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Abstract
The sailing safety constraints of containerships were ignored in the previous studies on feeder containership routing problems;
however, they are especially critical for small-sized feeder containerships. In this study, we optimize feeder routes while
incorporating stowage plans to address the sailing safety of containerships. Firstly, a mixed integer nonlinear programming
model for integrated optimization is formulated. Next, a heuristic algorithm is designed, by which feeder routes can be
updated through a variable neighborhood search, and stowage plans are obtained using a genetic algorithm. Finally, through
the computational study, we confirm that the integrated optimization canmeet the sailing safety requirements of containerships
and effectively reduce the total cost of the feeder service.Moreover, through the sensitivity analysis,wediscuss the performance
robustness of the proposed algorithm and further demonstrate the significance of this study.

Keywords Sailing safety · Integrated optimization · Feeder routing · Stowage planning

1 Introduction

With the development of containership transportation, con-
tainer shipping companies began to deploy large container-
ships to benefit from economies of scale. As large contain-
erships can only be berthed in major hub ports with deep
waters, a large containership typically serves a main route
comprising some hub ports, while small ships are deployed
to serve feeder routes with spoke ports (Zheng et al. 2015).
This is called a hub-and-spoke (H&S) shipping network.
Research on H&S shipping networks has mainly focused on
liner transportation among hub ports (Hsu and Hsieh 2007;
Gelareh and Pisinger 2011; Gelareh et al. 2013; Fontes and
Goncalves 2017). Few studies have focused on the feeder
service (spoke-level route). The feeder service is in charge
of distributing the import volumes destined to all the spoke
ports from the hub port and simultaneously collecting the
export volumes from the spoke ports to be delivered to the
hub port for further transportation. The main problem that
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needs to be addressed during a feeder service is the deter-
mination of feeder routes for containerships (i.e., the feeder
routing problem).

Sambracos et al. (2004) thought of this problem as an
extension of the vehicle routing problem (VRP) and for-
mulated it as a capacitated VRP. Suban and Twrdy (2008)
considered this problem as a VRP with both pickup and
delivery and modeled it on a graph. Subsequently, Karlaftis
et al. (2009) consideredmore realistic conditionswhile incor-
porating the time deadline constraints. Zhang et al. (2015)
presented a feeder routingoptimizationmethod for container-
ships through an intelligent electronic chart and information
system to minimize the sailing time of the containerships.
Considering the size of the containership is also an important
factor that may influence the cost of the feeder routing plans,
Ji et al. (2015) established a routing optimization model for
multi-type containerships.

Based on earlier studies, we know that the feeder routing
problem is similar to network design problems, and in most
related studies, this problem has been regarded as a VRP,
with capacity and time window constraints. However, for the
sailing of containerships in the real world, only meeting the
capacity constraint of the containership is insufficient; some
safety constraints, such as stability, strength, and trim, must
be satisfied to ensure the sailing safety of the containership.
These sailing safety constraints are especially critical for
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feeder containerships because they are usually small and have
stricter safety requirements that must be satisfied to prevent
overturning. Sailing safety indices are related to the load-
ing locations of the containers on the containership, i.e., the
stowage plan. If a feeder routing problem is addressed with-
out considering the stowage plan, the resultant feeder routing
plan may not satisfy the sailing safety requirements of the
containership and may also result in a large number of con-
tainer rehandles owing to an unfavorable arriving sequence
along a route of the containership. Container rehandles occur
when containers that are not destined to be discharged at a
particular port need to be moved, to reach other contain-
ers that are required to be unloaded at that port. A large
number of container rehandles will significantly increase the
operational time and service cost of a containership at ports.
Therefore, the stowage plan of the containership must be
considered jointly with the optimization of the feeder con-
tainership routes.

In an H&S shipping network, many feeder ports are
connected to a hub port; hence, the containership stowage
planning problem mentioned here is actually a multi-port
stowage planning problem (MP-SPP), which determines the
containership stowage plan for each port along the route.
Studies dealing with MP-SPPs were conducted by Wilson
and Roach (2000), Ambrosino et al. (2015), Ambrosino et al.
(2017), and Zhang et al. (2018). In a feeder service of the
H&S network, no direct cargo flow exists between any two
feeder ports (Alumur and Kara (2008)); therefore, it should
be noted that the MP-SPP addressed here is different from
that addressed in the aforementioned studies.

For the above analysis,we assert that it is necessary to opti-
mize the feeder routes while incorporating the stowage plans
to ensure the sailing safety of the containerships and reduce
the total cost of the entire feeder service; this constitutes
the scope of the current work. This study differs from other
related research on the feeder containership routing problem
in the following respects: (1) the feeder routing and stowage
planning problems are optimized jointly, in which the sailing
safety constraints are imposed for the containership, while in
other feeder routing studies, only the capacity constraint of
the containership was focused on, which is evidently insuffi-
cient for the navigation of the feeder containerships in reality;
(2) the objective of this study is to minimize the transporta-
tion cost plus the service cost at each port, which includes
the cost of container rehandles, while in other studies, the lat-
ter was ignored; (3) a novel formulation is developed for the
integrated optimization problem, and an efficient heuristic
algorithm is proposed for solving the problem.

The remainder of this paper is organized as follows. In
Sect. 2, a mixed integer programming model for the inte-
grated optimization of feeder routing and stowage planning
of containerships is presented. In Sect. 3, a tailored heuristic
algorithm is developed to solve the problem, in which the

Fig. 1 Structure of a feeder shipping network

feeder routes are updated through a variable neighborhood
search, and a special MP-SPP is described and solved by a
genetic algorithm. The computational experiments and cor-
responding discussions are reported in Sect. 4. Finally, in
Sect. 5, we summarize, draw conclusions, and provide sug-
gestions for further research directions.

2 Model formulation

2.1 Problem description

As shown in Fig. 1, a feeder shipping network contains a
hub port and several spoke ports. The feeder shipping com-
pany is responsible for distributing the containers from the
hub port to the spoke ports and, at the same time, collect-
ing the containers from each spoke port to the hub port for
further transportation. The feeder routing problem involves
assigning each spoke port that has transportation tasks with a
specific containership and determining the arriving sequence
of the containership along its route to minimize transporta-
tion costs, while satisfying the ship capacity constraints and
time deadlines.

Sometimes, for a given feeder route of a containership, a
feasible stowage plan cannot be obtained owing to violations
of sailing safety constraints. In addition, an unfavorable arriv-
ing sequence of the containership may cause a large number
of container rehandles, which have a significant impact on
the service time and cost of the containership at the ports.
Therefore, in this integrated optimization model, the feeder
routes and related stowage plans of containerships are deter-
mined simultaneously, and the model aims to minimize the
total cost of the feeder service, while ensuring the sailing
safety requirements of the containerships.

The flows of containers for a feeder route are shown in
Fig. 2 (ports 1 and 6 are hub ports). No container is directly
transferred between any two feeder ports, and the container-
ship must start from the hub port and finally return to the hub
port.
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Fig. 2 Container flows for a feeder route

Fig. 3 Placement of a containership with a capacity of 200TEUs

Figure 3 shows the placement of a feeder containership
with a capacity of 200TEUs, i.e., it shows how containers are
arranged in storage areas called bays, along the entire length
of the vessel. Figure 4 shows the cross-sectional viewof a bay.
As shown in Fig. 4, a bay is composed of a number of slots.
A slot in a bay is identified by a row number, which indicates
its horizontal position within a bay, and a tier number, which
indicates its vertical position within a bay. Therefore, a slot
in a containership can be identified by its bay, row, and tier
number.

In general, there is a distinction between the on-deck and
below-deck areas of a bay. The below-deck (in holds) areas
are closed by hatch covers, which are tight metallic struc-
tures that prevent water from entering. For the containership
shown in Fig. 3, two adjacent odd-bays (or one even-bay) are
(is) covered by a hatch cover.When unloading/loading a con-
tainer from/into a slot in holds, the corresponding hatch cover
must be opened, and containers loaded on-deck (above that
hatch cover) must be removed (rehandled). Such container
rehandles triggered by removing the hatch cover and regular
container rehandles (i.e., moving containers onboard that are
not destined to be discharged at a particular port to access
others that are to be unloaded at that port) are both consid-
ered in the model. If a container is rehandled at a feeder port,
it can be reloaded in a different slot of the containership.

Moreover, to add the adaptability to the model for prac-
tical applications, multi-type containerships with different
capacities, speeds, and sailing costs are considered.

