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Abstract
Multiobjective evolutionary algorithms based on decomposition (MOEA/D) decompose a multiobjective optimization prob-
lem (MOP) into a group of subproblems and optimizes them at the same time. The reproduction method in MOEA/D, which
generates offspring solutions, has crucial effect on the performance of algorithm. As the difficulties of MOPs increases, it
requires much higher efficiency for the reproduction methods in MOEA/D. However, for the complex optimization problems
whose PS shape is complicated, the original reproduction method used inMOEA/Dmight not be suitable to generate excellent
offspring solutions. In order to improve the property of the reproduction method for MOEA/D, this paper proposes an external
archive matching strategy which selects solutions’ most matching archive solutions as parent solutions. The offspring solu-
tions generated by this strategy can maintain a good convergence ability. To balance convergence and diversity, a perturbed
learning scheme is used to extend the search space of the solutions. The experimental results on three groups of test problems
reveal that the solutions obtained byMOEA/D-EAM have better convergence and diversity than the other four state-of-the-art
algorithms.

Keywords Reproduction method · Decomposition · Multiobjective optimization

1 Introduction

There are many optimization problems in real life. A num-
ber of optimization problems have multiple optimization
objectives, and these problems are called multiobjective
optimization problems (MOPs). MOPs arise in many field
of science, including economics, engineering, and logistics
(Gupta et al. 2016;Alzain et al. 2015;Yuan et al. 2017;Alsmi-
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rat et al. 2017). Since all objectives of MOP always conflict
with each other and a single solution cannot optimize these
objectives at the same time, all objectives need to be consid-
ered simultaneously. A multiobjective optimization problem
can be mathematically formulated as follows:

minimize F(x) � ( f 1(x), . . . , f m(x))
subject to x ∈ π

(1)

where π is the decision space, X � (1, …, xn) ε Rn is a
decision variable vector, and F:π →Rm consistsm of objec-
tive functions f 1(x), …, fm(x). If x ε Rn, all the objectives
are continuous and this problem can be called a continuous
MOP.

Suppose u, v ε π , u dominates v, denoted by u ≺v, if and
only if fi(u)≤fi(v), for all i ε {1, …, m}, and F(u) ��F(v).
A point X* ε π represents the Pareto optimal solution if no
other solution x ε π dominates X*. The set of all Pareto
optimal solutions is called the Pareto set (PS), and the set of
all Pareto optimal objective vectors is the Pareto front (PF)
(Hillermeier 2001).

Since the objective functions of MOPs often conflict with
each other, and the improvement of one objective may lead
to deterioration of another, no single solution can optimize
all objectives at the same time. Multiobjective optimiza-
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tion evolutionary algorithms (MOEAs) treat a MOP as a
whole optimization problem and use Pareto dominance rela-
tionship among solutions to drive the population evolution
toward the Pareto front (Deb and Kalyanmoy 2001; Beng
and Beng 2004). The strategy selection plays a crucial role
in MOEAs. Based on the selection of the strategies, most
existing MOEAs can be classified into three categories:
(1) Pareto dominance-based MOEAs, in which solutions
are selected based on their Pareto dominance relationship
(Srinivas and Deb 2014); although Pareto dominance-based
MOEAs are very powerful for solving bi-objective and tri-
objective MOPs, their performance dramatically degrades
when the number of objectives increases; (2) performance
indicator-based MOEAs (Beume et al. 2007), which uti-
lizes performance indicator as selection criterion, the main
challenge of performance indicator-based MOEAs is high
computational complex for computing the performance indi-
cators, especially when the number of objectives increases;
(3) decomposition-based MOEAs (Zhang and Li 2007),
which converts a MOP into a set of subproblems and opti-
mizes them in a collaborative manner.

