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Abstract
Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in
computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted
meshes, immersed boundarymethods instead embed the computational domain in a structured background grid. Interpolation-
based immersed boundarymethods augment existing finite element software to non-invasively implement immersed boundary
capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange
polynomials defined on a foregroundmesh, creating an interpolated basis that can be easily integrated by existingmethods. This
work extends the interpolation-based immersed isogeometricmethod tomulti-material andmulti-physics problems.Beginning
from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in
state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-
splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces.
Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work
presents a novel discretization method for coupled problems through the application of extraction, using a single foreground
mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial
differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of
this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical
meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite
element methods.
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1 Introduction

Computationalmodeling has become an integral part of engi-
neering of all types, and developments in manufacturing and
design have increased the complexity of themodels required.
Multi-material problems are now ubiquitous, appearing in
the design and analysis of composites [56], advanced addi-
tive manufacturing products [50], and multi-phase system
analysis [72]. These new design spaces present challenges to
modelingmethods, primarily in the discretization of intricate
geometries and domain interfaces, and the unique discon-
tinuities in solutions that result from material interactions.
Finite element methods (FEMs) are among the most widely
used computational tools for structural analysis. Classical
FEM relies on sufficiently refined boundary-fitted meshes to
discretize both the geometric domain of a material and its
solution’s function space. The accuracy of these methods is
closely tied to mesh quality [12], especially when high-order
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methods are employed [22]. Thus, considerable care must
be taken in mesh construction before analysis can be per-
formed [41]. As the complexity of multi-material problems
increases, generating these high-quality conforming meshes
required by FEM becomes increasingly challenging, espe-
cially in three dimensions. Even for singlematerial problems,
mesh generation and refinement can consume up to 80% of
the design-through-analysis time of engineers [10]. More
complicated PDEs involving multiple state variables also
present unique modeling challenges. In such multi-physics
problems, the various fields may have distinct discretization
needs and the fields must be coupled.

Immersed boundary methods circumvent conforming
mesh generation by embedding the geometric problem
domain into a background grid constructed on a geomet-
rically simple domain. Initially proposed to track fluid–
structure interfaces in [55], similar classes of immersed
methods were likewise developed by the solid mechanics
community to accommodate discontinuities in solution fields
without remeshing to create boundary-fitted meshes. The
partition of unity method (PUM), introduced in [4], lever-
ages the concept of enriching solution functions using a
priori knowledge of the location of discontinuities. This was
combined with classical FEM in [65] and [64] to introduce
the generalized finite element method (GFEM). A simi-
lar enriched method, characterized by adaptive enrichment
schemes, known as the “eXtended" finite element method
(XFEM) [8, 9, 48], was also introduced to model crack
propagation and other discontinuous problems. Immersed
boundary methods have also been extended to include high-
order methods. The finite cell method [54, 57] utilizes
p refinement of Lagrange polynomial basis functions to
increase convergence rates within an immersed framework.
In the field of meshfree methods, the concepts of immersed
or embedded methods have been used to model heteroge-
neous materials [60] and to enhance solution accuracy and
stability nearmaterial interfaces in fluid–structure interaction
problems [32].

Isogeometric analysis (IGA) directly utilizes the geo-
metric representation used in most computer-aided design
(CAD) software in analysis [33] andwas initially proposed to
address the issue of generating high-quality boundary-fitted
meshes. The B-spline basis functions used in IGA offer addi-
tional advantages over classical FEM including improved
geometric representation, higher levels of continuity, and
improvedper-degree-of-freedomaccuracy compared tomore
common nodal finite element basis functions [34, 35]. The
combinations of IGA and immersed boundary methods are
often called immersogeometric methods [39], and have been
validated for use with hierarchically refined T-spline CAD
models [58] and for ‘trimmed’ CAD geometries [14]. The
XFEM class of enriched methods was applied to IGA to
create the eXtended isogeometric method (XIGA) in [52],

exploiting level-set geometric descriptions and sophisticated
integration algorithms to solve complicated PDEs involving
multiplematerials. XIGAwas extended to use truncated hier-
archically refined B-splines (THB-splines) for multi-physics
problems in [61].

While offering elegant solutions to the problem of mod-
eling complex geometries, existing immersed boundary
software is currently limited to custom research codes. This
is in part due to the complexity of generating custom quadra-
ture rules on each cut backgroundelement [19]. These custom
quadrature rules require implementations that depart signifi-
cantly from the highly optimized integration algorithms used
in classical FEM codes. For example, an immersed boundary
functionality called MultiMesh [36] was developed for the
popular open-source FEM software FEniCS [1], however it
proved too difficult to maintain and was not ported to the
more recent FEniCSx [6].

Someclasses of immersedboundarymethods are specially
formulated to reduce the difficulty of integrating over cut
cells, including approximate domain methods and specif-
ically the shifted boundary method [42, 43]. The shifted
boundary method maps the boundaries of a computational
domain to amesh conforming surrogate domain and has been
extended to high-order methods in [3]. Similar to the shifted
boundary method, interpolation-based immersed methods
like the one presented in this work provide the benefits of
immersed methods without requiring invasive implementa-
tion of custom quadrature methods.

This work utilizes approximate extraction to retrofit clas-
sical FEM codes to perform immersed analysis. Extraction
was introduced to represent B-spline basis functions with
Bézier polynomials for implementation of IGA [11], andwas
generalized to Lagrange extraction in [59]. With Lagrange
extraction, each spline in a B-spline function space is rep-
resented as a linear combination of Lagrange polynomials
belonging to an interpolatory function basis {Ni }, which sat-
isfies the Kronecker delta property δi j = Ni (x j ), where
x j are the nodal coordinates. Because of this interpola-
tory property, Lagrange extraction-based methods are also
called interpolation-based methods. IGA and other partition
of unitymethods are challenging to implement as shape func-
tions are not the same from element to element [47] making
interpolation-based methods attractive. Lagrange extraction
has been utilized to implement IGAwithin existing finite ele-
ment software in [37, 38], which uses the software FEniCS,
and in [68], which uses the software Code_Aster.

In [26], approximate extraction was applied to immersed
boundary methods. In interpolation-based immersed bound-
ary methods, a domain is embedded in a structured back-
ground mesh, which is used to define a background basis.
A boundary-fitted foreground mesh is quickly generated by
decomposing the cut elements of the background mesh. The
foreground mesh, which does not need to adhere to the usual
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mesh quality metrics [41], is used to define a boundary-fitted
Lagrange polynomial foreground basis. The background
basis is interpolated with the foreground basis, and the inter-
polated basis can then be used to solve PDEs with Galerkin-
type methods. As the interpolated basis is represented as a
linear combination of Lagrange polynomials defined upon a
boundary-fitted mesh, the integration can be performed with
classical FE software, as illustratedwith FEniCS in [26]. This
work also employed B-spline background bases, combining
immersed and isogeometric methods for an immersogeo-
metric method. The interpolation-based immersogeometric
method differs from previous extraction-based IGA meth-
ods in its use of approximate instead of exact extraction.
With approximate extraction, the interpolated background
basis is not everywhere equivalent to the actual background
basis, resulting in additional interpolation error. The addi-
tional interpolation error is demonstrated to be bounded by
the optimal method error, thus the method still yields opti-
mal convergence rates. Easing exact interpolation constraints
to permit approximate extraction allows for easier and more
efficient implementation.

Previous work using interpolation-based immersed-
boundary methods used a single uniform background basis
for single material and single physics problems [26]. This
work expands the applications of this method to multi-
material and multi-physics problems with the following
contributions:

• Discontinuous state variable fields are approximated by
background bases with Heaviside enrichment applied at
material interfaces.

