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Abstract
We present a category equivalent to that of semi-Nelson algebras. The objects in this category are pairs consisting of a semi-
Heyting algebra and one of its filters. The filters must contain all the dense elements of the semi-Heyting algebra and satisfy
an additional technical condition. We also show that the category of dually hemimorphic semi-Nelson algebras is equivalent
to that of dually hemimorphic semi-Heyting algebras.

1 Introduction

Semi-Heyting algebras were introduced in 1985 by Sankap-
panavar (1985) as a variety generalizing that of Heyting
algebras while keeping many of its good features like being
distributive pseudocomplemented lattices and having their
congruences determined by filters.

On the other hand, D. Vakarelov provided in Vakarelov
(1977) a way of constructing Nelson algebras from Heyt-
ing ones, by means of what is now known as twist product,
thus extending work by Kalman (1958). This program was
continued by Sendlewski (1984), Sendlewski (1990), who
gave a full representation of Nelson algebras using Heyting
algebras and a boolean congruence on them. Later, L. Mon-
teiro and I. Viglizzo, in Viglizzo (1999) and Monteiro and
Viglizzo (2019), used filters instead of congruences to study
this representation.

It turned out that another one of the nice features of
semi-Heyting algebras is that Vakarelov’s construction can
be carried out on them as well. The resulting algebras
form the variety of semi-Nelson algebras (Cornejo and
Viglizzo 2018). Vakarelov’s construction gives a categorial
equivalence between semi-Heyting algebras and centered
semi-Nelson algebras (Cornejo and San Martín 2018), but
this leaves out many semi-Nelson algebras. In this work, we
prove that ordered pairs consisting of a semi-Heyting algebra
and a filter in it yield all semi-Nelson algebras. This gives a
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good representation that can be seen as a categorial equiv-
alence and permits understanding semi-Nelson algebras in
terms of the better-known semi-Heyting algebras.

H. Sankappanavar defined in Sankappanavar (2011) the
variety of semi-Heyting algebras with a dual hemimorphism,
or dually hemimorphic semi-Heyting algebras, DSH, as an
expansion of semi-Heyting algebras with a unary operator
that is a common generalization of both De Morgan and the
pseudocomplement operations. J. M. Cornejo and H. San
Martín applied Vakarelov’s construction to this expansion to
obtain the variety of dually hemimorphic semi-Nelson alge-
bras, DSN (Cornejo and San Martín 2018). We prove here
that dually hemimorphic semi-Nelson algebras are centered,
and therefore they can be represented by dually hemimorphic
semi-Heyting algebras.

The paper is organized as follows: Section 2 introduces the
varieties of algebras we will be dealing with, recalls some of
the basic results on them that we will be using, and provides
background on Vakarelov’s construction. Section 3 details
the representation of semi-Nelson algebras by pairs consist-
ing of a semi-Heyting algebra and one of its filters containing
the dense elements of the algebra and satisfying an additional
condition, proving this representation is an equivalence of
two categories. The final section deals with the case of dually
hemimorphic semi-Nelson algebras.

2 Preliminaries

2.1 Definitions and elementary properties

In this section, we will recall the definitions and some basic
properties of the varieties of Heyting and semi-Heyting
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algebras, Nelson and semi-Nelson algebras, pseudocomple-
mented lattices, and dually hemimorphic semi-Heyting and
semi-Nelson algebras.

Definition 2.1 A semi-Heyting algebra is an algebra H =
〈H ; ∧,∨,⇒, 0, 1〉 of type (2, 2, 2, 0, 0) such that the fol-
lowing identities are satisfied for all x, y, z ∈ A:

(SH1) 〈H ; ∧,∨, 0, 1〉 is a bounded lattice,
(SH2) x ∧ (x ⇒ y) = x ∧ y,
(SH3) x ∧ (y ⇒ z) = x ∧ ((x ∧ y) ⇒ (x ∧ z)),
(SH4) x ⇒ x = 1.

A semi-Heyting algebra is a Heyting algebra if it satisfies
the identity:

(H) (x ∧ y) ⇒ x = 1.