MOEA/D is an evolutionary algorithm for multiobjective
optimization based on decomposition approach. It has been
widely used for dealing with numbers of MOPs, such as
manufacturing control in engineering optimization (He et al.
2016; Wang et al. 2018b; Wu et al. 2017; Li et al. 2017c, d),
parameter tuning in pattern recognition (Zhou et al. 2018;
Wang et al. 2017a; Huang et al. 2016; Cao et al. 2018; Xie
et al. 2018; Zhang et al. 2017; Li et al. 2016, 2018a, b), and
multi-source scheduling in cloud computing (Li et al. 2017a,
b; Lin et al. 2017a, b; Wang et al. 2017b) (Lai et al. 2017),
and shows a competitive performance (Wang et al. 2018a).
In recent years, numerous variants of MOEA/D have been
published. Qi (Qi et al. 2014) proposed a new weight vector
generation method, calledWS transformation demonstrated,
which helps algorithm to obtain more uniformly distributed
Pareto optimal solutions. Sato (Sato 2015) proposed a novel
decomposition approach based on original PBI approach
to overcome the difficulty in approximating Pareto front in
some problems. Li et al. (2015) tried to overcome the diffi-
culty in approximating Pareto front in some problems. Since
there have been many literatures that focus on improving
the efficiency of decomposition approach and weight vector
generation approach, the reproduction methods, which are
utilized to generate offspring solutions, are mostly the same
as the reproduction method described in basic MOEA/D.
Sufficient experimental results reveal that the reproduction
methods are crucial for the performance ofMOEA/D (Li and
Zhang 2009). However, in basic MOEA/D, offspring solu-
tion is only generated from their two neighbor solutions by
using genetic operators. As the difficulty of MOPs increases,
the search space is complex and the neighbor solutions might

not always be suitable for generating excellent offspring solu-
tions.

To improve the efficiency of reproduction method and
generate more excellent offspring solutions, in this paper,
we propose an external archive matching (EAM) strategy
for MOEA/D (MOEA/D-EAM). This strategy maintains an
external archive to store the best solutions, and then, the
current solution will select the two most matching archive
solutions instead of neighbor solutions to generate offspring
solution. On account of that the selected two solutions are
non-dominated solutions found so far, the convergence of the
generated offspring solution can be guaranteed. Furthermore,
to balance population diversity and convergence, a perturbed
learning scheme is proposed in this paper. Current solutions
will select other unmatched archive solutions as parent solu-
tions under a certain probability. The experimental results
show that the proposed strategy can improve the exploitation
ability and accelerate the convergence rate.

The rest of this paper is organized as follows. A brief
introduction of the basic MOEA/D is present in Sect. 2. The
detail of our proposed methodologies is described in Sect. 3.
The experimental results and analysis on three groups of test
problems are shown in Sect. 4, and conclusion is provided in
Sect. 5.

2 Background of MOEA/D

In this section, we firstly introduce the three main compo-
nents of MOEA/D, i.e., decomposition approaches, neigh-
borhood, and reproduction methods. Then, we describe the
classical framework of MOEA/D in detail.

2.1 Decomposition approaches

In MOEA/D, a MOP can be decomposed into N scalar
subproblems by decomposition approach. Tchebycheff
approach is a mostly used decomposition approach. There-
fore, we take Tchebycheff approach as the decomposition
approach in this paper. Then, the ith subproblem can be
defined as follows:

minimize g
(
xi

∣∣λi , Z∗ ) � max
{
λij

∣∣
∣ f j(xi ) − z∗j

∣∣
∣
}

subject to xi ∈ π
(2)

where i ε {1,…,N} andN is the number of solutions. For all
j ε {1, …, M}, M is the number of objectives. Furthermore,
fj(*) is the jth objective function, xi is the ith solution, λi �
(λi1, …, λim) is the ith weight vector corresponding to the ith
subproblem, and Z* � (z1, …, zm) is the reference vector.

To convert a MOP into N subproblems, N weight vectors
should be selected. As detailed in (Zhang and Li 2007), the
weight vector-generating approach is utilized in this paper.
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Fig. 1 The Tchebycheff decomposition approach

Figure 1 illustrates the Tchebycheff decomposition approach
which uses a set of evenly distributed weight vectors, and
the red points here are Pareto optimal solutions defined by
weight vectors. Under the condition that weight vectors are
evenly spread in theM dimensions objective space, the Pareto
optimal solutionswill be also evenly distributed along the PF.

2.2 Neighborhood

Since each subproblem is defined by a specific weight vector
and its objective function is continuous of the weight vector,
we can assume that subproblems have similar Pareto optimal
solutions if their weight vectors are close. Under this assump-
tion, MOEA/D introduces a neighbor concept (Zhang and Li
2007), a subproblem has T neighbor subproblems. It means
that the weight vectors of these T neighbor subproblems are
very close to the subproblem in terms of Euclidean distance.
To make use of evolutionary information obtained by the
neighbor subproblems, subproblem’s offspring solution is
generated from neighbor subproblems’ solution using spe-
cific operators. Besides that, the generated offspring might
be used to replace its neighbor subproblems’ solution during
the updating of population. Thus, two different neighborhood
concepts are used in MOEA/D (Ishibuchi et al. 2009, 2013).
One neighbor is used for generating offspring, called mating
neighborhood, and another is used for replacing neighbor
subproblems’ solutions, i.e., replacement neighborhood.

