter); the reference
density ρ0, gravitational force gy , falling velocity U , speed of
sound c and the smoothing length h are all the same as those
in Fig. 7; the number of fluid particles for each droplet is 5025
and the time step dt = 5 × 10−6 s; the dimensionless time
t = t ′U/D (t ′ is the real time) is adopted in this section. It is
worth noting that the falling time interval of two droplets is
denoted as “tt ” as shown in Fig. 9. Three phases of spreading
process usually appear after a viscoelastic droplet impacting
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t=3

t=4 

t=4.5 

Fig. 10 The shape of two Oldoryd-B fluid droplets impacting on plate at different dimensionless time obtained by different methods with Re =
60, W e = 1, tt = 3: KGC-SPH method (first column), proposed I-SPH method (second column)

(see [1,3]), in which the second phase is the “contract
stage”. In the following simulations, three different typical
tt = 0, ts, tc are considered, which represent the two droplets
falling at the same time (tt = 0), the droplet D2 falling at
the start time (tt = ts) of “contract stage” and the droplet D2
falling at the end time (tt = tc) of “contract stage”, respec-
tively. Only the droplet D1 falls on the plate when tt → ∞.

In order to demonstrate the main merit of proposed I-SPH
method over than the KGC-SPH method (see Eqs. (28)–(32
in Sect. 3.2) or in [40]) for simulating the viscoelastic free
surface, the shapes of two Oldoryd-B fluid droplets impacting
on plate at different dimensionless time obtained by different
methods with Re = 60, W e = 1, tt = 3 (the other parame-
ters are the same as in Fig. 8) are shown in Fig. 10 (the red
color and green color represent the droplet D2 and droplet D1
in Fig. 10, respectively.). In a short time after the droplet D1
impacts on the plate, the numerical results obtained by the
I-SPH and KGC-SPH is similar and acceptable. The unde-
sired results of using the KGC-SPH appears versus time after
the droplet D2 falling on the droplet D1 (t = 4 or t = 4.5),
especially near the rigid wall and on the intersection area of
two droplets. However, the I-SPH results are still acceptable.
The main reason is that the obtained local matrix in KGC-
SPH method has worse non-sigularity than that in the I-SPH
method, especially near the boundary of simulating region.
Meanwhile, the simulation of using KGC-SPH may be ter-
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Fig. 11 The width of single XPP droplet after impacting on plate ver-
sus dimensionless time with W e = 1

minated at sometime due to the serious singularity of local
matrix near the boundary of simulating area. Moreover, the
computational cost of the proposed I-SPH method is lower
than that of the KGC-SPH method in these simulations, for
example the consumed CPU time of using the KGC-SPH is
1,353.6 s and the consumed CPU time of using the I-SPH is
1,285.3 s under the same computational condition when the
simulation step equals to 10,000.
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Fig. 12 The spreading process
and pressure distributions
(p/(ρg)) of two droplets
impacting on plate with
Re = 5, W e = 1, tt = 0: the
first column is Newtonian fluid
(a1–a8); the second column is
Oldroyd-B fluid (b1–b8)

Newtonian fluid:                        Oldroyd-B fluid:

1.3t = (a1)                                  (b1)

1.7t = (a2)                                  (b2)

2.0t = (a3)                                  (b3)

2.3t = (a4)                                  (b4)

2.9t = (a5)                                  (b5)
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3.3t = (a6)                                     (b6)

4.6t = (a7)                                  (b7)

7.0t = (a8)                                  (b8)

Fig. 12 continued

To further illustrate the reliability of using proposed
method to simulate the deformation process of droplet
impacting on plate based on the XPP model, the width of
a single XPP droplet D1 after impacting is shown in Fig. 11
and compared with the FDM results (see [42]). In Fig. 11, the
model parameters α0 = 0.01, q = 4, β0 = 0.1, er = 0.8,

and the λ0b = 0.02 s corresponding to Weissenberg number
W e = λ0bU/D = 1, the total viscosity η = 20, 4, 2 Pa · s
corresponding to Reynolds number Re = ρ0 DU/η =
1, 5, 10, respectively.

Figure 11 shows the numerical results with different
Reynolds number 1 ≤ Re ≤ 10, and the results obtained
by the I-SPH method are in good agreement with the FDM
results. It can be seen that the width of droplet increases sig-
nificantly as Re increases after impacting. As a consequence,
the viscous force relative to inertial force decreases when the
droplet reaches the plate, which leads to an increased width.

5.1 Influence of falling time interval on the deformation
process

The deformation process of viscoelastic droplet becomes
more complex while another intermiscible droplet falls on
the former droplet. The falling time interval has an impor-
tant influence on the spreading process of droplet D1, which

can be seen from Figs. 12, 13, 14, and 15. The “pink” color
near boundary of droplets in Figs. 12 and 15 represents the
sketch of deformation process of two droplets.

