
Soft Computing (2019) 23:2297–2320
https://doi.org/10.1007/s00500-018-3588-9

FOCUS

Compatibly involutive residuated lattices and the Nelson identity

Matthew Spinks1 · Umberto Rivieccio2 · Thiago Nascimento3

Published online: 3 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Nelson’s constructive logic with strong negation N3 can be presented (to within definitional equivalence) as the axiomatic
extension NInFLew of the involutive full Lambek calculus with exchange and weakening by the Nelson axiom

� (
(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x))

) ⇒ (x ⇒ y). (Nelson�)

The algebraic counterpart of NInFLew is the recently introduced class of Nelson residuated lattices. These are commutative
integral bounded residuated lattices 〈A; ∧,∨, ∗,⇒, 0, 1〉 that: (i) are compatibly involutive in the sense that ∼ ∼ a = a for
all a ∈ A, where ∼ a := a ⇒ 0, and (ii) satisfy the Nelson identity, namely the algebraic analogue of (Nelson�), viz.

(
x ⇒ (x ⇒ y)

) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)
) ≈ x ⇒ y. (Nelson)

The present paper focuses on the role played by theNelson identity in the context of compatibly involutive commutative integral
bounded residuated lattices.We present several characterisations of the identity (Nelson) in this setting, which variously permit
us to comprehend its model-theoretic content from order-theoretic, syntactic, and congruence-theoretic perspectives. Notably,
we show that a compatibly involutive commutative integral bounded residuated lattice A is a Nelson residuated lattice iff for
all a, b ∈ A, the congruence condition

ΘA(0, a) = ΘA(0, b) and ΘA(1, a) = ΘA(1, b) implies a = b

holds. This observation, together with others of the main results, opens the door to studying the characteristic property of
Nelson residuated lattices (and hence Nelson’s constructive logic with strong negation) from a purely abstract perspective.
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1 Introduction

The starting point for the present paper is our previous work
(Nascimento et al. 2018a, b) devoted to the logic S of strong
negation introduced by Nelson (1959). There we established
that S is the axiomatic extension of the full Lambek calcu-
lus with exchange and weakening by the axioms of double
negation and (3, 2)-contraction, viz.

� ∼ ∼ x ⇒ x

� (
x ⇒ (x ⇒ (x ⇒ y))

) ⇒ (
x ⇒ (x ⇒ y)

)
.

3 Programa de Pós-Graduação em Sistemas e Computação,
Universidade Federal do Rio Grande do Norte, Natal, RN,
Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3588-9&domain=pdf
http://orcid.org/0000-0003-1364-5003


2298 M. Spinks et al.

In view of results due to Spinks and Veroff (2008a, b)
and Busaniche and Cignoli (2010), Nelson’s well-known
constructive logic with strong negation N3 (Nelson 1949;
Rasiowa 1974; Sendlewski 1984; Vakarelov 1977) is in turn
precisely the axiomatic extension of S (to within definitional
equivalence) by the Nelson axiom

� (
(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x))

) ⇒ (x ⇒ y).

(Nelson�)

In Nascimento et al. (2018a, b), we further showed that S
is algebraisable and characterised its algebraic counterpart
as the variety of compatibly involutive 3-potent commutative
integral residuated lattices (dubbed for short as S-algebras
in Nascimento et al. 2018a, b). In consequence, the algebraic
counterpart of Nelson’s logic N3 is, up to term equivalence,
precisely the subvariety of S-algebras that additionally sat-
isfies the algebraic analogue of the axiom (Nelson�). By
algebraisability, this is the identity

(
(x ⇒(x ⇒ y)) ∧ (∼ y ⇒(∼ y ⇒ ∼ x))

) ⇒ (x ⇒ y) ≈ 1.

(1.1)

Busaniche and Cignoli (2010, Remark 2.1) observed that
(1.1) is equivalent (over compatibly involutive commutative
integral residuated lattices) to the following

(
x ⇒ (x ⇒ y)

) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)
) ≈ x ⇒ y

(Nelson)

which we shall take as our official version of the Nelson
identity.

The present paper is the outgrowth of our interest in under-
standing the essential difference between the logics S andN3
in a (universal) algebraic context; our main focus shall thus
be on the meaning and role of the Nelson identity in the con-
text of (3-potent) compatibly involutive commutative integral
residuated lattices. In this endeavour, we have naturally
been led to formulate more abstract order-theoretic/algebraic
properties which go hand in hand, in our context, with the
Nelson identity. We have thus, for instance, introduced gen-
eralisations of the congruence orderable algebras and the
Fregean varieties of Idziak et al. (2009). The main interest
in the approach we take is, in our opinion, the fact that it
may open the way to further universal algebraic investiga-
tion beyond the context of Nelson’s logics and even beyond
residuated lattices.

The remainder of the paper is organised as follows. Hav-
ing fixed terminology and notation in Preliminaries, in Sect. 2
we review the main results about Nelson algebras and (Nel-
son) residuated lattices that will be needed throughout the
paper. In Sect. 3, we show how a (variant of a) well-known
dualising construction for residuated structures turns out to

be especially insightful when applied to compatibly involu-
tive commutative integral residuated lattices. In Sect. 4, we
turn our attention to Nelson algebras and Nelson residuated
lattices, showing (on the one hand) that 3-potent compati-
bly involutive commutative integral residuated lattices are
‘almost’ Nelson residuated lattices, and hence, that (on the
other hand) the distinctive model-theoretic properties of Nel-
son algebras arise solely from satisfaction of the Nelson
axiom. In Sect. 5, we isolate a congruence property, general-
ising the well-known notion of congruence orderability, that
is equivalent, over compatibly involutive commutative inte-
gral residuated lattices, to satisfaction of the Nelson identity.
We prove this equivalence in Sect. 7making use of a syntactic
characterisation of Nelson residuated lattices introduced in
Sect. 6. As mentioned earlier, our main results open the door
to studying the characteristic property of Nelson algebras at
a more general, purely algebraic level: these directions for
further research arementioned, in the form of open problems,
in final Sect. 8.

Preliminaries. The set of natural numbers is denotedω.Given
a set A, the diagonal relation

{〈a, a〉 : a ∈ A
}
is denotedΔA

and the universal relation A2 is denoted ∇A. For an equiv-
alence relation θ on A, the equivalence class of a ∈ A is
denoted a/θ . We assume familiarity with the rudiments of
general algebra andmodel theory, especially that part of first-
order logic known as equational logic. For general algebraic
background, see Burris and Sankappanavar (1981), Grätzer
(2008), McKenzie et al. (1987). Algebras are denoted A,B,
etc. Given an algebra A, the set of all congruences on A is
denoted ConA and the principal congruence on A generated
by {a, b} ⊆ A is denoted ΘA(a, b). The set of all compact
(i.e. finitely generated) congruences on A is denoted CpA.
Classes of algebras are denoted K,V, etc. Standard use is
made in the paper of the class operators H, S, and P (see e.g.
Burris and Sankappanavar 1981).

Throughout the paper, we work with algebraic languages
possessing a binary operation symbol∧ (which will be inter-
preted, as usual, as the lattice meet operation on the algebras
in question). For the sake of brevity, given terms s, t , wewrite
s � t as shorthand for the identity s ≈ s ∧ t . Throughout
the paper, we overload a number of symbols, most notably
�,→, and⇒, repeatedly andwithout warning. Additionally,
we sometimes make use of the symbol⇒ in a meta-theoretic
context for convenience.

Let K be a class of similar algebras and let A ∈ K. A con-
stant term of A or K is any nullary or constant unary term
function, or, less precisely, the element ofA (or of eachmem-
ber of K) that constitutes the range of such a function (Blok
and Pigozzi 1994a, p. 551). A constant is a nullary funda-
mental operation. A class K of similar algebras is pointed if it
has at least one constant term. Given an algebra A, elements
a, b ∈ A are said to be residually distinct if they have dis-
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tinct images in every non-trivial homomorphic image of A;
or, equivalently, ifΘA(a, b) = ∇A (Blok and Pigozzi 1994a,
p. 551). A class K of similar algebras is double-pointed if it
has at least two constant terms c, d that realise residually
distinct elements c, d on every member A of K.

We assume familiarity with the fundamentals of abstract
algebraic logic, especially the part concerning logics that
are (strongly) algebraisable in the sense of Blok and Pigozzi
(1989). For background on abstract algebraic logic, see Blok
and Pigozzi (1989), Czelakowski (2001), Font et al. (2003);
for particulars on Blok–Pigozzi algebraisable logics, see
Blok and Pigozzi (1989, 2001) or Czelakowski (2001, Chap-
ter 4, §6). Following Blok and Pigozzi (1989, Chapter 1), a
deductive system is a pair 〈Λ,�〉 where Λ is a language
type and � is a finitary and substitution-invariant conse-
quence relation over Λ; we identify logics with deductive
systems. Logics are denoted by L, etc., with S reserved for
the logic of strong negation of Nelson (1959). Unless other-
wise specified, all deductive systems considered in the sequel
are Blok–Pigozzi (finitary and finitely) algebraisable.

2 Nelson algebras and Nelson residuated
lattices

In this section, we recall some fundamental results about the
classes of algebras that correspond (via algebraisability) to
the various logics introduced by David Nelson, as well as
about related residuated structures that are well known in the
world of substructural logics (the main reference for these
is Galatos et al. 2007). For our purposes, the most impor-
tant result is the term equivalence between Nelson algebras
and Nelson residuated lattices, first established in Spinks and
Veroff (2008a, b); an alternative, more algebraically oriented
proof can be found in Busaniche and Cignoli (2010). This
equivalence ensures that we can view the algebraic counter-
part of Nelson’s constructive logic with strong negation N3
as either a class of De Morgan algebras structurally enriched
with a certain “weak” implication (→), i.e. Nelson algebras,
or as a class of lattices having a residuated implication (⇒)

and an involutive negation (∼) satisfying the Nelson identity
(i.e. Nelson residuated lattices). We shall work mainly with
the latter, as this will allow us to take advantage of several
results and techniques that have been introduced within the
study of residuated structures.

Over the course of some four decades of investigations
into the notion of constructible falsity, David Nelson intro-
duced a number of deductive systems of non-classical logic
that have aroused considerable interest in the (algebraic)
logic community. The oldest (1949) and most well known
among them is his constructive logic with strong negationN3
(Nelson 1949; Rasiowa 1974; Sendlewski 1984; Vakarelov
1977), often referred to as just Nelson’s logic. In 1984, Nel-

son and Almukdad introduced (though other authors had
independently considered it earlier) a paraconsistent weak-
ening of N3, called (Nelson’s) paraconsistent constructive
logic with strong negation N4 (Almukdad and Nelson 1984;
Odintsov 2003, 2004, 2008). Both N3 and N4 are conser-
vative axiomatic expansions of the negation-free fragment
of the intuitionistic propositional calculus (Rasiowa 1974,
Chapter X) by a unary logical connective ∼ of strong nega-
tion.

The logic S mentioned at the beginning of Sect. 1 also
originates with Nelson’s investigations, though it received
almost no attention in the literature until our recent papers
(Nascimento et al. 2018a, b). As said earlier, we proved
there that N3 can be viewed as the extension of S by the
axiom (Nelson�); it was already well known that N3 is the
axiomatic extension of N4 by the ex contradictione quodli-
bet law � x → (∼ x → y). To complete the picture, we
have also shown that S andN4 are incomparable and that the
least logic extending both is preciselyN3. Since all three log-
ics are algebraisable, these considerations entail that we can
introduce the algebraic counterpart of N3 (the class of Nel-
son algebras) as a subclass of eitherN4-lattices orS-algebras
(the algebraic counterparts of, respectively,N4 and S): this is
precisely the above-mentioned alternative of viewing Nelson
algebras as De Morgan algebras structurally enriched with a
weak implication or as a class of lattices having a residuated
implication and an involutive negation. In what follows, we
shall first take the former perspective.

Nelson algebras. Recall from lattice theory (Balbes and
Dwinger 1974; Kalman 1958; Pynko 1999) that a De Mor-
gan lattice is an algebra 〈A; ∧,∨,∼〉 where 〈A; ∧,∨〉 is a
distributive lattice and ∼ is a unary operation such that the
following identities are satisfied:

∼ ∼ x ≈ x, ∼(x ∧ y) ≈ ∼ x ∨ ∼ y, and

∼(x ∨ y) ≈ ∼ x ∧ ∼ y.

ADe Morgan algebra is an algebra 〈A; ∧,∨,∼, 0, 1〉 of type
〈2, 2, 1, 0, 0〉 where 〈A; ∧,∨,∼〉 is a De Morgan lattice and
〈A; ∧,∨, 0, 1〉 is a bounded lattice. It is well known that the
class of all De Morgan lattices, hence De Morgan algebras,
is equationally definable.

An algebraA = 〈A; ∧,∨,→,∼〉 of type 〈2, 2, 2, 1〉 is an
N4-lattice (Odintsov 2003, Definition 5.1) if:

(N1) The reduct 〈A; ∧,∨,∼〉 is a De Morgan lattice with
lattice ordering ≤.

(N2) The relation � on A defined for all a, b ∈ A by a � b
iff a → b = (a → b) → (a → b) is a quasiorder (i.e.
is reflexive and transitive) on A.
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(N3) The relation Ξ := � ∩ (�)−1 is a congruence
on the reduct 〈A; ∧,∨,→〉, and the quotient algebra
〈A; ∧,∨,→〉/Ξ is an implicative lattice.1

(N4) For all a, b ∈ A, it holds that ∼(a → b) ≡ a ∧ ∼ b
(mod Ξ).

(N5) For all a, b ∈ A, it holds that a ≤ b iff a � b and
∼ b � ∼ a.

Although it is not quite obvious from this definition, the class
ofN4-lattices forms a variety (Odintsov 2003, Theorem 6.3).

AnN4-latticeA is aNelson algebra if, in addition to (N1)–
(N5) above, it satisfies the following condition:

(N6) For all a, b ∈ A, it holds that a ∧ ∼ a � b.

The lattice reduct of anN4-latticeA need not be bounded.
However, if A is a Nelson algebra, then 1 := x → x defines
a constant term in A that realises the top element 1 of its
lattice reduct (consequently, 0 := ∼(x → x) defines a con-
stant term that induces the bottom element 0 of the lattice).
Thus, every Nelson algebra has a term-definable De Morgan
algebra reduct. The converse also holds: if x → x defines
a constant term, then A is Nelson algebra; therefore, (N6)
above could be equivalently replaced by the requirement that
a → a = b → b for all a, b ∈ A. For proofs of these and
related statements, see (Spinks and Veroff, Chapter 1).

We now turn our attention to residuated structures that are,
as mentioned earlier, the other main perspective from which
one can view and study (the algebraic semantics of) logics
in the Nelson family. The principal insight is that Nelson
algebras can be presented (to within term equivalence) as a
class of residuated lattices (the standard algebraic counter-
part of the so-called substructural logics) that satisfies certain
additional properties (commutativity, integrality, etc.) thatwe
proceed to define below.