2.3 Reproductionmethods of MOEA/D

In the classical MOEA/D, parent solutions are selected from
their neighbor solutions. Then offspring solutions are gener-
ated from these solutions by using genetic operators (Zhang
and Li 2007). In MOEA/D-DE, which is a new version of
MOEA/D based on differential evolution, offspring solutions
are generated from neighbor solutions by using differential
evolution operators. Besides that, offspring solutions may be

produced by other solutions selected from the whole pop-
ulation. The parent solutions set in MOEA/D-DE can be
described as follows:

P �
{
B(i) with probability δ

{1, . . . , N } with probability 1 − δ
(3)

where δ is a random number from [0, 1] and B(i) is the neigh-
bor solutions’ indexes of ith solution. Experimental results
reveal that MOEA/D-DE has a promising ability in solving
MOPs with complicated PS shape (Li and Zhang 2009).

2.4 Framework of MOEA/D

MOEA/D is an iterative algorithm. It maintains a set of solu-
tions x1, x2, …, xN at each generation, where solution xi is
the ith subproblem’s best solution found so far in terms of
the gi(xi). In this paper, we utilize the Tchebycheff approach
as decomposition approach, and then FV1, FV2,…, FVN are
the F value of solutions. The algorithm works as follows:

Algorithm 1: Framework of MOEA/D

Input:
A MOP;
A stopping condition;
N , the number of solutions and weight vectors;
T , the number of neighbor subproblems;

Initialize:
Initialize N weight vectors 1 2, , . . . , Nλ λ λ ;
Set N subproblems defined by N weight vectors;
Set T neighbor subproblems 1 2( ) , , . . . , TB i i i i= for t hi
subproblem, where 1 2, , . . . , Ti i i subproblems have the T 
closest weight vectors;

Generate N initial solutions 1 2, , . . . , Nx x x ;
Calculate iFV of subproblem corresponding to ix ;

Update:
while Stop condition is not satisfied do

for each [ 1, ]i N∈ do
Randomly select two solutions from ( )B i to generate 

offspring iy using GA operators;
Repair the solution iy using a problem-specific method;
If the subproblems value of ( ) ( )i i i ig y g x< , replace 

ix with iy , ( )i i iFV g y= ;
for each [ 1, ]t T∈ do

If ( ) ( )
t t ti i i ig y g x<

Replace 
tix with iy , ( )

ti i iFV g y= ;

end for
end for

end while
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Fig. 2 The neighbor solutions of λm

3 MOEA/D-EAM algorithm

Suppose the PF of a MOP is continuous, since that each
subproblem is defined by a specific weight vector, it can be
assumed that subproblems produced by similar weight vec-
tor have similar Pareto optimal solutions. It has been proved
that algorithms whose solutions are only allowed to mate
with their neighbor solutions maintain an excellent ability of
exploitation (Zhang et al. 2016). As a result, in the reproduc-
tion process of classical MOEA/D, parent solutions selected
from neighboring solutions may improve the convergence of
algorithm.

However, solution and its neighboring solutions in
MOEA/D may not always be near to each other during evo-
lutionary process. As detailed in Fig. 2, red points p and m
are Pareto optimal points defined by weight vectors λp and
λm, the dashed lines are contour lines produced by Tcheby-
cheff decomposition approach, blue points xa and xb are two
solutions to the pth subproblem, they are on two different
contour lines and xa has a smaller FV value than xb in terms
of the pth subproblem. It means that xa will be reserved and
xb will be discarded in the following iterations. During the
reproduction procedure of xm, parent solutions are selected
from its neighbor solutions. However, the reserved neighbor
solution xa may not be good for producing the mth subprob-
lem’s offspring since it is far away from mth subproblem’s
optimal solution in the objective space and decision space as
well. The generated offspring by using xa may search in the
space around xa, and the rate to find m will be slowed down.
As a conclusion, the original reproduction methods used in
MOEA/D would discourage convergence.

3.1 External archivematching strategy

To improve the efficiency of the reproduction method for
MOEA/D, we propose the following external matching strat-
egy, i.e., EAM. In MOEA/D-EAM, an external archive will
be established to record N non-dominated solutions during

iterations. For each offspring solution, it will be produced as
follows:

– Choose the two most matching solution from archive as
parent solutions;

– Generate offspring using the DE operators.