2.2 Model formulation

The notations used in the model are described as follows:

O: hub port (initial origination of all containerships);
O ′: virtual hub port (final destination of all container-

ships);

Fig. 4 Cross-sectional view of a bay

�: set of feeder ports;
K : set of containerships, where k is a containership

belonging to K ;
Sk : set of slots in containership k, s is a slot belonging to

Sk ;
G0

k : set of slots on the deck (above hatch covers) of con-
tainership k;

G1
k : set of slots in the holds (below hatch covers) of con-

tainership k;
θ(s): set of slots below the hatch cover that is related to slot

s; more specifically, if slot s is above a hatch cover,
then all the slots covered by that hatch cover are added
to set θ(s), where s ∈ G0

k ;
Qi j : set of containers required to be transported from port

i to port j ;
π(s): set of slots that are directly below slot s;

ei : earliest arrival time at feeder port i ;
hi : latest arrival time at feeder port i ;
li : latest arrival time at the hub port for containers from

feeder port i ;
di j : distance between ports i and j (unit: mile);
vk : speed of containership k (unit: knot);
Ck : loading capacity of containership k;
pi : number of containers required to be unloaded at

feeder port i ;
qi : number of containers required to be loaded at feeder

port i ;
w
i j
c : weight of container c originating from port i and with

the destination of port j ;
stki : time required to unload/load one container from/into

containership k at port i (unit: h);
scki : service cost for containership k at port i (unit: thou-

sand USD/h);
fki j : cost for containership k sailing from port i to port j

(unit: thousand USD);
M : a sufficiently large positive number;
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Fig. 5 GM and trim

GM : distance between the center of gravity (G) and the
metacenter (M) of the ship, it is used for measuring
the stability of the containership; as shown in Fig. 5,
GM = KM − KG, where KM is the transverse
metacenter above the base line, and KG is the vertical
distance between the center of gravity and the base
line;

GM0
k : minimum GM value of containership k;

GM1
k : maximum GM value of containership k;

Ms: hydrostatic bending moment at the middle of con-
tainership, it is an important index for measuring the
longitudinal strength of the ship, and it is usually
greater than 0;

Msk : maximum Ms value of containership k;
T : trim of the containership, which is defined as the dif-

ference between the draft at the stern and bow (T can
also be illustrated as in Fig. 5, where B is the center
of buoyancy); it needs to be as small as possible, such
that it can be easily adjusted by the ballast;

Tk : maximum absolute value of T for containership k.

The decision variables are as follows:

xki j : a binary, where xki j = 1 if containership k travels
directly from port i to j ;

ybksi jc : a binary, where ybksi jc = 1 if container c originating
fromport i to port j is stowed at slot s of containership
k at port b (after unloading and loading operations);

rksb : a binary, where rksb = 1 if slot s of containership
k is occupied at port b (after unloading and loading
operations);

eksb : a binary, where eksb = 1 if the container in slot s of
containership k required to be rehandled at port b;

rekb: number of container rehandles of containership k at
port b, which can be calculated as rekb = ∑

s∈Sk e
ks
b ;

Wks
b : deadweight of slot s in containership k at port b (after

unloading and loading operations);
tki : arrival time of containership k at port i ;
uki : load of containership k after leaving port i ;
gki : service time of containership k at port i .

Using the above notations, the integrated optimizationmodel
can be presented as follows:

min
∑

k∈K

∑

i∈�∪O

∑

j∈�∪O ′\i
( fki j × xki j + (pi + qi ) × scki

×stki × xki j ) +
∑

k∈K

∑

b∈�

rekb × sckb × stkb × 2

(1)
∑

j∈�∪O ′
xkO j = 1 k ∈ K (2)

∑

i∈�∪O\ j
xki j −

∑

b∈�∪O ′\ j
xk jb = 0 k ∈ K , j ∈ � (3)

∑

k∈K

∑

i∈�∪O\ j
xki j = 1 j ∈ � (4)

gkO =
∑

i∈�∪O

∑

j∈�\i
xki j × p j × stkO k ∈ K (5)

gki = (pi + qi + reki × 2) × stki k ∈ K , i ∈ � (6)

tki + gki + di j
vk

− tk j ≤ (1 − xki j ) × M

k ∈ K , i ∈ � ∪ O, j ∈ � ∪ O ′\i (7)

ei ≤ tki ≤ hi i ∈ �, k ∈ K (8)

tkO ′ − l j ≤ (1 −
∑

i∈�∪O\ j
xki j ) × M k ∈ K , j ∈ �

(9)

ukO =
∑

i∈�∪O

∑

j∈�\i
p j × xki j k ∈ K (10)

uk j ≥ uki − p j + q j − (1 − xki j ) × M

k ∈ K , i ∈ � ∪ O, j ∈ � ∪ O ′\i (11)

uk j ≤ uki − p j + q j + (1 − xki j ) × M

k ∈ K , i ∈ � ∪ O, j ∈ � ∪ O ′\i (12)

uki ≤ Ck k ∈ K , i ∈ � ∪ O (13)

Objective (1) of the model is to minimize the total cost of
the feeder service, which includes the transportation cost
and the service cost at the ports of the containerships. If
a container is rehandled, it must be unloaded first and then
reloaded; therefore, a container-rehandle is considered as two
tasks. Constraints (2) along with constraints (3) guarantee
that the route of each containership starts from and ends at
the hub port, and a containership travels on one route at most
(xkOO ′ = 1 represents a virtual route of containership k).
Constraints (4) ensure that each feeder port must be visited
by a containership and be visited only once. Constraints (5)
and (6) define the service time of the containerships at the
hub and feeder ports, respectively. Constraints(7) describe
successive arrival times at ports for containerships. Con-
straints (8) ensure the timewindow of each feeder port, while
constraints (9) confine time deadlines at the hub port for con-
tainers from the feeder ports. Constraints (10) define the ship
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loads at the hub port, while constraints (11) and (12) cor-
respond to the ship loads at the feeder ports. Constraints
(13) indicate that the capacity of any containership cannot
be exceeded.

The constraints for containership stowage planning are as
follows:

∑

i∈�∪O

∑

j∈�∪O ′\i

∑

c∈Qi j

ybksi jc = rksb k ∈ K , s ∈ Sk, b ∈ � ∪ O

(14)

rksb ≤ rkπ(s)
b k ∈ K , s ∈ Sk, b ∈ � ∪ O (15)

Constraints (14) define the relationship between decision
variables y and r , and ensure that any slot stows at most one
container at any port. Constraints (15) guarantee that there is
no container hanging in the air for any containership at any
port.

The sailing safety constraints are as follows:

Wks
b =

∑

i∈�∪O

∑

j∈�∪O ′\i

∑

c∈Qi j

ybksi jc × w
i j
c

k ∈ K , s ∈ Sk, b ∈ � ∪ O (16)

GM0
k ≤ KMk −

∑
s∈Sk (Hs × Wks

b )

Dk
≤ GM1

k

k ∈ K , b ∈ � ∪ O (17)

0 ≤ 1

2
(γk × DLk +

∑

s∈Sk
(Is × Wks

b ) − Dk × fk

×Lk) ≤ Msk k ∈ K , b ∈ � ∪ O (18)
∣
∣
∣
∣
∣

(
∑

s∈Sk (Is × Wks
b ) − LCBk × Dk)

(MCTk × 100)

∣
∣
∣
∣
∣
≤ Tk

k ∈ K , b ∈ � ∪ O (19)

Equations (16) define the deadweight of the slot in each
containership at each port. Constraints (17)–(19) are restric-
tions for the stability (GM), longitudinal strength (Ms), and
trim (T ) of the containership, respectively. Notations in con-
straints (17)–(19) that are not introduced before, such as
KMk , Hs , and γk , are specific parameters of a container-
ship. Detailed, formulations and corresponding explanations
of GM , Ms, and T are presented in Appendix A.

The following constraints [constraints (20)–(28)] involve
decision variables related to both the feeder routing and
stowage planning and demonstrate the relationship between
the two problems.

∑

s∈Sk

∑

c∈QOj

yOks
O jc =

∑

i∈�∪O\ j
xki j × p j k ∈ K , j ∈ � (20)

∑

s∈Sk

∑

c∈QiO′
yiksiO ′c =

∑

j∈�∪O\i
xk ji × qi

k ∈ K , i ∈ � (21)

∑

s∈Sk

∑

i∈�∪O\ j

∑

c∈Qi j

y jks
i jc = 0 k ∈ K , j ∈ � ∪ O ′ (22)

∑

s∈Sk

∑

c∈Qi j

ybksi jc ≤
∑

s∈Sk

∑

c∈Qi j

ymks
i jc + (1 − xkbm)M

k ∈ K , b, i ∈ � ∪ O,m ∈ �, j ∈ �\m (23)
∑

s∈Sk

∑

i∈�∪O

∑

j∈�∪O ′\i

∑

c∈Qi j

ybksi jc = ukb k ∈ K , b ∈ � ∪ O

(24)

Constraints (20) stipulate that all the containers destined to a
feeder port along the route of a containership are loaded on it
at the hub port. Constraints (21) indicate that if containership
k arrives at feeder port i , then all the containers from port i
must be loaded onto containership k at port i . Constraints (22)
indicate that the containermust be unloaded at its destination.
Constraints (23) ensure that once a container is loaded on a
containership, it must remain on that ship (after unloading
and loading operations at the port(s)) until it reaches its des-
tination. Constraints (24) confine the relationship between
decision variables y and u, which in concert with constraints
(20)–(23), can ensure that when a containership is leaving a
port, only the containers from the port already visited by the
containership are loaded on the containership at that time.