Commutative integral residuated lattices. Let 〈A;≤〉 be a
poset. A binary operation ∗ on A is compatible with ≤ if, for
all a, b, c ∈ A, it holds that

if a ≤ b, then a ∗ c ≤ b ∗ c and c ∗ a ≤ c ∗ b. (Compat)

A structure 〈A; ∗,⇒, 1;≤〉 of type 〈2, 2, 1; 2〉 is called
a partially ordered commutative residuated integral monoid
(briefly, pocrim) (Blok and Raftery 1997) if: (i) 〈A,≤〉 is
a poset with greatest element 1 ∈ A; (ii) 〈A; ∗, 1〉 is a
monoid whose product ∗ is compatible with ≤; and (iii) for
all a, b, c ∈ A, it holds that

a ∗ b ≤ c iff a ≤ b ⇒ c. (Res)

1 Implicative lattices, also called Brouwerian lattices or generalised
Heyting algebras in the literature, are precisely the 0-free subreducts of
Heyting algebras 〈A; ∧,∨,→, 0, 1〉.

Observing that for every pocrimA and all a, b, c ∈ A, we
have:

a ≤ b iff a ⇒ b = 1.

If a ≤ b, then b ⇒ c ≤ a ⇒ c and c ⇒ a ≤ c ⇒ b.

(2.1)

(We make implicit use of all unnumbered displayed expres-
sions in the sequel.) Observe also that every pocrim satisfies
the identities

1 ⇒ x ≈ x and x ⇒ 1 ≈ 1

x ⇒ (y ⇒ z) ≈ (x ∗ y) ⇒ z. (2.2)

A commutative integral residuated lattice is a struc-
ture 〈A; ∧,∨, ∗,⇒, 1;≤〉 of type 〈2, 2, 2, 2, 0; 2〉 such
that: (i) 〈A; ∧,∨〉 is a lattice with lattice order ≤, and
(ii) 〈A; ∗,⇒, 1;≤〉 is a pocrim. Because ≤ is a lattice order,
it is equationally definable; thus, up to first-order definitional
equivalence, the relation≤may be elided in the signature and
commutative integral residuated lattices may be treated as
pure algebras of the form 〈A; ∧,∨, ∗,⇒, 1〉. We adopt this
perspective in the sequel and abbreviate the term “commu-
tative integral residuated lattice” by CIRL. It is well known
that CIRLs satisfy the identity

(x ∨ y) ∗ z ≈ (x ∗ z) ∨ (y ∗ z). (2.3)

Filters and congruences. A non-empty subset F of a CIRL
A is said to be a filter if for all a, b ∈ A it holds that:
(i) a ≤ b and a ∈ F implies b ∈ F , and (ii) a, b ∈ F
implies a ∗ b ∈ F . Every filter of a CIRL is a lattice filter
(in the usual sense) of the underlying lattice, but not every
lattice filter is a filter in the above sense because condition
(ii) may fail to hold. On the other hand, filters correspond
exactly to the implicative or “deductive” filters usually stud-
ied by algebraic logicians; these are the subsets F ⊆ A
satisfying: (i) 1 ∈ F , and (ii) if a, a ⇒ b ∈ F , then
b ∈ F .

Proposition 2.1 (Ono 2010, Proposition 3.6) Let A be a
CIRL, F ⊆ A a filter, and θ a congruence on A. The fol-
lowing statements hold:

1. The relation θF defined for all a, b ∈ A by (a, b) ∈ θF

iff a ⇒ b, b ⇒ a ∈ F is a congruence on A.
2. The subset Fθ defined for all a ∈ A by a ∈ Fθ iff (a, 1)∈θ

is a filter of A.
3. The natural maps induced by (1) and (2) above are mutu-

ally inverse and establish an isomorphism between the
lattice of all filters of A and the lattice of all congruences
on A. ��
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Let S be a non-empty subset of a CIRL A. Then, the set
{b ∈ A : a1 ∗ · · · ∗ ak ≤ b, for some a1, . . . , ak ∈ S} is a
filter, namely the filter generated by S; we write [S) for the
filter generated by S. In particular, the filter [a) generated by
a singleton set {a} ⊆ A is the set
{b ∈ A : a ∗ · · · ∗ a︸ ︷︷ ︸

k times

≤ b, for some positive integer k}.

Corollary 2.2 (Kowalski 2004, Proposition 1.2; Ono 2010,
Lemma 4.1) A CIRL A is subdirectly irreducible iff there
exists an element a < 1 such that for every b < 1 there exists
a positive integer m for which b ∗ · · · ∗ b︸ ︷︷ ︸

m times

≤ a holds. ��

k + 1-potency and EDPC. As Proposition 2.1 and Corol-
lary 2.2 suggest, expressions of the form a ∗ · · · ∗ a︸ ︷︷ ︸

k times

play an

important role in the theory of commutative (integral) resid-
uated lattices. This leads to the following definition. For each
integer k ≥ 0, consider the unary {∗}-terms xk defined recur-
sively by x0 := 1 and xn+1 := xn ∗ x when 0 ≤ n ∈ ω. The
following technical lemma is very useful in practice.

Lemma 2.3 (n-fold construction) Let 〈A;≤〉 be a partially
ordered set and let ∗ be a binary operation on A such that
(Compat) holds for all a, b, c ∈ A. Then, for all a, b ∈ A
and every n ≥ 1, if a ≤ b, then an ≤ bn.

Proof By induction on n. Suppose a ≤ b. For the basis case,

we have a1 = a
(Hyp.)≤ b = b1. Assume now that the induction

hypothesis holds for some m ≥ 1. By the induction hypothe-
sis, am ≤ bm , so by (Compat), a ∗ am ≤ a ∗ bm . Also, a ≤ b
by assumption, so by (Compat) again, a ∗ bm ≤ b ∗ bm . By
transitivity, a ∗ am ≤ b ∗ bm , which is to say am+1 ≤ bm+1.
By induction,we conclude that an+1 ≤ bn+1 for every n ≥ 1.

��
Going forward, by the phrase ‘n-fold construction with

n = k’, we shall mean the application of Lemma 2.3 to
deduce ak ≤ bk given a ≤ b, for some k ≥ 1. When n = 2,
we simply refer to the ‘doubling construction’ rather than
‘the n-fold construction with n = 2’.

Given k ∈ ω, an element a of a CIRLA is said to be k +1-
potent if ak+1 = ak . The algebraA is said to be k +1-potent
if it satisfies the identity

xk+1 ≈ xk . (k + 1-potency)

Clearly, the class E∗
k of all CIRLs satisfying (k + 1-potency)

is equationally definable. The following identities are easily
seen to hold over k +1-potent CIRLs using integrality, k +1-
potence, and induction:

1k ≈ 1 (x ∗ y)k ≈ xk ∗ yk

xk � x x j ≈ xk for every j ≥ k.

For each integer k ≥ 0, consider the binary {⇒}-terms

x
k⇒ y defined recursively by x

0⇒ y := y and x
n+1⇒ y :=

x ⇒ (x
n⇒ y) when 0 ≤ n ∈ ω. An easy proof by induction

shows that for every k ∈ ω, the identity

x
k⇒ y ≈ xk ⇒ y (2.4)

holds over CIRLs (Ferreirim 1992, Lemma 1.21(i)). For
k ∈ ω, it is well known (Ferreirim 1992, Lemma 1.21(ii))

that a CIRLA is k+1-potent iff it satisfies x
k+1⇒ y ≈ x

k⇒ y;
the variety of all CIRLs satisfying (k + 1-potency) can thus
be alternatively presented as the class of all CIRLs satisfying
this last identity.

It turns out that k + 1-potency has profound conse-
quences for CIRLs. In more detail, recall from Baldwin and
Berman (1975) that a class K of similar algebras has defin-
able principal congruences (DPC) iff there exists a formula
ϕ(x, y, z, w) in the first-order language of K (whose only
free variables are x, y, z, w) such that for everyA ∈ K and all
a, b, c, d ∈ A, c ≡ d (mod ΘA(a, b)) iffA |� ϕ[a, b, c, d].
When ϕ(x, y, z, w) can be taken as a conjunction (viz., finite
set) of equations, then K is said to have equationally defin-
able principal congruences (EDPC) (Köhler and Pigozzi
1980).

Theorem 2.4 (Kowalski 2004, Theorem 2.1) For a variety
V of CIRLs t. f. a. e.:

1. V has DPC.
2. V has EDPC.
3. V |� (k + 1-potency) for some k ∈ ω.
4. V ⊆ E∗

k for some k ∈ ω. ��

Of the several intrinsic characterisations of EDPC that
have been given in the literature, we shall be most interested
in the following. LetA = 〈A; ∨, 0〉 be a join semilattice with
least element 0. If a, b ∈ A, the dual relative pseudocom-
plement of b with respect to a is the smallest element c, if
it exists, having the property that a ≤ b ∨ c; the element
c is denoted b ∗ a. The semilattice A is said to be dually
relatively pseudocomplemented (Köhler and Pigozzi 1980)
if b ∗ a exists for all a, b ∈ A. A dual Brouwerian semilat-
tice is a dually relatively pseudocomplemented semilattice
in which the operation ∗ is distinguished.

Let V be a variety with EDPC. By Köhler and Pigozzi
(1980, Theorem 5), for every A ∈ V the join semilattice
〈CpA; ∨,ΔA〉 of compact congruences on A is dually rel-
atively pseudocomplemented. Conversely, if V is a variety
such that 〈CpA; ∨,ΔA〉 is dually relatively pseudocomple-
mented for every A ∈ V, then V has EDPC (Köhler and
Pigozzi 1980, Theorem 8).
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We conclude this section with the following observation.
In a k + 1-potent CIRL A, for every a ∈ A, we can assume
w.l.o.g. that the filter generated by a is given by:

[a) = {
b ∈ A : ak ≤ b

}
.

Indeed, suppose c ∈ [a). Then, a j ≤ c for some positive
integer j . If j < k, then ak ≤ a j ≤ c by integrality, whence
ak ≤ c. On the other hand, if j ≥ k, then a j = ak by k + 1-
potency, so again ak ≤ c. It follows that [a) = {b ∈ A :
ak ≤ b}.
WBSO varieties. Recall from general algebra that a variety
V with a constant term c is said to be c-regular if, for every
A ∈ V and all θ1, θ2 ∈ ConA with c/θ1 = c/θ2, it holds
that θ1 = θ2. A point regular variety is a variety that is c-
regular for some constant term c. It is well known that c-
regularity can be expressed as a Mal’cev-type condition: by
a classic result of Fichtner (1970), V is c-regular iff there
exist binary terms d0(x, y), . . . , dn−1(x, y) in the language
of V such that: (i) V |� di (x, x) ≈ c for all i < n, and (ii)
V |� and i<n di (x, y) ≈ c implies x ≈ y.2 See Gumm and
Ursini (1984, Corollary 1.6).

A variety of weak Brouwerian semilattices with c-filter
preserving operations (briefly, a c-WBSO variety) is a variety
V with a constant term c and binary terms →c, ·c, and Δc

in the language of V such that for every algebra A ∈ V, the
following statements hold (Blok et al. 1984, Theorem 2.6):

(WBSO1) HSP(A) is c-regular with witness term Δc(x, y).
(WBSO2) The relation �c defined for all a, b ∈ A by

a →c b = c is a quasiorder on A.
(WBSO3) The relation Ξc := � ∩ (�)−1 is a congru-

ence on the reduct 〈A; ·c,→c, cA〉 and the quo-
tient algebra 〈A; ·c,→c, cA〉/Ξc is an implicative
semilattice.3

(WBSO4) The c-equivalence classes of the congruences on
A are precisely the subsets of the form

⋃
F ,

where the set F is an implicative semilattice filter
of 〈A; ·c,→c, cA〉/Ξc.

We typically drop all instances of the subscript from→, ·,Δ,
�, and Ξ when c is clear from context. The terms →, ·, and
Δ are called a weak relative pseudocomplementation, weak
meet, and Gödel equivalence for V, respectively. In general,

2 We avoid using∧,∨,→,⇒, etc., as logical symbols of the first-order
language with equality Λ[fol,≈], as determined by the algebraic lan-
guage type Λ, since these symbols are employed extensively to denote
connective symbols of the algebraic language types considered through-
out the paper.
3 Implicative semilattices, also called Brouwerian semilattices in the
literature, are precisely the 〈→,∧〉-subreducts of Heyting algebras
〈A; ∧,∨,→, 0, 1〉.

none of these terms need be unique; see Blok et al. (1984,
p. 357).

The defining conditions for Nelson algebras immediately
suggest that they form a 1-WBSO variety (compare (N2)–
(N3) with (WBSO2)–(WBSO3)) with weak meet x ∧ y and
weak relative pseudocomplementation x → y. This is indeed
the case; see the discussion ofBlok et al. (1984, pp. 357–358).
Modulo the presentation of Nelson algebras as residuated
structures alluded to in Introduction (and discussed in more
detail below), this observation is an instance of the following
more general lemma, which is part of the folklore.

Lemma 2.5 (cf. Nascimento et al. 2018b, Theorem 4.5) A
variety V of CIRLs is a 1-WBSO variety iff it is k + 1-potent
for some k ∈ ω. If V is a 1-WBSO variety, then weak meet,
weak relative pseudocomplementation, and Gödel equiva-
lence terms for V are given, respectively, by:

x · y := x ∧ y, x → y := x
k⇒ y, and

xΔy := (x ⇒ y) ∧ (y ⇒ x).

��
In the context of k + 1-potent CIRLs, k ∈ ω, we shall be

especially interested in the quasiordering � induced by the
derived operation→, and the interaction of�with≤,⇒, and
→. To this end, we gather together some rules for calculat-
ing with → and �. But first, the following auxiliary lemma,
which generalises (Busaniche andCignoli 2010, Lemma 3.3)
to the setting of k + 1-potent CIRLs.

Lemma 2.6 Let A be a k + 1-potent CIRL, k ∈ ω. Then, A
satisfies the identity

(xk ⇒ yk)k ≈ (xk ⇒ y)k . (2.5)

Proof Let a, b ∈ A. From ak ≤ a and (2.1), we have bk ⇒
ak ≤ bk ⇒ a, so by the n-fold construction with n = k,
(bk ⇒ ak)k ≤ (bk ⇒ a)k . Conversely, (bk ⇒ a)k ≤ bk ⇒
a by integrality, whence (bk ⇒ a)k ∗ bk ≤ a by (Res). That
is to say,

(
(bk ⇒ a) ∗ b

)k ≤ a, so by the n-fold construction

with n = k,
(
((bk ⇒ a) ∗ b)k

)k ≤ ak . By k + 1-potence,
(
(bk ⇒ a) ∗ b

)k ≤ ak , which is to say (bk ⇒ a)k ∗ bk ≤
ak . By (Res), (bk ⇒ a)k ≤ bk ⇒ ak , so by the n-fold
constructionwithn = k again,

(
(bk ⇒ a)k

)k ≤ (bk ⇒ ak)k .
By k + 1-potence once more, (bk ⇒ a)k ≤ (bk ⇒ ak)k as
desired. Hence, A |� (2.5). ��
Lemma 2.7 LetA be a k+1-potent CIRL, k ∈ ω. The relation
� defined for all a, b ∈ A by a � b iff a → b = 1 is a
quasiorder on A. For all a, b, c ∈ A, the following statements
hold:

1. a � b iff ak ⇒ b = 1 iff ak ≤ b iff ak ≤ bk.
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2. a � 1; moreover, a/Ξ = {1}.
3. If a ≤ b, then a � b.
4. If a ≤ b, then b → c ≤ a → c and c → a ≤ c → b.
5. If a � b, then b → c � a → c and c → a � c → b.