As mentioned above, the original reproduction method
in which offsprings are generated by using neighbor solu-
tions may discourage the convergence of algorithm. In order
to reduce the adverse impact caused by these methods, we
choose the two most matching solutions as parent solutions.
Here, we define the index of the most matching archive solu-
tion j for a given ith solution as follows:

j � arg min
1≤k≤N

{distance(k, i)}
i � 1, . . . , N (4)

where distance() is a function that calculates the distance
in objective space between xi and all archive solutions. The
jth solution in archive will be utilized as one parent solu-
tion. Now, we can make some remarks on EAM strategy. As
detailed in Fig. 2, the subproblem defined by weight vector
λp may find solutions that are more approximate to optimal
point p, i.e., xa. However, xa may be improper for generat-
ing the offspring of the mth subproblem. In EAM strategy,
solutions will evolve toward its twomost matching solutions.

As shown in Fig. 3, suppose the blue points are sets of
archive solutions obtained by other subproblems, xm is the
current solution found by the mth subproblem. When gener-
ating the offspring of themth subproblem,mth would choose
itsmostmatching solution, i.e., xb and xc from archive as par-
ent solutions. Then the offspring is obtained as follows:

ymk �
{
xmk + F

(
xbk − xck

)
with probability CR

xmk with probability 1 − CR
(5)

Fig. 3 The reproduction process using most matching solutions
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where k ε [1, M], M is the number of variables, F and CR
are the control parameter in DE operators detailed in (Li
and Zhang 2009). In this case, xb would be used as par-
ent solution for generating the mth offspring. Consequently,
solutions produced by the whole population during iterations
would be considered as parent solution, which promote the
convergence.

3.2 Perturbed learning scheme

The proposed EAMstrategy takes the solutions’mostmatch-
ing archive solutions as parents, and the generated offspring
solutions may search around their parents and maintain a
good convergence.However, as described in (Liu et al. 2014),
the population diversity is more important than convergence
in multiobjective evolutionary algorithm for solving some
MOPs. Since MOEA/D-EAM takes most matching archive
solutions of solution to generate offspring, the diversity of
population is depending on archive solutions to a certain
degree.

In order to promote the diversity of population, offspring
will be generated by some randomly selected solutions from
archive under a certain probability; the search space of solu-
tions will be extended. The process of this scheme can be
detailed as follows:

Algorithm 2: Procedure of perturbed learning scheme

Uniformly generate a random number rand from[ 0, 1] ;
if rand < δ then
Randomly select two solutions, pA and qA from archive as
parent solutions;
Generate offspring solution using DE operators;

end if

where δ is the control parameter present in MOEA/D-DE (Li
and Zhang 2009) and Ap and Aq are two solutions selected
from archive set A. Since these randomly selected archive
solutions are approximated toPF, the offspring’s convergence
can be guaranteed. Consequently, in MOEA/D-EAM, an
external archive ismaintained to efficiently produce excellent
offspring with great convergence and to ensure the diversity
of population as well.

3.3 Framework of MOEA/D-EAM

Themain difference betweenMOEA/D-EAM andMOEA/D
is that MOEA/D-EAMmaintains an external archive as mat-
ing pool. Neighbor solutions can be replaced by a good
solution, but they are no more used for generating offspring
solutions. The framework of MOEA/D-EAM is shown as
follows:

Algorithm 3: Framework of MOEA/D-EAM

Input:
A MOP;
A stopping condition;
N , the number of solutions and weight vectors;
T , the number of neighbor subproblems;
An external archive, A, the maximum number of solutions in
archive is set to be N.
Initialize:
Initialize N weight vectors 1 2, , . . . , Nλ λ λ ;

Set N subproblems defined by N weight vectors;
Set T neighbor subproblems 1 2( ) , , . . . , TB i i i i= for t hi
subproblem, where 1 2, , . . . , Ti i i subproblems have the T 
closest weight vectors;

Generate N initial solutions 1 2, , . . . , Nx x x ;
Calculate iFV of subproblem corresponding to ix ;

Update:
while Stop condition is not satisfied do
for each [ 1, ]i N∈ do

if r and δ> then
Find two most matching solutions of ix , ,p qA A ;
Generate the t hm offspring iy using ,p qA A following
the DE operators described in equation.5;
end if
if r and δ≤ then
Randomly selected two solutions from archive, ,p qA A ;
Generate the thm offspring iy using ,p qA A following
the DE operators described in equation.5;
end if