On a semi-Heyting algebra H, one can always define the
term x ⇒ H y = x ⇒ (x ∧ y). With this operation, the
system 〈H ; ∧,∨, ⇒ H , 0, 1〉 is aHeyting algebra (Abad et al.
2013).

Nelson algebras are the algebraic counterpart of D. Nel-
son’s constructive logic with strong negation. The identities
presented herewere proved to be a complete and independent
axiomatization of Nelson algebras inMonteiro andMonteiro
(1996):

Definition 2.2 ANelson algebra is an algebraA = 〈A; ∧,∨,

→,∼, 1〉 of type (2, 2, 2, 1, 0) such that the following con-
ditions are satisfied for all x, y, z ∈ A:

(N1) x ∧ (x ∨ y) = x ,
(N2) x ∧ (y ∨ z) = (z ∧ x) ∨ (y ∧ x),
(N3) ∼∼ x = x ,
(N4) ∼ (x ∧ y) =∼ x∨ ∼ y,
(N5) x∧ ∼ x = (x∧ ∼ x) ∧ (y∨ ∼ y),
(N6) x → x = 1,
(N7) x → (y → z) = (x ∧ y) → z,
(N8) x ∧ (x → y) = x ∧ (∼ x ∨ y).

The variety of semi-Nelson algebras was introduced in
Cornejo and Viglizzo (2018) as a generalization of Nelson
algebras.

Definition 2.3 A semi-Nelson algebra is an algebra A =
〈A; ∧,∨,→,∼, 1〉 of type (2, 2, 2, 1, 0) such that the fol-
lowing conditions are satisfied for all x, y, z ∈ A:

(SN1) x ∧ (x ∨ y) = x ,
(SN2) x ∧ (y ∨ z) = (z ∧ x) ∨ (y ∧ x),
(SN3) ∼∼ x = x ,
(SN4) ∼ (x ∧ y) =∼ x∨ ∼ y,
(SN5) x∧ ∼ x = (x∧ ∼ x) ∨ (y∨ ∼ y),

(SN6) x ∧ (x → N y) = x ∧ (∼ x ∨ y),
(SN7) x → N (y → N z) = (x ∧ y) → N z,
(SN8) (x → N y) → N [(y → N x) → N [(x → z) → N

(y → z)]] = 1,
(SN9) (x → N y) → N [(y →N x) → N [(z → x) → N

(z → y)]] = 1,
(SN10) (∼ (x → y)) → N (x∧ ∼ y) = 1,

(SN111) (x∧ ∼ y) → N (∼ (x → y)) = 1,

where x → N y := x → (x ∧ y).

For a semi-Nelson algebra A, the system 〈A; ∧,∨,

→ N ,∼, 1〉 is a Nelson algebra (Cornejo andViglizzo 2018).
We will denote by H, SH, N and SN the varieties of

Heyting, semi-Heyting, Nelson and semi-Nelson algebras,
respectively.

Heyting algebras, as is well known, are pseudocomple-
mented (with x∗ = x → 0 as the pseudocomplement of
x ∈ H ) in the sense of the following definition:

Definition 2.4 An algebra A = 〈A; ∧,∨,∗ , 0, 1〉 of type
(2, 2, 1, 0, 0) is a pseudocomplemented lattice if the follow-
ing conditions hold for all x, y, z ∈ A:

(PS1) 〈A; ∧,∨, 0, 1〉 is a bounded lattice,
(PS2) x ∧ (x ∧ y)∗ = x ∧ y∗,
(PS3) 0∗ = 1 and 1∗ = 0.

If we define in a semi-Heyting algebra the term xc = x ⇒
0, it turns out that xc is the pseudocomplement of x in the
sense of the previous definition. Moreover, x ⇒ H 0 = x ⇒
(x ∧ 0) = x ⇒ 0, so x∗ and xc coincide in SH. From now
on, we will use indistinctly the notation x∗ for both xc and
x∗.

We will use some properties of pseudocomplemented lat-
tices. Their proof canbe found inBalbes andDwinger (1974):

Proposition 2.5 If A = 〈A; ∧,∨,∗ , 0, 1〉 is a pseudocom-
plemented lattice, then for every x, y ∈ A, if x ∧ y = 0, then
x ≤ y∗. It also holds that (x ∨ y)∗ = x∗ ∧ y∗.