eksb ≥ 1

M
×

∑

s1∈π(s)

∑

i∈�∪O

∑

c∈Qib

ymks1
ibc ×

∑

i∈�∪O

∑

j∈�∪O ′\b

∑

c∈Qi j

ymks
i jc − (1 − xkmb) × M

k ∈ K , s ∈ Sk,m ∈ � ∪ O, b ∈ � (25)

eksb ≥ 1

M
×

∑

s1∈θ(s)

∑

i∈�∪O

∑

c∈Qib

ymks1
ibc ×

∑

i∈�∪O

∑

j∈�∪O ′\b

∑

c∈Qi j

ymks
i jc − (1 − xkmb) × M

k ∈ K , s ∈ G0
k,m ∈ � ∪ O, b ∈ � (26)

eksb ≥ 1

M
×

∑

i∈�∪O

∑

j∈�∪O ′\b

∑

c∈Qi j

ymks
i jc ×

∑

s1∈θ(s)

∑

j∈�∪O ′

∑

c∈Qbj

ybks1bjc − (1 − xkmb) × M

k ∈ K , s ∈ G0
k,m ∈ � ∪ O, b ∈ � (27)

∣
∣
∣ymks

i jc − ybksi jc

∣
∣
∣ ≤ eksb + (1 − xkmb) × M k ∈ K , s ∈ Sk,

b ∈ �,m ∈ � ∪ O, i ∈ � ∪ O\b, j ∈ � ∪ O ′\b, c ∈ Qi j

(28)

Constraints (25)–(28) are nonlinear inequalities used to
define the container rehandles. Constraints (25) are used to
calculate the regular container rehandles, while constraints
(26) and (27) are used to calculate the container rehandles
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triggered by removing the hatch cover during the unloading
and loading operations, respectively. Constraints (28) ensure
that if a container is not rehandled at the current port, the
position of the container on the containership at the current
port must be consistent with that at the former port along the
route, and if the container is rehandled at a port, it can be
reloaded into a different slot of the containership at that port.

The model mainly comprises three types of constraints:
constraints related to feeder routing; constraints related to
stowage planning; and constraints related to both feeder rout-
ing and stowage planning. Compared with the feeder routing
problem discussed in the literature (e.g., Karlaftis et al. 2009;
Zhang et al. 2015; Ji et al. 2015), we have also added the
cost for container rehandles to the objective of the model.
As shown in constraints (25)–(27), the containership route
has a direct impact on the number of container rehandles
at the ports. By including the cost of container rehandles in
the objective, and optimizing the feeder routing and contain-
ership stowage planning problem jointly, we can obtain a
better feeder routing plan and related containership stowage
plans that minimize the total cost of the feeder service.
Comparedwith themulti-port stowage planning problemdis-
cussed in the literature (Ambrosino et al. 2015; Ambrosino
et al. 2017; Zhang et al. 2018),we have considered three types
of container rehandles, namely the regular container rehan-
dles, container rehandles triggered by removing the hatch
cover for unloading the containers, and container rehan-
dles triggered by removing the hatch cover for loading the
containers. Furthermore, we have also discussed three main
sailing safety requirements of the containership, which are
especially important for feeder containerships.Moreover, the
relationships between the two problems are well confined
and the integrated optimization model can ensure the sailing
safety requirements of the containership, which, otherwise,
might be violated when discussing the two problems sepa-
rately.

3 Solutionmethod

The feeder routing problem is an extension of theVRP,which
is NP-hard (Dethloff 2001); the stowage planning problem is
also an NP-hard optimization problem (Avriel et al. 2000).
Therefore, for real-life instances, it is difficult to obtain good
solutions in a reasonable amount of time for the integrated
optimization model. Hence, this section describes a heuristic
algorithm for this problem. The framework of the heuristic
algorithm is described in Sect. 3.1. Detailed descriptions are
presented in Sects. 3.2, 3.3, and 3.4.

3.1 Overall description of the heuristic algorithm

Two main procedures are incorporated in the heuristic algo-
rithm, namely a procedure for updating the feeder routing
plans and a procedure for determining the containership
stowage plans. These two procedures interact with each other
iteratively to obtain (near) optimal solutions for the integrated
optimization problem. For the description of the heuristic
algorithm, the following notations are defined:

X is a solution of the integrated problem; X1 is the feeder
routing plan in solution X ; X2 is the stowage plans based
on feeder routing plan X1 in solution X ; C(X1) is the cost
of X1, which includes the transportation cost and the service
cost at the ports, but excludes the cost of container rehandles;
C(X2) is the cost of X2, which is the total cost of container
rehandles for all the containerships in X1; C(X) is the total
cost of solution X and C(X) = C(X1) + C(X2); Best_X
is the best integrated solution obtained so far; C(Best_X)

is the cost of the best integrated solution obtained so far;
ψ is a set used to record the feeder routing plans that have
already been obtained; M is a sufficiently large number; gen
is used to count the number of consecutive iterations without
obtaining a good updated feeder routing plan; and Maxgen
is an index related to the stopping criteria of the heuristic.

The steps of the heuristic algorithm are listed as follows,
and the flowchart of the heuristic algorithm is shown in Fig. 6.

Step 1: the indexes gen, ψ , and C(Best_X) are initialized,
then go to Step 2;

Step 2: a greedy heuristic is used to generate an initial feeder
routing plan X1 (see details in Sect. 3.2), then go to
Step 3;

Step 3: stowage plans for each containership based on feeder
routing plan X1 are constructed and recorded as X2

(see details in Sect. 3.4), then go to Step 4;
Step 4: if feasible stowage plans can be obtained for all the

containerships based on the feeder routes in X1, then
the cost of container rehandles for all the container-
ships are summed asC(X2), and by combing X1 and
X2, an integrated solution X is generated, the related
cost is calculated as C(X) = C(X1) + C(X2), then
go to Step 5; otherwise, go to Step 6;

Step 5: if the current integrated solution X is better than the
best solution obtained so far, Best_X is replaced by
X and C(Best_X) = C(X), then go to Step 6;

Step 6: update the current feeder routing plan X1 as X ′
1 (see

details in Sect. 3.3). If X ′
1 does not belong to ψ and

C(X ′
1) < C(Best_X), go to Step 8; otherwise, go

to Step 7;
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Fig. 6 Flowchart of the heuristic algorithm

Step 7: gen = gen + 1. If gen = Maxgen, the heuristic
algorithm is stopped, and the best solution obtained
so far (Best_X ) is output; otherwise, go to Step 6;

Step 8: add X ′
1 to ψ and reset index gen as gen = 0; X1 is

replaced by X ′
1, then go to Step 3.

As C(X1) and C(X2) are two nonnegative components, if
C(X ′

1) ≥ C(Best_X), the integrated solution related to
X ′
1 cannot be better than Best_X . Only when C(X ′

1) <

C(Best_X) and X ′
1 /∈ ψ can the integrated solution based

on X ′
1 be better than Best_X . Therefore, only if the updated

feeder routing plan satisfies C(X ′
1) < C(Best_X) and

X ′
1 /∈ ψ , can X ′

1 be accepted, and the stowage plans based
on X ′

1 be constructed. As the number of iterations increases,
C(Best_X) decreases and the number of elements in set ψ

increases. Therefore, to obtain a good updated feeder rout-
ing plan X ′

1 that satisfies C(X ′
1) < C(Best_X), while not

belonging to ψ , becomes increasingly difficult. If a good
updated feeder routing plan cannot be obtained in Maxgen
iterations, the heuristic is stopped, and the best solution
obtained so far (Best_X ) is output as the final solution of
the heuristic algorithm.

3.2 Greedy heuristic for the initial feeder routing
plan

We have developed a greedy heuristic to generate the initial
feeder routing plan according to constraints (2)–(13) of the
integrated optimization model.

Firstly, the largest containership is chosen and a route
based on this containership is generated. This route begins at
the hub port, and a feeder port that has not been visited before
is inserted at the end of the current route at each iteration.
No capacity violation is allowed during the insertion, and the
timewindows at the feeder ports and timedeadlines at the hub
port must be respected. If more than one feeder port meets
the above requirements, the one with the least incremental
cost is selected. In case no feeder port can be inserted to the
current route, the hub port is added to the end of the route and
the current route is output. If a smaller containership exists
that can also make the current route feasible, then the largest
containership is replaced by the smaller containership, and
the cost of the current route is recalculated; otherwise, the
cost based on the largest containership is recorded as the
cost of the current route. Then, a new route is created to visit
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the remaining feeder ports, and the abovementioned greedy
heuristic is performed repeatedly until all the feeder ports are
visited in the containership route.

Finally, the initial feeder routing plan is made up of all the
routes generated through the greedy heuristic, and the cost
of the initial feeder routing plan is the total cost of all the
routes.

