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Abstract
In this paper, we prove the null controllability of a one-dimensional degenerate
parabolic equation with a weighted Robin boundary condition at the left endpoint,
where the potential has a singularity. We use some results from the singular Sturm–
Liouville theory to show the well-posedness of our system. We obtain a spectral
decomposition of a degenerate parabolic operator with Robin conditions at the end-
points, we use Fourier–Dini expansions and the moment method introduced by
Fattorini and Russell to prove the null controllability and to obtain an upper estimate
of the cost of controllability. We also get a lower estimate of the cost of controllability
by using a representation theorem for analytic functions of exponential type.
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1 Introduction andmain results

Let T > 0 and set QT := (0, 1) × (0, T ). For α, β ∈ R with 0 ≤ α < 2, consider the
equation

ut − (xαux )x − βxα−1ux − μ

x2−α
u = 0 in QT , (1)
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provided that μ ∈ R satisfies

− ∞ < μ < μ(α + β), where μ(δ) := (1 − δ)2

4
, δ ∈ R. (2)

In this work, we consider a weighted Robin boundary condition at the left endpoint
of the form

lim
x→0+

(
ax (α+β−1)/2+√

μ(α+β)−μu(x, t) + x (α+β+1)/2+√
μ(α+β)−μux (x, t)

)
= f (t),

and a usual Robin boundary condition at the right endpoint of the form

au(1, t) + ux (1, t) = g(t),

where

a := a(α, β, μ) = α + β − 1

2
− √

μ(α + β) − μ. (3)

The goal of this work is to prove the null controllability of the following system,
with a control f (t) ∈ L2(0, T ) acting at the left endpoint,

⎧
⎪⎪⎨
⎪⎪⎩

ut − (xαux )x − βxα−1ux − μ

x2−α
u = 0 in QT ,

[
u(·, t), x−a] (0) = f (t), au(1, t) + ux (1, t) = 0 on (0, T ),

u(x, 0) = u0(x) in (0, 1),

(4)

where our Lagrange form [·, ·] is given by

[u, v] (x) = (upv′ − vpu′)(x), with p(x) = xα+β, and ′ = d

dx
.

Consider the weighted Lebesgue space L2
β(0, 1) := L2((0, 1); xβdx), β ∈ R,

endowed with the inner product

〈 f , g〉β :=
∫ 1

0
f (x)g(x)xβdx,

and its corresponding norm is denoted by ‖ · ‖β .
Here, we use some results from the singular Sturm–Liouville theory to see the

well-posedness of the system (4) with initial data in L2
β(0, 1), although the solution

u(t) lives in an interpolation space H−s . We say the system (4) is null controllable
in L2

β(0, 1) at time T > 0 with controls in L2(0, T ), if for any u0 ∈ L2
β(0, 1) there

exists f ∈ L2(0, T ) such that the corresponding solution satisfies u(·, T ) ≡ 0.
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We are also interested in the behavior of the cost of the controllability. Consider the
set of admissible controls given by

U (T , α, β, μ, u0) := { f ∈ L2(0, T ) : u is solution of the system (4) that satisfies

u(·, T ) ≡ 0}.

If X is a subspace in L2
β(0, 1), we define the cost of controllability for initial data

in X as follows:

KX (T , α, β, μ) := sup
u0∈X ,‖u0‖β=1

inf{| f |L2(0,T ) : f ∈ U (T , α, β, μ, u0)}.

The main result of this work is the following.

Theorem 1 Let T > 0, 0 ≤ α < 2, β ∈ R, and μ satisfying (2). The next statements
hold.

1. Existence of a control. For any u0 ∈ L2
β(0, 1) there exists a control f ∈ L2(0, T )

such that the solution u to (4) satisfies u(·, T ) ≡ 0.
2. Upper bound of the cost. There exists a constant c > 0 such that for every δ ∈

(0, 1), we have

K�⊥
0
(T , α, β, μ) ≤ cM(T , α, ν, δ)T 1/2

(ν + 1)κ5/2
α

exp

(
−T

2
κ2
α j

2
ν+1,1

)
,

where

κα := 2 − α

2
,

ν = ν(α, β, μ) := √
μ(α + β) − μ/κα,

�0(x) = √
2(ν + 1)κα x−a, (5)

jν+1,1 is the first positive zero of the Bessel function Jν+1 (defined in the Appendix),
and

M(T , α, ν, δ) =
(
1 + 1

(1 − δ)κ2
αT

) [
exp

(
1√
2κα

)
+ 1

δ5
exp

(
3

(1 − δ)κ2
αT

)]

× exp

(
− (1 − δ)3/2T 3/2

8(1 + T )1/2
κ3
α j

2
ν+1,1

)
.

3. Lower bound of the cost. There exists a constant c > 0 such that
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c

(
1 + j2ν+1,2

j2ν+1,1

)
2ν |Jν( jν+1,1)| exp

((
1
2 − log 2

π

)
jν+1,2

)

	(ν + 1)−1 (2T κα)1/2 ( jν+1,1)ν

× exp

(
−

(
j2ν+1,1 + j2ν+1,2

2

)
κ2
αT

)

≤ KL2
β
(T , α, β, μ),

where jν+1,2 is the second positive zero of the Bessel function Jν+1.

We also analyze the null controllability of a similar system but the control acting at
the right endpoint,

⎧⎪⎪⎨
⎪⎪⎩

ut − (xαux )x − βxα−1ux − μ

x2−α
u = 0 in QT ,

[
u(·, t), x−a] (0) = 0, au(1, t) + ux (1, t) = f (t) on (0, T ),

u(x, 0) = u0(x) in (0, 1).

(6)

Consider the corresponding set of admissible controls

Ũ (T , α, β, μ, u0) = { f ∈ L2(0, T ) : u is solution of the system (6) that satisfies

u(·, T ) ≡ 0},
and the cost of the controllability given by

K̃X (T , α, β, μ) := sup
u0∈X ,‖u0‖β=1

inf{‖ f ‖L2(0,T ) : f ∈ Ũ (T , α, β, μ, u0)},

where X is a subspace in L2
β(0, 1).

Theorem 2 Let T > 0, β ∈ R, 0 ≤ α < 2, and μ satisfying (2). The next statements
hold.

1. Existence of a control. For any u0 ∈ L2
β(0, 1) there exists a control f ∈ L2(0, T )

such that the solution u to (6) satisfies u(·, T ) ≡ 0.
2. Upper bound of the cost. There exists a constant c > 0 such that for every δ ∈

(0, 1), we have

K̃�⊥
0
(T , α, β, μ) ≤ cM(T , α, ν, δ)T 1/2

κν+1
α 	(v + 2)

(
2ν + 1

4T e

)(2ν+1)/4

exp

(
−T

4
κ2
α j

2
ν+1,1

)
.

3. Lower bound of the cost. There exists a constant c > 0 such that

c

(
1 + j2ν+1,2

j2ν+1,1

)
exp

((
1
2 − log 2

π

)
jν+1,2

)

(2T κα)1/2
exp

(
−

(
j2ν+1,1 + j2ν,2

2

)
κ2
αT

)

≤ K̃L2
β
(T , α, β, μ).
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2 Previous work

In the last twenty years, there has been extensive research activity on the controllability
of degenerate/singular parabolic equations with appropriate boundary conditions, due
to both theoretical interest and their interesting applications in engineering, physics,
biology, and economics. Currently, there are well-knownmethods to solve this kind of
problems: the use of global Carleman inequalities, the flatness approach, the moment
method, the transmutation method. We refer to [7, 9], whose authors obtain Carleman
inequalities for degenerate/singular parabolic equations on the unit interval or on a
non-empty subset in R

2, and as application they prove null controllability by means
of controls acting at the boundary or at an interior point in the domain.

Throughout this section consider the differential operator

Aλu := −(aux )x − λ

b(x)
u or Aλu := −auxx − λ

b(x)
u, λ ∈ R, (7)

on the unit interval, where a, b ≥ 0 can degenerate somewhere. If a = 0 somewhere in
[0, 1], the problem becomes degenerate, while if b = 0, it is singular. We also assume
that ω is a non-empty subinterval in (0, 1).