Repair the solution iy using a problem-specific method;
Update external archive;

If the subproblems value of ( ) ( )i i i ig y g x< , replace 
with iy , ( )i i iFV g y= ;

for each [ 1, ]t T∈ do

If ( ) ( )
t t ti i i ig y g x<

Replace 
tix with iy , ( )

ti i iFV g y= ;

end for
end for

end while

3.4 Computational complexity of MOEA/D-EAM

The main difference between MOEA/D-EAM and original
MOEA/D is the reproductionmethod. SinceMOEA/D-EAM
maintains an external archive to record N non-dominated
solutions, the computational complexity of the archive-
updating process is O(N). To select the current solution’s
most matching archive solution, MOEA/D-EAM will cal-
culate distance between the current solution and all archive
solutions in the objective space, so the computational com-
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plexity of the archive matching process isO(N ·M),M is the
number of objectives. As a result, the entire computational
complexity of the proposed approach is O(N ·M).

4 Experimental studies

To test the performance of MOEA/D-EAM, we choose four
state-of-the-art MOEAs to compare with MOEA/D-EAM,
including Pareto dominance-based algorithmNSGA-II (Deb
et al. 2002), decomposition-based algorithm MOEA/D
(Zhang and Li 2007), a version of MOEA/D based on dif-
ferential evolution MOEA/D-DE (Li and Zhang 2009) and
MOEA/D with adaptive replacement strategy MOEA/D-
AGR (Wang et al. 2017c). NSGA-II is a widely used
Pareto dominance-based MOEA. MOEA/D is a classical
decomposition-based MOEA which uses scalaring function
to convert aMOP into a number of optimization subproblems
aiming to get uniformly distributed Pareto optimal solutions.
MOEA/D-DE is a kind of MOEA/D based on differential
evolutions, and it has an outstanding ability to deal with
MOPs with complicated PS shapes. MOEA/D-AGR is a
modification of MOEA/D-DE, it utilizes an adaptive global
replacement scheme to accelerate the convergence of algo-
rithm.

4.1 Test problems

In our experimental study, we choose five test instances from
ZDT (Zitzler et al. 2000) and four test instances from DTLZ
(Deb et al. 2005) to validate the ability of MOEA/D-EAM
to solve bi-objective or tri-objective optimization problems.
Moreover, five test instances fromUF (Zhang et al. 2008) are
chosen to verify the efficiency of MOEA/D-EAM in solving
MOPs with complicated PS shape. The parameter values
and characteristics of all test instances are shown in Table 1,
where n is the number of variables and m is the number of
objectives.

4.2 Performancemetric

The widely used performance metric, i.e., inverted genera-
tional distance (IGD) (Coello and Corts 2005; Schutze et al.
2012) indicator is utilized to evaluate the performance of
algorithms. Let S* be a set of Pareto optimal solutions, they
are uniformly distributed along the PF. Let S be a set of the
approximate solutions foundbyan algorithm, the IGD-metric
can be obtained by Eq. 6:

IGD(S∗, S) �
∑

F∈S∗ d(F, S)

S∗ (6)

Table 1 Test instances

Name n m Range

ZDT1 30 2 xi ε [0, 1], 1≤ i ≤n

ZDT2 30 2 xi ε [0, 1], 1≤ i ≤n

ZDT3 30 2 xi ε [0, 1], 1≤ i ≤n

ZDT4 10 2 x1 ε [0, 1], xi

ε [−5, 5], 2≤ i ≤n

ZDT6 10 2 xi ε [0, 1], 1≤ i ≤n

DTLZ1 12 3 xi ε [0, 1], 1≤ i ≤n

DTLZ2 12 3 xi ε [0, 1], 1≤ i ≤n

DTLZ3 12 3 xi ε [0, 1], 1≤ i ≤n

DTLZ4 12 3 xi ε [0, 1], 1≤ i ≤n

UF1 30 2 x1 ε [0, 1], xi

ε [−1, 1], 2≤ i ≤n

UF2 30 2 x1 ε [0, 1], xi

ε [−1, 1], 2≤ i ≤n

UF3 30 2 xi ε [0, 1], 1≤ i ≤n

UF4 30 2 x1 ε [0, 1], xi

ε [−2, 2], 2≤ i ≤n

UF5 30 2 x1 ε [0, 1], xi

ε [−1, 1], 2≤ i ≤n

where d(F, S) is the minimum Euclidean distance from a
Pareto optimal solution to the solutions in S. Suppose |S*| is
large enough, IGD(S∗, S) can be used to evaluate both diver-
sity and convergence of S. A very small IGDvaluemeans that
the solutions obtained by an algorithm have a great diversity
and convergence. Here, we choose 500 uniformly distributed
Pareto optimal solutions for test instances with two opti-
mization objectives and 1000 for test instances with three
optimization objectives.