3.3 Heuristic for updating the feeder routing plan

Wehave designed a heuristic to update the feeder routing plan
based on a variable neighborhood search. The variable neigh-
borhood search (VNS) was first proposed by Hansen and
Mladenovic (1997) and is a metaheuristic technique based
on the concept of systematic change of neighborhoods dur-
ing the search. The VNS heuristic was already successfully
applied to variants of the VPR (e.g., Fleszar et al. 2009;
Hansen et al. 2010; Kammoun et al. 2015). The feeder rout-
ing problem is also an extension of the VRPwith both pickup
and delivery, and with capacity and time window constraints.
Therefore, a heuristic based on the VNS is developed to
obtain the updated feeder routing plan.

The VNS considers a set of kmax neighborhood struc-
tures and alternately executes a shaking procedure and a local

search procedure to escape from the local optima. At each
iteration, a random solution is generated from the current
neighborhood of the current solution, and then a local search
procedure is applied to generate a new solution. If the new
solution is better than the current solution, the current solu-
tion is replaced by the new solution and the above procedure
is repeated by reinitializing the neighborhood; otherwise, the
procedure is repeated by passing to the next neighborhood.

Fig. 7 Inter-route 2-opt

Table 1 Framework of the
heuristic for updating the feeder
routing plan

Design a set of neighborhood structures Nk , k = 1, . . . , kmax

s = X1, s represents the initial solution of the VNS

gen = 0

While true do

k = 1

While k ≤ kmax do

s′ = Pick At Random(Nk(s)) – pick a random solution s′ from the k-th neighborhood of s

X ′
1 = LocalSearch(s′) – get the best solution X ′

1 among 30 neighbors of s′ in Nk(s′)
If C(X ′

1) < C(s) then

s = X ′
1

k = 1

Else

k = k + 1

End if

If C(X ′
1) < C(Best_X) and X ′

1 /∈ ψ then

X ′
1 is output as the updated feeder routing plan

the VNS is terminated

Else

gen = gen + 1

End if

If gen = Maxgen then

the VNS is terminated

End if

End while

End while
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The framework of the heuristic based on the VNS for
updating the feeder routing plan is shown in Table 1. In
Table 1, Nk(k = 1, . . . , kmax ) is a finite set of pre-determined
neighborhood structures, and Nk(s) is the set of solutions
in the k-th neighborhood structure of solution s. X1 is the
current feeder routing plan that needs to be updated. The
VNS starts with an initial solution s = X1, and the first
neighborhood structure Nk(k = 1) is chosen in the first iter-
ation. Then, the shaking procedure is implemented to obtain
a random solution s′ from Nk(s), and the local search is exe-
cuted to explore the neighbors of s′ in Nk(s′). For the local
search, a candidate list strategy is implemented. The candi-
date list is chosen randomly from the entire neighborhood
and contains 30 non-repetitive neighbors. Then, the best one
in the candidate list is accepted as the new solution(X ′

1 ).
If the new solution X ′

1 is better than the current solution
s (C(X ′

1) < C(s)), then the current solution is updated as
s = X ′

1, and the first neighborhood structure (k = 1) is called
in the next iteration; otherwise, the next neighborhood struc-
ture (k = k + 1) is explored in the next iteration. Each time,
when X ′

1 is obtained, C(X ′
1) is compared with C(Best_X).

If C(X ′
1) < C(Best_X) and X ′

1 does not exist in set ψ , the
VNS is terminated and X ′

1 is output. The VNS is also ter-
minated when a good updated feeder routing plan cannot be
obtained for Maxgen iterations (gen = Maxgen).

According to the characteristics of the problem, seven
neighborhood structures are designed to efficiently explore
the solution space, and these are defined as: Inter-route 2-opt
(N1), Inter-route exchange (N2), Inter-route insertion (N3),
Intra-route 2-opt (N4), Intra-route exchange (N5), Intra-route
insertion (N6), and Containership-size change (N7). These
structures are briefly explained below.

– Inter-route 2-opt (N1). Two ports (p1 and p2) are chosen
from two different routes, and connections between the
two chosen ports and their previous ports are deleted.
Then, the sub-routewith p1 is connected to the preceding
ports of p2, and the sub-route with p2 is connected to
the preceding ports of p1. An example of the Inter-route
2-opt is presented in Fig. 7.

– Inter-route exchange (N2). Two ports are chosen from
two different routes, and the positions of the two ports
are exchanged.

– Inter-route insertion (N3). A port from one route is
deleted and inserted into another existing route or a new
route.

– Intra-route 2-opt (N4). Two ports (p1 and p2) are chosen
from a route, and the arriving sequence between ports p1
and p2 is reversed. An example of the Intra-route 2-opt
is shown in Fig. 8.

– Intra-route exchange (N5). Two ports are chosen from a
route, and their positions are exchanged.

Fig. 8 Intra-route 2-opt

– Intra-route insertion (N6). A port is removed from its
route and reinserted again into that route.

– Containership-size change (N7). The size of the contain-
ership for a route is changed.

All the above-mentioned operations are performed without
violating the capacity constraints of the containerships or
time-window constraints of the feeder ports and hub port.

3.4 Heuristic for containership stowage planning

For a route with n ports, let T = [Ti j ] be the n × n
transportation matrix, where Ti j is the number of contain-
ers originating from port i and with port j as the destination .
Based on features of a feeder route, there are only 2×(n−2)
elements in matrix T that are more than 0, which are
[T12, T13, . . . , T1(n−1)] and [T2n, T3n, . . . , T(n−1)n], while all
the other elements in T are equal to 0.

We now assume that T12, T13, . . . , T1(n−1) are all equal to
0, that is, there is no container to be loaded at the hub port.
The other container groups (T2n, T3n, . . . , T(n−1)n) have the
same destination, and therefore, they are loaded according
to the arriving sequence of the containership and cannot be
unloaded until the last port is reached. As a container cannot
be hung in the air, when loading a container, it can only be
loaded at the lowest empty tier of a row in a bay. If there are
N slots in a tier of a containership, when loading a container,
there exist N choices, and the complexity of the stowage
planning (SP) problem described above can be calculated as
o(SP) = NT2n × NT3n · · · × N (n−1)n = NT2n+T3n ···+T(n−1)n .

For a containership with a capacity of 200 slots, the num-
ber of slots in a tier can be considered to be 40. When the
total number of containers that are required to be picked at
the feeder ports along a route is 100, the complexity of the
SP problem is at least o(40100), and o(SP) equals o(40100)
if and only if there is no container required to be delivered
from the hub port (T12 = T13 · · · = T1(n−1) = 0), and no
container is rehandled at any port along the route.

As can be observed, solving the SP problem is difficult and
time-consuming. Therefore, we reduce its complexity by par-
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Fig. 9 Serial numbers of container groups

Fig. 10 Loading sequence of container groups (I)

Fig. 11 Loading sequence of container groups (II)

titioning the containership into several blocks and splitting
the containers into different groups to solve the SP prob-
lem more efficiently. The detailed procedures are given in
Sects. 3.4.1, 3.4.2, 3.4.3 and 3.4.4.

3.4.1 Container division

First, the containers with the same origination and destina-
tion are placed in the same group. Figure 9 shows the route
of a containership in a feeder routing plan. The number in
the circle above or below the feeder port is the serial number
of each container group. For example, 1© represents the con-
tainer group with containers from port 1 (hub port) to port 2;
2© represents the container group with containers from port
1 to port 3; 5©represents the container group with containers
from port 2 to port 6 (hub port); 6©represents the container
group with containers from port 3 to port 6 (hub port). It can
be noted that for a route with n ports, the number of container
groups is 2 × (n − 2).

Based on the physical arriving sequence of the container-
ship, there exists a certain loading sequence for all container
groups; for example, containers in groups 1©, 2©, 3© and 4©
are loaded at the first port; containers in group 5© are loaded
at the second port; containers in group 6© are loaded at the
third port; containers in group 7© are loaded at the fourth
port; and finally, containers in group 8© are loaded. Thus,
the loading sequence for the container groups is illustrated
in Fig. 10.

For loading operations at the hub port, the container group
that will be unloaded later should be loaded before the
container group, which will be unloaded earlier, to avoid
container rehandles. Therefore, the containers in group 4©
should be loaded first at the hub port, and the containers in
group 1© should be loaded last. The final loading sequence
of container groups is shown in Fig. 11.

Fig. 12 Serial numbers of the containership blocks

Considering the safety of the containerships, containers
with heavier weight should be loaded before (under) the con-
tainers with lesser weight. Here, we categorize the weight of
containers into three classes, namely light-weight (less than
10 t), medium-weight (10–18 t), and heavy-weight (more
than 18 t). Based on this principle, we continue to divide the
container groups mentioned above into smaller groups based
on their weights. Therefore, the number of container groups
is now 3×2×(n−2). The loading sequence of these smaller
container groups is based on the sequence mentioned above
(Fig. 11), and inside each group with the same origination
and destination, the smaller group with a heavier weight will
be loaded earlier.