Proof The first assertion is clear in view of the preceding
discussion. For the remaining statements,

1. We have a � b iff ak ⇒ b = 1 (by (2.4)) iff ak ≤ b.
Suppose ak ≤ b. By the n-fold construction with n = k,
(ak)k ≤ bk , whence ak ≤ bk by k + 1-potence. Con-
versely, suppose ak ≤ bk . By integrality, bk ≤ b and so
ak ≤ b.

2. Observe a → 1 = ak ⇒ 1 = 1, so a � 1. Suppose
1 � a. Then, a = 1 ⇒ a = 1k ⇒ a = 1 → a = 1.
Hence a/Ξ = {1}.

3. Suppose a ≤ b. By the n-fold construction with n = k,
ak ≤ bk . Hence, a � b.

4. Suppose a ≤ b. By the n-fold construction with n = k,
we get ak ≤ bk , whence bk ⇒ c ≤ ak ⇒ c by (2.1). By

(2.4), b
k⇒ c ≤ a

k⇒ c, which is to say b → c ≤ a → c.
Suppose a ≤ b again. By (2.1), ck ⇒ a ≤ ck ⇒ b, so

by (2.4), c
k⇒ a ≤ c

k⇒ b. Hence, c → a ≤ c → b.
5. Suppose a � b. Then, ak ≤ bk . By (2.1), bk ⇒ c ≤

ak ⇒ c, so by the n-fold construction with n = k, (bk ⇒
c)k ≤ (ak ⇒ c)k . By (2.4), (b

k⇒ c)k ≤ (a
k⇒ c)k ,

which is to say b → c � a → c. Suppose a � b again.
Then, ak ≤ bk . By (2.1), ck ⇒ ak ≤ ck ⇒ bk , so by the
n-fold construction with n = k, we have (ck ⇒ ak)k ≤
(ck ⇒ bk)k . By Lemma 2.6, (ck ⇒ a)k ≤ (ck ⇒ b)k ,

whence (c
k⇒ a)k ≤ (c

k⇒ b)k by (2.4). Thus, c → a �
c → b. ��

Remark 2.8 In the deductive systems naturally associated
with the k + 1-potent varieties of (compatibly involutive)
CIRLs, k ≥ 1, the formula ϕk ⇒ ψ witnesses the deduction
theorem (Galatos et al. 2007, Theorem 11.3). Thus, x → y
is truly a conditional. ��

Compatible involutions. A commutative integral bounded re-
siduated lattice (CIBRL) is an algebra 〈A; ∧,∨, ∗,⇒, 0, 1〉
of type 〈2, 2, 2, 2, 0, 0〉 such that: (i) 〈A; ∧,∨, ∗,⇒, 1〉
is a CIRL, and (ii) 0 ≤ a for all a ∈ A. Without proof,
we note the following elementary properties of CIBRLs. For
each CIBRL A and for all a, b ∈ A,

0 = a ∗ ∼ a, 1 = ∼ 0 and 0 = ∼ 1, and 0 ≤ a.

The following lemmawill also be useful for our congruen-
ce-theoretic study of the Nelson identity (see Sect. 5).

Lemma 2.9 Let A be a CIBRL and a ∈ A. Then, ΘA(∼ a, 1)
= ΘA(a, 0).

Proof Let θ be a congruence on A, and suppose that
(∼ a, 1) ∈ θ . Then, (∼ ∼ a,∼ 1) = (∼∼ a, 0) ∈ θ , from
which we have (∼ ∼ a ∨ a, 0 ∨ a) = (∼ ∼ a, a) ∈ θ

using that a ≤ ∼ ∼ a. But then (a, 0) ∈ θ by transitivity
of θ . Conversely, if (a, 0) ∈ θ , then we immediately have
(∼ a,∼ 0) = (∼ a, 1) ∈ θ . ��

Let A be a CIBRL and consider the derived unary opera-
tion ∼ defined for all a ∈ A by ∼ a := a ⇒ 0. We say A is
compatibly involutive4 if ∼ is self-inverting in the sense that
∼ ∼ a = a for all a ∈ A. On the other hand, a compatibly
involutive CIRL is an algebra 〈A; ∧,∨, ∗,⇒,∼, 1〉 of type
〈2, 2, 2, 2, 1, 0〉 such that: (i) 〈A; ∧,∨, ∗,⇒, 1〉 is a CIRL,
and (ii) the following identities are satisfied:

∼ ∼ x ≈ x and x ⇒ ∼ y ≈ y ⇒ ∼ x .

The identity ∼ ∼ x ≈ x is called the law of double negation.
As mentioned early on in Sect. 1, the class of S-algebras of
Nascimento et al. (2018a, b) is precisely the variety of com-
patibly involutive 3-potent CIRLs. It is well known and easy
to see that compatibly involutive CIRLs satisfy the following
useful collection of identities and quasi-identities:

x � y implies ∼ y � ∼ x (∼-Contra)

x ⇒ y ≈ ∼ y ⇒ ∼ x (⇒-Contra)

x ⇒ y ≈ ∼(x ∗ ∼ y) (⇒, ∗-Equiv)
x ∗ y ≈ ∼(x ⇒ ∼ y). (∗,⇒-Equiv)

Every compatibly involutive CIRL A gives rise to a
compatibly involutive CIBRL A0 upon setting 0 := ∼ 1.
Conversely, every compatibly involutive CIBRL induces a
compatibly involutive CIRLA∼ upon setting∼ a := a ⇒ 0.
Moreover, the algebras A0 and A∼ are term equivalent
(Galatos and Raftery 2004, Section 5). Modulo applications
sensitive to changes in signature, it is therefore a matter
of taste and convenience whether one works with compat-
ibly involutive CIRLs or compatibly involutive CIBRLs. We
employ both perspectives in the sequel, often simultaneously,
with the particular choice of formulation driven by the imme-
diate need at hand.

4 In many texts, compatibly involutive commutative (integral) residu-
ated lattices are simply referred to as involutive commutative (integral)
residuated lattices. Here we follow the terminological conventions of
Hsieh and Raftery (2007); note that in our previous work (Nascimento
et al. 2018a, b) (and likewise in the earlier paper Galatos and Raftery
2004 of Galatos and Raftery) compatibly involutive commutative (inte-
gral) residuated lattices are called involutive commutative (integral)
residuated lattices.
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Lemma 2.10 Let A be a compatibly involutive CIRL and let
A− be its CIRL reduct. Then, ConA = ConA0 = ConA−.

Proof By term equivalence,A andA0 have the same congru-
ences. Also, A0 and A− have the same congruences, since
A− is the algebra obtained fromA0 upon deleting the nullary
operation symbol 0 from the latter’s type, and deleting a
nullary operation symbol from the type of an algebra does
not disturb the algebra’s congruences. ��

Owing to Lemma 2.10, characterisations of congruences
on CIRLs (such as order- or filter-theoretic descriptions)
extend to compatibly involutive CIRLs. In particular, for a
k + 1-potent compatibly involutive CIRL A, it holds that
[a)A = [a)A− = {b ∈ A : ak ≤ b}. We will use this and
similar observations repeatedly in the sequel without further
warning.

We are now finally ready to introduce Nelson residu-
ated lattices, which are the algebraic counterpart of Nelson’s
logicN3, viewed as the axiomatic extensionNInFLew of the
involutive full Lambek calculus with exchange and weaken-
ing by the Nelson axiom.

Nelson residuated lattices. A compatibly involutive CIRL
〈A; ∧,∨,⇒, ∗,∼〉 is a Nelson residuated lattice (NRL) if it
satisfies the Nelson identity:

(
x ⇒ (x ⇒ y)

) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)
) ≈ x ⇒ y.

(Nelson)

Clearly, the class of all Nelson residuated lattices forms a
variety. The Nelson identity, which is one of the main objects
of our interest in the present work, encodes (or, one might
say, hides) a great deal of information about a compatibly
involutive CIRL. In particular, we may observe that, as a
consequence of Theorem 2.11 and Proposition 4.4, we know
that the Nelson identity entails that the lattice reduct of a
CIRL must be distributive (and hence a De Morgan lattice;
cf. item (N1) from the definition of Nelson algebras) and
3-potent; see Corollary 4.3 and Proposition 4.10 in Sect. 4
for direct proofs of this. On the other hand, a compatibly
involutive 3-potentCIRLneednot satisfy theNelson identity:
in other words, an S-algebra in the sense of Nascimento et al.
(2018a, b) need not be a NRL.

The connection between Nelson algebras and NRLs is
established by the following result.

Theorem 2.11 (Spinks and Veroff 2008a, Theorem 1.1) The
variety of Nelson algebras and the variety of Nelson residu-
ated lattices are term equivalent. ��

Given a Nelson algebra, the residuated pair (∗,⇒) is
recovered by defining:

x ∗ y := ∼(x → ∼ y) ∨ ∼(y → ∼ x)

x ⇒ y := (x → y) ∧ (∼ y → ∼ x),

while given a Nelson residuated lattice, the weak implication
→ is recovered via:

x → y := x ⇒ (x ⇒ y).

Nelson algebras qua Nelson residuated lattices have been
investigated in Busaniche and Cignoli (2010).

3 The dual of a compatibly involutive CIBRL

In this section, we introduce and exploit a construction that
allows one to view a compatibly involutive CIBRL as what
we shall call a compatibly involutive dual CIBRL. This can
be seen as just an equivalent presentation of the “same”
algebra or class of algebras in a different algebraic lan-
guage, analogous to the presentation of Boolean algebras
as Boolean rings or to that of MV algebras as certain lattice-
ordered groups, and just like these constructions, itwill afford
additional insight into the structure of compatibly involutive
CIRLs (and hence of Nelson algebras).

The ‘horizontal’ dual of a compatibly involutive CIBRL.
The construction that we introduce is a variant of a
well-known dualising construction that can be applied to
MV algebras or, more generally, residuated lattices. Let
A = 〈A; ∧,∨, ∗,⇒, 0, 1〉 be a CIBRL. According to
Galatos et al. (2007, Section 3.4.17) , the dual of A (with
respect to 0 ∈ A) is the algebraA∂

ν = 〈A; ∨,∧,+, −· , 1, 0〉
where for all a, b ∈ A,

a ∧∂
ν b := a ∨ b, a +∂

ν b := ∼ a ⇒ b, 0∂
ν := 1

a ∨∂
ν b := a ∧ b, a −· ∂

ν b := ∼ a ∗ b, 1∂
ν := 0.

The dual A∂
ν acts ‘vertically’ on A in the sense that

the underlying order ≤∂
ν of the lattice reduct of A∂

ν is the
dual of the order ≤ of the lattice reduct of A. That is,
〈A;≤∂

ν〉 = 〈A;≥〉. From Galatos et al. (2007, Proposition
3.43), it follows readily that the dual A∂

ν of a compatibly
involutive CIBRL A is itself a compatibly involutive CIBRL
with neutral element 0. The residuated pair (+, −· ) of A∂

ν

thus satisfies, for all a, b, c ∈ A,

a + b ≤∂
ν c iff a ≤∂

ν b −· c iff

c ≤ a + b iff b −· c ≤ a.

Herewe shall be interested in a variant dualising construc-
tion closely related to the ‘vertical’ dual. We define the dual
of a CIBRL A (with respect to 0 ∈ A) to be the algebra
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A∂
h = 〈A; ∧,∨,+, ·− , 0, 1〉 where for all a, b ∈ A,

a ∧∂
h b := a ∧ b, a +∂

h b := ∼ a ⇒ b, 0∂
h := 0

a ∨∂
h b := a ∨ b, a ·− ∂

h b := a ∗ ∼ b, 1∂
h := 1.

This notion seems to be new, even as several closely
related constructions have been considered in the literature;
see especially (Paoli 2005, Section 2.2). Our dual A∂

h acts
‘horizontally’ on A inasmuch as the underlying order ≤∂

h of
the lattice reduct of A∂

h coincides with the underlying order
≤ of the lattice reduct of A, while the operation ·− ∂

h reflects
the residual −· ∂

ν in the sense that a ·− ∂
h b = b −· ∂

ν a for all
a, b ∈ A.

LetA be a CIBRL. In general, the operations+ and ·− on
A∂

h are not related. However, if A is compatibly involutive,
the pair (+, ·− ) ofA∂

h is dually residuated in that it satisfies,
for all a, b, c ∈ A,

c ≤∂
h a + b iff c ·− b ≤∂

h a iff

c ≤ a + b iff c ·− b ≤ a.

In this case, A∂
h identically satisfies ¬¬a = a, where for all

b ∈ A, ¬b := 1 ·− b.
A structure 〈A;+, ·− , 0;≤〉 of type 〈2, 2, 0; 2〉 is called

a partially ordered commutative dually residuated integral
monoid (dual pocrim) (Blok and Raftery 1997; Higgs 1984)
if: (i) 〈A,≤〉 is a posetwith least element 0 ∈ A; (ii) 〈A;+, 1〉
is a monoid whose product + is compatible with ≤; and (iii)
for all a, b, c ∈ A, it holds that c ≤ a + b iff c ·− b ≤ a. A
commutative integral dually residuated lattice (dual CIRL)
is a structure 〈A; ∧,∨,+, ·− , 0;≤〉 of type 〈2, 2, 2, 2, 0; 2〉
such that: (i) 〈A; ∧,∨〉 is a lattice with lattice order ≤, and
(ii) 〈A;+, ·− , 0;≤〉 is a dual pocrim. As with CIBRLs, such
structures are first-order definitionally equivalent to pure
algebras 〈A; ∧,∨,+, ·− , 0〉 and will be so treated.

A commutative integral bounded dually residuated lattice
(dual CIBRL) is an algebra 〈A; ∧,∨,+, ·− , 0, 1〉 of type
〈2, 2, 2, 2, 0, 0〉 such that: (i) 〈A; ∧,∨,+, ·− , 0〉 is a dual
CIRL, and (ii) a ≤ 1 for all a ∈ A. A dual CIBRL is compat-
ibly involutive if ¬¬a = a for all a ∈ A. The next lemma,
which is evident given the preceding definitions and discus-
sion, put our presentation of the horizontal dual into context.

Lemma 3.1 The dual A∂
h (with respect to 0 ∈ A) of a com-

patibly involutive CIBRL A is a compatibly involutive dual
CIBRL. ��

Lemma 3.1 ensures that, for a suitably modified notion of
horizontal dual, we can also take the horizontal dual A∂

h′ of a
compatibly involutive dualCIBRLA; in the compatibly invo-
lutive CIBRL A∂

h′ that results, the non-trivial operations ∗′
and ⇒′ yielding the residuated pair (∗′,⇒′) are obtained by

setting a ∗′ b := a ·− ¬b and a ⇒′ b := ¬a + b for all
a, b ∈ A.

Let A be a compatibly involutive CIBRL and B be
a compatibly involutive dual CIBRL. Direct computation
establishes (A∂

h)∂h′ = A and (B∂
h′)∂h = B. Indeed, we have:

Proposition 3.2 Every compatibly involutive CIBRL A is
term equivalent to its dual A∂

h.