4.3 Parameter settings

The parameter settings of all algorithms are listed as fol-
lows: The simulated binary crossover (SBX) operator and
polynomial mutation (Deb and Beyer 2001) are utilized as
reproduction method in NSGA-II and MOEA/D. The differ-
ential evolution (DE) operator and polynomial mutation are
adopted as reproductionmethod inMOEA/D-DE,MOEA/D-
AGR and MOEA/D-EAM.

– The population size N is set to be 100 for ZDT problems
and 300 for DTLZ problems and UF problems.

– Each algorithm will run on each test instance for 20 times
independently, and the algorithms will stop after the num-
ber of iterations exceeds a maximal number. The maximal
number of iterations is set to be 250 for ZDT problems,
300 for DTLZ problems and 500 for UF problems.

– The control parameters in reproduction process are the
same as in NSGA-II (Deb et al. 2002), MOEA/D-DE (Li
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and Zhang 2009), MOEA/D-EAM and MOEA/D-AGR
(Wang et al2017c). To be specific, CR � 1.0 and F �
0.5 for DE operator, η is set to be 20 and Pm is set to be
1/n for polynomial mutation.

– The size of neighborhood for mating and replacement, i.e.,
Tm and Tr in MOEA/D, MOEA/D-DE and MOEA/D-
EAM are set as 0.1×N, Tm in MOEA/D-AGR is set as
0.1×N and Tr in MOEA/D-AGR is adaptively changed.

– The maximal number of solutions replaced by offspring
solutions, i.e., nr in MOEA/D-DE is set as 2.

– All the variants of MOEA/D take the Tchebycheff decom-
position as the decomposition approach.

4.4 Experimental results

To verify the performance of the proposed MOEA/D-EAM
algorithm, we choose three groups of test problems. These
test problems include 9 problems with simple PS shape and
5 problems with complicated PS shape. The comparison
results are shown in Tables 2, 3 and 4 that present the mean
and standard deviation of the IGD-metric values acquired
by each algorithm after 20 times independently run on each
test instances, respectively. Here, we mark the smallest value
obtained by these algorithms on each test function with bold
font and mark the second smallest value with underline.

Table 2 Results comparison on five ZDT problems

Problem IGD NSGA-
II

MOEA/D MOEA/D-
DE

MOEA/D-
AGR

MOEA/D-EAM

ZDT1 Mean 5.02E−
02

6.93E−
02

1.26E−
01

7.69E−
03

8.37E−03

SD 9.08E−
03

3.52E−
02

6.39E−
02

9.40E−
04

1.42E−03

ZDT2 Mean 6.30E−
02

3.82E−
02

7.24E−
02

8.02E−03 7.54E−03

SD 1.89E−
02

2.09E−
02

4.22E−
02

8.05E−04 5.31E−04

ZDT3 Mean 8.51E−
02

2.48E−
01

2.08E−
01

1.21E−
01

1.15E−01

SD 1.89E−02 9.69E−
02

6.73E−
02

1.06E−
02

4.57E−02

ZDT4 Mean 3.16E−
02

1.74E−
01

1.23E−
01

6.21E−02 4.94E−02

SD 3.39E−
02

7.95E−
02

5.30E−
02

2.86E−02 1.67E−02

ZDT6 Mean 9.92E−
02

4.57E−
02

4.58E−02 4.93E−
02

4.95E−02

SD 5.52E−
02

1.90E−
03

1.30E−
03

9.49E−04 7.02E−04

Table 3 Results comparison on
four DTLZ problems

Problem IGD NSGA-II MOEA/D MOEA/D-
DE

MOEA/D-
AGR

MOEA/D-
EAM

DTLZ1 Mean 5.56E−01 3.11E−01 2.18E−01 2.67E−01 7.97E−02

SD 2.31E−01 2.56E−01 2.23E−01 2.53E−01 1.34E−01

DTLZ2 Mean 5.59E−02 5.41E−02 5.28E−02 5.17E−02 4.98E−02

SD 2.89E−03 3.06E−03 2.17E−03 2.23E−03 2.14E−03

DTLZ3 Mean 9.50E−01 5.64E−01 2.31E−01 1.25E−01 8.07E−02

SD 3.92E−01 4.74E−01 2.21E−01 2.40E−02 1.63E−02

DTLZ4 Mean 6.08E−02 8.80E−02 1.15E−01 5.65E−02 5.47E−02

SD 4.37E−03 2.39E−02 4.06E−02 3.59E−03 3.14E−03
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Table 4 Results comparison on
five UF problems