Using the above rules, the containers are divided into
groups, based on their origination, destination, and weight
class, and the loading sequence of these container groups is
defined.

3.4.2 Block division

In the integrated optimizationmodel, the container rehandles
triggered by removing the hatch cover are considered; there-
fore, for the convenience of calculations, the containership is
divided into several blocks according to its hatch covers. A
hatch cover of the containership in Fig. 12 crosses two odd
bays and divides the two bays into an upper partition (on-
deck) and a lower partition (in-hold). We define this upper
partition/lower partition crossed by a hatch cover as a block.
For the containership in Fig. 12, the number of blocks is 11
and they are numbered as shown in Fig. 12.

3.4.3 Obtaining a stowage plan

Given the containership blocks and container groups, we
can obtain a stowage plan for the containership by dis-
tributing each container group sequentially with a specific
containership block according to the loading sequence of the
container groups at each port. Therefore, theoretically, for a
200TEU-containership with 11 blocks, if it travels on a route
comprising six ports, the complexity of the problem can be
seen as 113×2×(6−2) = 1124 (if no container is rehandled at
ports along the route). Although the solution space is much
smaller than the original SP problem, the complexity of the
problem is still exponential. Therefore, a genetic algorithm
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(GA), based on the above operations, is designed to solve the
SP problem.

3.4.4 GA for the SP problem

The GA is selected for the following reasons:

(1) the complexity of the SP problem;

(2) the ability of GA to obtain a solution of good quality in
an acceptable computational time;

(3) the wide applicability of GA for solving related stowage
planning problems (Zhu and Ji 2014);

(4) a solution to this SP problem can be easily presented
using the representation (coding) scheme of GA.

A GA for solving the SP problem is proposed as follows:

Table 2 Decoding procedure
1: i = 1, b = 1

2: While i ≤ n do

3: Unloading procedure:

4: The containers that need to be rehandled because of the unloading operations are

removed from the containership and Ru
i is calculated; Gmax

i and gia are updated

5: Containers with the destination of port i are unloaded

6: The number of container rehandles because of the loading operations is calculated as

Rl
i and related containers are removed; Gmax

i and gia are updated

7: The number of container rehandles at port i is calculated as Ri = Ru
i + Rl

i

8: The number of empty slots in each containership block is updated

9: Loading procedure:

10: a=1

11: While a < Gmax
i

12: Loading containers in group gia to block b

13: If c(gia) < C(b) then

14: Containers in group gia are loaded into block

b from the lowest empty tier with one container occupies one slot

15: C(b) = C(b) − c(gia)

16: a = a + 1

17: b = b + 1

18: Else if 0 < C(b) < c(gia) then

19: C(b) Containers in group Gia are loaded into block

b from the lowest empty tier with one container occupies one slot

20: c(gia) = c(gia) − C(b)

21: b = b + 1

22: Else if C(b) = 0 then

23: b = b + 1

24: End

25: End while

26: If the stowage plan at port i meeting the safety constraints

of the containership then

27: i = i + 1

28: Else

29: the decoding procedure is terminated and the

current chromosome is infeasible for the SP problem

30: End

31: End while

32: Output the stowage plan and calculate the total

cost for all the container rehandles
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a. Mode of encoding

A set of integer numbers is used to represent a chromosome.
If a containership has N blocks and the number of container
groups isM , then the length of the chromosome is set toM×
N , and each gene (integer) in the chromosome is generated
randomly from 1 to N .

b. Mode of decoding

Each gene in a chromosome represents a containership block,
and we assign each gene of the chromosome in sequence
to container groups based on their loading order. Table 2
shows the detailed procedure of decoding,which is a dynamic
block-assignment scheme that terminateswith a stowageplan
at each port or with the result that the chromosome is infea-
sible. The notations in Table 2 are defined as follows:

Index n is the number of ports along the route of the con-
tainership; Gmax

i is the number of container groups that need
to be loaded at port i ; gia is thea-th container group that needs
to be loaded at port i ; c(gia) is the number of containers in
container group gia ; b is the b-th gene of the chromosome;
C(b) indicates the number of empty slots in block b; Ru

i is
the number of container rehandles because of the unloading
operations at port i ; Rl

i is the number of container rehandles
because of the loading operations at port i ; and Ri is the total
number of container rehandles at port i .

As seen in Table 2, when the containership arrives at a
port, the unloading operations are executed first, followed by
the loading operations. During the unloading operations, not
only are the containers with the destination of the current port
unloaded, but also the containers that need to be rehandled
are unloaded (through Steps 4 and 6).

In Step 4, if a container needs to be rehandled during the
unloading operations at port i , it should be removed first and
added to a current container group or a new container group
originating from port i and going to its original destination.
Then, the data of container groups that should be loaded
at port i are updated and the loading order of these con-
tainer groups is regenerated according to the rules described
in Sect. 3.4.1.

In Step 6, we calculate the number of container rehandles
during the loading operations and remove these rehandled
containers. First, we simulate the loading operation of the
current container groups that need to be loaded at port i
according to Steps 10–25, to check if there are any containers
on-board that must be removed during the loading operation;
if such containers exist, these containers are removed from
the containership, and the data of the current container groups
that need to be loaded at port i are updated. We continue
to simulate the loading operation of the updated container
groups and repeat the above procedures, until no container
needs to be rehandled during the loading operation.

Fig. 13 Example of a chromosome

Fig. 14 Four odd bays of the containership

After executing Step 6, the number of container rehandles
during the unloading and loading operations is calculated.
The final data of container groups that need to be loaded at
port i are generated, followed by Steps 10–25 to load these
container groups at port i .

For a better explanation of the decoding procedure, a small
example is designed and presented here. Figure 13 is an
example of a chromosome. Assume there are four odd bays
of an containership, with two odd bays sharing a hatch cover;
thus, the containership is divided into four blocks by the two
hatch covers (shown inFig. 14). There are four ports along the
route of the containership, therefore, the number of container
groups is 12 at the beginning, and the number of containers in
each container group is shown in Table 3. In Table 3, group
2©-H contains heavy-weight containers from ports 1 to 3;
group 2©-M contains medium-weight containers from ports
1–3; group 2©-L contains light-weight containers from ports
1–3, and so on.

At port 1, only the loading procedure is invoked.Container
group 2©-H is loaded into block 1; container group 2©-M is
loaded into block 2; container group 2©-L is loaded into block
3; container group 1©-H is loaded into block 4; and container
group 1©-M is assigned to block 4. When loading container
group 1©-M into block 4, only six empty slots are left in block
4; therefore, six containers from group 1©-M are loaded into
block 4 and the remaining containers are loaded into the next
block (next gene of the chromosome—block 3). Likewise,
all the container groups that need to be loaded at port 1 are
loaded according to the chromosome shown in Fig. 13, and
the stowage plan at port 1 is shown in Fig. 15a.

At port 2, the unloading procedure is called at first, con-
tainers destined to port 2 are marked as green in Fig. 15b. To
unload these containers, six containers that are not destined
to port 2 must be removed (marked as red in Fig. 15b). Then,
the containers marked as green or red are removed from the
containership (as shown in Fig. 15c).

The rehandled containers during the unloading operations
are formed as a new container group that needs to be loaded
at port 2 ( 2©-L’, which comprises six light-weight contain-
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Table 3 Data of the container
groups at the beginning

Loading Container Loading Unloading Weight Number of
order group port port class containers

1 2©-H 1 3 Heavy 4

2 2©-M 1 3 Medium 13

3 2©-L 1 3 Light 6

4 1©-H 1 2 Heavy 10

5 1©-M 1 2 Medium 20

6 1©-L 1 2 Light 7

7 3©-H 2 4 Heavy 6

8 3©-M 2 4 Medium 10

9 3©-L 2 4 Light 11

10 4©-H 3 4 Heavy 10

11 4©-M 3 4 Medium 12

12 4©-L 3 4 Light 6

ers originated from port 2 and destined to port 3). Now, the
container groups that need to be loaded at port 2 are 3©-H,
3©-M, 3©-L, and 2©-L’.
Then, we simulate the loading operation according to

Steps 10–25 in Table 2 for these four container groups, to cal-
culate the number of containers that must be removed during
the loading operations. When loading container group 3©-H
into block 2, the related hatch cover must be removed and the
containers loaded in block 1 must be unloaded (marked as
blue in Fig. 15c). Therefore, the containersmarked as blue are
removed from the containership (as shown in Fig. 15d) and
are formed as a new container group that needs to be loaded
at port 2 ( 2©-H’, which comprises four heavy-weight con-
tainers originating from port 2 and destined to port 3). Then,
we continue to simulate the loading operation for these five
container groups to see if any containers exist that must be
removed during the loading operation. Apparently, no such
containers exist. Therefore, the unloading procedure at port
2 is completed, and the final container groups that need to
be loaded at port 2 are shown in Table 4. The total num-
ber of container rehandles at port 2 is ten. Then, the loading
procedure is executed for the container groups presented in
Table 4, and the stowage plan at port 2 is shown in Fig. 15e.