Consider the (weighted) boundary operator

Biu(t) := lim
x→0+ a(x)i∂ ix u(x, t), i = 0, 1, t > 0,

provided the limit exists. Notice that B0 is a Dirichlet boundary operator at x = 0,
and B1 is a weighted Neumann boundary operator at x = 0.

In [5, 6], the authors first demonstrated the null controllability, at the time T > 0,
of the following system,

⎧
⎪⎪⎨
⎪⎪⎩

ut + A0u = f χw, (x, t) ∈ QT ,

u(1, t) = 0, t ∈ (0, T ),

Biu(t) = 0, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, 1),

(8)

whereA0 is the operator given in (7) in divergence formwitha(x) := xα , f ∈ L2(QT ),
u0 ∈ L2(0, 1), i = 0 in the weak degenerate case 0 ≤ α < 1, i = 1 in the strong
degenerate case 1 ≤ α < 2.

In [5, 6], the authors build weights related to the degeneracy of the diffusion
coefficient a to get Carleman estimates. The authors combine these estimates with
Hardy-type inequalities to prove observability for the adjoint system. It can be proved
that their Carleman estimates [6, Theorem 2.2] imply a boundary null controllability
result with a control acting at x = 1. In this case, our differential operatorA, given in
(10) and considering β = μ = 0, generalizes the operator A0 in the divergence form.
In [13], the author solves the weak degenerate case (in homogeneous divergence form)
by using aDirichlet boundary control at x = 0. There the author uses the transmutation
method: First, it proves an observability inequality for the degenerate wave equation
vt t − (xαvx )x=0 considering the usual boundary conditions, uses a transmutation to
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pass from heat processes to waves; thus, it gets an observability inequality for the heat
equation which implies the null controllability.

The next step was to consider coefficients with degeneracy at an interior point
or non-smooth coefficients. In [8], the authors analyze the null controllability of the
system (8) with homogenous Dirichlet boundary conditions at the endpoints, where
A0 is the operator given in the both forms in (7), the initial data u0 is in X (where
X = L2(0, 1) in the divergence case and X = L2

1/a(0, 1) in the non-divergence case),

and the control f ∈ L2(0, T ; X) is supported in ω ⊂ (0, 1), which can contain the
degenerate point x0. In this work, the diffusion coefficient a is a non-smooth function.
When a degenerates at an interior point x0, the authors distinguish between the so-
called weakly degenerate case and the strong degenerate case.

Then, the authors give two versions of Carleman estimates for the adjoint system. In
the first one, a is globally non-smooth and does not degenerate; in the second one, a is
non-smooth and degenerates at x0. They prove a weighted Hardy–Poincare inequality
for functions which may not be globally absolutely continuous in the domain, but
whose irregularity point is compensated by the fact that the weight degenerates exactly
there. Then, observability inequalities are obtained from the Carleman estimates, thus
they get the null controllability. In the divergence case, the degeneracy point x0 can
be outside as well as inside ω. In the non-divergence case, only the case in which the
degeneracy point lies outside the control region is considered.

An open problem is to obtain a Carleman estimate for the adjoint system (with
homogeneous weighted Robin boundary conditions) of the system (4), and try to get
a distributed control on ω (which could include the degeneracy point) for the system
(4).

Another useful tool to prove boundary null controllability of degenerate systems
is the so-called flatness method. In [18], the author considers the system (8) with the
homogeneous PDE in divergence form, boundary operator B1, a(x) = xα , α ∈ [1, 2),
u0 ∈ L2(0, 1), and a control h acting at the right endpoint, i.e., u(1, t) = h(t).

In [18], the author uses the flatness approach to construct explicit (smooth) controls
h in some Gevrey classes. To do this, the author uses that A0 is a diagonalizable self-
adjoint positive operator, whose corresponding orthogonal basis can be written as a
composition of powers of the variable x with a Bessel function of the first kind (and
involving its positive zeros), to construct a flat output in a Gevrey class. We think the
flatness method could be adapted to prove the boundary null controllability of our
system (4), by using Proposition A.1 to construct the corresponding flat output.

In [19], the authors also use the flatness approach to prove the boundary null con-
trollability of the following system:

(a(x)ux )x + b(x)ux + c(x)u − ρ(x)ut = 0, x ∈ (0, 1), t ∈ (0, T ),

r0u(0, t) + s0(aux )(0, t) = 0, t ∈ (0, T ),

r1u(1, t) + s1 (aux ) (1, t) = h(t), t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ (0, 1), (9)

where r0, s0, r1, s1 ∈ R, r2j + s2j > 0, u0 ∈ L2(0, 1) y h ∈ L2(0, T ).
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They assume that a(x) > 0 and ρ(x) > 0 for a.e x ∈ (0, 1), 1/a, b/a, c, ρ ∈
L1(0, 1),

∃K ≥ 0,
c(x)

ρ(x)
≤ K for a.e x ∈ (0, 1), ∃p ≥ (1,∞], a1−1/pρ ∈ L p(0, 1).

If we multiply the PDE in (4) by xβ , we obtain the PDE in (9) with a(x) = xα+β ,
b ≡ 0, c(x) = μ/x2−α−β , ρ(x) = xβ . Thus, 1/a ∈ L1(0, 1) iff α + β < 1, and
c ∈ L1(0, 1) iff α + β > 1. Therefore, our problem does not fit in the scheme of [19].
Moreover, we consider a suitable weighted Robin boundary condition at x = 0, where
the degeneracy/singularity arises, and the control acts at this point.

The condition 1/a ∈ L1(0, 1) in [19] implies that the PDE in (9) is a weakly
degenerate parabolic equation. In [2], the authors use the flatness approach to show
the null controllability of the degenerate parabolic equation without drift (b ≡ 0)
in (9), with the boundary conditions corresponding to r0 = 0, s0 = 1. The main
assumption is that the function x/a(x) is in L p(0, 1) for some p > 1, which implies
that 1/a /∈ L1(0, 1). Thus, a may vanish strongly at x = 0, and the potential c may be
singular at the same point, but in [2] the control acts at x = 1; by contrast, our control
acts at x = 0, and we have a drift, provided that β �= 0.

In [21], the author proves some global Carleman estimates for the degener-
ate/singular parabolic operator wt −Aλw with a(x) = xα , b(x) = x β̃ , and boundary
conditions (depending on α) as in (8). The author gets an improved Hardy–Poincaré
inequality and obtains an observability result that implies the null controllability of
the system (8), with Aλ (instead of A0) in divergence form, by means of a distributed
control f . In the case β̃ = 2 − α, λ < μ(α), the corresponding PDE coincides with
the PDE in (4) with β = 0, μ < μ(α).

In [4, 11, 12, 14], the authors use the moment method to prove the boundary
null controllability of systems like (9). In [14], the authors consider a(x) = εxα+1,
b(x) = −xα , ε, α ∈ (0, 1). They consider r0 = r1 = 1, s0 = s1 = 0, so their
control acts at the left endpoint. This is a strongly degenerate parabolic problem,
but at present, we know this kind of degeneracy is related to a Neumann weighted
boundary condition, see [12].

In [11], the authors prove the null controllability of the equation (1) with a weighted
Dirichlet boundary condition at the left endpoint, provided that α +β < 1. In the case
α +β > 1, in [12], they get the null controllability of the equation (1) with a weighted
Neumannboundary condition at the left endpoint. They consider initial data in L2

β(0, 1)
in both cases. In these works, the authors prove suitable versions of a Hardy inequality
to assure the well-posedness of their systems, but in the case α + β = 1 is necessary
to consider some results from the singular Sturm–Liouville theory, see [12]. Here, we
use that approach to show the well-posedness of our system.

Unfortunately, for this paper, we could not prove a suitable weighted Hardy–
Poincaré considering the (weighted) homogeneous Robin boundary conditions in (4).
This fact motivate us to use the singular Sturm–Liouville theory, which shows that the
operator (A, D(A)) given in (10) is self-adjoint.