• Material interfaces are described by level sets, and hier-
archical refinement allows for local refinement.

• Local foreground refinement is applied independently
of background refinement, improving geometric approx-
imation of material interfaces without increasing the
number of system degrees of freedom.

• Separate background bases are used to approximate dif-
ferent fields in multi-physics applications, which are
interpolated using a single foreground basis, allowing for
easy coupling.

An interpolation-based immersed boundary framework uti-
lizing these developments is implemented in the next gener-
ation open-source software library FEniCSx [6], with code
available at [25]. Multi-material heat conduction and linear
elasticity are modeled to demonstrate the convergence rates
of the proposed workflow. A coupled thermo-mechanical
problem illustrates the combined multi-material and multi-
physics capabilities of the interpolation-based immersed
boundary framework.

The outline of this paper is as follows: Sect. 2 provides an
overview of hierarchical B-splines and the generation of the

THB-splines used for local refinement. Section3 describes
this method’s treatment of the geometric description ofmate-
rial interfaces and the Heaviside enrichment of solution
spaces with discontinuities at material interfaces. Section4
details the novel interpolation-based immersed boundary
method’s application to multi-material and multi-physics
problems and its implementation workflow within existing
FEM codes. Section5 provides numerical results validating
and expanding upon this method, and finally Sect. 6 draws
conclusions and suggests future work that can be done with
this method.

2 Hierarchical B-splines

Immersogeometric analysis combines aspects of two classes
of methods, immersed methods and isogeometric methods.
As in isogeometric methods, this work employs splines to
represent state variable fields. A review of multivariate B-
spline functions spaces is provided in “Appendix A”. The
following is a discussion of hierarchical refinement of B-
spline functions spaces and an overview of the THB-spline
spaces used in the application of interpolation-based immer-
sogeometric methods to multi-material problems.

2.1 Hierarchically refined B-spline function spaces

Hierarchiacally refined B-splines (HB-splines) are con-
structed using nested sequences of spline spaces created by
repeated knot insertion. Following the algorithms presented
in [27], an HB-spline basis begins with the construction of a
sequence of r tensor-product spline spaces V l ,

V0 ⊂ V1 ⊂ · · · ⊂ Vr−1, (1)

each of which has an accompanying B-spline basis Bl =
{Bl

i }, and tensor-product Cartesian meshKl , where elements
are denoted by K . A sequence of subdomains �l are chosen,
such that �l+1 is a subregion of �l ,

�0 ⊇ �1 ⊇ · · · ⊇ �r−1, (2)

and each �l can be discretized with mesh elements K ∈ Kl .
Here r is the depth of refinement.

The HB-spline basis H := Hr−1 is constructed recur-
sively by the algorithm:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0 := B0,

Hl+1 := {B ∈ Hl
∣
∣ supp(B) �⊂ �l+1} ∪

{B ∈ Bl+1
∣
∣ supp(B) ⊂ �l+1},

l ∈ {0, . . . , r − 2}.
(3)
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Fig. 1 Local refinement is applied through truncated hierarchically-refined B-splines (THB)

In essence, each subsequent level’s basisHl+1 is formed from
the union of the set of basis functions from the previous level
whose support is not in the new level’s subdomain�l+1, and
the set of functions from the new basis Bl+1 whose support
is within �l+1. This is illustrated with a 1D mesh in Fig. 1.

The hierarchically refined basis H is associated with a
hierarchically refined mesh K, defined as

K :=
r−1⋃

l=0

{K ∈ Kl
∣
∣ K ∈ �l and K /∈ �l+1}. (4)

2.2 Enforcing the partition of unity property
through truncation

While a useful tool for applying adaptive refinement to IGA,
HB-spline bases violate the partition of unity (PU) property.
To regain the this property, the hierarchically refinedbases are
truncated as in [27] and [28]. In addition to forming a partition
of unity, truncation reduces the size of some basis functions’
supports, thereby reducing the bandwidth of the resulting
system of equations when compared to a non-truncated HB-
spline basis.

A given multivariate basis function Bl ∈ Bl can be repre-
sented as a linear combination of the more refined functions

of level Bl+1:

Bl =
∑

Bl+1∈Bl+1

cB
l+1(

Bl) Bl+1, (5)

where cB
l+1(

Bl
)
are coefficients relating the coarse basis

function Bl to the finer function Bl+1.
The truncation of Bl removes the contributions from

Bl+1 ∈ Bl+1 with support contained within �l+1, such that

trunl+1(Bl) = Bl −
∑

Bl+1∈Bl+1,

supp(Bl+1)⊆�l+1

cB
l+1(

Bl) Bl+1. (6)

Using a similar algorithm to that given in Eq. (3), the
truncated basis T := T r−1 can be constructed by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T 0 := B0,

T l+1 := {trunl+1(B)
∣
∣ B ∈ T l , supp(B) �⊂ �l+1}

∪ {B ∈ Bl+1
∣
∣ supp(B) ⊂ �l+1},

l ∈ {0, . . . , r − 2},
(7)

as illustrated in Fig. 1b. This truncated basis forms a partition
of unity, as is proven in Theorem 10 of [28].

123



Computational Mechanics

Fig. 2 The function-wise
enrichment strategy considers
the material connectivity within
a basis functions support. The
function Bk spans two material
subdomains, denoted �1 and
�2, forming three disconnected
material subregions �l=1

k , �l=2
k ,

and �l=3
k

3 Immersedmaterial interfaces

Workflows to solve multi-material PDEs require functional-
ities to both describe the geometry of material interfaces and
to represent the associated discontinuities in the state variable
fields. In this work, level set functions (LSFs) are utilized to
implicitly describe the geometry of material interfaces, and
a generalized Heaviside enrichment strategy in conjunction
with a set of interface terms is employed to represent the
required discontinuities at material interfaces.

3.1 Representing interface geometry through level
set functions

The level set method, developed in [53], has been used to
describe interfaces in the extended finite element method
(XFEM) [8, 48] and extended isogeometric analysis (XIGA)
[52, 61]. Following these works, the domain geometry is
implicitly represented using LSFs φi (x). An iso-level φt of
the LSF describes the interface �± between two subdomains
�+ and �− such that

φ(x) < φt , x ∈ �+,

φ(x) > φt , x ∈ �−,

φ(x) = φt , x ∈ �±. (8)

With n LSFs, this method can represent up to 2n subdomains.
Materials are then associated with these subdomains using
a multi-phase level set model as in [69], where phases are
identified by phase indices P . Phase indices P are assigned
with characteristic functions fi ,

fi (x) =
{
0, φi (x) < φt ,

1, φi (x) ≥ φt ,
(9)

such that

P(x) =
n∑

j=1

2 j−1 f j (x). (10)

Phases are then mapped onto material subregions.

In this work LSFs are discretized using linear basis func-
tions from a THB-spline basis Bk ∈ T ,

φh
i (x) =

∑

k

Bk(x)φk
i , (11)

where φk
i are the coefficients associated with LSF φi . The

LSF are linearly interpolated such that the coefficients are
the nodal values φk

i ≡ φi (xk). This discretization is used
to construct material characteristic functions and to enrich
background basis functions.

3.2 Heaviside enrichment of basis functions at
material interfaces

Heaviside enrichment have been widely used in PUM [4],
GFEM [65], and XFEM [9] as a means to represent strong
discontinuities within elements. The enrichment strategies
presented in most existing literature, such as in [31, 67], add
enriched basis functions for each material domain.