Figure 12 shows the spreading process and pressure dis-
tributions (p/(ρg)) of two droplets impacting on plate with
Re = 5, W e = 1, tt = 0, and the other parameters are the
same as those in Fig. 11. It can be seen the variations of
deformation process and pressure field of droplets D1and
D2 from Fig. 12. The width of droplets D1 and D2 ver-
sus time obtained by different methods for the Newtonian
and Odroyd-B fluid are shown in Fig. 13, respectively. From
Fig. 13, the results of two Oldroyd-B droplets successively
impacting problem obtained using the present method are
close those obtained using the FVM method combined with
Level-Set technique (see [9]), and show that the proposed
particle method is credible for simulating two viscoelastic
droplets impact problem. Observing Figs. 12 and 13, we can
also know that: (1) The pressure is significantly increased at
the moment after impacting, and it is slowly decreased with
the increased impacting time (see Fig. 12). (2) The defor-
mation process for the Oldryod-B droplet has three stage
because the influence of elastic stress and the deformation
for the Newtonian droplet keeps spreading on the plate, but
the shape is different from the case of a single droplet impact-
ing on plate (see [1,3,26]) at the same time. Moreover, the
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Fig. 13 The variation of the width of two droplets obtained using different methods for different model fluid after impacting on plate versus
dimensionless time corresponds to the case of Fig. 12: a Newtonian fluid; b Oldroyd-B fluid (tt = 0)
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Fig. 14 The results of the width of two XPP droplets falling with different particle number at different time intervals (W e = 1, Re = 5): a tt = 0;
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Fig. 15 The deformation
process and vx -velocity field of
two XPP droplets after falling
with Re = 5, W e = 1 at the
time intervals corresponds to the
case of Fig. 14b, c: (a1–a6)
tt = ts (first column); (b1–b6)
tt = tc (second column) 1.67t = (a1)               (b1)

2.27st t= ≈ (a2)                                    (b2)

3.87ct t= ≈ (a3)                                      (b3)

4.9t = (a4)        (b4)

5.8t = (a5)                            (b5)

7.3t = (a6)                                    (b6)
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spreading tendency of the droplets D1 and D2 for the New-
tonian fluid or Oldroyd-B fluid along the plate is weaker than
that of a single droplet impacting on plate due to the inter-
action between two droplets. (3) The deformation tendency
of droplet D1 is more violent than that of the droplet D2
because the effect of extrusion between the droplet D2 and
rigid plate, while the changing curve of width of droplet D1
is parallel with the case of droplet D2 for the Newtonian
fluid or Odroyd-B fluid (see Fig. 13). (4) The phenomenon
of cave for the droplet D2 based on the Oldroyd-B model is
obviously observed from Fig. 12b6. (5) For the reason of the
interaction between droplets, the phenomenon of deforma-
tion for the droplet D1 is more complex than that for a single
droplet impacting on plate (see [1,3,26]). The remarks men-
tioned above are similar to the experimental conclusions of
two water droplets successive falling on a solid in [51].

In order to investigate the influence of falling time interval
on the deformation process, the width of two XPP droplets
D1 and D2 after falling with Re = 5, W e = 1 at three typ-
ical time intervals is shown in Fig. 14. Meanwhile, the bet-
ter numerical convergence of the present improved particle
method for simulating two XPP droplets impact problem is
discussed in Fig. 14 (“Nx” denotes the fluid particles number
along the x-axis at initial particles distribution), and the reli-
ability of the proposed method is also checked. The model
parameters are all the same as those in Fig. 11 except for
the falling time interval tt . The spreading tendency along the
plate for two XPP droplets D1 and D2 is weaker than that
for two Oldroyd-B droplets by comparing Figs. 13b and 14a.
The reason is the influence of branched polymer melts rheo-
logical parameters. The spreading process of droplet D1 with
tt = ts and tt = tc (see Fig. 14b, c) is more complex than
that of droplet D1 with tt = 0 (see Fig. 14a). Particularly,
the contract deformation process of droplet D1 occurs twice
at tt = tcwhile the contract tendency occurs only once in
the case of a single droplet impacting at Re = 5 which can
be observed from Figs. 14c and 11, respectively. The effect
of elastic stress is illustrated once again after the droplet D2
impacting on the droplet D1 in Fig. 14b, c, and consequently
a faster spreading of droplet D1 appears in a short time after
the droplet D2 falls on the D1.