This paper is organized as follows. Section3 uses some results from the singular
Sturm–Liouville theory to show that the operatorA given in (10) is self-adjoint. There,
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we also use Fourier–Dini expansions to show that A is diagonalizable, this allows us
to consider initial data in some interpolation spaces. Next, we introduce a notion of a
weak solution for both systems and then show the well-posedness of these systems.

In Sect. 4, we prove Theorem 1 by using the moment method introduced by Fat-
torini & Russell. Here, the idea is to construct a biorthogonal sequence to a family
of exponentials involving the eigenvalues of A. To do this, we use some results from
complex analysis to construct a suitable complex multiplier. As a consequence, we
get an upper estimate of the cost of the controllability. Finally, we use a representation
theorem, Theorem 13, to obtain a lower estimate of the cost of the controllability.

In Sect. 5, we proceed as before to solve the case when the control acts at the right
endpoint.

3 Functional setting and well-posedness

Consider the differential expression M defined by

Mu = −(pux )x + qu

where p(x) = xα+β, q(x) = −μx−2+α+β,w(x) = xβ .
Clearly,

1/p, q, w ∈ L loc(0, 1), p, w > 0 on (0, 1),

thus Mu is defined a.e. for functions u such that u, pux ∈ ACloc(0, 1), where
ACloc(0, 1) is the space of all locally absolutely continuous functions in (0, 1).

Now, we introduce the operator A given by

Au := w−1Mu = −(xαux )x − βxα−1ux − μ

x2−α
u. (10)

From the theory developed in [23], we can build a self-adjoint domain D(A) for the
operator A.

For μ satisfying (2), 0 ≤ α < 2, and β ∈ R, we set

Dmax :=
{
u ∈ ACloc(0, 1) | pux ∈ ACloc(0, 1), u,Au ∈ L2

β(0, 1)
}

, and

D(A) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{u ∈ Dmax | lim
x→0+ x (α+β−1)/2+√

μ(α+β)−μu(x)

= (au + ux )(1) = 0}
if

√
μ(α + β) − μ < κα,

{u ∈ Dmax |(au + ux )(1) = 0} if
√

μ(α + β) − μ ≥ κα.

Recall that the Lagrange form associated with M is defined as follows:

[u, v] := upv′ − vpu′, for all u, v ∈ Dmax.
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The next result shows that A is a diagonalizable operator whose Hilbert basis of
eigenfunctions can bewritten in terms of the function x1/2+ν , theBessel function of the
first kind Jν and the corresponding positive zeros jν+1,k , k ≥ 1, of the Bessel function
Jν+1, see the proof of Proposition A.1. In the appendix, we give some properties of
Bessel functions of the first kind and their zeros.

Proposition 3 Let 0 ≤ α < 2, β ∈ R, μ < μ(α + β), and κα, ν given in (5). Then,
A : D(A) ⊂ L2

β(0, 1) → L2
β(0, 1) is a self-adjoint operator. Furthermore, the family

{�k}k≥0 given by

�0(x) := √
2 − α + 2

√
μ(α + β) − μ x (1−α−β)/2+√

μ(α+β)−μ,

�k(x) :=
√
2κα

|Jν( jν+1,k)| x
(1−α−β)/2 Jν

(
jν+1,k xκα

)
, k ≥ 1,

(11)

is an orthonormal basis for L2
β(0, 1) such that

A�k = λk�k, k ≥ 0,

where λ0 := 0 and λk := κ2
α( jν+1,k)

2, k ≥ 1.

Proof Since 1/p, q, w ∈ L1(1/2, 1) we have that x = 1 is a regular point.
Case i) Assume

√
μ(α + β) − μ < κα .

First, we will build a (BC) basis {y0, z0} at x = 0 and a (BC) basis {y1, z1} at x = 1,
see [23, Definition 10.4.3].

Consider the functions given by

y0(x) := x (1−α−β)/2+√
μ(α+β)−μ, z0(x) := x (1−α−β)/2−√

μ(α+β)−μ

2
√

μ(α + β) − μ
, x ∈ (0, 1).

(12)

Notice the assumption implies that y0, z0 ∈ Dmax. Clearly, [z0, y0](0) = 1, thus
{y0, z0} is a (BC) basis at x = 0.

Since y0, z0 ∈ L2
β(0, 1) are linearly independent solutions of Mu = 0u it follows

that x = 0 is limit-circle (LC), see [23, Definition 7.3.1, Theorem 7.2.2].
Consider also the functions given by

y1(x) := −x (1−α−β)/2+√
μ(α+β)−μ,

z1(x) := x (1−α−β)/2+√
μ(α+β)−μ − x (1−α−β)/2−√

μ(α+β)−μ

2
√

μ(α + β) − μ
.

Since y1, z1 ∈ Dmax and [z1, y1](1) = 1, it follows that {y1, z1} is a (BC) basis at
x = 1.
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Now, we fix c, d ∈ (0, 1) with c < d. From the Patching Lemma, Lemma 10.4.1
in [23], there exist functions g1, g2 ∈ Dmax such that

{
g1(c) = y0(c), g1(d) = y1(d),

(pg′
1)(c) = (py′

0)(c), (pg′
1)(d) = (py′

1)(d),
{
g2(c) = z0(c), g2(d) = z1(d),

(pg′
2)(c) = (pz′0)(c), (pg′

2)(d) = (pz′1)(d).

Thus, the pair {y+, y−} is a (BC) basis on (0, 1), see [23, Definition 10.4.3], where

y+(x) :=
⎧⎨
⎩

y0(x) if x ∈ (0, c),
g1(x) if x ∈ [c, d],
y1(x) if x ∈ (d, 1),

y−(x) :=
⎧⎨
⎩
z0(x) if x ∈ (0, c),
g2(x) if x ∈ [c, d],
z1(x) if x ∈ (d, 1).

The matrices

A =
(
1 0
0 0

)
and B =

(
0 0
1 0

)

satisfy the hypothesis in [23, Proposition 10.4.2], then

D(A) : =
{
u ∈ Dmax : A

([
u, y+

]
(0)[

u, y−
]
(0)

)
+ B

([
u, y+

]
(1)[

u, y−
]
(1)

)
=

(
0
0

)}

= {
u ∈ Dmax : [

u, y+
]
(0) = [

u, y+
]
(1) = 0

}

= {
u ∈ Dmax : [

u, y+
]
(0) = (au + ux )(1) = 0

}

is a self-adjoint domain, therefore the operator A : D(A) ⊂ L2
β(0, 1) → L2

β(0, 1) is
self-adjoint.

Finally, we have that

[
u, y+

]
(0) = lim

x→0+[u, y0](x) = lim
x→0+

{
u

z0
(x)[z0, y0](x) + [u, z0](x) y0

z0
(x)

}

= lim
x→0+

u

z0
(x),

because [z0, y0](0) = 1, [u, z0](0) is finite (see [23, Lemma 10.2.3]), and
limx→0+ y0/z0(x) = 0. Hence, the result follows.

Case ii) Assume
√

μ(α + β) − μ ≥ κα .
The assumption implies that z0 /∈ L2

β(0, 1), then x = 0 is limit point (LP). Theorem
10.4.4 in [23] with A1 = a, A2 = 1 implies that D(A) = {u ∈ Dmax |(au+ux )(1) =
0} is a self-adjoint domain.

This concludes the first part of the proof.
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Clearly, �k ∈ C∞(0, 1) and (61) implies that �k ∈ L2
β(0, 1) for all k ≥ 0.

Moreover,

lim
x→0+ x (α+β−1)/2+√

μ(α+β)−μ�k(x) = Cα,β,μ lim
x→0+ x2

√
μ(α+β)−μ = 0, k ≥ 0.

By using (63), we obtain

|Jν( jν+1,k)|√
2κα

�′
k(1) = 1 − α − β

2
Jν( jν+1,k) + κα jν+1,k J

′
ν( jν+1,k)

=
(
1 − α − β

2
+ καν

)
Jν( jν+1,k) = −a

|Jν( jν+1,k)|√
2κα

�k(1),

therefore (a�k + �′
k)(1) = 0 for all k ≥ 1. Clearly, (a�0 + �′

0)(1) = 0. Therefore,
�k ∈ D(A) for all k ≥ 0.