While effective, these global enrichment strategies can
lead to artificial numerical stiffening around small geometric
features. This stiffening is caused by interpolation of a state
variable field in locally disconnected domains of the same
material by the same basis function as shown in Fig. 2. The
high-order, higher-continuity B-spline basis functions with
large supports employed in this work, alongside the com-
plexmaterial layouts presented in Sect. 5.3,would exacerbate
local stiffening effects and lead to an increased solution error.
Typically, h-refinement is used to avoid locally disconnected
same-material domains within the region of support of any
given basis function, increasing overall system size. This
work instead adopts the enrichment strategy presented by
[52] which considers the material connectivity in the indi-
vidual basis functions’ supports.

As shown in Fig. 2, for a given function Bk with support
supp(Bk), the phase IDs, defined in Eq. (10), are used to
identify the Lk distinct but connected material subregions
�m

k , such that supp(Bk) = ∪Lk
m=1�

m
k . For Lk distinct subre-

gions, the basis function Bk requires Lk enrichment levels.
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Fig. 3 AB-spline basis is defined on a structured backgroundmesh and
an example function Bk is depicted in (a). Using the geometry descrip-
tion of the material subdomains in (b), Heaviside enrichment is applied
to form the discontinuous functions ψ1

k Bk and ψ2
k Bk , depicted in (c)

and (d) respectively. A Lagrange foreground function space is defined
on the boundary-fitted mesh in (e). The function space is used to inter-
polate the enriched background functions ψ̂1

k B̂k and ψ̂2
k B̂k , depicted in

(f) and (g), respectively

This enrichment is then achieved through characteristic
functions ψm

k ,

ψm
k (x) =

{
1, if x ∈ �m

k

0, else,
(12)

such that the enriched basis functions can be expressed as

Bm
k (x) = ψm

k (x)Bk(x), ∀ m ∈ {1, . . . , Lk}. (13)

The enriched basis functions constructed from a sin-
gle non-enriched basis function, are shown in Fig. 3 for a
two-material configuration. The bi-quadratic B-spline Bk

depicted in Fig. 3a is enriched assigning one material to
the inside and one material to the outside of the ellipse
shown in Fig. 3(b). The basis function Bk is split into two
enriched functions, B1

k (x) = ψm
1 (x)Bk(x) in Fig. 3c and

B2
k (x) = ψ2

k (x)Bk(x) in Fig. 3d allowing for the repre-
sentation of strong discontinuities at the material interface.
Interface conditions are enforced weakly; for example C0

continuity can be enforced at the interface using Nitsche’s
method [2].

4 The interpolation-based immersed
boundarymethod

One of the core challenges associated with classic immersed
methods is the construction of custom quadrature rules for
the various material regions within each intersected back-
ground element. Numerous solutions exist and have been
used in custom research codes, such as octree refinement
[20, 39, 57], interface reconstruction and tessellation [15,
24, 46], moment-fitting [49, 66], and quadrature schemes
using generalized Stokes theorem [29, 30, 63]. However,
the generation of such quadrature rules can generally not be
implemented within existing finite element software without
major changes to the software itself.

The interpolation-based immersed approach is instead
designed to utilize the integration subroutines of existing
FEM codes. To this end, a boundary-fitted foreground mesh
is constructedwith onlyminimal requirements onmesh qual-
ity. Element formation is then performed on the poor quality
boundary-fitted mesh using existing standard finite element
routines. UsingLagrange extraction operators [59] the result-
ing tangent matrix and force vector are projected into the
enriched THB-spline space. This can be done either on an
elemental level during assembly, or globally afterwards. The
resulting final problemuses an approximation of the enriched
function space of the background mesh which is interpolated
by the basis functions of the foreground mesh.

The following Sect. 4.1 will first introduce the thermo-
elastic model problem. Section 4.2 will provide an overview
of the interpolation-based approach specific to the multi-
material, multi-physics problems presented in this paper.
For a more general and comprehensive introduction to the
approach, we refer the reader to the authors’ previous work
on the topic [26]. The generation of the boundary-fitted fore-
ground mesh is discussed in Sect. 4.3.

4.1 Multi-material andmulti-physics model problem

To illustrate the application of interpolation-based immersed
boundary methods to multi-material and multi-physics prob-
lems, a thermo-elastic problem is introduced. This problem
can be broken into a thermal subproblem and a structural
subproblem.
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Let a domain of interest � with closure denoted � be
composed of n material subdomains M = {1, · · · , n}

� =
⋃

m∈M
�

m ⊂ R
dp . (14)

A different thermal conductivity κm may be associated with
each material m

κ(x) = κm , x ∈ �m, (15)

form ∈ M. A source term f : � → R, a boundary heat flux
term q : ∂� → R on �q̄ ⊂∂�, and Dirichlet boundary data
T : ∂� → R on �T ⊂∂� are ascribed. The strong form for
the thermal problem then reads as: Find T : � → R such
that ∀ m ∈ M

− ∇ · (κ(x)∇T ) = f in �m ,

[[T ]] = 0 on all �km,

[[q]] = 0 on all �km,

−κ(x)∇T · n = q on �m
q̄ ,

T = T on �m
T
, (16)

where �km = �
k ∩ �

m �= ∅, with k ∈ M and k �= m, are
the material interfaces, and [[·]] = (·)k − (·)m is the jump of
a given quantity over an interface �km . The material fields
are defined Tm = T (x), x ∈ �m , and qm = −κm∇Tm .
The domains �m

q̄ = �q̄ ∪ ∂�
m
, and �m

T
= �T ∪ ∂�

m
are

the intersections of the domain boundaries with the material
subdomain boundaries. n denotes the surface normal.

The domain of interest� is embedded into a hierarchically
refined background mesh KT , generated using the sequence
of refined meshes Kl and subdomains �l

T .
1 Note that the

largest subdomain �0
T must be chosen such that the closure

of the domain of interest is a subset, � ⊂ �0
T . The meshKT

is associatedwith the enrichedTHB-spline basisTT = {BT
i }.

The temperature field is discretized using the function space

Vh
T = span{BT

i

∣
∣ supp(BT

i ) ∩ � �= ∅}. (17)

The discrete form can then be defined as: Find T h ∈ Vh
T

such that ∀ θh ∈ Vh
T ,

n∑

m=1

[∫

�m
κ∇T h · ∇θhd�

]

−
∫

�

f θhd� −
∫

�q

qθhd�

= RD
T + RI

T , (18)

1 Here the subscript (·)T refers to entities associated with the thermal
subproblem. The subscript (·)u will refer to entities associated with the
structural subproblem. T and u are used as superscripts when referring
to entities that require subscripts for indices, such as B-spline basis
functions (BT

i and Bu
i ).

whereRD
T andRI

T are Dirichlet and interface residual terms.
The temperature Dirichlet residual is the result of Nitsche’s
method [51] enforcement of the Dirichlet boundary condi-
tion,

RD
T =

n∑

m=1

[

∓
∫

�m
T

κ(T h − T )(∇θh · n) d�

−
∫

�m
T

κθh(∇T h · n) d�

+
∫

�m
T

βD
T κ

h
(T h − T )θh d�

]

, (19)

where βD
T ≥ 0 is a user defined constant. The first integral

of Eq. (19) will be negative for the symmetric version of
Nitsche’s method (which is employed in numerical examples
in this work) or positive for the non-symmetric version. h is
taken as the characteristic element size on the foreground
mesh, differing from the usual implementation where h is
the element size on the background mesh.