The unloading and loading procedures at port 3 can be
executed in the same way as for port 2, resulting in a
stowage plan; therefore, a detailed explanation for port 3 is
not included here.

After a stowage plan is generated for the containership at a
port, the feasibility of it is checked. If the stowage plan is fea-
sible, the cost of container rehandles is recorded; otherwise,
a new chromosome is generated and the decoding procedure
is executed again. If we cannot obtain feasible initial stowage
plans for all the ports along the route after a number of repeti-
tions,we reorder the loading sequenceof the container groups
originating from the hub port, and repeat the above proce-

dures. For this scenario, non-reasonable loading order at the
hub port is applied at the expense of more container rehan-
dles, to pursue feasible solutions. For a certain number of
times, if initial feasible stowage plans for all the ports cannot
be generated, we conclude that there is no feasible stowage
plan for the containership based on the current feeder routing
plan, and the GA used for solving the SP problem terminates.

c. As the encoding of the chromosome designed herein
is universal, the selection/mutation/crossover operation is as
simple as that in solving an ordinary traveling salesman prob-
lem usingGA (Potvin 1996). Therefore, these procedures are
not presented in this study.

d. Termination: the GA terminates when a better fitness
value cannot be calculated after a number of generations or
the initial feasible stowage plan cannot be generated for a
certain number of times.

4 Computational study

A computational study was carried out to analysis the per-
formance of the solution method proposed in this study. All
the instances in the computational study were executed using
a 1.8 GMz Intel Core E5 processor with 8GB of RAM and
were implemented in MATLAB R2016a.

4.1 Data description

The proposed solution method was applied for routing a con-
tainership fleet from the hub port Nansha to a set of 29 spoke
ports in the Pearl River Delta region of China. Table 5 shows
the data for three different types of containerships used in
this study.
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Fig. 15 Example of the decoding procedure

4.2 Hierarchical versus integrated optimization:
value of integration

We compared the results of the hierarchical and integrated
optimization to verify the value of the integrated optimization

of the two problems. Here, two methods were designed to
measure the results of the hierarchical optimization.

The first of these hierarchical methods, hierarchical
optimization-I, is described as follows: an initial feeder rout-
ing plan is obtained by the greedy heuristic proposed in
Sect. 3.2. Next, the initial feeder routing plan is improved
by the VNS procedure until a better feeder routing plan can-
not be obtained for Maxgen iterations. Then, stowage plans
are generated for the containerships based on the current
feeder routes. The total cost of the feeder routing plan and
related stowageplans is calculated as the result of hierarchical
optimization-I. (The framework of hierarchical optimization-
I is presented in Appendix B.)

The second hierarchical meta-heuristic, hierarchical
optimization-II, is described as follows: an initial feeder rout-
ing plan X1 is obtained by the greedy heuristic proposed
in Sect. 3.2; the stowage plans X2 based on feeder routing
plan X1 are generated, and the total cost of the initial solu-
tion is calculated as C(X1) + C(X2). The feeder routing
plan is updated through the VNS procedure. Once a bet-
ter feeder routing plan X ′

1 with a lower cost is obtained
(C(X ′

1) < C(X1)), the current feeder routing plan X1 is
replaced by X ′

1, the stowage plans based on the current
feeder routing plan X1 are generated, and the total cost of
the current solution is recorded. In hierarchical optimization-
II, the two phases (feeder routing and stowage planning) are
separately iterated through the whole process, and the hier-
archical meta-heuristic is terminated when a better feeder
routing plan cannot be generated through the VNS proce-
dure for Maxgen times. The feeder routing plan and the
related stowage plans with the lowest total cost are output as
the result from hierarchical optimization-II. (The framework
of hierarchical optimization-II is presented in Appendix B.)

Different numbers of ports were selected, i.e., 15, 20, 25,
and 30. The loading and unloading quantities at each port
were randomly generated between 10 and 60. Based on the
number of ports, five instances were randomly generated.
Thus, 20 instances were generated in total.

We compared the results of the integrated optimization
with the two hierarchical optimization schemes, individually.
Each method was executed ten times for each instance, and
the average results are presented in Tables 6 and 7. In these
tables, index “C1” represents the cost of the feeder routing
plan; “C2” represents the cost of container rehandles; “C”
is the total cost of the entire solution, e.g., C = C1 + C2;
“reduced cost” shows the difference of the average results
between the hierarchical optimization and the integrated opti-
mization. The unit of above indexes is thousand USD.

For each instance, the t-test is applied to analyze whether
the difference between the results of the hierarchical opti-
mization and the integrated optimization is significant. The
index “t-value” in Table 6 shows the significant difference
between the results of hierarchical optimization-I and the
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Table 4 Data of container groups that need to be loaded at port 2

Loading order Container group Loading port Unloading port Weight class Number of containers

1 3©-H 2 4 Heavy 6

2 3©-M 2 4 Medium 10

3 3©-L 2 4 Light 11

4 2©-H’ 2 3 Heavy 4

5 2©-L’ 2 3 Light 6

Table 5 Data for different types
of containerships

Type Economic Safety range of
(TEU) speed (knots) GM (m) T (m) Ms (tf×m)

100 4.32 (0.8 – 1.54) (-0.3 – 0.3) 8.2 × 103

150 5.18 (0.8 – 1.54) (-0.45 – 0.45) 1.0 × 104

200 5.51 (0.8 – 1.54) (-0.5 – 0.5) 1.2 × 104

Table 6 Computational results of hierarchical optimization-I and the integrated optimization

Instance Number Hierarchical optimization-I Integrated optimization Reduced cost t-value Significance
of ports (1)–(2) (Y or N)

C1 C2 C (1) C1 C2 C (2)

1 15 7.42 0.16 7.58 7.45 0.02 7.47 0.11 27.28 Y

2 7.36 0.13 7.49 7.40 0.01 7.41 0.08 16.13 Y

3 7.45 0.02 7.47 7.46 0.02 7.48 −0.01 −1.12 N

4 7.64 100# 107.64 7.79 0.05 7.84 99.80 > 10000 Y

5 7.40 90.03* 97.43 7.61 0.03 7.64 89.79 8.98 Y

6 20 12.24 0.00 12.24 12.24 0.00 12.24 0.00 1.05 N

7 11.92 0.22 12.14 11.99 0.03 12.02 0.12 38.72 Y

8 12.57 0.14 12.71 12.61 0.02 12.63 0.08 22.1 Y

9 12.84 0.19 13.03 12.86 0.01 12.87 0.16 61.19 Y

10 12.11 100# 112.11 12.79 0.06 12.85 99.26 > 10, 000 Y

11 25 17.81 100# 117.81 18.22 0.04 18.26 99.55 > 10, 000 Y

12 17.32 0.32 17.64 17.45 0.02 17.47 0.17 58.69 Y

13 18.26 0.27 18.53 18.38 0.03 18.41 0.12 48.08 Y

14 17.69 0.36 18.05 17.72 0.06 17.78 0.27 78.92 Y

15 17.43 80.03* 97.46 17.57 0.04 17.61 79.85 5.99 Y

16 30 26.92 0.39 27.31 27.01 0.11 27.12 0.19 105.28 Y

17 27.22 0.35 27.57 27.30 0.02 27.32 0.25 75.34 Y

18 27.49 90.04* 117.53 27.62 0.12 27.74 89.79 7.62 Y

19 26.31 100# 126.31 26.52 0.04 26.56 99.75 > 10, 000 Y

20 27.35 0.28 27.63 27.40 0.02 27.42 0.21 51.22 Y

Average 49.28 16.31 32.98

integrated optimization, while the same in Table 7 shows
the significant difference between the results of hierarchical
optimization-II and the integrated optimization. The signif-
icance level (α) is set to 0.05, and the critical value of the
t-test can be obtained as t(α)(n − 1) = t(0.05)(9) = 2.26.
Therefore, for a specific instance, if the value of “t-value” is
larger than 2.26 or smaller than −2.26, we can conclude that

there is a significant difference between the two tested meth-
ods for that instance (“Significance”=Y); otherwise, there is
no significant difference between the two tested methods for
that instance (“Significance”=N).