We set v(x) = xb Jν(cxr ) with r , c > 0 and b ∈ R. The proof of Proposition 11 in
[12] was shown that

x2−2r d
2v

dx2
+ (1 − 2b)x1−2r dv

dx
+ (b2 − r2ν2)x−2rv = −r2c2v.

By taking r = κα, b = (1 − α − β)/2, and c = jν+1,k , we get A�k = λk�k for all
k ≥ 1. Clearly, A�0 = 0. The result follows by Proposition A.1. ��
Remark 4 If

√
μ(α + β) − μ ≥ κα , from Lemma 10.4.1(b) in [23], we have that

[u, y0](0) = 0 for all u ∈ D(A). When
√

μ(α + β) − μ < κα , in the proof of the
last proposition was shown that [u, y0](0) = 0 for all u ∈ D(A), where y0 is given in
(12).

Remark 5 The family {�k}k≥0 given in (67) is the so-called Fourier–Dini basis for
L2(0, 1).

Then, (A, D(A)) is the infinitesimal generator of a diagonalizable self-adjoint
semigroup in L2

β(0, 1). Thus, we can consider interpolation spaces for the initial data.
For any s ≥ 0, we define

Hs = Hs(0, 1) := D(As/2) =
{
u=

∞∑
k=0

ak�k : ‖u‖2Hs = |a0|2+
∞∑
k=1

|ak |2λsk < ∞
}

,

and we also consider the corresponding dual spaces

H−s := [Hs(0, 1)
]′

.

It is well known that H−s is the dual space of Hs with respect to the pivot space
L2

β(0, 1), i.e.,

Hs ↪→ H0 = L2
β(0, 1) =

(
L2

β(0, 1)
)′

↪→ H−s, s > 0.
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Equivalently, H−s is the completion of L2
β(0, 1) with respect to the norm

‖u‖2−s := |〈u,�0〉β |2 +
∞∑
k=1

λ−s
k |〈u,�k〉β |2.

It is well known that the linear mapping given by

S(t)u0 =
∞∑
k=0

e−λk t ak�k if u0 =
∞∑
k=0

ak�k ∈ Hs,

defines a self-adjoint semigroup {S(t)}t≥0 inHs for all s ∈ R.
For δ ∈ R and a function h : (0, 1) → R, we introduce the notion of δ-generalized

limit of h at x = 0 as follows:

Oδ(h) := lim
x→0+ xδh(x).

Notation: Let t > 0 fixed. If z ∈ Hs then S(t)z ∈ Hs , so we write limx→1− S(t)z
instead of limx→1−(S(t)z)(x).

3.1 Notion of weak solutions for both systems

Now, we consider a convenient definition of a weak solution for the system (4). Let
τ > 0 be fixed. We multiply the equation in (4) by xβϕ(x, t) = xβ S(τ − t)zτ ,
0 ≤ t ≤ τ , integrate by parts (formally), and by using the boundary conditions for
u, ϕ, see Remark 4, we get

〈u(τ ), zτ 〉β − 〈u0, S(τ )zτ 〉β =
∫ T

0
[u(·, t), S(τ − t)zτ ](0)dt

=
∫ T

0
[u(·, t), x−a](0)Oa(S(τ − t)zτ )dt

=
∫ T

0
f (t)Oa(S(τ − t)zτ )dt .

Definition 6 Let T > 0, 0 ≤ α < 2, β ∈ R, μ < μ(α + β), and a given by (3). Let
f ∈ L2(0, T ) and u0 ∈ H−s for some s > 0. A weak solution of (4) is a function
u ∈ C0([0, T ];H−s) such that for every τ ∈ (0, T ] and for every zτ ∈ Hs , we have

〈
u(τ ), zτ

〉
H−s ,Hs = 〈

u0, S(τ )zτ
〉
H−s ,Hs +

∫ τ

0
f (t)Oa

(
S(τ − t)zτ

)
dt . (13)

The next result shows the existence of weak solutions for the system (4) under
suitable conditions on the parameters α, β, μ, and s, and its proof is similar to the
proof of Proposition 2.9 in [11].
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Proposition 7 Let T > 0, 0 ≤ α < 2, β ∈ R, μ < μ(α + β), a given in (3). Let
f ∈ L2(0, T ) and u0 ∈ H−s such that s > ν, with ν given in (5). Then, formula (13)
defines for each τ ∈ [0, T ] a unique element u(τ ) ∈ H−s that can be written as

u(τ ) = S(τ )u0 + B(τ ) f , τ ∈ (0, T ],

where B(τ ) is the strongly continuous family of boundedoperators B(τ ) : L2(0, T ) →
H−s given by

〈
B(τ ) f , zτ

〉
H−s ,Hs =

∫ τ

0
f (t)Oa

(
S(τ − t)zτ

)
dt, for all zτ ∈ Hs .

Furthermore, the unique weak solution u on [0, T ] to (4) (in the sense of (13)) belongs
to C0

([0, T ];H−s
)
and fulfills

‖u‖L∞([0,T ];H−s) ≤ C
(‖u0‖H−s + ‖ f ‖L2(0,T )

)
.

Proof Fix τ > 0. Let u(τ ) ∈ H−s be determined by the condition (13), hence

u(τ ) − S(τ )u0 = ζ(τ ) f ,

where

〈
ζ(τ ) f , zτ

〉
H−s ,Hs =

∫ τ

0
f (t)Oa

(
S(τ − t)zτ

)
dt, for all zτ ∈ Hs .

We claim that ζ(τ ) is a bounded operator from L2(0, T ) intoH−s : consider zτ ∈ Hs

given by

zτ =
∞∑
k=0

bk�k, (14)

therefore

S(τ − t)zτ =
∞∑
k=0

eλk (t−τ)bk�k, for all t ∈ [0, τ ].

ByusingLemmaA.3 and (70),we obtain that there exists a constantC = C(α, β, μ) >

0 such that

|Oa (�k) | ≤ C | jν+1,k |ν+1/2, k ≥ 1,

hence (69) implies that there exists a constant C = C(α, β, μ, τ) > 0 such that
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(∫ τ

0

∣∣Oa
(
S(τ − t)zτ

)∣∣2 dt

)1/2

≤
∞∑
k=0

|bk ||Oa(�k)|
(∫ τ

0
e2λk (t−τ) dt

)1/2

≤ C

⎛
⎝τ 1/2|b0| +

( ∞∑
k=1

|bk |2λsk
)1/2 ( ∞∑

k=1

|λk |ν−1/2−s
(
1 − e−2λkτ

))1/2
⎞
⎠

≤ C

⎛
⎝τ 1/2|b0| +

( ∞∑
k=1

|bk |2λsk
)1/2 ( ∞∑

k=1

1

k2(s−ν+1/2)

)1/2
⎞
⎠

≤ C
∥∥zτ∥∥Hs .

Therefore, ‖ζ(τ ) f ‖H−s ≤ C‖ f ‖L2(0,T ) for all f ∈ L2(0, T ), τ ∈ (0, T ].
Finally, we fix f ∈ L2(0, T ) and show that the mapping τ �→ ζ(τ ) f is right-

continuous on [0, T ). Let h > 0 small enough and z ∈ Hs given as in (14). Thus,
proceeding as in the last inequalities, we have

| 〈ζ(τ + h) f − ζ(τ ) f , z〉H−s ,Hs |

≤ C‖ f ‖L2(0,T )

⎛
⎝|b0|h +

( ∞∑
k=1

|bk |2λsk
)1/2

×
[(∑∞

k=1
I (τ,k,h)

k2(s−ν+1/2)

)1/2 +
(∑∞

k=1
1−e−2λk h

k2(s−ν+1/2)

)1/2] )
,

where

I (τ, k, h) = λk

∫ τ

0

(
eλk (t−τ−h) − eλk (t−τ)

)2
dt

= 1

2
(1 − e−λkh)2(1 − e−2λkτ ) → 0 as h → 0+. (15)

Since 0 ≤ I (τ, k, h) ≤ 1/2 uniformly for τ, h > 0, k ≥ 1, the result follows by the
dominated convergence theorem. ��
Remark 8 In the following section, we will consider initial conditions in L2

β(0, 1).