The temperature interface conditions, lines 2 and 3 of Eq.
(16), are also enforced through aNitsche-likemethod, result-
ing in the temperature interface residual

RI
T =

n∑

i=1

n∑

j=i+1

[

−
∫

�i j

[[T h]]{κ∇θh} · n) d�

−
∫

�i j

[[θh]]{κ∇T h} · n) d�

+
∫

�i j

γ
i j
T [[T h]][[θh]] d�

]

, (20)

where {·} = wi (·)i − w j (·) j is the weighted average of a
given quantity. Motivated by the formulation in [2], these
weights are defined as

wi = (hi )dp/ωi

(hi )dp/ωi + (h j )dp/ω j
and

w j = (h j )dp/ω j

(hi )dp/ωi + (h j )dp/ω j
, (21)

where hm is the characteristic size of the foreground ele-
ment in domain �m bordering the interface facet, ωm is the
characteristic material parameter, which for the thermal sub-
problem is κm , and dp is the domain dimension. The penalty

parameter γ
i j
T is defined as

γ
i j
T = 2β I

T
(hi )dp−1 + (h j )dp−1

(hi )dp/ωi + (h j )dp/ω j
, (22)

where β I
T ≥ 0 is a user specified constant.
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The thermal subproblem can be stated compactly as the
variational problem: Find T h ∈ Vh

T such that ∀ θh ∈ Vh
T

aT (T h, θh) = LT (θh), (23)

where aT (T , θ) and LT (θ) can be computed from Eq. (18).
The structural subproblemmayutilize a differently refined

background discretization. In this case a separate sequence of
refined domains�l

u may be selected. The structural subprob-
lem’s background meshKu is constructed with this sequence
of subdomains and the same sequence of refined tensor-
product Cartesian grids Kl . The basis Tu = {Bu

i } associated
with the mesh is used for the components of the displace-
ment field u. Each displacement component is discretized
using the function space

Vh
u = span{Bu

i

∣
∣ supp(Bu

i ) ∩ � �= ∅}. (24)

Using a similar derivation (given in full in “Appendix B”)
as applied to the temperature subproblem the mechanical
variation problem is compactly written as: Find uh ∈ Vh

u =
[Vh

u ,Vh
u ] such that, ∀vh ∈ Vh

u

au(uh, vh) = Lu(v
h). (25)

The two subproblems are coupled through a constitutive
model accounting for the thermal expansion by computing
the mechanical strain εm as

εm(u, T ) = εu(u) − εT (T )

= 1

2

(
∇u + (∇u)T

)
− α(T − T0)I, (26)

where α is the thermal expansion coefficient and T0 is the
temperature in the reference configuration. I is the identity
matrix.

The fully coupled system is then given by the variational
problem: Find (uh, T h) ∈ [Vh

u,Vh
T ] such that, ∀ (vh, θh) ∈

[Vh
u,Vh

T ]

aT (T h, θh) = LT (θh) and

au(uh, vh) − b(T h, vh) = Lu(v
h), (27)

where the form b(T , v) is a result of the coupling conditions
and is given by

b(T , v) =
n∑

m=1

[ ∫

�m
εu(v) : εT (T )d�

]

+
∫

�u

C : εT (T ) · n · vhd�

−
n∑

i=1

n∑

j=i+1

[ ∫

�i j

[[v]] · {C : εT (T )} · n d�

]

.

(28)

4.2 Interpolated basis functions

In traditional immersed boundary methods custom quadra-
ture rules would be used to evaluate the integral in the weak
formof the coupled problem, given inEq. (27). Themain idea
of the interpolation-based immersed paradigm is to interpo-
late the background basis functions using a space ofLagrange
functions defined on a foreground mesh, which can be inte-
gratedwith classical quadraturemethods. Thisworkflow thus
introduces an interpolated background function space for the
thermal subproblem

V̂h
T = span{B̂T

i

∣
∣ supp(B̂T

i ) ∩ � �= ∅}, (29)

where the interpolated basis functions are defined as

B̂T
i :=

ν∑

j=1

MT
i j N j (30)

where

MT
i j := BT

i (x j ) (31)

is the Lagrange extraction operator. {N j }νj=1 is the basis of a
Lagrange FE space with nodal points x j such that Ni (x j ) =
δi j . Here ν is the number of foreground basis functions. The
same foreground space is used to interpolate the background
bases for both the temperature and the displacement state
variables.

The approximations of the temperature field becomes

T h =
nT∑

i=1

B̂T
i d

T
i =

nT∑

i=1

ν∑

j=1

MT
i j N jd

T
i , (32)

where {dTi }nTi=1 are the unknown coefficients and nT is the
number of basis functions in the temperature field’s inter-
polated background B-spline basis. The displacement is
similarly discretized with vector valued function spaces as

uh =
(dp ·nu)∑

I=1

B̂
u
I d

u
I =

(dp ·nu)∑

I=1

(dp ·ν)∑

J=1

Mu
I JN J d

u
I . (33)

Details regarding this discretization are given in “Appendix
B”.

The variational problem in Eq. (27) can be assembled
using the interpolated bases in Eqs. (32) and (33) to form
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the linear system

[
K θθ 0
K θv K vv

] [
dT

du

]

=
[
f θ

f v

]

, (34)

where

K θθ
i j = aT (B̂T

i , B̂T
j ), (35)

K θv
i J = b(B̂T

i , B̂
u
J ), (36)

K vv
I J = au(B̂

u
I , B̂

u
J ), (37)

f θ
i = LT (B̂T

i ), and (38)

f v
i = Lu(B̂

u
I ) (39)

are the matrix entries.
By consolidating the extraction operators for all compo-

nents in a single matrix

M =
[
MT 0
0 Mu

]

(40)

the linear system can be rewritten as

MT
[
Aθθ 0
Aθv Avv

]

M
[
dT

du

]

= MT
[
bθ

bv

]

, (41)

where

Aθθ
i j = aT (Ni , N j ), (42)

Aθv
i J = b(Ni , N J ), (43)

Avv
I J = au(N I , N J ), (44)

bθ
i = LT (Ni ), and (45)

bv
I = Lu(N I ). (46)

The quantities Aθθ , Aθv , Avv , bθ , and bv are evaluated and
assembled on the boundary-fitted foreground mesh. As the
foreground basis is the typical conforming Lagrange polyno-
mial basis, existing commercial or open-source FE software
applying standard quadrature rules may be utilized.

The extraction operators can either be computed globally,
as suggested in Eq. (42), or on an element level for more
efficient implementation. However, the latter option requires
a modification of the assembly maps in existing FE software.
After solving the linear system in Eq. (41) with the interpo-
lated basis, the solution is post-processed by projecting the
solution for each field onto the foreground basis.

A visual example of the interpolation of an enriched B-
spline basis function is given in Fig. 3. The boundary-fitted
foreground mesh in Fig. 3(e) is used to define a discontin-
uous Lagrange polynomial foreground function space. The
enriched background functions B1

k and B2
k are interpolated

with this function space, as shown in Fig. 3(f) and (g).

Fig. 4 A series of uniformly refined meshes Kl is shown in the top
row. Series of nested subdomains, �l+1

T ⊆ �l
T , shown in the second

row, and �l+1
u ⊆ �l

u , shown in the third row, are defined for each state
variable. For the decomposition mesh the series of subdomains �l

D ,
shown in the last row, is defined such that the domain on each level l
contains the union of the l th level domains for both variable fields. The
hierarchically refined meshesKT ,Ku , andKD , shown in the rightmost
column, are constructed with the mesh seriesKl in the top row and their
respective subdomain series

In this work, B-spline background spaces are utilized
to exploit their superior approximation properties as com-
pared to traditional finite element function spaces [23] and to
build upon previous work done with enriched THB-splines
in XIGA implementations [61]. The interpolation scheme
presented here can be utilized with other background basis
functions as in the previous work by the authors [26], where
both B-splines and classic Lagrange polynomial bases were
used. The method can be applied to multi-material problems
provided the background basis used is sufficiently enriched
at material interfaces.

4.3 Foregroundmesh generation

Both state variable fields are interpolated using the same
Lagrange FE space {N j }νj=1 which is constructed on a
boundary-fitted foreground mesh. To generate this fore-
groundmesh, the elements of a backgroundmesh intersected
by interfaces are decomposed into triangles and tetrahedrons
whose facets approximately reconstruct the interfaces.