Problem IGD NSGA-II MOEA/D MOEA/D-
DE

MOEA/D-
AGR

MOEA/D-
EAM

UF1 Mean 1.07E−01 8.83E−02 7.33E−02 4.64E−02 3.62E−02

SD 3.41E−02 1.38E−02 1.64E−02 8.88E−03 1.02E−02

UF 2 Mean 3.41E−02 3.29E−02 3.00E−02 2.79E−02 2.22E−02

SD 1.30E−02 6.39E−03 6.00E−03 5.34E−03 3.35E−03

UF 3 Mean 1.41E−01 1.21E−01 1.05E−01 1.37E−01 1.10E−01

SD 1.26E−02 1.82E−02 1.81E−02 4.11E−02 2.00E−02

UF 4 Mean 8.29E−02 6.30E−02 7.72E−02 8.34E−02 4.55E−02

SD 6.02E−03 3.58E−03 4.79E−03 4.97E−03 1.74E−03

UF 5 Mean 2.84E−01 4.47E−01 4.77E−01 4.24E−01 3.23E−01

SD 5.59E−02 8.16E−02 9.44E−02 9.03E−02 8.77E−02

4.4.1 Experimental results on MOPs with simple PS shape:
ZDT and DTLZ

As shown in Tables 2 and 3, MOEA/D-EAM performs the
best on ZDT2, ZDT4 and other fourDTLZ test problems, and
it also acquires better results onZDT1 andZDT3. Figures 4, 5
and 6 show the final solutions with lowest IGD-metric values
obtained by all algorithms after 20 runs on ZDT4, ZDT6
and DTLZ1, which are three nonconvex and multimodal test
problems. It is obvious that the solutions found byMOEA/D-
EAM are more approximate to the PF and these solutions
maintain a decent diversity as well.

The reason for these results is that each solution in
MOEA/D-EAM searches in the direction to its nearest
archive solution, and then, each solution’s convergence rate
gets improved.

Besides that, in MOEA/D-EAM, to avoid solutions
becoming more similar to its nearest archive solutions which
discourages diversity, a perturbed learning strategy is utilized
to the process of offspring generating, solutions will search
in the direction to other archive solutions under a certain
probability.

To verify the efficiency of external archive matching
strategy and perturbed learning strategy of MOEA/D-EAM,
we compare the evolution process of the mean IGD-metric
values of MOEA/D-EAM with other algorithms that have
got good results. As shown in Fig. 7, benefiting from the
external archive matching strategy, solutions in MOEA/D-
EAM approximate the PF quickly. In addition, the perturbed
learning strategy supports the solutions in MOEA/D-EAM
maintain a good diversity. For the reason of the mutual effect
of these strategies, the mean IGD-metric values obtained by
MOEA/D-EAM decrease more quickly than those obtained
by MOEA/D-AGR.

Moreover, MOEA/D-AGR performs better on six out of
the nine problems and shows a best performance on ZDT1.
MOEA/D, MOEA/D-DE and NSGA-II show a worse abil-

ity than MOEA/D-EAM on most test problems. NSGA-II
only obtains the best result on ZDT3, the reason for the
other algorithms’ poor performance is that the PF of ZDT3 in
objective space is disconnected, and the process of updating
the reference point in these decomposition-based MOEAs
may slow down the evolutionary rate of solutions. MOEA/D
only obtains the best result on ZDT6, and other algorithms
show a similar performance to MOEA/D on ZDT6.

In summary, the proposed algorithmMOEA/D-EAM out-
performs other algorithms in dealing with ZDT and DTLZ
problems, since the PS shape of these problems is simple,
solutions in MOEA/D-EAM can evolve quickly by search-
ing in the direction to their most matching archive solutions.
The experimental results have verified the efficiency of these
proposed strategies.