Notice that L2
β(0, 1) ⊂ H−ν−δ for all δ > 0, and we can apply Proposition 7 with

s = ν + δ, δ > 0, then the corresponding solutions will be in C0([0, T ],H−ν−δ).

As before, we introduce a suitable definition of a weak solution for the system (6).

Definition 9 Let T > 0, β ∈ R, 0 ≤ α < 2, μ < μ(α + β) and a given in (3).
Let f ∈ L2(0, T ) and u0 ∈ L2

β(0, 1). A weak solution of (6) is a function u ∈
C0

(
[0, T ]; L2

β(0, 1)
)
such that for every τ ∈ (0, T ] and for every zτ ∈ L2

β(0, 1), we

have

〈
u(τ ), zτ

〉
β

= 〈
u0, S(τ )zτ

〉
β

+
∫ τ

0
f (t) lim

x→1− S(τ − t)zτdt . (16)
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The next result shows the existence of weak solutions for the system (6) under certain
conditions on the parameters α, β, μ and a, and its proof is similar to the proof of
Proposition 18 in [12].

Proposition 10 Let T > 0, β ∈ R, 0 ≤ α < 2, μ < μ(α + β) and a given in (3). Let
f ∈ L2(0, T ) and u0 ∈ L2

β(0, 1). Then, formula (16) defines for each τ ∈ [0, T ] a
unique element u(τ ) ∈ L2

β(0, 1) that can be written as

u(τ ) − S(τ )u0 = B(τ ) f , τ ∈ (0, T ],

where B(τ ) is the strongly continuous family of bounded operatorsB(τ ) : L2(0, T ) →
L2

β(0, 1) given by

〈B(τ ) f , zτ
〉
β

=
∫ τ

0
f (t) lim

x→1− S(τ − t)zτdt, for all zτ ∈ L2
β(0, 1).

Furthermore, the unique weak solution u on [0, T ] to (6) (in the sense of (16)) belongs
to C0

(
[0, T ]; L2

β(0, 1)
)
and fulfills

‖u‖
L∞

(
[0,T ];L2

β(0,1)
) ≤ C

(‖u0‖β + ‖ f ‖L2(0,T )

)
.

Proof Fix τ > 0. Let u(τ ) ∈ L2
β(0, 1) be determined by the condition (16), hence

u(τ ) − S(τ )u0 = ζ(τ ) f ,

where

〈
ζ(τ ) f , zτ

〉
β

=
∫ τ

0
f (t) lim

x→1− S(τ − t)zτdt for all zτ ∈ L2
β(0, 1).

Let zτ ∈ L2
β(0, 1) written as

zτ =
∞∑
k=0

bk�k, (17)

therefore

lim
x→1− S(τ − t)zτ =

∞∑
k=0

eλk (t−τ)bk�k(1) for all t ∈ [0, τ ].

By (11), we get

|�0(1)| =
√
2 − α + 2

√
μ(α + β) − μ, |�k(1)| = √

2κα, k ≥ 1, (18)
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hence there exists a constant C = C(α, β, μ, τ) > 0 such that

(∫ τ

0

∣∣∣∣ lim
x→1− S(τ − t)zτ

∣∣∣∣
2

dt

)1/2

≤
∞∑
k=0

|bk ||�k(1)|
(∫ τ

0
e2λk (t−τ) dt

)1/2

≤ C‖zτ‖β

( ∞∑
k=0

∫ τ

0
e2λk (t−τ) dt

)1/2

= C‖zτ‖β

(
τ +

∞∑
k=1

1 − e−2λkτ

2λk

)1/2

≤ C‖zτ‖β

(
τ +

∞∑
k=1

1

k2

)1/2

.

Therefore, ‖ζ(τ ) f ‖β ≤ C‖ f ‖L2(0,T ) for all f ∈ L2(0, T ), τ ∈ (0, T ].
Finally, we fix f ∈ L2(0, T ) and show that the mapping τ �→ ζ(τ ) f is right-

continuous on [0, T ). Let h > 0 small enough and z ∈ L2
β(0, 1) given as in (17).

Then, we have

| 〈ζ(τ + h) f − ζ(τ ) f , z〉β |
≤

∫ τ

0
| f (t)|

∣∣∣∣ lim
x→1−(S(τ + h − t) − S(τ − t))z

∣∣∣∣ dt

+
∫ τ+h

τ

| f (t)|
∣∣∣∣ lim
x→1− S(τ + h − t)z

∣∣∣∣ dt

≤ C‖zτ‖β‖ f ‖L2(0,T )

⎡
⎣

( ∞∑
k=1

I (τ, k, h)

k2

)1/2

+
(
h +

∞∑
k=1

1 − e−2λkh

k2

)1/2
⎤
⎦ ,

where I (τ, k, h) → 0 as h → 0+, see (15). ��

4 Control at the left endpoint

4.1 Upper estimate of the cost of the null controllability

Here, we use the moment method, introduced by Fattorini & Russell in [10], to prove
the null controllability of the system (4). The first step is to construct a biorthogonal
family {ψk}k≥0 ⊂ L2(0, T ) to the family of exponential functions

{
e−λk (T−t)

}
k≥0 on[0, T ], i.e., that satisfies

∫ T

0
ψk(t)e

−λl (T−t)dt = δkl , for all k, l ≥ 0.

This construction will help us to get an upper bound for the cost of the null controlla-
bility of the system (4).
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Assume that for each k ≥ 0 there exists an entire function Fk of exponential type
T /2 such that Fk(x) ∈ L2(R), and

Fk(iλl) = δkl , for all k, l ≥ 0. (19)

The L2-version of the Paley-Wiener theorem implies that there exists ηk ∈ L2(R)

with support in [−T /2, T /2] such that Fk(z) is the analytic extension of the Fourier
transform of ηk . Then, we have that

ψk(t) := eλk T /2ηk(t − T /2), t ∈ [0, T ], k ≥ 0, (20)

is the family we are looking for.
Now,we proceed to construct the family Fk , k ≥ 0. Consider theWeierstrass infinite

product

�(z) := z
∞∏
k=1

(
1 + i z

(κα jν+1,k)2

)
. (21)

From (68), we have that jν+1,k = O(k) for k large, thus the infinite product converges
absolutely in C. Hence, �(z) is an entire function with simple zeros at iλk , k ≥ 0.

From [22, Chap. XV, p. 498, eq. (3)], we have for ν > −1 that

�(z) = z	(ν + 2)

(
2κα√−i z

)ν+1

Jν+1

(√−i z

κα

)
. (22)

[11] proved that

|Jν(z)| ≤ |z|νe|�(z)|

2ν	 (ν + 1)
, z ∈ C.

Therefore,

|�(z)| ≤ |z| exp
(

|�(
√−i z)|
κα

)
, z ∈ C.

In particular,

|�(z)| ≤ |z| exp
( |z|1/2

κα

)
, z ∈ C, |�(x)| ≤ |x | exp

( |x |1/2√
2κα

)
, x ∈ R. (23)

It follows that

�k(z) := �(z)

�′(iλk)(z − iλk)
, k ≥ 0, (24)
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is a family of entire functions that satisfy (19). Since �k(x) is not in L2(R), we
need to fix this by using a suitable “complex multiplier", thus we follow the approach
introduced in [20].

For θ, ω > 0, we define

σθ (t) := exp

(
− θ

1 − t2

)
, t ∈ (−1, 1),

and extended by 0 outside of (−1, 1). Clearly σθ is analytic on (−1, 1). Set C−1
θ :=∫ 1

−1 σθ (t)dt and define

Hω,θ (z) = Cθ

∫ 1

−1
σθ (t) exp (−iωt z) dt . (25)

Hω,θ (z) is an entire function, and the next result provides additional properties of
Hω,θ (z).