To ensure the foreground mesh is sufficiently refined, a
background mesh for decompositionKD is constructed from
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Fig. 5 Foreground integration meshes are formed by triangulating cut
elements of the decomposition mesh KD . a A cell is intersected by
the isocontour of the discretized level set function φh = φt defining
a material interface. b The cell is subdivided into triangular cells and
isocontour-edge intersections (indicated by black cicles) are computed.
c Using the intersection points as nodal points, the cell is further sub-
divided

the series of hierarchically refined meshes Kl ,

KD :=
r−1⋃

l=0

{K ∈ Kl |K ∈ �l
D and K /∈ �l+1

D }, (47)

where �l
D ⊇ �l

T ∪ �l
u is a series of subdomains containing

the union of the subdomains used for each subproblem’s dis-
cretization. This ensures that KD is at least as refined as the
meshes used for each subproblem’s discretization and allows
for additional refinement of the foreground to improve geo-
metric resolution. The construction of a decomposition mesh
KD is illustrated in Fig. 4.

The decompositionmeshKD is triangulated byfirst apply-
ing a pre-defined triangulation to the intersected background
elements, as shown in Fig. 5a, b. This pre-defined triangula-
tion forms 4 triangular elements in 2D domains or 24 hexa-
hedral elements in 3D. Through root finding along elemental
edges, the location of the isocontour is found, indicated by the
black dots in Fig. 5b.A subdivision template is then applied to
each intersected triangle/tetrahedron, as shown in Fig. 5c, to
further subdivide the triangles/tetrahedrons into a set of trian-
gles and tetrahedrons whose facets follow the LS isocontour.
The last step is repeated recursively for each individual LSF
φh
i which enables sharp geometric corners and edges to be

captured where multiple interfaces meet. This approach has
been used previously by, e.g., [62]. The resulting approxima-
tion of the interface is piecewise linear and depends on the
resolution of the decomposition mesh KD .

Note that the sliver elements and poor aspect ratios in
meshes produced by this method are still suitable for the
interpolation of the background basis functions which is
not bound by the typical mesh quality constraints of tra-
ditional FEM [40]. The resulting foreground mesh is of
mixed element type (triangles and quadrilaterals in 2D, or
hexahedrons and tetrahedrons in 3D) and contains hanging
nodes. To accommodate the hanging nodes on the fore-
ground mesh and to adequately interpolate the discontinuous
enriched background basis functions described in Sect. 3.2,

this method employs discontinuous Galerkin type elements
for foreground function spaces. As the original THB-spline
background basis maintains at minimum C p−1 continuity
within each material domain, the continuity of the interpo-
lated basis is likewise C p−1 continuous where interpolation
is exact [59]. This work expands upon previous results using
approximate extraction methods [26], where the constraints
placed on the foreground Lagrange basis are lessened while
numerical accuracy is maintained.

The sliver elements resulting from this procedure do not
themselves present problems with the interpolation-based
workflow. However, due to the arbitrary location of material
interfaces with respect to cell boundaries, it is possible for
cells to be cut such that only a small portion of a basis func-
tion’s support resides inside a given material domain. These
small cell cuts result in sparsely supported basis functions,
which can present issues with stability and linear condition-
ing.

Numerous strategies exist to mitigate these issues and
were recently reviewed in [18]. Strategies include basis func-
tion removal [21], ghost stabilization [13], and basis function
agglomeration [5] or extension [14], and have the potential
to be implemented within the presented interpolation-based
framework. The benchmark problems presented in this work
do not require special treatment of sparsely support basis
functions and the authors leave the implementation of these
stabilization strategies to future work.

5 Numerical results

The accuracy of the proposed method is demonstrated
through the study of several benchmark problems. Prob-
lems were defined in the Python-based open-source FE code
FEniCSx, using foreground meshes and extraction operators
generated by the open-source XIGA code MORIS, avail-
able at github.com/kkmaute/moris [45]. The source code
with which the results were generated is also available at
github.com/jefromm/EXHUME_dolfinX [25].

5.1 Resolving discontinuities in solution fields
through Heaviside enrichment

In this Subsection, a multi-material beam undergoing a
spatially varying heat load presents a weakly discontinuous
temperature solution field. In this work, weak discontinu-
ities refer to discontinuities in the gradients of solution fields.
The solution is approximatedwith an interpolatedHeaviside-
enriched background basis, using the interpolation-based
immersed boundary workflow. The convergence results from
this study demonstrate the accuracy of this method’s enrich-
ment scheme for multi-material problems. Beams in both 2D
and 3D domains are considered.
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Fig. 6 The geometric configurations for the 2D (left) and 3D (right)
domains. A three-material beam is embedded in a structured back-
ground grid and rotated such that material interfaces do not align with

element edges (in 2D) or facets (in 3D). Elements intersected by the
level set functions defining the beam geometry are triangulated to form
a boundary-fitted foreground mesh

Fig. 7 The temperature solution field plotted for both domain geometries, using a bi(tri)-quadratic B-spline basis interpolatedwith a bi(tri)-quadratic
foreground Lagrange space. The solution is weakly discontinuous at material interfaces

Thebeam is initially definedwith corner coordinates (0, 0)
and (L, H) in 2D, and (0, 0, 0) and (L, H , H) in 3D, with
L = 5 and H = 1. The beam is divided into 3 sections, with
interfaces at x = L/4 and x = 3 L/4. Each section of the
beam is assigned a thermal conductivity κ1 = 1.0, κ2 = 0.1,
and κ3 = 1.0. To ensure the non-conformity of the material
interfaces with respect to the backgroundmesh facets, the 2D
beam is rotated about the origin by angle φ = 20◦, while the
3D beam is rotated about y- and z-axes by angles φy = −5◦
and φz = 5◦, respectively. The 2D beam is embedded into
rectangle with corner coordinates (−1.0,−0.5) and (5,3) and
the3Dbeam is embedded into a rectangular prismwith corner
coordinates (−0.5, −0.25,−0.25) and (5.5,1.75,1.75). The
geometric configurations are shown in Fig. 6. Each edge (in
2D) or plane (in 3D) of the beam is defined by a level set
functionwhich extends beyond the beamdomain in themesh.
The functions are extended through the entire mesh to fully
resolve the corners (in 2D) or edges (in 3D) of the beam.

Thermal diffusion is governed by the Poisson equation.
The strong and weak forms of this problem are given by Eqs.

(16) and (18) in Sect. 4.1. The source term

qB = −∇ · (κ∇Tex ) (48)

is constructed from the exact solution

Tex (x
′) = 1

κ
sin

(
4π

L
x ′

)

. (49)

In 2D the beam-aligned coordinate is expressed in global
coordinates as

x ′ = x cos(−φ) − y sin(−φ), (50)

and in 3D

x ′ = z sin(−φy) + (
x cos(−φz)−y sin(−φz)

)
cos(−φy),

(51)

where x = [x, y, z] are the mesh coordinates. The exact
solution is imposed as Dirichlet boundary data on the ends
of the bar, x ′ = 0 and x ′ = L .
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Fig. 8 Ideal convergence rates
are seen for both bi(tri)-linear
and quadratic B-spline basis
functions, which were
interpolated with equal order
foreground Lagrange function
spaces. The convergence rates
are ideal for both the 2D domain
(top) and 3D domain (bottom)

For the 2D domains a suite of meshes with average back-
ground element sizes h ∈ 0.5×[1, 0.5, 0.25, 0.125, 0.0625]
was used. In 3D, the background element sizes h ∈ 0.58 ×
[1, 0.5, 0.25, 0.125]were used. The foregroundmesheswere
constructed with the workflow described in Sect. 4.3. Results
from the 2D mesh with background element size h =
0.5 and from the 3D mesh with background element size
h = 0.29 using bi(tri)-quadratic Lagrange foreground bases
to interpolate bi(tri)-quadratic enriched B-spline bases are
shown in Fig. 7. Convergence rates are plotted in Fig. 8 for
both bi(tri)-linear and quadratic enriched background spline
spaces interpolated with equal-order foreground bases. Ideal
convergence rates validate the interpolation-based immersed
boundary workflow for multi-material problems.