The part of potential energy of droplet D2 is transformed
into the energy of motion of droplet D1, but the total mechan-
ical energy rapidly reduces after impacting, which can be
observed from Fig. 15. Figure 15 shows that the spreading
process and vx -field of two droplets D1 and D2 after impact-
ing at time intervals tt = ts and tt = tc, which corresponds
to the case of Fig. 14b, c, respectively. According to the vari-
ation of velocity field, the deformation tendency at different
dimensionless time can be easily understood, and the con-
tract deformation phenomenon corresponds to the positive
values of velocity field along the negative direction of x-
axis (see Fig. 15a4, b5). The vx -field near the two ends of
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Fig. 16 The variation of the width of two XPP droplets versus dimen-
sionless time with the influence of W e at different time intervals: a
tt = 0; b tt = ts ; c tt = tc

droplet D1 is increased in a short time when only the droplet
D1 impacts the plate, and decreased with the increased
impacting time. Subsequently, the velocity values are also
increased in a short time after droplet D2 impacts on D1, and
decreased versus impacting time which can be observed from
Fig. 15b3–b6.
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Fig. 17 The variation of the width of the XPP droplet D1 versus dimen-
sionless time with the influence of β0 at different time intervals: a tt = 0;
b tt = ts ; c tt = tc

In a word, the falling time interval has an important influ-
ence on the deformation process of two droplets especially
for the droplet D1, which makes the spreading process of
two droplets impacting on plate more complex than that of a
single droplet impacting problem.
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Fig. 18 The variation of the width of the XPP droplet D1 versus dimen-
sionless time with the influence of q at different time intervals: a tt = 0;
b tt = ts ; c tt = tc

5.2 Influence of model parameters on the deformation
process

To further demonstrate the important influence of model
parameters on the spreading process of droplets D1 and D2
impacting on plate and the capacity of the proposed method to
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Fig. 19 The variation of the width of the XPP droplet D1 versus dimen-
sionless time with the influence of er at different time intervals: a tt = 0;
b tt = ts ; c tt = tc

simulate two XPP droplets impact problem, Fig. 16 shows the
width of the XPP droplets D1 and D2 with increasing Weis-
senberg number at three typical falling time intervals. The
widths of the XPP droplet D1 with three increasing model

parameters of β0, er, and q are also shown in Figs. 17, 18
and 19, respectively.

With the Weissenberg number increases, the larger value
of width of droplets D1 and D2 is gained at different time
(see Fig. 16). The start retraction time of spreading process
of XPP droplets D1 and D2 is delayed, and the relative retrac-
tion phase is elongated (see Fig. 16b, c), which is a conse-
quence of the elongation of stretch relaxation time λ0b as W e
increases. The spreading tendency of droplet D2 is still sim-
ilar to the case of droplet D1 with different W e at different
time intervals after the droplet D2 impacts on the D1. Then,
only the variation curve of spreading process of the droplet
D1 is shown at different time intervals in Figs. 17, 18 and 19.

The influence of solvent contribution on two droplets
impact problem is displayed in Fig. 17. The behavior of XPP
fluid is more close to the Newtonian fluid behavior as β0

increases, which represents the reduction of effect of elas-
tic stress. The change of width with different β0 in a short
time after impacting is obvious, and the spreading process of
droplet is slower when β0 increases. Moreover, we also can
observe that the spreading process of XPP droplet becomes
slow as both q and er increase (see Figs. 18, 19). However, the
change of width of droplet for different Pom–Pom molecule
parameter q is small in the impacting process which implies
that the influence of q is relatively small. All the results in
Figs. 16, 17, 18, and 19 indicate that the macroscopic model
parameters W e, β0 and er have more important influence on
the spreading process of two droplets impact problem than
the parameter q, which is in agreement with the related con-
clusions given in [42].

6 Conclusions

In this work, the spreading process of two XPP droplets
falling on a plate in sequence with different time intervals
is numerically predicted by using an improved SPH (I-SPH)
method combined with other treat techniques. The proposed
I-SPH method is motivated by a coupled concept in which
the traditional SPH (TSPH) method is used near the bound-
ary area and a KGC-SPH method is used in the interior fluid
field. The KGC-SPH method is achieved by correcting the
first order kernel gradient of TSPH without kernel deriva-
tive. Meanwhile, an AS technique is presented to eliminate
the tensile instability, a periodic DR technique is considered
for restraining the oscillation of pressure, and a new bound-
ary condition treatment is used to prevent fluid particles from
penetrating the rigid plate.

The ability and merits of proposed I-SPH method are
tested by simulating two benchmark problems and a single
droplet impact problem. The problem of two XPP droplets
impacting on plate is numerically investigated using the I-
SPH method and the influences of falling time interval and
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model parameters on the deformation process of droplets
impacting on plate are also analyzed. All the results show
that: (1) the proposed I-SPH method possesses higher accu-
racy and better stability than TSPH method; (2) it is valid and
necessary to introduce the AS and DR techniques into the I-
SPH method to simulate the droplet impacting problem; (3)
the proposed boundary condition treatment is feasible; (4) the
spreading process of two viscoelastic droplets impact is more
complex than that of a single droplet impact problem; (5) the
contract stage of XPP droplets after impacting may be occur
twice as the model parameters and falling time interval are
appropriately chosen; (6) the macroscopic model parameters
have significant influences on the deformation process of two
viscoelastic droplets impact problem.
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