Lemma 11 The function Hω,θ fulfills the following inequalities:

Hω,θ (i x) ≥ exp
(
ω|x |/ (

2
√

θ + 1
))

11
√

θ + 1
, x ∈ R, (26)

|Hω,θ (z)| ≤ exp (ω|�(z)|) , z ∈ C, (27)

|Hω,θ (x)| ≤ χ|x |≤1(x)+c
√

θ + 1
√

ωθ |x | exp
(
3θ/4 − √

ωθ |x |
)

χ|x |>1(x), x ∈ R,

(28)

where c > 0 does not depend on ω and θ .

We refer to [20, pp. 85–86] for the details.
For k ≥ 0, consider the entire function Fk given as

Fk(z) := �k(z)
Hω,θ (z)

Hω,θ (iλk)
, z ∈ C. (29)

For δ ∈ (0, 1), we set

ω := T (1 − δ)

2
> 0, and θ := (1 + δ)2

κ2
αT (1 − δ)

> 0. (30)

Lemma 12 The function Fk(z), k ≥ 0, has the following properties:
(i) Fk is of exponential type T /2.
(ii) Fk ∈ L1(R) ∩ L2(R).
(iii) Fk satisfies (19).
(iv) Furthermore, there exists a constant c > 0, independent of T , α and δ, such that

‖F0‖L1(R) ≤ C(T , α, δ) and (31)
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‖Fk‖L1(R) ≤ C(T , α, δ)

λk |�′ (iλk)| exp
(

− ωλk

2
√

θ + 1

)
, k ≥ 1, (32)

where

C(T , α, δ) = c
√

θ + 1

[
exp

(
1√
2κα

)
+ √

θ + 1
κ2
α

δ5
exp

(
3θ

4

)]
. (33)

Proof By using (23), (27), (29) and (30), we get that Fk is of exponential type T /2
for all k ≥ 0. Moreover, by using (24) and (29), we can see that Fk fulfills (19).

Now, we use (23), (26), (28), (29), and (30) to get

|Fk(x)| ≤ c exp

(
− ωλk

2
√

θ + 1

) √
θ + 1|x |

|�′ (iλk) ||x2 + λ2k |1/2
|Hω,θ (x)| exp

( |x |1/2√
2κα

)

≤ c exp

(
− ωλk

2
√

θ + 1

) √
θ + 1

λk |�′ (iλk) |
×

[
e

1√
2κα χ|x |≤1(x) + √

θ + 1
√

ωθ |x |3/2 exp
(
3θ

4
− δ|x |1/2√

2κα

)
χ|x |>1(x)

]
,

for all k ≥ 1. Since the function on the right-hand side is rapidly decreasing in R, we
have Fk ∈ L1(R) ∩ L2(R). Finally, the change of variable y = (κα)−1δ|x |1/2/√2
implies (32).

When k = 0, we have

|F0(x)| ≤ exp

( |x |1/2√
2κα

)
|Hω,θ (x)| ≤ e

1√
2κα χ|x |≤1(x)

+√
θ + 1

√
ωθ |x | exp

(
3θ

4
− δ|x |1/2√

2κα

)
χ|x |>1(x),

then we integrate on R and the result follows. ��
Since ηk, Fk ∈ L1(R), the inverse Fourier theorem yields

ηk(t) = 1

2π

∫

R

ei tτ Fk(τ )dτ, t ∈ R, k ≥ 0,

hence (20) implies that ψk ∈ C([0, T ]). From (31) and (32), we have ‖ψ0‖∞ ≤
C(T , α, δ) and

‖ψk‖∞ ≤ C(T , α, δ)

λk |�′ (iλk)| exp
(
Tλk

2
− ωλk

2
√

θ + 1

)
, k ≥ 1. (34)

Now, we are ready to prove the null controllability of the system (4). Let u0 ∈
L2

β(0, 1). Then, consider its (generalized) Fourier–Dini series with respect to the
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orthonormal basis {�k}k≥0,

u0(x) =
∞∑
k=0

bk�k(x). (35)

We set

f (t) := −
∞∑
k=0

bke−λk T

Oa (�k)
ψk(t). (36)

Since {ψk}k≥0 is biorthogonal to {e−λk (T−t)}k≥0, we have

∫ T

0
f (t)Oa (�k) e

−λk (T−t)dt = −bke
−λk T = −

〈
u0, e

−λk T�k

〉
β

= −
〈
u0, e

−λk T�k

〉
H−s ,Hs

, k ≥ 0.

Let u ∈ C([0, T ]; H−s) that satisfies (13) for all τ ∈ (0, T ], zτ ∈ Hs . In particular,
for τ = T , we take zT = �k , k ≥ 0, then the last equality implies that

〈u(·, T ),�k〉H−s ,Hs = 0 for all k ≥ 0,

hence u(·, T ) = 0.
It just remains to estimate the norm of the control f . From (34) and (36), we get

C(T , α, δ)−1‖ f ‖∞ ≤ |b0|
|Oa(�0)| +

∞∑
k=1

|bk |
|Oa (�k)|

1

λk |�′ (iλk)|

× exp

(
−Tλk

2
− ωλk

2
√

θ + 1

)
. (37)

From (21), (22), and (64) (with ν + 1 instead of ν), we get that

�′ (iλk) = iλk
2ν+1	(ν + 2)

( jν+1,k)ν+2

−i

2κ2
α

J ′
ν+1( jν+1,k) = 2ν	(ν + 2)

( jν+1,k)ν
Jν( jν+1,k), k ≥ 1,

(38)

and by using (70), we get

∣∣Oa (�k)�′ (iλk)
∣∣ = 	(ν + 2)

	(ν + 1)

√
2κα = (ν + 1)

√
2κα, k ≥ 1.
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From (37), (69), and using that λk ≥ λ1, it follows that

C(T , α, δ)−1‖ f ‖∞

≤ |b0|
|Oa(�0)| + 1√

2(ν + 1)κ5/2
α

exp

(
−Tλ1

2
− ωλ1

2
√

θ + 1

) ∞∑
k=1

|bk |
( jν+1,k)2

≤ |b0|
|Oa(�0)| + c

(ν + 1)κ5/2
α

exp

(
−Tλ1

2
− ωλ1

2
√

θ + 1

) ( ∞∑
k=1

|bk |2
)1/2

.

Using the expression of ω, θ given in (30) and the facts θ > 0, δ ∈ (0, 1), and
0 < κα ≤ 1, we get that

θ ≤ 4

(1 − δ)κ2
αT

,
√

θ + 1 ≤ 2(1 + T )1/2

(1 − δ)1/2καT 1/2 ,
√

θ + 1 ≤ θ + 1,

therefore

ω√
θ + 1

≥ κα(1 − δ)3/2T 3/2

4(1 + T )1/2
,

C(T , α, δ) ≤ c

(
1 + 1

(1 − δ)κ2
αT

) [
exp

(
1√
2κα

)
+ 1

δ5
exp

(
3

(1 − δ)κ2
αT

)]
.

(39)

By using the definition of λ1, and setting b0 = 0, we get the estimate for K�⊥
0
.

4.2 Lower estimate of the cost of the null controllability

In this section, we get a lower estimate of the cost K = KL2
β
(T , α, β, μ).

We set

u0(x) := |Jν( jν+1,1)|
(2κα)1/2

�1(x), x ∈ (0, 1), hence ‖u0‖2β = |Jν( jν+1,1)|2
2κα

.

(40)

For ε > 0 small enough, there exists f ∈ U (α, β, μ, T , u0) such that

u(·, T ) ≡ 0, and ‖ f ‖L2(0,T ) ≤ (K + ε)‖u0‖β. (41)

Then, in (13), we set τ = T and take zτ = �k , k ≥ 0, to obtain

e−λk T 〈u0,�k〉β = 〈u0, S(T )�k〉H−s ,Hs = −
∫ T

0
f (t)Oa (S(T − t)�k) dt

= −e−λk TOa (�k)

∫ T

0
f (t)eλk tdt,
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from (40) and (70), it follows that

∫ T

0
f (t)eλk tdt = −2ν	(ν + 1)|Jν( jν+1,1)|2

2κα( jν+1,1)ν
δ1,k, k ≥ 0. (42)

Now, consider the function v : C → C given by

v(s) :=
∫ T /2

−T /2
f

(
t + T

2

)
e−ist dt, s ∈ C.