Proof Evidently, A and A∂
h have the same n-ary term oper-

ations for every n > 0. Therefore, A and A∂
h are term

equivalent. ��
By exploiting the proof of Galatos et al. (2007, Proposi-

tion 3.43), it can similarly be shown that every compatibly
involutive CIBRL A is term equivalent to A∂

ν . Since term
equivalence is an equivalence relation on varieties (McKen-
zie et al. 1987, Section 4.12), the dualising algebras A∂

h and
A∂

ν are also term equivalent.
Given the preceding remarks, when dealing with compati-

bly involutive CIBRLs, it is a matter of taste and convenience
whether one works with a compatibly involutive CIBRL
A simpliciter, or with its dual A∂

h , or with A∂
ν . It is tradi-

tional to work with compatibly involutive CIBRLs directly.5

However, in this paperwe shall profit byworkingwith a com-
patibly involutive CIBRL A and its dual A∂

h simultaneously.
In particular, we shall work primarily in the setting of com-
patibly involutive CI(B)RLs, while at the same time making
free use of the terminology and notation of the ‘horizontal’
dual. Our use of the dual A∂

h rather than the more traditional
A∂

ν is not essential, but is driven by applications; the ‘horizon-
tal’ dual helps to clarify the order- and congruence-theoretic
descriptions of Nelson residuated lattices presented in the
sequel. Going forward, by the dual of a compatibly involu-
tive CIBRL we will always mean the ‘horizontal’ dual A∂

h ,
unless otherwise specified.

Ideals and congruences. Since we are dualising, we now
shift our attention to the dual of the notion of residuated lat-
tice filter considered in the preceding section, i.e. to ideals. A
non-empty subset I of a compatibly involutive CIRL A is an
ideal if for alla, b ∈ A it satisfies: (i)a ≤ b and b ∈ I implies
a ∈ I , and (ii) a, b ∈ I implies a+b ∈ I . Aswith filters, each
ideal of A is a lattice ideal of A (as well as of A∂

h), but not all
lattice ideals need to satisfy condition (ii) above. Let S be a
non-empty subset of a compatibly involutive CIRL A. Then,
the set {b ∈ A : b ≤ a1+· · ·+ak, for some a1, . . . , ak ∈ S}
is an ideal, namely the ideal generated by S; we write (S]
for the ideal generated by S. In particular, the ideal
(a] generated by a singleton set {a} ⊆ A is the set
{b ∈ A : b ≤ a + · · · + a︸ ︷︷ ︸

k times

, for some positive integer k}. The

next result is dual to Proposition 2.1.

5 Probably, this is because CIBRLs are 1-regular but not 0-regular.
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Proposition 3.3 (cf. Ono 2010, Proposition 3.6) Let A be
a compatibly involutive CIRL, I ⊆ A an ideal, and θ a
congruence on A. The following statements hold:

1. The relation θI defined for all a, b ∈ A by (a, b) ∈ θI iff
a ·− b, b ·− a ∈ I is a congruence on A.

2. The subset Iθ defined for all a ∈ A by a ∈ Iθ iff (a, 0) ∈ θ

is an ideal of A.
3. The natural maps induced by (1) and (2) above are mutu-

ally inverse and establish an isomorphism between the
lattice of all ideals of A and the lattice of all congru-
ences on A. ��

Similarly, the next result is dual to that of Corollary 2.2.

Corollary 3.4 (Kowalski 2004, Proposition 1.2; Ono 2010,
Lemma 4.1) A compatibly involutive CIRL A is subdirectly
irreducible iff there exists an element a > 0 such that for
every b > 0 there exists a positive integer m for which
a ≤ b + · · · + b︸ ︷︷ ︸

m times

holds. ��

Proposition 3.3 evidently entails that the variety of com-
patibly involutive CIRLs is 0-regular. Given a compati-
bly involutive CIRL A and a, b ∈ A, therefore, to see
ΘA(0, a) ⊆ ΘA(0, b) it suffices to show that (a] ⊆ (b];
or, using Lemma 2.9, that [∼ b) ⊆ [∼ a).

We note in passing that Proposition 3.3 can be slightly
sharpened. Indeed, recall fromGumm and Ursini (1984) that
a variety V with a constant term c is c-subtractive if there
exists a binary term s(x, y) in the language of V such that
V |� s(x, x) ≈ c and V |� s(x, c) ≈ x . An algebra A with
a constant term c is said to be c-ideal determined if every
ideal I of A is the c-class of a unique congruence relation θI

on A, for a suitably defined syntactic notion of ideal (Gumm
and Ursini 1984; Ursini 1972). By Gumm and Ursini (1984,
Corollary 1.9), a variety V with a constant term c is c-ideal
determined iff it is c-regular and c-subtractive; here, V is
c-ideal determined if every A ∈ V is c-ideal determined.

Theorem 3.5 The variety of compatibly involutive CIRLs is
0-ideal determined.

Proof In view of previous remarks, it suffices to observe that
the terms {x ·− y, y ·− x} witness 0-regularity for the vari-
ety of compatibly involutive CIRLs, while the term x ·− y
witnesses 0-subtractivity. ��

Of course, the variety of (compatibly involutive) CIRLs
is also 1-ideal determined; the terms {x ⇒ y, y ⇒ x} and
{x ⇒ y} are witnesses to 1-regularity and 1-subtractivity,
respectively. Given a CIRL A and a, b ∈ A, therefore, to see
ΘA(1, a) ⊆ ΘA(1, b) it suffices to show [a) ⊆ [b); again,
we use this and similar observations in the sequel without
further comment.

k + 1-potency. For each integer k ≥ 0, consider the
(derived) unary {+}-terms xk defined inductively by x 0̄ := 0
and xn+1 := xn̄ + x when 0 ≤ n ∈ ω. Recall also that ak

abbreviates a ∗ · · · ∗ a︸ ︷︷ ︸
k times

. In the context of compatibly involu-

tive CIRLs, terms of the form xk̄ have been considered in
Cignoli and Torrens (2012) and other places; here we recall
only that for each compatibly involutive CIRL A, all a ∈ A,
and every k ≥ 0, it holds that (Cignoli and Torrens 2012,
Lemma 1.3)

ak = ∼(
(∼ a)k). (3.1)

Given k ∈ ω, an element a of a compatibly involutive
CIRL A is said to be k + 1-potent if ak+1 = ak̄ . The alge-
bra A is said to be k + 1-potent if it satisfies the identity

xk+1 ≈ xk̄ . (k + 1-potency)

For a k + 1-potent compatibly involutive CIRL A, the ana-
logue of the term x → y is the term x ·= y := x ·− yk̄ ; the
induced operation ·= plays a role inA∂

h similar to that played
by → in A. Thus, we can also consider the counterpart of �
on A∂

h , namely the relation �∂
h defined for all a, b ∈ A by

a �∂
h b iff a ·= b = 0. The relation�∂

h is a quasiorder onA∂
h

(hence A) that enjoys properties similar to its counterpart �;
in particular, for all a, b ∈ A, it holds that a �∂

h b iff b ≤ ak̄

iff bk̄ ≤ ak̄ .
The next lemma clarifies the relationship between k + 1-

potency, k + 1-potency, the partial orders ≤ and ≤∂
h , and the

quasiorders � and �∂
h .

Lemma 3.6 Let A be a compatibly involutive CIRL with dual
A∂

h. Then, A is k +1-potent iff A∂
h is k + 1-potent. Moreover,

the following statements hold for all a, b ∈ A:

1. a ≤∂
h b iff ∼ b ≤ ∼ a (iff a ≤ b).

2. a �∂
h b iff ∼ b � ∼ a.

Proof Let c ∈ A. For the first assertion, suppose A |�
xk+1 ≈ xk . By hypothesis, (∼ c)k+1 = (∼ c)k , so by two
applications of (∼-Contra), ∼((∼ c)k+1) = ∼((∼ c)k). By
(3.1), ck+1 = ck . Hence A∂

h |� xk+1 ≈ xk . The converse is
similar.

(1) Obvious, by (∼-Contra).
(2) It suffices to observe that a �∂

h b iff

a ≤ bk̄ iff a ≤ ∼((∼ b)k) (by (3.1)) iff (∼ b)k ≤ ∼ a
(by (∼-Contra), as ∼ is self-inverting) iff ∼ b � ∼ a.

��
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Remark 3.7 Let V be a variety of k + 1-potent compatibly
involutive CIRLs. Modulo our discussion of duals, it is easy
to see fromfirst principles thatV is a 0-WBSOvariety in addi-
tion to being a 1-WBSO variety. This may also be inferred
from Blok et al. (1984, Theorem 3.6). Weak meet, weak rel-
ative pseudocomplementation, and Gödel equivalence terms
for V are given by

x ·0 y := x ∨ y, x →0 y := y ·− xk̄, and

xΔ0y := (x ·− y) ∨ (y ·− x).

It follows that every algebra A ∈ V has the global outline
or ‘weak structure’ of an implicative semilattice ‘at 0’. To
dispel any confusion, we explicitly point out here that the
canonical quasiorder �0 induced by →0 is the converse of
the relation�∂

h ; that is, 〈A;�∂
h〉 = 〈A;�0〉. (En passant, this

vindicates the claim that �∂
h is a quasiorder.) ��

We conclude this section with the following observation.
In a k + 1-potent compatibly involutive CIRL A, for every
a ∈ A, we can assume w.l.o.g. that:

(a] = {b ∈ A : b ≤ ak}.

This follows by an argument analogous to the case for filters,
since A is k + 1-potent iff A is k + 1-potent.

4 An order-theoretic characterisation of
NRLs

As mentioned towards the end of Sect. 2, a remarkable con-
sequence of the Nelson identity is that Nelson residuated
lattices are not only distributive but also 3-potent. This result,
which has profound (perhaps not yet fully understood) conse-
quences for the structure of such lattices, was first established
in Busaniche and Cignoli (2010, Theorem 2.2). The proof
given in Busaniche and Cignoli (2010), however, is not quite
immediate; so here our first order of business shall be to show
that 3-potency follows immediately from theNelson identity.

Proposition 4.1 Let A be a compatibly involutive CIRL. The
following statements hold:

1. A |� (
x ⇒ (x ⇒ y)

) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)
)

� x ⇒
y iff A |� x ∗ y � (x2 ∗ y) ∨ (y2 ∗ x).

2. A |� x ⇒ y �
(
x ⇒ (x ⇒ y)

) ∧ (∼ y ⇒ (∼ y ⇒
∼ x)

)
and A |� (x2 ∗ y) ∨ (y2 ∗ x) � x ∗ y.

3. A |� (Nelson) iff it satisfies the identity

x ∗ y ≈ (x2 ∗ y) ∨ (y2 ∗ x). (4.1)

Proof We show only (1); both identities of (2) follow by
integrality, while (3) follows from (1) and (2).

Suppose A |� (
x ⇒ (x ⇒ y)

) ∧ (∼ y ⇒ (∼ y ⇒
∼ x)

)
� x ⇒ y and let a, b ∈ A. By hypothesis,

(
a⇒(a⇒ ∼ b)

) ∧ (∼ ∼ b ⇒ (∼ ∼ b ⇒ ∼ a)
) ≤ a ⇒ ∼ b,

so by (∼-Contra),

∼(a ⇒ ∼ b) ≤ ∼(
(a ⇒ (a ⇒ ∼ b))

∧(b ⇒ (b ⇒ ∼ a))
)
, (4.2)

as ∼ is self-inverting. But then,

a ∗ b = ∼(a ⇒ ∼ b) by (∗, ⇒-Equiv)

≤ ∼(
(a ⇒ (a ⇒ ∼ b)) ∧ (b ⇒ (b ⇒ ∼ a))

)
by (4.2)

= ∼(
a ⇒ (a ⇒ ∼ b)

) ∨ ∼(
b ⇒ (b ⇒ ∼ a)

)

= ∼∼(
a ∗ ∼∼(a ∗ ∼∼ b)

)∨
∼ ∼(

b ∗ (∼∼ b ∗ ∼∼ a)
)

by (∗, ⇒-Equiv)

= (
a ∗ (a ∗ b)

) ∨ (
b ∗ (b ∗ a)

)
as ∼ is self-inverting.

Hence A |� x ∗ y � (x2 ∗ y) ∨ (y2 ∗ x).
Conversely, suppose A |� x ∗ y � (x2 ∗ y)∨ (y2 ∗ x). By

hypothesis,

a ∗ ∼ b ≤ (a2 ∗ ∼ b) ∨ (
(∼ b)2 ∗ ∼ a

)
,

so by (∼-Contra),

∼(
(a2 ∗ ∼ b) ∨ ((∼ b)2 ∗ ∼ a)

) ≤ ∼(a ∗ ∼ b), (4.3)

whence

(
a ⇒ (a ⇒ b)

) ∧ (∼ b ⇒ (∼ b ⇒ ∼ a)
)

= ∼(
a ∗ ∼∼(a ∗ ∼ b)

)∧
∼(∼ b ∗ ∼∼(∼ b ∗ ∼∼ a)

)
by (⇒, ∗-Equiv)

= ∼(
a ∗ (a ∗ ∼ b)

) ∧ ∼(∼ b ∗ (∼ b ∗ a)
)

as ∼ is self-inverting

= ∼(
(a2 ∗ ∼ b) ∨ ((∼ b)2 ∗ a)

)

≤ ∼(a ∗ ∼ b) by (4.3)

= a ⇒ b by (⇒, ∗-Equiv).

Hence A |� (
x ⇒ (x ⇒ y)

) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)
)

�
x ⇒ y. ��

Remark 4.2 The form of identity (4.1) suggests that a (cut-
free) sequent calculus for constructive logic with strong
negation qua a substructural logic may be obtained upon
adjoining the structural rule

Γ , Γ ,Π � Σ,Δ,Δ Γ ,Π,Π � Σ,Σ,Δ
(N)

Π,Γ � Σ,Δ
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to a sequent calculus for FLew, the full Lambek calculus
with exchange and weakening. This has been verified in
Metcalfe (2009);6 for additional remarks on the special ‘(3,
2)-contraction rule’ (N), see Slaney et al. (1989, Section II,
p. 9), Slaney (2004, Section 4, p. 289), and Spinks and Veroff
(2010, Section 3). ��

The next result is Busaniche and Cignoli (2010, Theorem
2.2); another proof is given in Kozak (2014, Fact 2.20).

Corollary 4.3 Let A be a Nelson residuated lattice. Then, A
is 3-potent.

Proof By hypothesis,A |�(4.1). On identifying the variables
x and y, we get that A |� x3 ≈ x2. Hence A is 3-potent. ��

The following characterisation of Nelson residuated lat-
tices, which turns out to be very useful in practice, is a slight
sharpening of a result due to Busaniche and Cignoli.