For the hierarchical optimizations, situation may arise,
wherein a feasible stowage plan cannot be obtained for the
given feeder route; this will lead to an infeasible solution.
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Table 7 Computational results of hierarchical optimization-II and the integrated optimization

Instance Number Hierarchical optimization-II Integrated optimization Reduced cost t-value Significance
of ports (1)–(2) (Y or N)

C1 C2 C (1) C1 C2 C (2)

1 15 7.44 0.09 7.53 7.45 0.02 7.47 0.06 5.12 Y

2 7.38 0.11 7.49 7.40 0.01 7.41 0.08 5.02 Y

3 7.45 0.02 7.47 7.46 0.02 7.48 −0.01 −1.32 N

4 7.89 0.06 7.95 7.79 0.05 7.84 0.11 18.60 Y

5 7.81 30.07* 37.88 7.61 0.03 7.64 30.24 2.49 Y

6 20 12.24 0.00 12.24 12.24 0.00 12.24 0.00 1.07 N

7 11.96 0.15 12.11 11.99 0.03 12.02 0.09 19.02 Y

8 12.58 0.07 12.65 12.61 0.02 12.63 0.02 1.89 N

9 12.85 0.17 13.02 12.86 0.01 12.87 0.15 29.61 Y

10 14.29 0.12 14.41 12.79 0.06 12.85 1.56 5.32 Y

11 25 19.25 0.23 19.48 18.22 0.04 18.26 1.22 7.09 Y

12 17.37 0.23 17.60 17.45 0.02 17.47 0.13 24.29 Y

13 18.34 0.08 18.42 18.38 0.03 18.41 0.01 1.63 N

14 17.71 0.29 18.00 17.72 0.06 17.78 0.22 65.34 Y

15 18.52 0.17 18.69 17.57 0.04 17.61 1.08 2.97 Y

16 30 26.99 0.29 27.28 27.01 0.11 27.12 0.16 35.57 Y

17 27.26 0.30 27.56 27.30 0.02 27.32 0.24 70.22 Y

18 29.57 20.04* 49.61 27.62 0.12 27.74 21.87 2.68 Y

19 27.06 0.19 27.25 26.52 0.04 26.56 0.69 5.08 Y

20 27.39 0.21 27.60 27.40 0.02 27.42 0.18 47.65 Y

Average 19.21 16.31 2.91

If the solution is infeasible, the cost for stowage planning
(C2) is recorded as a sufficiently large number (in our cases,
as 100); the result in Table 6 with the symbol “#” indicates
that, for ten runs, no feasible solution was obtained for the
corresponding instances. In addition, the results in Tables 6
and 7 with the symbol “*” indicate that, for ten runs, an
infeasible solution was obtained at least once.

As can be seen in Table 6, for instances 5, 15, and 18, at
least one solution was infeasible among the ten runs of hier-
archical optimization-I. Furthermore, for instances 4, 10, 11,
and 19, no feasible solution could be obtained for ten runs
of hierarchical optimization-I. However, feasible solutions
could be obtained for all the runs with the integrated opti-
mization. Among the 20 instances, the average result of the
integrated optimization was better than that of hierarchical
optimization-I in 18 instances, and the difference was sig-
nificant. For instance 3, the average result of hierarchical
optimization-I is better than that of the integrated optimiza-
tion; however, the difference is not significant. Moreover,
we found that the best results among the ten runs of hier-
archical optimization-I and the integrated optimization were
the same for instance 3. This is because the (near) optimal
feeder routing plan obtained at the first phase of hierarchical
optimization-I for instance 3 resulted in stowage plans that

were feasible and had only a few container rehandles; then,
the (near) optimal feeder routing plan and the related stowage
plans were formed as a solution with the lowest total cost. A
similar explanation can be offered for instance 6.

Through the analysis of the results in Table 6, we can
conclude that the integrated optimization is better than hier-
archical optimization-I for providing feasible solutions and
obtaining results with a lower total cost. In hierarchical
optimization-I, the secondphase (stowageplanning) is condi-
tioned by the feeder routing decisions fixed in the first phase;
therefore, we further explored the effectiveness of our inte-
grated optimizationmethodby comparing itwith hierarchical
optimization-II, where the two phases (feeder routing and
stowage planning) are separately iterated, and the results are
summarized in Table 7.

As shown in Table 7, for instances 5 and 18, at least
one solution was infeasible among the ten runs of hierarchi-
cal optimization-II. For instances 3, 6, 8, and 13, there was
no significant difference between the results of hierarchical
optimization-II and the integrated optimization. For the rest
of the instances, the integrated optimization could provide
results with better total cost, and the difference between the
integrated optimization and hierarchical optimization-II was
significant.
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As can be seen in Tables 6 and 7, from the perspective of
the feasibility and the average cost of the solution, hierarchi-
cal optimization-II is better than hierarchical optimization-I,
and the integrated optimization ismore efficient than either of
the hierarchical methods. Thus, the validity of the integrated
optimization for the two problems has been verified.

For a better explanation of the differences among the
three optimizationmethods considered, we show the detailed
solution results of the these methods for solving instance
19. The best solutions from the ten runs of hierarchical
optimization-I, hierarchical optimization-II, and the inte-
grated optimization are shown in Tables 8, 9, and 10,
respectively.

In hierarchical optimization-I, the (near) optimal feeder
routing plan is generated at the first phase; therefore, the cost
for feeder routing in the solution of hierarchical optimization-
Iwas the lowest among the threemethods.However, as shown
in Table 8, the feasible stowage plan could not be obtained
for route (containership) 3 based on the (near) optimal feeder
routing plan: for any of the scenarios, a feasible stowage plan
could not be obtained for containership 3 at the fifth port
along its route (Macau), either owing to violations of the
safety constraint of stability (GM) or not satisfying the safety
constraint for trim (T ). Therefore, the solution of hierarchical
optimization-I was infeasible.

In hierarchical optimization-II, more combinations of the
feeder routing plan and related stowage plans are generated
through the entire iteration. As can be seen, in the solution
of hierarchical optimization-II, the cost for feeder routing
was larger than the cost of the (near) optimal feeder routing
plan. However, by adding a route (containership), feasible
stowage plans could be obtained for all the containerships.As
can be seen from Table 9, many container rehandles existed
along routes 2 and 7 because of the suboptimal arriving
sequences of the containerships. For route 2, for the obtained
(near) optimal stowage plans, when containership 2 arrived at
Haikou to unload the containers thatwere destined toHaikou,
17 containers were to be rehandled; when containership 2
arrived at Shuidong to unload containers that were destined
to Shuidong, and load containers originating from Shuidong,
21 containers were to be rehandled.

In the solution of the integrated optimization, the cost of
the feeder routing was equal to that of the solution of hier-
archical optimization-I; however, the arriving sequence of
route 2/7 was reversed, which resulted in stowage plans with
fewer container rehandles.

In hierarchical optimization-II, the two phases were iter-
ated separately. When the feeder routing plan in Table 9 was
obtained, it continued to search for a better feeder routing
plan with a cost lower than the current feeder routing plan.
However, in the integrated optimization, when the feeder
routing plan (as shown in Table 9) was obtained, it continued
to search for a feeder routing plan with a cost that was lower Ta
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than the total cost of the best integrated solution obtained so
far. For the whole iteration of the integrated optimization, the
two phases (feeder routing and stowage planning) were inter-
active, and the stopping criteria were related to both phases;
therefore, more effective combinations of the feeder routing
plan and the related stowage planswere explored and resulted
with the best solution among the three methods.

Overall, by comparing the results of the integrated opti-
mization with hierarchical optimization-I, we have demon-
strated that when the (near) optimal feeder routing plan was
generated in the first phase, the stowage plans based on this
feeder routing planmight have been infeasible.With the com-
bined optimization of the feeder routing plan and the stowage
plan, we could obtain feasible integrated solutions and the
total cost of the feeder service could also be reduced. There-
fore, the significance of optimizing the two problems jointly
has been demonstrated.

By comparing the results of the integrated optimization
with hierarchical optimization-II (in which different com-
binations of the feeder routing plan and stowage plans are
explored), we have demonstrated the advantages and effec-
tiveness of the integrated optimization method developed in
our study.

4.3 Sensitivity analysis

In this section, we present the sensitivity analysis for exam-
ining the effects of the three sailing safety indices, time
deadlines, and types of containerships.

In the sensitivity analysis, the number of ports was set to
30, and the loading and unloading quantities were randomly
generated between 10 and 60.

To test one safety index, the other two were relaxed, and
five conditions were generated for 1.2, 1.1, 1.0, 0.9, and 0.8
times the original safety range of the tested indices. For each
condition, 10 cases were randomly generated, and each case
was solved by the integrated optimization method and hier-
archical optimization-II. Hierarchical optimization-I was not
tested because of its inferior performance.

The sensitivity analysis for the range of the three sailing
safety indices is presented in Table 11, wherein “R1” rep-
resents the number of cases, in which a solution from the
hierarchical optimization was not feasible; “R2” represents
the number of cases, in which the result of the integrated
optimization was better than that of the hierarchical opti-
mization;“R3” represents the number of cases, in which the
result of the integrated optimization was same as that of the
hierarchical optimization. Therefore, the number of cases,
in which the result of the hierarchical optimization is better
than the integrated optimization, can be calculated as 10-
R2-R3. “Average cost” is the average cost for the results of
the integrated optimization method. “Time” is the average
computational time of the integrated optimization method.