Fubini and Morera’s theorems imply that v(s) is an entire function. Moreover, (42)
implies that

v(iλk) = 0 for all k ≥ 0, k �= 1, and v(iλ1)= − 2ν	(ν + 1)|Jν( jν+1,1)|2
2κα( jν+1,1)ν

e−λ1T /2.

We also have that

|v(s)| ≤ eT |�(s)|/2
∫ T

0
| f (t)|dt ≤ (K + ε)T 1/2eT |�(s)|/2 ‖u0‖β . (43)

Consider the entire function F(z) given by

F(s) := v (s − iδ) , s ∈ C, (44)

for some δ > 0 that will be chosen later on. Clearly,

F (bk) = 0, k ≥ 0, k �= 1, where bk := i (λk + δ) , k ≥ 0, and

F(b1) = −2ν	(ν + 1)|Jν( jν+1,1)|2
2κα( jν+1,1)ν

e−λ1T /2. (45)

From (40), (43) and (44), we obtain

log |F(s)| ≤ T

2
|�(s) − δ| + log

(
(K + ε)T 1/2

∣∣Jν
(
jν+1,1

)∣∣
(2κα)1/2

)
, s ∈ C. (46)

We recall the following representation theorem, see [17, p. 56].

Theorem 13 Let g(z) be an entire function of exponential type and assume that

∫ ∞

−∞
log+ |g(x)|
1 + x2

dx < ∞.
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Let {d�}�≥1 be the set of zeros of g(z) in the upper half plane �(z) > 0 (each zero
being repeated as many times as its multiplicity). Then,

log |g(z)| = A�(z) +
∞∑

�=1

log

∣∣∣∣
z − d�

z − d̄�

∣∣∣∣ + �(z)

π

∫ ∞

−∞
log |g(s)|
|s − z|2 ds, �(z) > 0,

where

A = lim sup
y→∞

log |g(iy)|
y

.

We apply the last result to the function F(z) given in (44). In this case, (43) implies
that A ≤ T /2. Also notice that � (bk) > 0, k ≥ 0, to get

log |F (b1)| ≤ (λ1 + δ)
T

2
+

∞∑
k=0,k �=1

log

∣∣∣∣
b1 − bk
b1 − b̄k

∣∣∣∣ + � (b1)

π

∫ ∞

−∞
log |F(s)|
|s − b1|2

ds.

(47)

By using the definition of the constants bk’s, we have

∞∑
k=0,k �=1

log

∣∣∣∣
b1 − bk
b1 − b̄k

∣∣∣∣

= log

(
j2ν+1,1

2δ/κ2
α + j2ν+1,1

)
+

∞∑
k=2

log

( (
jν+1,k

)2 − (
jν+1,1

)2

2δ/κ2
α + (

jν+1,1
)2 + (

jν+1,k
)2

)

≤ log

(
j2ν+1,1

2δ/κ2
α + j2ν+1,1

)
+

∞∑
k=2

1

jν+1,k+1− jν+1,k

∫ jν+1,k+1

jν+1,k

log

(
x2

2δ/κ2
α + x2

)
dx

≤ log

(
j2ν+1,1

2δ/κ2
α + j2ν+1,1

)
+ 1

π

∫ ∞

jν+1,2

log

(
x2

2δ/κ2
α + x2

)
dx,

= log

(
j2ν+1,1

2δ/κ2
α + j2ν+1,1

)
− jν+1,2

π
log

(
1

1 + 2δ/
(
κα jν+1,2

)2
)

−2
√
2δ

πκα

tan−1

( √
2δ

κα jν+1,2

)
, (48)

where we have used Lemma A.2 and made the change of variables

τ = κα√
2δ

x .
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From (46), we get the estimate

� (b1)

π

∫ ∞

−∞
log |F(s)|
|s − b1|2

ds ≤ δT

2
+ log

(
(K + ε)T 1/2

∣∣Jν
(
jν+1,1

)∣∣
(2κα)1/2

)
. (49)

From (45), (47), (48), and (49), we have

2
√
2δ

πκα

tan−1

( √
2δ

κα jν+1,2

)
− jν+1,2

π
log

(
1 + 2δ(

κα jν+1,2
)2

)
− λ1 + δ

T−1

≤ log(K + ε) + log

(
(2καT )1/2( jν+1,1)

ν

2ν	(ν + 1)|Jν( jν+1,1)|
)

+ log

(
j2ν+1,1

2δ/κ2
α + j2ν+1,1

)
.

The result follows by taking δ = κ2
α

(
jν+1,2

)2
/2 and then letting ε → 0+.

5 Control at the right endpoint

5.1 Upper estimate of the cost of the null controllability

Now we show the null controllability of the system (6). Let u0 ∈ L2
β(0, 1) given as in

(35). We set

f (t) := −
∞∑
k=0

bke−λk T

�k(1)
ψk(t). (50)

Since the sequence {ψk}k≥0 is biorthogonal to {e−λk (T−t)}k≥0, we have

�k(1)
∫ T

0
f (t)e−λk (T−t)dt = −bke

−λk T = −
〈
u0, e

−λk T�k

〉
β

, k ≥ 0. (51)

Let u ∈ C
(
[0, T ]; L2

β(0, 1)
)
be the weak solution of system (6). In particular, for

τ = T , we take zT = �k , k ≥ 0, then (16) and (51) imply that 〈u(·, T ),�k〉β = 0
for all k ≥ 0, therefore u(·, T ) ≡ 0.

Finally, we estimate the norm of the control f . From (18), (34), (38) and (50), we
get

C(T , α, δ)−1‖ f ‖∞ ≤ |b0|
|�0(1)| + 1√

2κα2ν	(ν + 2)

∞∑
k=1

| jν+1,k |ν
|Jν( jν+1,k)|

|bk |
λk

exp

×
(

−Tλk

2
− ωλk

2
√

θ + 1

)
.
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By using that e−x ≤ e−r rr x−r for all x, r > 0, the Cauchy–Schwarz inequality,
Lemma A.3 and the fact that jν,k ≥ (k − 1/4)π (by (69)), (35) and λ1 ≤ λk , k ≥ 1,
we obtain that

C(T , α, δ)−1‖ f ‖∞ ≤ |b0|
|�0(1)| + cκ−ν−1

α

	(ν + 2)

(
2ν + 1

4T

)(2ν+1)/4

×e− 2ν+1
4 exp

(
− ωλ1

2
√

θ + 1
− Tλ1

4

) ∞∑
k=1

|bk |
λk

≤ |b0|
|�0(1)| + cκ−ν−1

α

	(ν + 2)

(
2ν + 1

4T e

)(2ν+1)/4

× exp

(
− ωλ1

2
√

θ + 1
− Tλ1

4

) ( ∞∑
k=1

|bk |2
)1/2

,

and the result follows by (39).

5.2 Lower estimate of the cost of the null controllability

Once again, we get a lower estimate of the cost K̃ = K̃L2
β
(T , α, β, μ). We set

u0(x) :=
∣∣Jν

(
jν+1,1

)∣∣
(2κα)1/2

�1(x), x ∈ (0, 1), hence ‖u0‖2β =
∣∣Jν

(
jν+1,1

)∣∣2
2κα

.

(52)

For ε > 0 small enough, there exists f ∈ Ũ (α, β, μ, T , u0) such that

u(·, T ) ≡ 0, and ‖ f ‖L2(0,T ) ≤ (K̃ + ε)‖u0‖β.

Then, in (16), we set τ = T and take zτ = �k , k ≥ 0, to obtain

e−λk T 〈u0,�k〉β = 〈u0, S(T )�k〉β = −
∫ T

0
f (t) lim

x→1− S(T − t)�kdt

= −e−λk T�k(1)
∫ T

0
f (t)eλk tdt .