Proposition 4.4 (cf. Busaniche and Cignoli 2010, Corollary
3.8) For a compatibly involutive CIRL A, t.f.a.e.:

1. A is 3-potent and satisfies the quasi-identity:

x2 ≈ y2 and (∼ x)2 ≈ (∼ y)2 implies x ≈ y. (4.4)

2. A is a Nelson residuated lattice.

Proof Suppose A is 3-potent and A |� (4.4). By 3-potency
and Busaniche and Cignoli (2010, Corollary 3.8),A is a Nel-
son residuated lattice. Conversely, suppose A is a Nelson
residuated lattice. By Corollary 4.3, A is 3-potent, whence
A |� (4.4) by Busaniche and Cignoli (2010, Corollary 3.8)
again. ��

Let V be a c-WBSO variety and letA ∈ V. It follows from
(WBSO1)–(WBSO4) that the join semilattice 〈CpA; ∨,ΔA〉
of compact congruences on A is dually relatively pseudo-
complemented, and hence that the map a �→ ΘA(c, a) from
A to ConA is a homomorphism from 〈A; ·,→, cA〉 onto
〈CpA; ∨, ∗,ΔA〉 with Ξ as its relation kernel (Blok et al.
1984, p. 354). The binary terms · and → thus realise, for
every algebra A ∈ V, term operations that faithfully reflect,
within the clone of the variety, the conjunction and implica-
tionoperations of the dualBrouwerian semilattice of compact
congruences.

6 Numerous sequent calculi for constructive logic with strong negation
have been proposed in the literature, including the systems ofAlmukdad
and Nelson (1984), Gurevich (1977), Kutschera (1969), López-Escobar
(1972), Thomason (1969), and Zaslavsky (1978). The sequent calculus
ofMetcalfe (2009) is distinguished among these systems in that—unlike
any of the other calculi cited above—it does not contain rules acting on
more than one connective at a time. See Kozak (2014, Footnote 3).

An algebra A in a c-WBSO variety V thus possesses a
global outline or ‘weak structure’ (‘at c’) closely resem-
bling that of implicative semilattices. For the case of Nelson
algebras and (more generally) k+1-potent (compatibly invo-
lutive) CIRLs, even more is true. As it turns out, both classes
have a rather special character that is not shared by WBSO

varieties in general. Let x ∧k y and x
k→ y abbreviate (x ∧y)k

and (x → y)k , respectively. Since for every k + 1-potent
CIRL A and all a, b ∈ A,

ΘA(a ∧k b, 1) = ΘA(a ∧ b, 1) and

ΘA(a
k→ b, 1) = ΘA(a → b, 1),

the terms x ∧k y and x
k→ y are a weak meet and weak

relative pseudocomplementation for E∗
k , respectively (recall

these terms need not be unique). The set B = {bk : b ∈ A}
of ‘open’ elements then forms the universe of a subalge-

bra B = 〈B; ∧k,
k→, 1〉 of the weak Brouwerian semilattice

〈A; ∧k,
k→, 1〉, and the mapping a �→ ak (a ∈ A) is a

retraction of 〈A; ∧k,
k→, 1〉 ontoB. Moreover, under the map

b �→ ΘA(b, 1) (b ∈ B) the algebra B is (dually) isomorphic
to the dual Brouwerian semilattice 〈CpA; ∨, ∗,ΔA〉. These
observations generalise (Blok et al. 1984, p. 358); for proofs,
see Spinks and Veroff (Chapter 4). See also Blok and Pigozzi
(1994b, Theorem 2.23, Corollary 2.24) and the surrounding
discussion.

The upshot of the preceding discussion is that a Nelson
residuated lattice A actually includes, upon identifying b2

with ΘA(b, 1), the (dual of) 〈CpA; ∨, ∗, 1〉 as a subalgebra
of the term reduct 〈A; ∧2,

2→, 1〉. The ‘intuitionistic’ flavour
of the weak structure 〈A; ∧,∨,→, 1〉 of a Nelson algebra is
thus accounted for by the observation that Nelson residuated
lattices are 3-potent, rather than by any properties peculiar
to Nelson algebras.

We now reify the preceding discussion by showing that
a compatibly involutive 3-potent CIRL (i.e. an S-algebra in
the sense of Nascimento et al. 2018a, b) is almost a Nelson
algebra in that it satisfies (N1)–(N4) and (N6) from the def-
inition of Nelson algebras given at the beginning of Sect. 2.
But first, a lemma that is very useful for calculations.

Lemma 4.5 (Centripetal lemma) Each 3-potent CIRL A sat-
isfies the identities:

(x ∧ y)2 ≈ (x2 ∧ y2)2 (∧-Centrip.)
(x ∨ y)2 ≈ x2 ∨ (x ∗ y) ∨ y2. (∨-Centrip.)

Proof Let a, b ∈ A.
(∧-Centrip.): From a2 ≤ a and b2 ≤ b we get a2 ∧ b2 ≤

a ∧ b. By the doubling construction, (a2 ∧ b2)2 ≤ (a ∧ b)2.
Conversely, from a ∧ b ≤ a, b, we have (a ∧ b)2 ≤
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a2, b2 by two applications of the doubling construction,
whence (a ∧ b)2 ≤ a2 ∧ b2. By the doubling construction,(
(a ∧ b)2

)2 ≤ (a2 ∧ b2)2, whence (a ∧ b)2 ≤ (a2 ∧ b2)2 by
3-potence. Hence A |� (∧-Centrip.).

(∨-Centrip.): Observe that (a ∨b)2 = (a ∨b)∗ (a ∨b)
(2.3)=(

(a∨b)∗a
)∨(

(a∨b)∗b
) (2.3)= (a∗a)∨(b∗a)∨(a∗b)∨(b∗b) =

a2 ∨ (a ∗ b) ∨ b2. Hence A |� (∨-Centrip.). ��
Lemma 4.6 Every 3-potent compatibly involutive CIRL A
satisfies the identities:

x ∗ y � (x ∨ y)2 (4.5)

(x ∨ y)2 ≈ x2 ∨ y2 (4.6)

(x ∧ ∼ x)2 ≈ 0. (4.7)

Proof Let a, b ∈ A.
For (4.5), it suffices to observe a ∗ b ≤ a2 ∨ (a ∗ b) ∨

b2
(∨-Centrip.)= (a ∨ b)2.
Identity (4.6) is (Nascimento et al. 2018b, Lemma 3.8).
For (4.7), from a ∧ ∼ a ≤ a ∨ ∼ a we have a ∧ ∼ a ≤

∼(a ∧ ∼ a) (by De Morgan’s laws, as ∼ is self-inverting)
= (a ∧ ∼ a) ⇒ 0, so by (Res), (a ∧ ∼ a) ∗ (a ∧ ∼ a) ≤ 0.
Hence (a ∧ ∼ a)2 = 0. ��

A Kleene algebra is a DeMorgan algebra that satisfies the
identity

x ∧ ∼ x � y ∨ ∼ y. (4.8)

It is well known (Brignole and Monteiro 1967) that the De
Morgan algebra reduct of a Nelson algebra is a Kleene alge-
bra; this result generalises to 3-potent compatibly involutive
CIRLs as follows.

Proposition 4.7 Every 3-potent compatibly involutive CIRL
A satisfies identity (4.8). Hence, if A is distributive, the De
Morgan algebra term reduct 〈A; ∧,∨,∼, 0, 1〉 is a Kleene
algebra.

Proof Let a, b ∈ A. Put α := a ∧ ∼ a and β := b ∧ ∼ b.
Observe that

(a ∧ ∼ a) ∗ (b ∧ ∼ b) = α ∗ β

(4.5)≤ (α ∨ β)2
(4.6)= α2 ∨ β2 = (a ∧ ∼ a)2

∨ (b ∧ ∼ b)2
((4.7))= 0 ∨ 0 = 0.

From (a∧∼ a)∗(b∧∼ b) ≤ 0,we get a∧∼ a ≤ (b∧∼ b) ⇒
0 by (Res), whence a ∧ ∼ a ≤ ∼(b ∧ ∼ b) = b ∨ ∼ b as
desired. The remaining statement is clear. ��
Proposition 4.8 Let A = 〈A; ∧,∨, ∗,⇒, 0, 1〉 be a compat-
ibly involutive CIBRL. The following statements hold:

1. If A is distributive, then 〈A; ∧,∨,∼, 0, 1〉 is a De Mor-
gan algebra.

2. If A is 3-potent, then:

(a) IfA is distributive, then 〈A; ∧,∨,∼, 0, 1〉 is a Kleene
algebra.

(b) The relation � defined for all a, b ∈ A by a � b iff
a → b = 1, where a → b abbreviates a ⇒ (a ⇒
b), is a quasiorder on A.

(c) The relation Ξ defined for all a, b ∈ A by a Ξ b iff
a � b and b � a is a congruence on the term reduct
〈A; ∧,∨,→, 0, 1〉. Moreover, the quotient algebra
〈A; ∧,∨,→, 0, 1〉/Ξ is a Heyting algebra.

(d) For all a, b ∈ A, it holds that ∼(a → b) ≡ a ∧ ∼ b
(mod Ξ).

(e) For all a, b ∈ A, it holds that a ∧ ∼ a � b.

Proof (1) This is clear.
(2a) This follows from Proposition 4.7.
(2b) Observe that for all c, d ∈ A, c � d iff c → d = 1 iff

c2 ≤ d iff c2 ≤ d2, where the last equivalence follows
by integrality and 3-potence. It follows vacuously that
� is a quasiorder on A.

(2c) This is Busaniche and Cignoli (2010, Theorem 3.4).
(2d) Observe ∼(a → b)

(2.4)= ∼(a2 ⇒ b)
(⇒, ∗-Equiv)= ∼∼(a2 ∗

∼ b) = a2 ∗ ∼ b, so it suffices to show: (i) a2 ∗ ∼ b �
a∧∼ b, and (ii) a∧∼ b � a2∗∼ b. For (i), we have a2∗
∼ b ≤ a2∧∼ b (by integrality)≤ a∧∼ b (by integrality
again). The result now follows, because ≤ ⊆ � by
Lemma 2.7. For (ii), from a2∧(∼ b)2 ≤ a2, (∼ b)2 we
get (a2∧∼ b2)2 ≤ a2∗(∼ b)2 (by (Compat))≤ a2∗∼ b
(by integrality), which is to say (a ∧ ∼ b)2 ≤ a2 ∗ ∼ b
by (∧-Centrip.). Thus, a ∧ ∼ b � a2 ∗ ∼ b.

(2e) By (4.7), (a ∧ ∼ a)2 ≤ b. Thus, (a ∧ ∼ a)2 � b as
≤ ⊆ � by Lemma 2.7.

��

Remark 4.9 Although it will not be needed here, we note that
Items (2b)–(2e) of Proposition 4.8 extend in the natural way
to k + 1-potent compatibly involutive CIRLs (k ∈ ω) as
follows. (Item (2a) does not generalise.) IfA is k +1-potent,
then the following statements hold:

1. The relation � defined for all a, b ∈ A by a � b iff
a → b = 1, where a → b abbreviates ak ⇒ b, is a
quasiorder on A.

2. The relation Ξ defined for all a, b ∈ A by a Ξ b
iff a � b and b � a is a congruence on the term
reduct 〈A; ∧,∨,→, 0, 1〉. Moreover, the quotient
〈A; ∧,∨,→, 0, 1〉/Ξ is a Heyting algebra.

3. For all a, b ∈ A, it holds that ∼(a → b) ≡ a ∧ ∼ b
(mod Ξ).

4. For all a, b ∈ A, it holds that a ∧ ∼ a � b.
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Modulo the proof of Proposition 4.8, only the proof of
(2) above is non-trivial; this is an unpublished result of
Busaniche and Cignoli (2008, Theorem 1.2). ��

Proposition 4.8 shows that a compatibly involutive 3-
potent (more generally, k + 1-potent) CIRL is almost a
Nelson algebra in that only (N5) may fail to hold. This nat-
urally directs attention to the clause (N5). We have:

Proposition 4.10 For a compatibly involutive CIRLA, t.f.a.e.:

1. A |� (Nelson).
2. A |� x2 � y and (∼ y)2 � ∼ x implies x � y.
3. For all a, b ∈ A, it holds that

a � b and ∼ b � ∼ a iff a ≤ b,

where � is the quasiorder relation of Proposition 4.8.

Moreover, if A |� (Nelson), then A is distributive and 3-
potent.

Proof (1) ⇐⇒ (2) This is (Kozak 2014, Lemma 2.7).
(2) ⇐⇒ (3) This follows immediately on recalling
that for all c, d ∈ A, c � d iff c2 ≤ d.

For the final statement, suppose A is a Nelson residuated
lattice. By Corollary 4.3, A is 3-potent. The distributivity of
A is established by Busaniche and Cignoli (2010, Remark
3.7). ��

At this point, we are ready to use the preceding result
to give an order-theoretic characterisation of the Nelson
residuated lattices among the 3-potent compatibly involutive
CIRLs.

Theorem 4.11 Let A be a 3-potent compatibly involutive
CIRL. The following are equivalent:

1. A |� (Nelson).
2. For all a, b ∈ A, a ≤ b iff (a � b and ∼ b � ∼ a) iff

(a � b and a �∂
h b).

3. The relation� ∩ �∂
h is a partial order onA that coincides

with ≤.
4. The relation � ∩ �∂

h is a partial order on A.
5. The relation � ∩ �∂

h is anti-symmetric.
6. For all a, b ∈ A, if a2 = b2 and (∼ a)2 = (∼ b)2, then

a = b.

Proof Let a, b, c ∈ A.

(1) ⇒ (2) This follows from Proposition 4.10 and
Lemma 3.6.
(2) ⇒ (3) ⇒ (4) ⇒ (5) This sequence of implications
is clear.

(5) ⇒ (6) Suppose � ∩ �∂
h is anti-symmetric. Assume

a2 = b2 and (∼ a)2 = (∼ b)2. Since for all c, d ∈ A, we
have that c � d iff c2 ≤ d iff c2 ≤ d2 and c �∂ d iff
(∼ d)2 ≤ ∼ c iff (∼ d)2 ≤ (∼ c)2, by our assumptions
on A we get that a � ∩ �∂

h b and b � ∩ �∂
h a. By anti-

symmetry, a = b. Hence, for all a, b ∈ A, if a2 = b2

and (∼ a)2 = (∼ b)2, then a = b.
(6) ⇒ (1) This follows by hypothesis and Proposi-
tion 4.4.

��
Remark 4.12 We speculate that Theorem 4.11 extends to a
characterisation of the Nelson residuated lattices among the
compatibly involutive CIRLs upon moving the assumption
of 3-potency from the statement of the theorem to Item (6).

��
The last condition of the preceding theorem is saying that

if two elements as well as their negations generate the same
filter, then they must be identical. This can be equivalently
reformulated as the following:

if a ∗ a = b ∗ b and a + a = b + b, then a = b

which says that two elements are identical when they gen-
erate the same filter and the same ideal. We shall return
on the connection between the identity (Nelson) and these
filter/ideal-theoretic properties in Sect. 7.

Let us denote by Q(A) the set of all quasiorders on a given
set A. The set Q(A) forms a complete lattice

〈
Q(A);⊆〉

under
the inclusion ordering (Pöschel andRadeleczki 2008, Section
1.2). Reformulating Theorem 4.11, we have:

Corollary 4.13 Let A be a Nelson residuated lattice. Then, ≤
is the meet of � and �∂

h in
〈
Q(A);⊆〉

.