5.2 Approximating curved geometries through local
foreground refinement

Amajor challenge in themodeling ofmulti-material prob-
lems is the discretization of material interfaces. In this work,
local refinement of the foreground mesh is performed to
increase geometric resolution without affecting the number

of degrees of freedom in the solution space. In this example
the linear elastic behavior of an infinite plate with an embed-
ded circular inclusion of radius R = 0.5 is modeled, with
local refinement employed to improve the approximation of
the inclusion geometry.

The inclusion is comprised of Material 1 with Lamé con-
stantsλ1 = 497.16 andμ1 = 390.63,while the exterior plate
is made of Material 2 with λ2 = 656.79, and μ2 = 338.35.
A uniform isotropic eigenstrain of ε0 = 0.1 is imposed on
the inclusion. Theweakly discontinuous analytic solution for
the radial displacement is given in [70] as

ur =
⎧
⎨

⎩

C1r , r ≤ R,

C1
R2

r
, r ≥ R,

(52)

where

C1 = (λ1 + μ1)ε0

λ1 + μ1 + μ2
. (53)

Exploiting symmetry, only the upper right quadrant of the
plate is modeled as shown in Fig. 9. Symmetry conditions are
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Fig. 9 Approximated radial displacement of the eigenstrain problem.
The background mesh is shown in white, while the foreground integra-
tion mesh is overload in black. The background mesh remains the same

as local refinement is applied to the foreground for improved geometric
resolution. The images correspond to the coarsest refinement level with
background element size h = 0.625

Fig. 10 Error convergence data for the eigenstrain problem, illustrating the efficacy of foreground refinement. With no foreground refinement, the
L2 convergence rate is limited by the geometric error. With sufficient foreground refinement (3x LR), the convergence rate approaches the ideal of
3

enforced on the left and bottom edges of the domain, and the
exact displacement is prescribed on the right and top edges.
The solution domain is a 5 × 5 square, with a quarter circle
at the lower left corner.

The strong and discrete forms of the multi-material linear
elasticity PDEare detailed in “AppendixB”. For this example
the mechanical strain is computed by

εm(u) =
{

εu(u) − ε0 I , x ∈ �1

εu(u), x ∈ �2
(54)

where the total strain εu(u) = 1
2 (∇u + (∇u)T).

The domain � is immersed into an axis-aligned 5 × 5
square onwhich the enriched backgroundB-spline spaces are
constructed. A suite of background meshes with characteris-
tic element lengths h ∈ 0.625×[1, 0.5, 0.25, 0.125, 0.0625,
0.03125] are used to generate convergence data.

The foregroundmeshes used here are locally refined about
the material interfaces, as seen in Fig. 9. The background
basis functions remain constant, meaning that there is no
increase to the number of solution degrees of freedom with
foreground refinement.

The convergence plots in Fig. 10 show the expected con-
vergence rates for the bi-linear B-spline function space.
With the bi-quadratic function space and no foreground
refinement, the dominating effects of geometric error are
shown with degraded L2 convergence rates. Geometric error
is reduced through local foreground refinement, allowing
the function approximation error to dominate the overall
convergence. With local foreground refinement the conver-
gence rates approach the ideal rates exhibited by the method
for problems without geometric approximation error, as in
Sect. 5.1.

The foreground meshes generated using this octree local
refinement strategy include hanging nodes, which are dif-
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ficult for most commercial or open-source finite element
software to handle. To accommodate these hanging nodes,
this interpolation-based workflow employs C−1 discon-
tinuous foreground Lagrange polynomial basis functions,.
Classical discontinuous Galerkin methods require augmen-
tation of the variational form to enforce continuity at cell
interfaces [16], but this augmentation is not done within this
workflow. The results in this work suggest that for a problem
where conforming FE methods would require C0 continuity,
aC−1 interpolated basis can be employed provided the back-
ground basis is at least C0 continuous. More generally, so
long as the background basis is sufficiently continuous it may
be interpolated with a less-continuous foreground basis. This
attribute of interpolated-based methods was first exploited in
[26] to approximate fourth-order PDEs with a background
basis of quadratic B-spline bases, which are C1 continuous,
interpolated with a foreground basis of quadratic Lagrange
polynomials, which are only C0 continuous.

5.3 Image-based thermo-mechanical analysis of
composite materials, utilizingmultiple levels of
local refinement

The capability of this method to tackle distinct discretization
requirements of state variable fields within a multi-physics
problem is illustrated here in a coupled thermo-elastic prob-
lem. This problem is posed on an alumina-epoxy composite
sample undergoing simultaneous heating and loading condi-
tions. Separate background discretizations are interpolated
with a single foreground discretization for the two fields.

The geometry of the composite sample is taken from a real
micro-CT image converted to an implicit level-set descrip-
tion. The micro-CT image, from [71] and shown in Fig. 11a,
is made up of 200 × 200 pixels, with a pixel size of 8μm,
and the specimen is 1.6mm by 1.6mm. The epoxy is repre-
sented by the grey background while the alumina particles
appear white. The image was then manually processed to
generate the smoothed image shown in 11b, which was then
converted to the implicit level-set description. The following
material properties, from [7, 44], were used: Poisson ratios
νAl = 0.23 and νEp = 0.358, elastic moduli EAl = 320e9

Pa and EEp = 3.66e9 Pa, thermal conductivities κAl = 25.0
W/mK and κEp = 0.14 W/mK, and thermal expansion coef-
ficients αAl = 15e−6 1/Co and αEp = 65e−6 1/Co.

The process described in Sect. 4.3 was used to construct
a foreground integration mesh, beginning with a uniform 80
element by 80 element axis aligned decomposition mesh.
Two levels of local refinement were applied about the mate-
rial interfaces, and the refined decomposition mesh was
triangulated. The resulting foreground mesh, shown in 12a,
contains 81,809 cells.

For comparison purposes, a similar workflow was used to
generate a boundary-fitted mesh for use in classical FEM.

Fig. 11 Top:Micro-CT image of alumina-epoxy composite, where the
white sections signify alumina particles and the grey is the surrounding
epoxy. Bottom: Smoothed image used to generate the LSF geometric
description

Classical FEM with FEniCSx requires a single element type
mesh without hanging nodes. To avoid hanging nodes and to
sufficiently resolve the gradients of the state variable fields
the decomposition mesh was uniformly refined three times
forming a 640 element by 640 element square mesh. The cut
cells were triangulated to create a boundary-fitted mesh, and
then the remaining quadrilateral elements were triangulated.
Themeshwas thenmodifiedwith the software packageCore-
form Cubit 2023.11 to improve mesh quality metrics. The
resulting mesh, shown in Fig. 12b, contains 1,675,860 cells.
The method described here was used to ensure the level set
descriptions of the material interfaces matched between this
mesh and the foreground mesh used with the interpolation-
based immersed boundary method.

With this sample, a heated compression-shear test was
simulated. The top and bottom displacements were imposed
as utop = [−0.01,−0.01] mm and ubottom = [0, 0] mm.
The temperature at the top and bottom edges were specified
as Ttop = 0◦C and Tbottom = 100◦C. The environmental
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Fig. 12 The whole domain is shown in the images on the left with the box indicating the region shown in the zoomed in view on the left

temperature was T0 = 0oC . The sides were left both traction
and heat flux free.