From (18) and (52), it follows that

∫ T

0
f (t)eλk tdt = −

∣∣Jν
(
jν+1,1

)∣∣
2κα

δ1,k, k ≥ 0. (53)
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Consider the entire function v : C → C given by

v(s) :=
∫ T /2

−T /2
f

(
t + T

2

)
e−ist dt, s ∈ C.

Therefore,

|v(s)| ≤ eT |�(s)|/2
∫ T

0
| f (t)|dt ≤ (K̃ + ε)T 1/2eT |�(s)|/2 ‖u0‖β . (54)

Moreover, (53) implies that

v(iλk) = 0 for all k ≥ 0, k �= 1, and v(iλ1) = −
∣∣Jν

(
jν+1,1

)∣∣
2κα

e−λ1T /2.

Consider the entire function F(z) given by

F(s) := v (s − iδ) , s ∈ C, with δ = κ2
α

(
jν+1,2

)2
/2. (55)

Clearly,

F (bk) = 0, k ≥ 0, k �= 1, where bk := i (λk + δ) , k ≥ 0, and

F (b1) = −
∣∣Jν

(
jν+1,1

)∣∣
2κα

e−λ1T /2. (56)

From (52), (54) and (55) we obtain

log |F(s)| ≤ T

2
|�(s) − δ| + log

(
(K̃ + ε)T 1/2

∣∣Jν
(
jν+1,1

)∣∣
(2κα)1/2

)
, s ∈ C. (57)

We apply Theorem 13 to the function F(z) given in (55). Then, (54) implies that
A ≤ T /2, hence

log |F (b1)| ≤ (λ1 + δ)
T

2
+

∞∑
k=0,k �=1

log

∣∣∣∣
b1 − bk
b1 − b̄k

∣∣∣∣ + � (b1)

π

∫ ∞

−∞
log |F(s)|
|s − b1|2

ds.

(58)

From (57), we get the estimate

� (b1)

π

∫ ∞

−∞
log |F(s)|
|s − b1|2

ds ≤ T δ

2
+ log

(
(K̃ + ε)T 1/2

∣∣Jν
(
jν+1,1

)∣∣
(2κα)1/2

)
. (59)
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From (48), (56), (58), and (59), we have

log

(
1 + j2ν+1,2

j2ν+1,1

)
+

(
1

2
− log 2

π

)
jν+1,2 −

(
λ1 + κ2

α j
2
ν+1,2

2

)
T

≤ log(K̃ + ε) + log(2καT )1/2,

the result follows by letting ε → 0+.
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Appendix A: Bessel functions

We introduce the Bessel function of the first kind Jν as follows:

Jν(x) =
∑
m≥0

(−1)m

m!	(m + ν + 1)

( x
2

)2m+ν

, x ≥ 0, (60)

where 	(·) is the Gamma function. In particular, for ν > −1 and 0 < x ≤ √
ν + 1,

from (60), we have (see [1, 9.1.7, p. 360])

Jν(x) ∼ 1

	(ν + 1)

( x
2

)ν

as x → 0+. (61)
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A Bessel function Jν of the first kind solves the differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0. (62)

Bessel functions of the first kind satisfy the recurrence formulas (see [1, 9.1.27]):

x J ′
ν(x) − ν Jν(x) = −x Jν+1(x), (63)

x1−ν d

dx
[xν Jν(x)] = x J ′

ν(x) + ν Jν(x) = x Jν−1(x). (64)

Recall the asymptotic behavior of the Bessel function Jν for large x , see [16, Lem.
7.2, p. 129].

Lemma A.1 For any ν ∈ R

Jν(x) =
√

2

πx

{
cos

(
x − νπ

2
− π

4

)
+ O

(
1

x

)}
as x → ∞.

For ν > −1, �, �′ ∈ R, we have (see [3, p. 101])

∫ 1

0
x Jν(�x)Jν

(
�′x

)
dx = �′ Jν(�)J ′

ν

(
�′) − �Jν

(
�′) J ′

ν(�)

�2 − �′2 . (65)

For ν > −1, the Bessel function Jν has an infinite number of real zeros 0 < jν,1 <

jν,2 < . . ., all of which are simple, with the possible exception of x = 0. In [16,
Proposition 7.8], we can find the next information about the location of the zeros of
the Bessel functions Jν :

Lemma A.2 Let ν ≥ 0.
1. The difference sequence

(
jν,k+1 − jν,k

)
k converges to π as k → ∞.

2. The sequence
(
jν,k+1 − jν,k

)
k is strictly decreasing if |ν| > 1

2 , strictly increasing

if |ν| < 1
2 , and constant if |ν| = 1

2 .

Proposition A.1 Let ν > −1, 0 ≤ α < 2 and β ∈ R. The family

�0(x) = √
2(ν + 1)κα x (1−α−β)/2+καν,

�k(x) =
√
2κα

|Jν( jν+1,k)| x
(1−α−β)/2 Jν

(
jν+1,k x

κα
)
, k ≥ 1,

is an orthonormal basis for L2
β(0, 1).

Proof By using (63) and (65) with �′ = jν+1,k , we get

∫ 1

0
x Jν(�x)Jν

(
jν+1,k x

)
dx = �Jν+1(�)Jν( jν+1,k)

(� + jν+1,k)(� − jν+1,k)
.
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By taking the limit as � goes to jν+1,k , and by using (64) (with ν + 1 instead of ν), we
obtain

∫ 1

0
x |Jν

(
jν+1,k x

) |2dx = 1

2
J ′
ν+1( jν+1,k)Jν( jν+1,k) = |Jν( jν+1,k)|2

2
, k ≥ 1. (66)

Next, we introduce the following family

�0(x) := √
2(ν + 1)x1/2+ν, �k(x) :=

√
2

|Jν( jν+1,k)| x
1/2 Jν

(
jν+1,k x

)
, k ≥ 1.

(67)

In [15] was proved that {�k}k≥0 is a complete system in L2(0, 1).
Then, (63), (65) and (66) imply that 〈�k,��〉 = δk,� for all k, � ≥ 1. On the other

hand, from (64) with ν + 1 instead of ν, we obtain that

( jν+1,k)
ν+2

∫ 1

0
xν+1 Jν( jν+1,k x)dx = yν+1 Jν+1(y)|y= jν+1,k

y=0 = 0, k ≥ 1.

Therefore 〈�k,�0〉 = 0 for all k ≥ 1. In conclusion, {�k}k≥0 is an orthonormal basis
for L2(0, 1).

Let U be the unitary operator U : L2(0, 1) → L2
β(0, 1) given by

Uu(x) := κ1/2
α x−α/4−β/2u(xκα ), u ∈ L2(0, 1).

Notice that U�k = �k , k ≥ 0, therefore �k , k ≥ 0, is an orthonormal basis for
L2

β(0, 1). ��
For ν ≥ 0 fixed, we consider the next asymptotic expansion of the zeros of the

Bessel function Jν , see [22, Section 15.53],

jν,k =
(
k + ν

2
− 1

4

)
π − 4ν2 − 1

8
(
k + ν

2 − 1
4

)
π

+ O

(
1

k3

)
, as k → ∞. (68)

In particular, we have

jν,k ≥
(
k − 1

4

)
π for ν ∈ [0, 1/2] ,

jν,k ≥
(
k − 1

8

)
π for ν ∈ [1/2,∞) .

(69)

Lemma A.3 For any ν > −1 and any k ≥ 1, we have

√
jν+1,k

∣∣Jν
(
jν+1,k

)∣∣ =
√

2

π
+ O

(
1

jν+1,k

)
as k → ∞.
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The proof of this result follows by using (A.1).

Lemma A.4 Let 0 ≤ α < 2, β ∈ R, a and ν = ν(α, β, μ) given in (3) and (5),
respectively, then the following limits are finite

Oa(�0) =
√
2 − α + 2

√
μ(α + β) − μ,

Oa(�k) = (2κα)1/2
(
jν+1,k

)ν

2ν	(ν + 1)
∣∣Jν

(
jν+1,k

)∣∣ , k ≥ 1. (70)

Proof This result follows from (60). ��
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