Proof It suffices to observe that ≤ = � ∩ �∂
h by Theo-

rem 4.11. ��

5 Introducing (0,1)-congruence orderability

In their unpublished manuscript on Skolem rings (Büchi and
Owens 1990), Büchi and Owens considered algebras A with
a constant term 0 having the property that for all a, b ∈ A,

if ΘA(0, a) = ΘA(0, b) then a = b. (5.1)

They termed such algebras ‘fission free’. Büchi and Owens
were mainly interested in fission free algebras for which
every compact congruence is of the form ΘA(0, a); Skolem
rings, which are term equivalent to implicative semilattices,
form the main example of such algebras.

Condition (5.1) means that the mapping a �→ ΘA(0, a)

on an algebraAwith a constant term 0 is injective; it follows

123



Compatibly involutive residuated lattices and the Nelson identity 2311

that the natural quasiordering on the universe of A, defined
for all a, b ∈ A by

a ≤ b iff ΘA(0, a) ⊆ ΘA(0, b)

is a partial ordering. This observation led Idziak et al. (2009)
to call such algebras 0-congruence orderable.

Following Idziak et al. (2009), we say an algebraAwith a
constant term c is c-congruence orderable if, for all a, b ∈ A,
it holds that

ΘA(c, a) = ΘA(c, b) implies a = b. (5.2)

A variety V with a constant term c is c-congruence orderable
if every member of V is c-congruence orderable. Boolean
and Heyting algebras are 1-congruence orderable, as are all
their subreducts that include 1 in the language: implica-
tive (semi)lattices, Hilbert algebras, Tarski algebras, and
upper-bounded distributive (semi)lattices. Pseudocomple-
mented semilattices, equivalential algebras, and Boolean
groups are also 1-congruence orderable, while pointed sets
are c-congruence orderable for each distinguished element c.

Observe that, by the duality principle, Boolean algebras
are also 0-congruence orderable. That is, Boolean algebras
are simultaneously c-congruence orderable for c ∈ {0, 1}.
Motivated by this example, and in keeping with the themes
of this paper, in this section we introduce a generalisation
of 0-congruence orderability to the double-pointed case and
show that Nelson residuated lattices are distinguished among
the compatibly involutive CIRLs by our generalisation of
congruence orderability to the case involving two constant
terms. Our starting point for this exploration is the following
easy characterisation of principal congruences of the form
Θ(1, a) and Θ(0, a) on CIBRLs.

Lemma 5.1 Let A be a k + 1-potent CIBRL (k ∈ ω). The
following statements hold for all a, b, c ∈ A:

1. a � b iff ΘA(b, 1) ⊆ ΘA(a, 1).
2. a �∂

h b iff ∼ b � ∼ a iff ΘA(a, 0) ⊆ ΘA(b, 0).
3. ak = bk iff ΘA(1, a) = ΘA(1, b).
4. (∼ a)k = (∼ b)k iff ΘA(0, a) = ΘA(b, 0).

Proof (1) It suffices to observe that a � b iff ak ≤ b iff b ∈
[a) iff b ≡ 1 (mod ΘA(a, 1)) iffΘA(b, 1) ⊆ ΘA(a, 1).

(2) Wehavea �∂
h b iff∼ b � ∼ a byLemma3.6.Also, using

(1) and Lemma 2.9, we have ∼ b � ∼ a iff ΘA(a, 0) =
ΘA(∼ a, 1) ⊆ ΘA(∼ b, 1) = ΘA(b, 0).

(3) This follows from (1) on recalling a � b iff ak ≤ bk .
(4) This is the dual of (3) and holds by (3) and Lemma 2.9.

��
Remark 5.2 Let A be a k + 1-potent CIRL, k ∈ ω. Then,
HSP(A) satisfies xk+1 ≈ xk and thus has EDPC. From this

observation and results due to Spinks and Veroff (2007), it is
easy to see that for all a, b, c ∈ A, it holds that:

1. b ≡ c (mod ΘA(a, 1)) iff a → b = a → c.
2. b ≡ c (mod ΘA(0, a)) iff (∼ a)k ∗ b = (∼ a)k ∗ c.

Since a ≡ 0 (mod ΘA(0, b)) iff (∼ b)k ∗ a = (∼ b)k ∗ 0
(by (2)) iff (∼ b)k ∗ a = 0 iff (∼ b)k ≤ a ⇒ 0 iff (∼ b)k ≤
∼ a iff ∼ b � ∼ a, this observation generalises (1)–(2) of
Lemma 5.1. ��
Corollary 5.3 Let A be a compatibly involutive CIRL. The
following are equivalent:

1. A |� (Nelson).
2. A is 3-potent and for all a, b ∈ A, it holds that

ΘA(0, a) = ΘA(0, b) and

ΘA(1, a) = ΘA(1, b) implies a = b. (5.3)

Proof By Lemma 5.1, we have that

a2 = b2 iff ΘA(1, a) = ΘA(1, b) and

(∼ a)2 = (∼ b)2 iff ΘA(0, a) = ΘA(0, b),

so the result follows from Proposition 4.4. ��
Recall that for an algebraA, elements a, b ∈ A are residu-

ally distinct ifΘA(a, b) = ∇A. By analogywith the theory of
c-congruence orderable algebras, we shall say that an alge-
bra A with constant terms c,d realising residually distinct
elements c, d ∈ A is (c,d)-congruence orderable if, for all
a, b ∈ A, it holds that

ΘA(c, a) = ΘA(c, b) and

ΘA(d, a) = ΘA(d, b) implies a = b. (5.4)

A variety V with constant terms c,d is said to be (c,d)-
congruence orderable if every member of V is (c,d)-
congruence orderable.

Observe that every double-pointed variety (relative to
some constant terms c,d) that is c-congruence orderable
is a fortiori (c,d)-congruence orderable; examples include
Boolean algebras, Heyting algebras, and pseudocomple-
mented semilattices.

Corollary 5.4 Every Nelson residuated lattice is (0, 1)-con-
gruence orderable. ��
Remark 5.5 With the notion of (c,d)-congruence orderabil-
ity to hand, it is evident that Lemma 5.1 asserts that for every
k + 1-potent CIBRL (k ∈ ω), the following are equivalent:
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1. For all a, b ∈ A, if ak = bk and (∼ a)k = (∼ b)k , then
a = b.

2. A is (0, 1)-congruence orderable. ��

To the best of our knowledge, this is the first paper inwhich
(0, 1)-congruence orderability qua a congruence condition
has been isolated in the literature. Nonetheless, the study
of (0, 1)-congruence orderability dates back to at least the
paper (Varlet 1972) of Varlet, who essentially proves that
a double p-algebra is (0, 1)-congruence orderable iff it is
congruence regular.7 For a brief survey of work concerning
(0, 1)-congruence orderability in the context of double p-
algebras and related structures, see Järvinen and Radeleczki
(2017).

Example 5.6 Let A be a De Morgan algebra. By Sankap-
panavar (1980, Theorem 2.2), for all a, b, c ∈ A it holds
that

c≡d (mod ΘA(0, b)) iff (c ∨ b) ∧ ∼ b=(d ∨ b) ∧ ∼ b

and

c≡d (mod ΘA(1, b)) iff (c ∧ b) ∨ ∼ b=(d ∧ b)∨∼ b.

From this characterisation of ΘA(0, b) and ΘA(1, b), it fol-
lows directly thatA satisfies congruence condition (5.4), with
c = 0, d = 1, iff for all a, b ∈ A,

(a ∨ b) ∧ ∼ b = b ∧ ∼ b and

(b ∨ a) ∧ ∼ a = a ∧ ∼ a and

(a ∧ b) ∨ ∼ b = b ∨ ∼ b and

(b ∧ a) ∨ ∼ a = a ∨ ∼ a implies a = b.

(5.5)

Further, it is easy to check that (5.5) holds on A iff A |� x ∧
∼ x � y ∨∼ y. The variety of Kleene algebras is thus (0, 1)-
congruence orderable; moreover, this property distinguishes
the Kleene algebras among the De Morgan algebras. ��
Remark 5.7 Recall that the 〈∧,∨,∼, 0, 1〉-reduct of a Nel-
son algebra A is a Kleene algebra. Conversely, Brig-
nole and Monteiro (1967) shows that a Kleene algebra
〈A; ∧,∨,∼, 0, 1〉 that is structurally enriched with a binary
operation → such that for all a, b, c ∈ A,

a ∧ c ≤ ∼ a ∨ b iff c ≤ a → b and

(a ∧ b) → c = a → (b → c)

7 A double p-algebra (Katriňák 1973) is an algebra 〈A; ∧,∨, ∗, +, 0, 1〉
where 〈A; ∧,∨, ∗, 0, 1〉 is a pseudocomplemented distributive lattice
(Balbes and Dwinger 1974, Chapter VIII) and 〈A; ∧,∨, +, 0, 1〉 is a
dually pseudocomplemented distributive lattice.

is a Nelson algebra. Example 5.6 thus suggests that Nelson
algebras may be understood as Kleene algebras 〈A; ∧,∨,∼,

0, 1〉 structurally enrichedwith an ‘implication’ operation→
that preserves the (0, 1)-congruence orderability of Kleene
algebras. This is in contrast to the usual (logical) perspec-
tive of Nelson algebras, which views Nelson’s constructive
logic with strong negation N3 as a conservative expansion
of the intuitionistic propositional calculus by a unary logical
connective ∼ of strong negation. ��

To put Corollary 5.4 into context, we briefly consider c-
congruence orderability for CIBRLs.

Proposition 5.8 For a CIBRLA, the following statements are
equivalent:

1. 〈A; ∗,∨,⇒, 0, 1〉 is a Heyting algebra.
2. A |� x ∧ y ≈ x ∗ y.
3. A |� x ∗ x ≈ x.
4. A is 1-congruence orderable.

Proof (1) ⇐⇒ (2) This is well known.
(2) ⇐⇒ (3) Similarly, this is well known.
(1) ⇒ (4) This is also well known.
(4) ⇒ (2) Suppose A is 1-congruence orderable. Let
a, b ∈ A. From a ∧ b ≤ a, b, we get (a ∧ b)2 ≤ a ∗ b
by (Compat), whence a ∗ b ∈ [a ∧ b). Thus, [a ∗ b) ⊆
[a ∧ b). On the other hand, a ∗ b ≤ a ∧ b by integrality.
Thus, a ∧ b ∈ [a ∗ b) and therefore [a ∧ b) ⊆ [a ∗ b).
Hence, [a ∧ b) = [a ∗ b). It follows that ΘA(a ∧ b, 1) =
ΘA(a∗b, 1), whence a∧b = a∗b. Hence,A |� x ∧ y ≈
x ∗ y.

��
Recall from McKinsey and Tarski (1946, Definition 1.1)

that a co-Heyting algebra (alsoBrouwerian algebra in the lit-
erature) 〈A; ∨,∧, ·− , 1, 0〉 is a bounded distributive lattice
〈A; ∨,∧, 1, 0〉 augmentedwith a “subtraction” operation ·−
defined for all a, b, c ∈ A by

a ·− b ≤ c iff a ≤ b ∨ c. (5.6)

Proposition 5.9 For a CIBRLA, the following statements are
equivalent:

1. 〈A; ∧,∨, ·− , 0, 1〉 is a co-Heyting algebra.
2. 〈A; ∧,∨, ·− ,¬, 0, 1〉 is a Boolean algebra.
3. 〈A; ∧,∨,⇒,∼, 0, 1〉 is a Boolean algebra.
4. A |� x ∨ y ≈ x + y.
5. A |� x + x ≈ x.
6. A is 0-congruence orderable.

Proof Let a, b ∈ A.
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(1) ⇐⇒ (2) It suffices to show ¬¬a ≤ a. For this, note
¬¬a ≤ a iff 1 ·− (1 ·− a) ≤ a iff 1 ≤ (1 ·− a)∨a (by (5.6))
iff 1 ≤ a ∨ (1 ·− a) iff 1 ·− a ≤ 1 ·− a (by (5.6)).
(2) ⇐⇒ (3) Obvious, as ¬c = 1 ·− c = 1 ∗ ∼ c = ∼ c
for all c ∈ A.
(1) ⇐⇒ (4) This is clear.
(4) ⇐⇒ (5) Suppose A |� x ∨ y ≈ x + y. By special-
isation, A |� x + x ≈ x ∨ x ≈ x ; thus A |� x + x ≈ x .
Conversely, suppose A |� x + x ≈ x . From a, b ≤ a + b,
we get a ∨ b ≤ a + b, so it remains to show a + b ≤
a ∨ b. For this, note a + b ≤ (a ∨ b) + (a ∨ b) iff
(a ∨ b) ·− (a + b) ≤ a ∨ b, which latter holds by inte-
grality. Therefore, a + b ≤ (a ∨ b) + (a ∨ b) = a ∨ b and
thus A |� x ∨ y ≈ x + y.
(2) ⇒ (6) This is clear.
(6) ⇒ (4) Suppose A is 0-congruence orderable. From
a, b ≤ a + b we get a ∨ b ≤ a + b, whence a ∨ b ∈ (a ∨ b].
Thus, (a∨b] ⊆ (a+b]. On the other hand, from the proof of
(4) ⇐⇒ (5) above, we get a + b ≤ (a ∨ b)+ (a ∨ b); thus
a+b ∈ (a∨b]. Therefore, (a+b] ⊆ (a∨b] and so (a∨b] =
(a + b]. It follows that ΘA(a ∨ b, 0) = ΘA(a + b, 0); from
0-congruence orderability, we conclude that a ∨ b = a + b.
Hence, A |� x ∨ y ≈ x + y. ��

Corollary 5.10 For a compatibly involutive CIBRLA, the fol-
lowing are equivalent:

1. 〈A; ∧,∨,⇒,∼, 0, 1〉 is a Boolean algebra.
2. A is 1-congruence orderable.
3. A is 0-congruence orderable.

Proof (1) ⇒ (2) This is well known.
(2) ⇒ (1) Suppose A is 1-congruence orderable. Then,
〈A; ∧,∨,⇒, 0, 1〉 is a Heyting algebra by Proposi-
tion 5.8. Since A |� x ≈ (x ⇒ 0) ⇒ 0, we conclude
that A is a Boolean algebra.
(1) ⇐⇒ (3) By Proposition 5.9. ��
We now turn our attention to point regularity. Follow-

ing Idziak et al. (2009), a c-regular c-congruence orderable
algebraA is said to be c-Fregean. Compared to c-congruence
orderable algebras, c-Fregean algebras are quite specialised
and rare; Boolean and Heyting algebras, together with their
subreducts having⇒ in the language, form the most familiar
examples of 1-Fregean algebras. Interest in such algebras has
nonetheless increased in recent years, owing to their connec-
tions with Fregean logics (Czelakowski and Pigozzi 2004;
Font and Jansana 2009; Pigozzi 1991); the algebraisable
Fregean logics include the deductive systems intermediate
between the classical and intuitionistic propositional calculi
(Czelakowski and Pigozzi 2004, Theorem 66, Theorem 68),
together with their superimplicational fragments (Font and
Jansana 2009, Section 5.2).