The governing equations for heat conduction and linear
elasticity were coupled via the constitutive law adding a ther-
mal expansion component to the total strain as in Eq. (26).
Dirichlet boundary conditions for each field were imposed
using Nitsche’s method. Nitsche’s terms enforcing continu-
ity in T and u were also imposed upon the allumina-epoxy
interfaces.

Bi-linear B-splines are used for the temperature field and
bi-quadratic B-splines are used for each component of the
displacement field, and both fields are interpolated using
bi-quadratic Lagrange polynomials. For the boundary-fitted
FEM comparison, Dirichlet boundary conditions were like-
wise enforced using Nitsches method, a bi-linear Lagrange
basis was used for the temperature field, and a bi-quadratic
Lagrange basis was used for the displacement. The results
for the temperature field, the temperature gradient magni-
tude, the displacement magnitude, and the strain magnitude
are shown in Figs. 13, 14, 15, and 16, respectively. Within

the figures, the foreground meshes are drawn in black while
the background meshes are overlaid in white. The same fore-
ground mesh, with two levels of local refinement to resolve
the composite geometries, is used for each discretization.

Progressive levels of local refinement were applied to the
background B-spline function spaces, as seen in the rows of
Figs. 13, 14, 15, and 16. This local refinement was imple-
mented with THB-splines, as described in Sect. 2.2. The
regions of refinement with high-order splines are larger than
those for the low-order to adequately support the truncated
basis. This can be seen by comparing the white background
meshes used for the temperature field depicted in Figs. 13
and 14 with those used for the displacement field in Figs. 15
and 16. The number of degrees of freedom associated with
the various background discretizations are shown in Table 1.

With two levels of local refinement, the results were in
qualitative agreement with the ones of the uniformly refined
classical FEMexamplewith far fewer degrees of freedom.As
previously noted, the uniformly refinedmeshes were initially
generated with the same workflow used to create the bound-
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Fig. 13 The temperature field results are compared for four different mesh configurations. The left shows the entire domain with the box indicating
the region shown in the zoomed in view on the right
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Fig. 14 The the temperature gradient magnitude field is compared for four different mesh configurations. The left shows the entire domain with
the box indicating the region shown in the zoomed in view on the right
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Fig. 15 The displacement magnitude field results are compared for four different mesh configurations. The left shows the entire domain with the
box indicating the region shown in the zoomed in view on the right
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Fig. 16 The mechanical strain magnitude field results are compared for four different mesh configurations. The left shows the entire domain with
the box indicating the region shown in the zoomed in view on the right
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Table 1 Degrees of freedom
(DOFs) associated with the
background function spaces at
various levels of local
refinement and with the
uniformly refined FEM function
spaces

No Local 1x Local 2x Local Uniformly Refined
Refinement Refinement Refinement Boundary-Fitted Mesh

Bi-linear basis DOFs 8321 17,247 48,191 5,027,580

Bi-quadratic basis DOFs 9381 22,166 60,729 10,055,160

ary conforming foreground meshes, a ‘hands-off’ method
requiring only a bitmap image file. A more efficient mesh
with fewer elements could be created for use in classical
FEMbut onlywith either significant user intervention orwith
sophisticated meshing software. Additionally, the workflow
used here can easily be extended to 3D image stacks, which
are not easily processed for classical FEM.

6 Conclusions

This work presents a new interpolation-based immersed
boundary method for multi-material and multi-physics prob-
lems. Thismethod employs enriched truncated hierarchically
refined B-spline background spaces and discontinuous hier-
archically refined Lagrange integration spaces.

Domain geometry and material interfaces are represented
by level set functions, which can be generated by, for exam-
ple, geometric primitives or from 2D or 3D images. The
domain is embedded in a grid with an associated B-spline
basis and the level set function is discretized and used to
compute Heaviside characteristic functions. Basis functions
are inspected and individually enriched with respect to the
disconnected material subregions within their supports.

Subdivision is used to generate a sequence of refined B-
spline function spaces and associated tensor-product meshes
from the original function space and mesh. In this work, the
meshes are refined along domain interfaces. A hierarchically
refined B-spline function space is defined recursively, along
with its associated hierarchically refined mesh. This hierar-
chical function space is then truncated to form a partition
of unity. The refined basis functions can then be enriched
using the Heaviside enrichment functions when intersecting
material interfaces.

The enriched and refined background bases are interpo-
lated by a discontinuous foreground basis. This foreground
basis requires a boundary-fitted mesh, but is not subject
to usual mesh conditioning constraints. The foreground
meshes are thus constructed by the discretized level set
function boundary descriptions and hierarchically refined
quadrilateral meshes. Cells in the refined quadrilateral mesh
intersectedby the domain andmaterial interface geometry are
triangulated to form a mixed-element type foreground mesh,
which can be used by classical finite element codes to define
a foreground basis. The level of refinement used to create the

foreground mesh may exceed the level of refinement used
for the background basis, allowing for greater geometric res-
olution without increasing the system’s degrees of freedom
associated with the background basis.

The background basis is interpolated using extraction
operators. Extraction operators are constructed by evaluat-
ing the background basis at the locations of the foreground
basis nodes. Existing classical finite element codes assem-
ble the linear systems using the Lagrange foreground basis.
The linear system is then projected onto the interpolated
basis with the extraction operators and the system is solved
with the interpolated basis. Interpolation allows the enriched
and refined B-splines basis to be utilized in traditional finite
element codes without the addition of complex integration
subroutines, broadening the applicability of this method.

Several benchmark problems validated this method. Inter-
polated enriched bases were used in both 2D and 3D for
a multi-material thermal diffusion problem with exact geo-
metric representation. The numerical approximations were
compared with analytic solutions and errors were computed.
The L2 and H1 errors converged at ideal rates with mesh
refinement. Foreground only refinement was implemented
for a multi-material linear elasticity PDE involving a circu-
lar domain. When compared to the analytic solution, errors
from a non-refined foreground mesh converged ideally with
a bi-linear basis, but the L2 convergence rate of the bi-
quadratic basis was limited to 2nd order due to geometric
error in the discretization of the domain boundary.With suffi-
cient foreground refinement, the ideal 3rd order convergence
for the bi-quadratic basis was observed. Lastly, micro-CT
images were used to generate a geometric discretization of
an alumina-epoxy composite sample. Thermo-elastity was
simulated, coupling separately discretized temperature and
displacement fields through a thermal expansion compo-
nent. Unique THB-spline bases were used for each field,
bi-linear for temperature, and bi-quadratic for displacement.
The results were in qualitative agreement with the ones of
a uniformly refined traditional boundary conforming finite
element simulation.

In this work, the open-source code FEniCSx is used to
demonstrate the efficacy of interpolation-based immersed
boundarymethods, and futureworkwill expand implementa-
tion to other existing finite element codes. Within FEniCSx,
additions to the interpolation-based immersed boundary
workflow will be the implementation of stabilization tech-
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niques to address issues of linear conditioning. The method
will also be further developed for additional applications,
including transient and optimization problems.