As can be observed for index “R1,” with the decreasing
safety range, the number of infeasible solutions obtained by
the hierarchical optimization tended to increase for all the
three indices. In other words, the higher the restrictions on
the safety indices, the more likely that an infeasible solution
would be obtained through the hierarchical optimization. As
discussed previously, the feeder containership often imposes
stricter requirements on sailing safety constraints; therefore,
the integrated optimization is critically essential. As seen
for indexes “R2” and “R3,” although for all the conditions,
there existed cases, in which the integrated optimization and
the hierarchical optimization yielded similar results, for each
condition, the integrated optimization was better than the
hierarchical optimization for a majority of cases.

Table 11 also shows that with an increasing restriction on
the sailing safety indices of the containership, the cost for the
solution obtained by the integrated optimization increased.
This is because a feasible stowage plan could become infea-
sible if the range of the sailing safety index decreased, and
the algorithmwould continue to search for a feasible solution
at the expense of increased costs (such as adding new con-
tainerships/routes). Moreover, when the three indices were
compared, it can be observed thatGM was themost sensitive
factor among the three indices and had the highest impact on
the solution, while Ms was the least sensitive factor, and had
the lowest impact on the solution.

Next, a sensitivity analysis was performed on the types of
containerships (100TEUs, 150TEUs, 200TEUs, and multi-
type) and time deadlines (L1, L2, L3, L4, and L5, which
represent 0.8, 0.9, 1.0, 1.1, and 1.2 times the original time
deadlines, respectively). The integrated optimization was
executed ten times for each condition, and the average results
are shown in Table 12.

As expected, the average cost (average C) for the multi-
type containerships was the lowest. In addition, the value
of C decreased, as the time deadline was increased. This is
because when the time deadline was extended, it could allow
the containership to visit more ports, and fewer container-
ships were required, which was beneficial in terms of the
economies of scale.

The sensitivity analysis for the main parameters of the
problem indicates the consistency of the results under the
various changes and further demonstrates the significance
of this study. Moreover, the reasonable execution time (4–
14 min) of the integrated optimization can ensure multiple
runs for refining routing results under real life operational
conditions.

5 Conclusion

In this study, we optimize feeder routing and containership
stowage plans jointly to ensure the sailing safety of con-
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Table 11 Sensitivity analysis
for three sailing safety indices

Relaxed indexes Tested indexes R1 R2 R3 Average cost Time (min)

Ms, T GM1(1.2 GM) 0 6 3 22.66 7.26

GM2(1.1 GM) 1 6 3 22.60 7.31

GM3(1.0 GM) 1 7 3 24.10 9.07

GM4(0.9 GM) 2 8 2 27.39 12.73

GM5(0.8 GM) 4 8 2 29.83 13.22

Gm, Ms T1(1.2 T) 0 7 3 23.27 7.09

T2(1.1 T) 0 8 2 23.96 7.92

T3(1.0T) 0 6 4 24.85 8.41

T4(0.9 T) 1 7 3 25.41 9.37

T5(0.8 T) 3 7 3 28.92 12.36

T,Gm Ms1(1.2 Ms) 0 7 2 23.54 6.83

Ms2(1.1 Ms) 0 7 3 23.27 7.31

Ms3(1.0 Ms) 0 7 3 23.74 7.86

Ms4(0.9 Ms) 0 8 2 23.91 7.37

Ms5(0.8 Ms) 1 7 3 25.54 9.02

Table 12 Sensitivity analysis
for types of containerships and
time deadlines

Types of ship Time deadlines Number of routes C1 C Time (min)

100TEUs L1(0.8L) 12.4 31.31 31.32 7.82

L2(0.9L) 11.3 31.36 31.37 7.46

L3(1.0L) 10.5 30.80 30.83 7.02

L4(1.1L) 10.2 30.34 30.36 6.79

L5(1.2L) 9.9 30.17 30.21 6.55

Average C 30.82

150TEUs L1(0.8L) 7.9 33.52 33.54 6.02

L2(0.9L) 7.5 32.26 32.27 5.94

L3(1.0L) 7.1 31.15 32.22 5.79

L4(1.1L) 6.4 30.26 30.34 5.20

L5(1.2L) 6.1 28.27 28.38 5.12

Average C 31.35

200TEUs L1(0.8L) 6.9 34.07 34.07 5.23

L2(0.9L) 6.3 32.63 32.64 5.08

L3(1.0L) 5.8 30.95 31.06 5.96

L4(1.1L) 5.2 29.01 29.14 4.75

L5(1.2L) 4.8 27.53 27.69 4.62

Average C 30.92

Multi-type L1(0.8T) 8.7 29.41 29.42 12.98

L2(0.9T) 8.1 27.73 27.76 12.54

L3(1.0T) 7.4 26.54 26.57 10.02

L4(1.1T) 6.9 25.35 25.44 9.46

L5(1.2T) 6.2 24.97 25.08 7.27

Average C 26.85

tainerships. To this end, we develop a formulation and a
tailored heuristic algorithm for solving this complex model.
The computational results show that compared with the hier-
archical optimization, our method can effectively reduce the
total cost of the feeder service and obtain feeder routing

plans that could ensure the sailing safety of containerships
within an acceptable computational time. Through the sensi-
tivity analysis,we further confirm the consistent performance
of the developed algorithm and the significance of this
study.
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The contribution of this study is twofold: at the planning
level, we have extended the previous research on feeder con-
tainership routing by incorporating stowage plans, and the
results show that the integrated optimization can not only
ensure the sailing safety of the containerships (an issue that
was not addressed in previous studies), but also reduce the
total cost of the feeder service. At the model and algo-
rithm level, we have designed a novel integrated optimization
model, in which relationships between the feeder routing and
stowage planning problems arewell defined.We also develop
a heuristic procedure tailored for the integrated optimization
problem, in which a variable neighborhood search heuristic
is proposed to update the feeder routing plan, and a special
multi-port stowage planning problem is addressed and solved
by GA.

Any future work, based on the current study, may proceed
in several directions. Firstly, different types of containers
can be considered. Secondly, the speed of the container-
ships can be considered as a variable. Finally, better heuristic
approaches that use completely different strategies can be
developed.
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Appendix A

Formulations for GM , T , and Ms
a. GM can be calculated as GM = KM − KG. KM

is the distance between the keel and metacenter of the con-
tainership, it is related to the draft, and can be accurately
determined using the hydrostatic curve provided by the con-
tainership; KG is the distance between the keel and center
of gravity of the containership, which can be calculated as

KG =
∑

s∈Sk W
ks
b ×Hs

D , where D is the loaded displacement
of the containership and Hs is the height of the center of slot
s.

b. Ms can be calculated as Ms = 1
2 × (γ × DL +

∑
s∈Sk W

ks
b × Is − D × f × L). γ is the equivalent arm

of the total moment of the deadweight of the first and the
latter half to the center cross section of the containership;
DL is the light displacement of the containership; Is is the

Table 13 Framework of
hierarchical optimization-I Generate an initial feeder routing plan s

gen = 0

While true do

k = 1

While k ≤ kmax do

s′ = Pick At Random(Nk(s)) – pick a random solution s′ from the k-th neighborhood of s

X ′
1 = LocalSearch(s′) – get the best solution X ′

1 among 30 neighbors of s′ in Nk(s′)
If C(X ′

1) < C(s) then

s = X ′
1

k = 1

Else

k = k + 1

gen = gen + 1

End if

If gen = Maxgen then

the while(true) loop is terminated

End if

End while

End while

Stowage plans are generated for containerships based on feeder routing plan s

Feeder routing plan s and related stowage plans are output

The total cost of feeder routing plan s and related stowage plans is calculated

as the result of hierarchical optimization-I
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Table 14 The framework of
hierarchical optimization-II Generate an initial feeder routing plan X1

The stowage plans X2 based on feeder routing plan X1 are generated

The total cost of the initial solution is recorded(C(X1) + C(X2))

gen = 0

While true do

k = 1

While k ≤ kmax do

s′ = Pick At Random(Nk(X1))—pick a random solution s′ from the k-th neighborhood of X1

X ′
1 = LocalSearch(s′)—get the best solution X ′

1 among 30 neighbors of s′ in Nk(s′)
If C(X ′

1) < C(X1) then

k = 1

gen = 0

X1 = X ′
1

The stowage plans X2 based on feeder routing plan X1 are generated

The total cost of the current solution is recorded

Else

k = k + 1

gen = gen + 1

End if

If gen = Maxgen then

the while(true) loop is terminated

End if

End while

End while

The feeder routing plan and related stowage plans with the lowest total cost are output

The lowest total cost is regarded as the result of hierarchical optimization-II

horizontal distance between slot s and the vertical center of
the containership; f is the equivalent arm of the buoyancy of
the containership; and L is the length of the containership.

c. The trimcanbe calculated asT =
∑

s∈Sk Is×Wks
b −LCB×D

MCT×100 .
LCB is the distance between the center of buoyancy and
the vertical center of the containership and can be obtained
from the trim diagram of the containership; and MCT is the
moment required to change the trim of the containership by
1 cm, which can also be obtained from the trim diagram.

Appendix B

The framework of Hierarchical optimization-I and hierarchi-
cal optimization-II is shown inTables 13 and 14, respectively.
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