By analogy with the theory of Fregean varieties, we will
say that an algebra A with constant terms c,d realising
residually distinct elements c, d ∈ A is (c,d)-Fregean if
it is (c,d)-congruence orderable and both c-regular and d-
regular. A varietyVwith constant terms c,d is (c,d)-Fregean
if every member of V is (c,d)-Fregean.

Theorem 5.11 Every Nelson residuated lattice is (0, 1)-
Fregean.

Proof This follows from Corollary 5.4, since the variety of
compatibly involutiveCIRLs is simultaneously 0-ideal deter-
mined and 1-ideal determined. ��

In Sect. 7, we shall establish a converse to the preceding
result: namely, that Nelson residuated lattices are precisely
the compatibly involutive CIBRLs that are (0, 1)-Fregean
(Corollary 7.2). For this, we shall rely on a result proved in
the next section.

6 A syntactic characterisation of NRLs

In this section, we prove a result that was announced without
proof in Spinks and Veroff (2018, Theorem 4.2), namely that
the Nelson identity is equivalent, over compatibly involutive
CIRLs, to the identity

x2 ∨ (x ∧ ∼ x) ≈ x . (6.1)

This may be viewed as yet another approximation to
unveiling the mystery of the Nelson identity by reducing it
to an equivalent expression, which yet ended up producing
the perhaps even more mysterious (but then also interesting)
identity (6.1). This latter was found via a computer-based
search using the automated reasoning program Prover9
(McCune 2018) with the method of proof sketches (Veroff
2001) while trying to prove the implication (2) ⇒ (1) of
Theorem 6.1. Beyond the obvious observation that satisfac-
tion of x2 ∨ (x ∧∼ x) ≈ x (observe that x � x2 ∨ (x ∧∼ x)

is the only non-trivial half) says that for every element a, the
least upper bound of a2 and a ∧ ∼ a is a, we have at the
moment no particular insight into this identity.

Theorem 6.1 For a compatibly involutive CIRL A, the fol-
lowing are equivalent:

1. A is a Nelson residuated lattice.
2. A is 3-potent and satisfies the quasi-identity:

x2 ≈ y2 and (∼ x)2 ≈ (∼ y)2 implies x ≈ y. (4.4)

3. A satisfies the identity:

x2 ∨ (x ∧ ∼ x) ≈ x . (6.1)
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Proof (1) ⇒ (2) This has been observed previously.
(2) ⇒ (3) Let a, b ∈ A. We show

a2 = (
a2 ∨ (a ∧ ∼ a)

)2 and

(∼ a)2 = (∼(a2 ∨ (a ∧ ∼ a))
)2

and then apply quasi-identity (4.4).
To see a2 = (

a2 ∨ (a ∧ ∼ a)
)2, just observe that

a2 = (a2)2 (by 3-potence)

= (a2)2 ∨ 0
(4.7)= (a2)2 ∨ (a ∧ ∼ a)2

(4.6)= (
a2∨(a∧∼ a)

)2
.

It remains to show (∼ a)2 = (∼(a2 ∨ (a ∧ ∼ a))
)2; we split

the proof into two pieces.
We first show (∼ a)2 ≤ (∼(a2 ∨ (a ∧ ∼ a))

)2. From
a2 ≤ a and (∼-Contra), we have ∼ a ≤ ∼(a2), whence
(∼ a)2 ≤ (∼(a2)

)2 by the doubling construction. Also, from
a ∧ ∼ a ≤ a and (∼-Contra), we have ∼ a ≤ ∼(a ∧ ∼ a),
whence (∼ a)2 ≤ (∼(a ∧ ∼ a)

)2 by the doubling construc-

tion. Thus, (∼ a)2 ≤ (∼(a2)
)2 ∧ (∼(a ∧ ∼ a)

)2. By the
doubling construction, therefore,

(
(∼ a)2

)2 ≤ (
(∼(a2))2 ∧ (∼(a ∧ ∼ a))2

)2 (∧-Centrip.)=
(∼(a2) ∧ ∼(a ∧ ∼ a)

)2
,

whence (∼ a)2 ≤ (∼(a2)∧∼(a ∧∼ a)
)2 by 3-potence. But

then (∼ a)2 ≤ (∼(a2 ∨ (a ∧ ∼ a))
)2 by De Morgan’s laws

and the law of double negation.
We now show

(∼(a2 ∨ (a ∧ ∼ a))
)2 ≤ (∼ a)2. From

a ∨ ∼ a ≤ 1, we have ∼(a2) ∧ (a ∨ ∼ a) ≤ 1 = a ⇒ a,
whence

(∼(a2)∧(a ∨∼ a)
)∗a ≤ a by (Res). Also,∼(a2)∧

(a ∨ ∼ a) ≤ ∼(a2) = a ⇒ ∼ a, so by (Res),
(∼(a2) ∧ (a ∨

∼ a)
)∗a ≤ ∼ a. Therefore

(∼(a2)∧(a∨∼ a)
)∗a ≤ a∧∼ a.

But then
(∼(a2) ∧ (a ∨ ∼ a)

) ∗ a ≤ a2 ∨ (a ∧ ∼ a), whence
∼(a2) ∧ (a ∨ ∼ a) ≤ a ⇒ (

a2 ∨ (a ∧ ∼ a)
)
by (Res). By

(⇒-Contra),∼(a2)∧(a∨∼ a) ≤ ∼(
a2∨(a∧∼ a)

) ⇒ ∼ a,
and by De Morgan’s laws and the law of double negation,
∼(

a2 ∨ (a ∧ ∼ a)
) ≤ ∼(

a2 ∨ (a ∧ ∼ a)
) ⇒ ∼ a. By (Res),

therefore,
(∼(a2 ∨ (a ∧ ∼ a))

)2 ≤ ∼ a, whence
(
(∼(a2 ∨

(a ∧ ∼ a)))2
)2 ≤ (∼ a)2 by the doubling construction. By

3-potence,
(∼(a2 ∨ (a ∧ ∼ a))

)2 ≤ (∼ a)2 as desired.

We have shown that a2 = (
a2∨ (a ∧∼ a)

)2 and (∼ a)2 =
(∼(a2 ∨ (a ∧ ∼ a))

)2, so by quasi-identity (4.4), a =
a2 ∨ (a ∧ ∼ a). Hence, A |� x2 ∨ (x ∧ ∼ x) ≈ x .

(3) ⇒ (1) Let a, b, c ∈ A. Before beginning the proof
proper, we verify that A satisfies the following identities, in
the indicated order:

(i) (x ∧ y) ∗ ∼ y ≈ 0
(ii) ∼ x ∗ (x ∨ ∼ y) ≈ x ∗ y

(iii) (x ∨ ∼ y) ∗ y2 ≈ x ∗ y2

(iv) (x ∨ ∼ y)2 ∗ y ≈ x2 ∗ y.

Proof (of (i)–(iv))

For (i), observe a ∧ b ≤ a = 1 ⇒ a
(⇒-Contra)= ∼ a ⇒

∼ 1 = ∼ a ⇒ 0, whence (a ∧ b) ∗ ∼ a ≤ 0 by (Res).
Hence, A |� ∼ x ∗ (x ∧ y) ≈ 0.
For (ii), note (a ∨ ∼ b) ∗ b

(2.3)= (a ∗ b) ∨ (∼ b ∗ b) =
(a ∗ b) ∨ 0 = a ∗ b. Hence, A |� (x ∨ ∼ y) ∗ y ≈ x ∗ y.
For (iii), notice (a ∨ ∼ b) ∗ b2 = (

(a ∨ ∼ b) ∗ b
) ∗ b

(ii)=
(a ∗b)∗b = a ∗b2. Hence,A |� (x ∨∼ y)∗ y2 ≈ x ∗ y2.
For (iii), observe that

(a ∨ ∼ b)2 ∗ b

= (a ∨ ∼ b) ∗ (
(a ∨ ∼ b) ∗ b

) (ii)= (a ∨ ∼ b) ∗ (a ∗ b)

= (
(a ∨ ∼ b) ∗ b

) ∗ a
(ii)= (a ∗ b) ∗ a = a2 ∗ b.

Hence, A |� (x ∨ ∼ y)2 ∗ y ≈ x2 ∗ y.
This completes the proof of (i)–(iv). ��
Suppose now that (6.1) holds. To see A is a Nelson resid-

uated lattice, we show A |� (x2 ∗ y) ∨ (y2 ∗ x) ≈ x ∗ y.
To see this latter identity holds, we verify that A satisfies the
following identities, in the indicated order:

(v) x2 ∨ ∼ x ≈ x ∨ ∼ x
(vi) x ∗ (x ∧ y) ≈ x ∗ (x ∗ y)

(vii) x2 ∨ (
x ∧ (y ∨ ∼ x)

) ≈ x
(viii) (x2 ∗ y) ∨ (y2 ∗ x) ≈ x ∗ y.

Proof (of (v)–(viii)) For (v), it suffices to observe

a ∨ ∼ a
(Hyp.)= (

a2 ∨ (a ∧ ∼ a)
) ∨ ∼ a

= a2 ∨ (
(a ∧ ∼ a) ∨ ∼ a

) = a2 ∨ ∼ a,

where the final equality holds by absorption. Hence,
A |� x2 ∨ ∼ x ≈ x ∨ ∼ x .

For (vi), observe that

a ∗ (a ∧ b) = (
a ∗ (a ∧ b)

) ∨ 0

= (
a ∗ (a ∧ b)

) ∨ (∼ a ∗ (a ∧ b)
)

by (i)

= (a ∨ ∼ a) ∗ (a ∧ b) by (2.3)

= (a2 ∨ ∼ a) ∗ (a ∧ b) by (v)

= (
a2 ∗ (a ∧ b)

) ∨ (∼ a ∗ (a ∧ b)
)

by (2.3)

= (
a2 ∗ (a ∧ b)

) ∨ 0 by (i)

= a2 ∗ (a ∧ b)

≤ a2 ∗ b by (Compat), as a ∧ b≤b.

On the other hand, a ∗b ≤ a ∧b by integrality. By (Compat),
a ∗ (a ∗ b) ≤ a ∗ (a ∧ b). Hence, A |� x ∗ (x ∧ y) ≈ x2 ∗ y.
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For (vii), from ∼ a ≤ ∼ a ∨ b we have a ∧ ∼ a ≤ a ∧
(∼ a ∨b), whence a2∨ (a ∧∼ a) ≤ a2∨(

a ∧∼(a ∨b)
)
. But

a2∨(a∧∼ a) = a by hypothesis, so a ≤ a2∨(
a∧(∼ a∨b)

)
.

Conversely, from a2 ≤ a and a ∧ (∼ a ∨ b) ≤ a we get
a2 ∨ (

a ∧ (∼ a ∨ b)
) ≤ a ∨ a = a. Hence, A |� x2 ∨ (

x ∧
(∼ x ∨ y)

) ≈ x .
For (viii), put α := a ∨ ∼ b and β := b. Then:

a ∗ b = (a ∨ ∼ b) ∗ b by (ii)

= (a ∨ ∼ b) ∗ (
b2 ∨ (b ∧ (a ∨ ∼ b))

)
by (vii)

= α ∗ (
β2 ∨ (β ∧ α)

)

= (α ∗ β2) ∨ (
α ∗ (β ∧ α)

)
by (2.3)

= (α ∗ β2) ∨ (
α ∗ (α ∗ β)

)
by (vi)

= (α ∗ β2) ∨ (α2 ∗ β)

= (
(a ∨ ∼ b) ∗ b2

) ∨ (
(a ∨ ∼ b)2 ∗ b

)

= (a ∗ b2) ∨ (a2 ∗ b) by (iii), (iv).

Hence, A |� (x2 ∗ y) ∨ (y2 ∗ x) ≈ x ∗ y.

This completes the proof of (v)–(viii). Since A |� (viii),
from Proposition 4.1 we conclude A is a Nelson residuated
lattice. ��
Remark 6.2 The implication (2) ⇒ (3) in the preceding the-
orem can be readily deduced via the Vakarelov/Fidel twist
structure semantics for Nelson algebras (see e.g. Odintsov
2003, Definition 4.1, Proposition 5.3). However, the direct
proof is instructive, so we have included it here. ��

7 A congruence-theoretic characterisation
of NRLs

We are now finally ready to establish the announced result
which rephrases the Nelson identity as a purely universal
algebraic property of congruences on (compatibly involutive)
residuated lattices. We shall also relate this congruence-
theoretic property to an equivalent ‘filter separation property’
thatmay be instructively compared to similar filter conditions
well known from lattice theory. We begin by showing that
a (0, 1)-congruence orderable compatibly involutive CIRL
must satisfy the Nelson identity.

Theorem 7.1 Let A be a compatibly involutive CIRL. If A is
(0, 1)-congruence orderable, then A is a Nelson residuated
lattice.

Proof Suppose A is (0, 1)-congruence orderable. To see A
is a Nelson residuated lattice, it suffices to show A satisfies
identity (6.1). To seeA |� (6.1), we show bothΘA

(
a2∨ (a ∧

∼ a), 1
) = ΘA(a, 1) andΘA

(
a2∨(a∧∼ a), 0

) = ΘA(a, 0)

and then conclude by (0, 1)-congruence orderability that a2∨
(a ∧ ∼ a) = a.

We first show ΘA
(
a2 ∨ (a ∧ ∼ a), 1

) = ΘA(a, 1). To
begin, from a2, a ∧ ∼ a ≤ a we have a2 ∨ (a ∧ ∼ a) ≤ a,
whence a ∈ [

a2 ∨ (a ∧∼ a)
)
. Thus, [a) ⊆ [

a2 ∨ (a ∧∼ a)
)
.

On the other hand, we have a2 ≤ a2 ∨ (a ∧ ∼ a), whence
a2 ∨ (a ∧ ∼ a) ∈ [a). Thus,

[
a2 ∨ (a ∧ ∼ a)

) ⊆ [a). Hence,[
a2 ∨ (a ∧ ∼ a)

) = [a) and therefore

ΘA(a2 ∨ (a ∧ ∼ a), 1) = ΘA(a, 1). (7.1)

We next showΘA
(
a2∨(a ∧∼ a), 0

) = ΘA(a, 0). Again,
from a2, a ∧ ∼ a ≤ a we have a2 ∨ (a ∧ ∼ a) ≤ a, whence
a2 ∨ (a ∧ ∼ a) ∈ (a]. Thus, (

a2 ∨ (a ∧ ∼ a)
] ⊆ (a]. On

the other hand, from a2 ≤ a2 we get a ≤ a ⇒ a2 by (Res),
which is to say a ≤ ∼(

a ∗ ∼(a2)
)
. Therefore

a ∗ ∼(a2) ≤ ∼ a. (7.2)

Also, ∼(a2) ≤ a ⇒ a = 1, so by (Res), ∼(a2) ∗ a ≤ a.
That is to say,

a ∗ ∼(a2) ≤ a. (7.3)

By (7.2) and (7.3), we have a ∗∼(a2) ≤ a ∧∼ a, whence
a ∗ ∼(a2) ≤ a2 ∨ (a ∧ ∼ a). That is, ∼(a2) ∗ a ≤ a2 ∨
(a ∧∼ a), whence ∼(a2) ≤ a ⇒ (

a2 ∨ (a ∧∼ a)
)
by (Res).