4.4.2 Experimental results on MOPs with complicated PS
shape: UF

In this section, we compare the performance of these five
algorithms on UF test bio-objective problems, whose PS
shape is complicated. Table 4 presents the mean and stan-
dard deviation values of IGD-metric. It is clear that, in terms
of IGD-metric values, MOEA/D-EAM gets the best results
on UF1, UF2 and UF4, and it also gets the second best
results on UF3 and UF5. MOEA/D-AGR performs well on
UF1 and UF2. MOEA/D-DE acquires a lowest IGD-metric
value on UF3, the reason MOEA/D-DE performs better
than MOEA/D-EAM may be that the offspring solutions in
MOEA/D-EAM are generated based on their parent solu-
tions’ most matching archive solutions, since the PS shape of
UF test problems is complicated, the offspring solutions may
not always be excellent compared to their parent solutions.
NSGA-II outperforms other decomposition-based MOEAs
on UF5.

Figures 8, 9, 10, 11 and 12 plot the final solutions with
lowest IGD-metric values obtained by all algorithms after
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Fig. 4 The distribution of the final solutions with the lowest IGD-metric values on ZDT4

Fig. 5 The distribution of the final solutions with the lowest IGD-metric values on ZDT6

20 runs on UF1, UF2, UF3, UF4 and UF5. Obviously, on
UF1,UF2, andUF4,MOEA/D-EAMfinds amajority of non-
dominated solutions alongPFand these solutionsmaintain an
excellent convergence and diversity as well. Because of the
complicated PS shape, some UF problems hold a number of
Pareto optimal solutions of these problems that are extremely

hard to find.As shown in Fig. 10, these five algorithms cannot
find a set of solutions that approximate to the PF within a
limited number of iterations.

Furthermore, since UF5 problem has dispersed Pareto
optimal solutions, the effect of evolution information
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Fig. 6 The distribution of the final solutions with the lowest IGD-metric values on DTLZ1

Fig. 7 Evolutionary process of mean IGD-metric values obtained by MOEA/D-EAM and MOEA/D-AGR; the left plot is the result on ZDT1, and
the right plot is the result on DTLZ3

exchanged between neighbors in decomposition-based
MOEAs is reduced.

However, benefiting from the external archive matching
strategy, solutions found byMOEA/D-EAMmaintain a good
convergence compared with others. Besides that, offspring
solutions inMOEA/D-DE andMOEA/D-AGRare generated
using their neighbor solutions or the global solutions under
a certain probability, so the solutions obtained by these two

algorithms maintain a good diversity similar to MOEA/D-
EAM. Since the solutions in MOEA/D only utilize their
neighbor solutions as parent solutions, the evolutionary effi-
ciency is not as good as MOEA/D-EAM.

Overall, the proposed MOEA/D-EAM shows a compet-
itive performance in solving UF problems. It outperforms
other algorithms on three of the five UF problems. The capa-
bility of MOEA/D-EAM has been validated.
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Fig. 8 The distribution of the final solutions with the lowest IGD-metric values on UF1

Fig. 9 The distribution of the final solutions with the lowest IGD-metric values on UF2

5 Conclusions

In this paper, we present a new reproduction approach for
MOEA/D, namely MOEA/D-EAM. As mentioned above,
the basic reproduction process utilized in original MOEA/D
may slow down the convergence rate. To improve the per-

formance of MOEA/D, we maintain an external archive to
record non-dominated solutions and take these solutions as
parent solutions to generate excellent offspring solutions. To
ensure the generated offspring solutions’ quality, we propose
an external archive matching strategy, where the solutions
are only allowed to mate with their most matching archive
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Fig. 10 The distribution of the final solutions with the lowest IGD-metric values on UF3

Fig. 11 The distribution of the final solutions with the lowest IGD-metric values on UF4

solutions. As a result of this, the search space of solutions
is around archive solutions, the ability of exploitation gets
improved. To balance convergence and diversity, a perturbed
learning scheme is utilized in MOEA/D-EAM, offspring
solutions would be generated by some randomly selected
archive solutions to extend the search space of solutions.

To verify the performance of MOEA/D-EAM, we com-
pare MOEA/D-EAM with other state-of-the-art algorithms
on three groups of test problems. The experimental results
show that MOEA/D-EAM can get solutions that are more
approximate to PF. Furthermore, the mean IGD-metric val-
ues obtained byMOEA/D-EAM are lower than others on the
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Fig. 12 The distribution of the final solutions with the lowest IGD-metric values on UF5

whole, which means the solutions obtained by MOEA/D-
EAM maintain a better convergence and diversity as well.

In the future, we will consider other components of the
OEA/D algorithm and then study how to ameliorate them.
Another related future work is to investigate the applications
of this MOEA/D-EAM into solving various multiobjective
problems in reality.
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