Appendix A

A review of multivariate B-spline function spaces

Recall first the construction of a 1D univariate B-spline basis{
Bi,p(ξ)

}n
i=1, where p is the polynomial order and n is

the number of basis functions. The domain is discretized
with a knot vector � = {ξ1, ξ2, . . . , ξn+p+1} such that

{ξi }n+p+1
i=1 ⊂ R and ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1. The functions

are then constructed recursively from the piecewise constant
basis function

Bi,0(ξ) =
{
1, if ξi ≤ ξ ≤ ξi+1

0, else
, (A1)

using the Cox-de Boor recursion formula [17]

Bi,p(ξ) = ξ − ξi

ξi+p − ξi
Bi,p−1(ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (A2)

If no interior knots are repeated, the basis is C p−1 continu-
ous at each knot in the interior domain, and C∞ continuous
between the knots. The basis will form a partition of unity
if the first and last knots are repeated p + 1 times. Higher
dimension basis functions can be constructed by applying
tensor-product operations to the univariate functions, such
that

Bi, p(ξ) =
dp∏

m=1

Bm
im ,pm (ξm), (A3)

where dp is the parametric space dimension, and there are
dp knot vectors�m = {ξm1 , ξm2 , . . . , ξmnm+pm+1}, where nm is
the number of basis functions and pm is the polynomial order
of the mth parametric direction. Here i = {i1, . . . , idp } is a
multi-index and p = {p1, . . . , pdp } is the vector of polyno-
mial degrees. The B-spline basis of the set of these functions
is denoted by B p := {Bi, p}.

Appendix B

Discretization of multi-material equations for linear
elasticity

Let a domain of n material subdomains� = �
1∪�

2∪· · ·∪
�

n ⊂ R
dp be the domain of interest, with varied material

properties μ and λ:

μ(x) = μm, x ∈ �m and (B4)

λ(x) = λm, x ∈ �m . (B5)

Following the problem set up in Sect. 5.2, a source term
b : � → R

dp , a traction term h : ∂� → R
dp on �h ⊂ ∂�

and Dirichlet boundary data u : ∂� → R
dp on �u ⊂ ∂� are

ascribed.
The strong form of this problem is then: Find u : � →

R
dp such that ∀ m ∈ M

− ∇ · σm = b in �m ,

[[u]] = 0 on all �km

[[σ ]] · n = 0 on all �km

σm · n = h on �m
h
,

u = u on �u (B6)

where �km = �
k ∩ �

m �= ∅, k ∈ M and k �= m are the
material interfaces. �m

h
= �h ∪ ∂�

m
, and �m

u = �u ∪ ∂�
m

are intersections of the domain boundaries with the material
subdomain boundaries, and n denotes the surface normal.
Here [[·]] = (·)k − (·)k is again the jump of a given quantity
over the �km interface, and n is the surface normal. For each
material subregion the displacement is um = u(x), x ∈
�m . The Cauchy stress tensor in each material subdomain is
defined

σm = Cm : εm = 2μmεm + λm tr(εm)I (B7)

in terms of the strain εm , whose definition will vary depend-
ing on application, and σ (x) = σm , x ∈ �m .

The computational domain � is embedded into a hier-
archically refined background mesh Ku , generated using a
sequence of refinedmeshesKl and subdomains�l

u , and asso-
ciated with the THB basis Tu = {Bu

i }. Each component of
the displacement is then discretized with the function space

Vh
u = span{Bu

i | supp(Bu
i ) ∩ � �= ∅}, (B8)

where Bu
i ∈ Tu , the basis of enriched THB-splines.

123



Computational Mechanics

The discrete form is then: find uh ∈ Vh
u = [Vh

u ,Vh
u ] such

that all vh ∈ Vh
u

n∑

m=1

[∫ m

�

σ (uh) : εu(vh) d�

]

−
∫

�

b · vh d�

−
∫

�h

h · vh d� = RD
u + RI

u , (B9)

where RD
u and RI

u are the Dirichlet and interface residuals,

RD
u =

n∑

m=1

[

∓
∫

�m
u

(uh − u) · σ (vh) · n d�

−
∫

�m
u

vh · σ (uh) · n d�

+
∫

�m
u

βD
u E

h
(uh − u) · vh d�

]

(B10)

and

RI
u =

n∑

i=i

n∑

j=1+i

[

−
∫

�i j

[[uh]] · ({σ (vh)} · n) d�

−
∫

�i j

[[vh]] · ({σ (uh)} · n) d�

+
∫

�i j

γ
i j
u [[uh]] · [[vh]] d�

]

. (B11)

As with the temperature Dirichlet residual, the first line of
Eq. (B10) is either negative for symmetric Nitsche’s method,
which is used in this work, or positive for non-symmmetric
Nitsche’s method. Once again, {·} = wi (·)i − w j (·) j is the
weighted average of a given quantity, with weights as defined
in Eq. (21) using the elastic modulus as the material param-
eter ω. The penalty parameter γ

i j
u is defined as

γ
i j
u = 2β I

u
(hi )dp−1 + (h j )dp−1

(hi )dp/Ei + (h j )dp/E j
, (B12)

where β I
u ≥ 0 is a user specified constant which controls

the accuracy of the the interface condition, and E(x) = Em ,
x ∈ �m .

The linear elastic subproblem can be compactly written
as the variational problem: Find uh ∈ Vh

u = [Vh
u ,Vh

u , ] such
that, ∀vh ∈ Vh

u

au(uh, vh) = Lu(v
h), (B13)

where au(u, u) and Lu(v) can be derived from Eq. (B9).
To approximate the solutions tomulti-material linear elas-

ticity problems, this workflow introduces an interpolated

background function space

V̂h
u = span{B̂u

i

∣
∣ supp(B̂u

i ) ∩ � �= ∅}, (B14)

where the interpolated background basis functions are
defined

B̂u
i :=

ν∑

j=1

Mu
i j N j , (B15)

where

Mu
i j := Bu

i (x j ) (B16)

is the displacement component Lagrange extraction opera-
tor. {N j }νj=1 is the basis of a Lagrange FE space with nodal
points x j such that Ni (x j ) = δi j . Here ν is the number
of foreground basis functions. Note that for multi-physics
problems, the same foreground space is used to interpolate
the background bases for both the temperature and the dis-
placements.

The approximation of each displacement component is
then

uhk =
nu∑

i=1

B̂u
i d

uk
i =

nu∑

i=1

ν∑

j=1

Mu
i j N jd

uk
i , (B17)

where {duki }nui=1 are the unknown coefficients associated with
each state variable field and nu is the number of basis
functions in the interpolated background B-spline basis.
k ∈ {1, . . . , dp} are the indices associated with each of
the displacement components, with dp denoting the physical
dimension. The vector-valued approximation of displace-
ment is defined as

uh =
dp∑

k=1

nu∑

i=1

B̂u
i d

uk
i ek (B18)

where ek are the directional unit vectors. For brevity in nota-
tion, new capital letter indices I = dp(i − 1) + k and
J = dp( j − 1) + k are defined such that the vector value
basis functions are

B̂
u
I = B̂u

i e
k and N J = Nu

j e
k, (B19)

and the approximation of displacement can be written

uh =
(dp ·nu)∑

I=1

B̂
u
I d

u
I =

(dp ·nu)∑

I=1

(dp ·ν)∑

J=1

Mu
I JN J d

u
I , (B20)
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where duI = duki , and Mu
I J are the components of the vector

valued displacement field extraction operator

Mu
I J = B̂

u
I (x J ) . (B21)

The variational form in Eq. (B13) assembled using the inter-
polated basis forms the linear system

K vvdu = f v, (B22)

where

K vv
I J = au(B̂

u
I , B̂

u
J ), and (B23)

f v
I = Lu(B̂

u
I ). (B24)

Applying extraction, the linear system in Eq. (B22) is rewrit-
ten as

(Mv)TAvvdu = (Mu)Tbu, (B25)

where Avv and bv are computed with the foreground basis

Avv
I J = au(N I , N J ) and (B26)

bv
I = Lu(N I ). (B27)

The quantities Avv and bv are evaluated and assembled with
the boundary-fitted foreground mesh, following the work-
flow outlined in Sect. 4.2.
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