But then ∼(a2) ∧ (a ∨ ∼ a) ≤ a ⇒ (
a2 ∨ (a ∧ ∼ a)

)
,

which yields a ≤ (∼(a2) ∧ (a ∨ ∼ a)
) ⇒ (

a2 ∨ (a ∧ ∼ a)
)
.

By De Morgan’s laws and the law of double negation, a ≤
∼(

a2 ∨ (a ∧ ∼ a)
) ⇒ (

a2 ∨ (a ∧ ∼ a)
)
, which is to say

a ≤ (
a2 ∨ (a ∧ ∼ a)

) + (
a2 ∨ (a ∧ ∼ a)

)
. That is,

a ≤ (
a2 ∨ (a ∧ ∼ a)

)2̄
.

Hence, a ∈ (
a2 ∨ (a ∧ ∼ a)

]
. Thus, (a] ⊆ (

a2 ∨ (a ∧ ∼ a)
]
.

Hence,
(
a2 ∨ (a ∧ ∼ a)

] = (a] and therefore

ΘA(
a2 ∨ (a ∧ ∼ a), 0

) = ΘA(a, 0). (7.4)

By (7.1), (7.4), and (0, 1)-congruence orderability, we
conclude a2 ∨ (a ∧ ∼ a) = a. It follows that A |� (6.1);
thus, A is a Nelson residuated lattice by Theorem 6.1. ��

We shall say that a CIBRLA satisfies the filter separation
property (FSP) when, for all a, b ∈ A, it holds that

if [a) = [b) and [∼ a) = [∼ b) then a = b. (FSP)

Read in the contrapositive, the (FSP) is saying that, for all
a �= b, there is a filter that separates either these two elements
or their negations. In the context of compatibly involutive
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CIRLs, the (FSP) can be equivalently restated as the condi-
tion

if [a) = [b) and (a] = (b] then a = b,

which we can read as follows: if a �= b, then there is either
a filter or an ideal that contains one and not the other.

One is reminded of well-known properties of lattices, e.g.
that any two distinct elements can be (trivially) separated by
a lattice filter; or of the more interesting theorem of Marshall
Stone (1936, Theorem 64) that any two distinct elements of a
Boolean algebra can be separated by a prime ideal (or, equiv-
alently, by a prime filter). In fact, it would not be difficult to
formulate our (FSP) also in terms of prime filters/ideals (for
a suitable definition of primeness in the context of residu-
ated lattices) and then use it to obtain an analogue of Stone’s
theorem for our algebras. Such results are at the basis of rep-
resentation and duality theory for several classes of algebras
having a distributive lattice term reduct.8 In a topological
context, the (FSP) may in fact be viewed as one among
the useful separation of points properties, which can also
sometimes be formulated in terms of homomorphisms into
a generating algebra rather than filters or ideals (see e.g.
the algebraic separation theorem of Clark and Davey (1998,
p. 16)).

Our formulation of the (FSP) suggests that, in the context
of (compatibly involutive) CIRLs, distinct elements may not
be separable if we use filters alone: in particular, the elements
a, a2, and indeed ak for all k ≥ 1 will generate the same fil-
ter. However, if we take into account filters and ideals at
the same time (either directly or through the negation), then
we can recover a separation of points property. The obvious
resemblancewith the above-discussed notions of congruence
orderability vs. (0, 1)-congruence orderability is not a super-
ficial one, as the following corollary, which is the main result
of the section, now shows.

Corollary 7.2 For a compatibly involutive CIBRL A, the fol-
lowing are equivalent:

1. A is a Nelson residuated lattice.
2. A is (0, 1)-congruence orderable.
3. A is (0, 1)-Fregean.
4. A has the (FSP).
5. For all a, b ∈ A, it holds that

if [a) = [b) and (a] = (b] then a = b. ��
8 The topological study of Nelson algebras can be traced back at least
to Cignoli (1986); Sendlewski (1990). For N4-lattices, a topological
duality was first introduced in Odintsov (2010); see also Jansana and
Rivieccio (2014). We notice in passing that the special filters of the first
kind used in the duality of Odintsov (2010) coincide, within Nelson
algebras, with our filters as defined in Sect. 2

The next corollary is an unpublished result of Busaniche
and Cignoli (2008).

Corollary 7.3 For a compatibly involutive CIRL A, t.f.a.e.:

1. A is k +1-potent (k ∈ ω) and satisfies the quasi-identity

xk ≈ yk and (∼ x)k ≈ (∼ y)k implies x ≈ y. (7.5)

2. A is a Nelson residuated lattice.

Proof (1) ⇒ (2). Suppose A is k + 1-potent. By k + 1-
potency and Lemma 5.1, we have that A |� (7.5) iff for
all a, b ∈ A,

ΘA(0, a) = ΘA(0, b) and

ΘA(1, a) = ΘA(1, b) implies a = b.

But this latter holds iff A is a Nelson residuated lattice.
(2) ⇒ (1). Suppose A is a Nelson residuated lattice.
By Corollary 4.3, A is 3-potent. From this and Proposi-
tion 4.4, we easily conclude that A |� (7.5). ��
We conclude the paper with an application of the main

result. But first, call an algebra A with constant terms c
and d properly (c,d)-congruence orderable if A is (c,d)-
congruence orderable and neither c-congruence orderable
nor d-congruence orderable.

Theorem 7.4 Let A be a non-trivial subdirectly irreducible
Nelson residuated lattice with monolith μ. Either A is simple
or |0/μ| = 2 = |1/μ|, and all other μ-blocks are trivial.

Proof We first observe that A is (0, 1)-congruence order-
able by Corollary 7.2, since it is a Nelson residuated lattice.
SupposeA is either 1-congruence orderable or 0-congruence
orderable. In either case, by Corollary 5.10 we have thatA is
(term equivalent to) a Boolean algebra. As A is subdirectly
irreducible, we conclude that A is simple.

Observe next from the theory of Nelson algebras that,
to within isomorphism, the only simple Nelson residuated
lattices are the 2-element Boolean algebra 2 (considered as
a Nelson residuated lattice) and the 3-element chain 3.

Assume now that |A| ≥ 4 and that A is neither 0-
congruence orderable nor 1-congruence orderable. Then, A
is properly (0, 1)-congruence orderable; moreover,A is sub-
directly irreducible and not simple. Since A is subdirectly
irreducible, from Corollary 2.2 we have that there exists an
element m1 < 1 such that for every c < 1 there exists a
positive integer n for which cn ≤ m1 holds. The monolith of
A is thus ΘA(1, m1).

Let A∂
h be the ‘horizontal’ dual of A. Since A and A∂

h
are term equivalent, they have the same congruences. By
hypothesis, therefore, A∂

h is subdirectly irreducible, so by
Corollary 3.4, there exists an element 0 < m2 such that for
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any 0 < d there exists a positive integer n for whichm2 ≤ dn̄

holds. So the monolith of A∂
h is ΘA∂

h (0, m2).
As the congruences on A and A∂

h coincide, we have

that ΘA(0, m2) = ΘA∂
h (0, m2), by properties of principal

congruences. Therefore, ΘA(1, m1) = μ = ΘA(0, m2).
Evidently 1 �= m1 and 0 �= m2. To complete the proof,
we first establish the following

Claim Let a, b ∈ A. If a �= 0, 1 and b �= 0, 1 and a ≡ b
(mod μ), then a = b.

Proof (of the claim) By our assumptions on a and b, for
every θ ∈ ConA we have that (0, a) ∈ θ iff (0, b) ∈ θ and
(1, a) ∈ θ iff (1, b) ∈ θ . This implies ΘA(0, a) = ΘA(0, b)

andΘA(1, a) = ΘA(1, b), whence a = b sinceA is properly
(0, 1)-congruence orderable. ��

To complete the proof of the theorem, we establish three
cases:

– |0/μ| = 2. Suppose there exist a, b ∈ A such that a, b �=
0 and a ≡μ 0 and b ≡μ 0. If a = 1, then 0 ≡μ 1 andμ =
ΘA(0, 1) = ∇A. But then A is simple, a contradiction.
Hence, a �= 1 and an analogous argument establishes
b �= 1. By the claim, a = b. Hence, 0/μ has at most
two elements. Since 0 �= m1 ∈ μ, 0/μ has exactly two
elements.

– |1/μ| = 2. This follows by an argument analogous to the
case |0/μ| = 2.

– |c/μ| = 1, for c �= 0, 1. Let c ∈ A be such that c �= 0, 1.
Let a, b ∈ c/μ. Then, a �≡ 0 (mod μ) and a �≡ 1
(mod μ), whence a �= 0 and a �= 1. A similar obser-
vation shows b �= 0 and b �= 1. By the claim, a = b.
Hence, c/μ has exactly one element.

Conjoining the preceding three cases, we see that |0/μ| =
2 = |1/μ|, and all other μ-blocks are trivial, completing the
proof. ��

We close the section with the following result, which is
basically Sendlewski (1984, Theorem 2.1); see also Cornejo
and Viglizzo (2018, Theorem 6.12).

Corollary 7.5 For a Nelson algebra A, t.f.a.e.:

1. A is subdirectly irreducible.
2. A has a unique atom.
3. A has a unique co-atom.
4. A has both a unique co-atom c and a unique atom ∼ c. ��

8 Future work

In this final section, we collate—in the form of open
problems—some directions for future research that we find
particularly promising.

Problem 8.1 Is there an analogue of Corollary 7.2 that holds
for N4-lattices?

Let x
RM⇒ y abbreviate

(
x∧(y ⇒ y)

) ⇒ y and x � y abb-

reviate x
RM⇒(x

RM⇒y). Recent work due to Spinks and Veroff
(2018) shows that, to within term equivalence, N4-lattices
may be presented as certain algebras 〈A; ∧,∨, ∗,⇒,∼〉
that: (i) generalise compatibly involutive CIRLs by dropping
integrality;9 and (ii) satisfy the following paraconsistent ana-
logue of the Nelson identity, viz.

(x � y) ∧ (∼ y � ∼ x) ≈ x ⇒ y. (8.1)

In this presentation of N4-lattices qua residuated struc-
tures, the term function induced by � corresponds to the
weak implication → of N4-lattices. We conjecture that over
every appropriate algebra 〈A; ∧,∨, ∗,⇒,∼〉, paraconsis-
tent analogue (8.1) of the Nelson identity is equivalent to
the following congruence condition holding for all a, b ∈ A:

ΘA(
a, ∼(a ⇒ a)

) = ΘA(
b,∼(b ⇒ b)

)
and

ΘA(a, a ⇒ a) = ΘA(b, b ⇒ b) implies a = b.

Problem 8.2 Characterise the (0, 1)-congruence orderable
CIBRLs.

The (0, 1)-congruence orderable CIBRLs must form a
class of algebras K such that the subclass of K that satis-
fies the self-inverting identity ∼ ∼ x ≈ x coincides with the
variety of Nelson residuated lattices. In other words, K is
some non-involutive generalisation of the variety of Nelson
residuated lattices. Observations such as our Lemma 5.1 and
Remark 5.5 hint that K may be the class of all CIBRLs sat-
isfying (a weaker version of) the identity (Nelson), where ∼
(as usual) abbreviates implication into 0.

Problem 8.3 Investigate the class of all CIBRLs satisfying
the Nelson identity.

Problem 8.2 suggests the class K of all CIBRLs satis-
fying the Nelson identity (Nelson) may be of independent
interest. Preliminary investigations into K lend some cre-
dence to this hypothesis. We speculate that K may be
first-order definitionally equivalent to the class of all algebras
〈A; ∧,∨,→,∼, 0, 1〉 of type 〈2, 2, 2, 1, 0, 0〉 such that the
following hold:

(N1′) The reduct 〈A; ∧,∨,∼, 0, 1〉 is a quasi-De Morgan
algebra (with lattice ordering ≤) in the sense of
Sankappanavar (1987, Definition 2.2).

(N2′) The relation � defined for all a, b ∈ A by a � b iff
a → b = 1 is a quasiorder on A.

9 This corresponds to the move from the integral (Nelson) to the non-
integral (N4-lattice) case.
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(N3′) The relation Ξ := � ∩ (�)−1 is a congruence on
the reduct 〈A; ∧,∨,→, 0, 1〉, and the quotient algebra
〈A; ∧,∨,→, 0, 1〉/Ξ is a Heyting algebra.

(N4′) For all a, b ∈ A, it holds that ∼(a → b) ≡ ∼ ∼(a ∧
∼ b) (mod Ξ).

(N5′) For all a, b ∈ A, it holds that a ≤ b iff a � b and
∼ b � ∼ a.

Just as items (N1)–(N5) in the definition of N4-lattices
guarantee that they can be equivalently presented as twist
structures (Odintsov 2004), we conjecture that the above
items may allow one to represent this new class of algebras
via a twist-structure construction of some kind. However,
since all twist structures known in the literature give rise, by
their very definition, to an involutive negation, the construc-
tion itselfwill have to begeneralised in order to accommodate
the failure of the double negation law. Work in this direction
has been recently done in Maia et al., and one can specu-
late whether the non-involutive twist structures of [43] might
be suitably modified to obtain a representation theorem for
‘non-involutive Nelson algebras’.

Problem 8.4 Investigate (0, 1)-congruence orderability from
the perspective of general algebra. Is there a characterisa-
tion theorem for congruence permutable (0, 1)-congruence
orderable varieties similar to the characterisation theorem for
congruence permutable 1-congruence orderable varieties of
Idziak et al. (2009)?

The variety of equivalential algebras (Kabziński and
Wroński 1991) is the paradigmatic example of a congruence
permutable 1-Fregean variety inasmuch as every congru-
ence permutable Fregean variety of algebras V possesses a
binary term that turns every member of V into an equivalen-
tial algebra. This result (proved in a stronger form) is the
main theorem of Idziak et al. (2009).

Problem 8.5 What is the logical counterpart, if any, of being
(0, 1)-Fregean?

Recall from Czelakowski and Pigozzi (2004, Defini-
tion 59) that a deductive system L over a language type Λ

is Fregean if, for every theory T of L, the relativised inter-
derivability relation ��T

L defined for all Λ-formulas ϕ,ψ

by

ϕ ��T
L ψ iff T , ϕ �L ψ and T , ψ �L ϕ

is a congruence relation on the formula algebra FmΛ; such
logics thus enjoy a very strong property of replacement of
equivalents (Font and Jansana 2009, p. 68). By Czelakowski
(2001, Theorem 6.3.1), a regularly algebraisable logic is
Fregean iff its equivalent quasivariety is 1-Fregean for
some constant term 1; still stronger results are given in

Czelakowski and Pigozzi (2004, Section 3.1). Given the rela-
tionship between Fregean logics and Fregean algebras, it is
natural to enquire as to the logical counterpart, if any, of the
property of being (0, 1)-Fregean.

Added in proof In Rivieccio and Spinks (2018), the authors
generalise the well-known Vakarelov/Fidel twist structure
semantics to a semantics for a non-involutive analogue of
Nelson algebras; this partly addresses Problem 8.3. In ongo-
ing work, the authors also show that the (0, 1)-congruence
orderableCIBRLs are exactly theCIBRLs satisfying theNel-
son identity, where negation ∼ is introduced as implication
into 0; this resolves Problem 8.2.
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