Definition 2.6 Let A = 〈A; ∧,∨,∗ , 0, 1〉 be a pseudocom-
plemented lattice. We say that an element a ∈ A is dense if
a∗ = 0. We denote by D(A) the set of all dense elements of
A.

The following characterization of dense elements is going
to be useful:

Lemma 2.7 If H ∈ SH, then x ∈ D(H) if and only if x =
y ∨ y∗ for some y ∈ H.

For the results in section 5, we now define the varieties
of dually hemimorphic semi-Heyting and semi-Nelson alge-
bras. The former were introduced by H.P. Sankappanavar
in Sankappanavar (2011), and the latter were presented in
Cornejo and San Martín (2020).
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Definition 2.8 An algebraA = 〈A; ∧,∨,→,† , 0, 1〉 of type
(2, 2, 2, 1, 0, 0) is said to be a dually hemimorphic semi-
Heyting algebra if 〈A; ∧,∨,→, 0, 1〉 is a semi-Heyting
algebra and the following equations are satisfied for all
x, y, z ∈ A:

(DSM1) 0† = 1,
(DSM2) 1† = 0,
(DSM3) (x ∧ y)† = x† ∨ y†.

We write DSH to denote the variety of dually hemimor-
phic semi-Heyting algebras.

Definition 2.9 An algebra A = 〈A; ∧,∨,→,∼,′ , 1〉 of
type (2, 2, 2, 1, 1, 0) is said to be a dually hemimorphic
semi-Nelson algebra if 〈A; ∧,∨,→,∼, 1〉 is a semi-Nelson
algebra and the following equations are satisfied for all
x, y, z ∈ A:

(DSN1) (∼ 1)′ = 1,
(DSN2) 1′ → (∼ 1) = 1,
(DSN3) ((x → y) ∧ (y → x) ∧ x ′) → ((x → y) ∧ (y →

x) ∧ y)′ = 1,
(DSN4) ∼ x ′ → (∼ x ∧ (x ′ → x)) = 1,
(DSN5) (∼ x ∧ (x ′ → x)) →∼ x ′ = 1,
(DSN6) (x ∧ y)′ → (x ′ ∨ y′) = 1,
(DSN7) (x ′ ∨ y′) → (x ∧ y)′ = 1.

We use the convention that the unary operation ′ has higher
priority than ∼, so the expression ∼ x ′ means ∼ (x ′).

We write DSN to denote the variety of dually hemimor-
phic semi-Nelson algebras.

2.2 Vakarelov’s construction

In this section, we review the well-known twist construction
that established the connection between Heyting and Nelson
algebras, and later was used to define (dually hemimorphic)
semi-Nelson algebras as a variety constructed from the one
of (dually hemimorphic) semi-Heyting algebras.

Let A ∈ H. We denote with Vk(A) the set {(a, b) ∈ A2 :
a ∧ b = 0} and with Vk(A) the algebra 〈Vk(A); 
,�,→,

∼,�〉 where the operations are defined as follows:

(V1) (a, b) 
 (c, d) = (a ∧ c, b ∨ d),
(V2) (a, b) � (c, d) = (a ∨ c, b ∧ d),
(V3) (a, b) → (c, d) = (a ⇒ c, a ∧ d),
(V4) ∼ (a, b) = (b, a),
(V5) � = (1, 0).

Observation 2.10 From the previous definitions, we can
deduce the rule

(V6) (a, b) → N (c, d) = (a ⇒ H c, a ∧ d).

It was shown in Vakarelov (1977) that Vk(A) ∈ N .
Vakarelov’s construction can be generalized the following

way: if A ∈ H, and F is a filter of A, we define the structure

N (A, F) := {(a, b) ∈ A2 : a ∧ b = 0, a ∨ b ∈ F}.

It was proved in Viglizzo (1999), Monteiro and Viglizzo
(2019) that N (A, F), algebraized with (V1)-(V5), is well
defined and it is a Nelson algebra. This algebra will be
denoted by N(A,F).

A different generalization was to start from a semi-
Heyting algebra, which lead to the definition of semi-Nelson
algebras (Cornejo and Viglizzo 2018): ifA is a semi-Heyting
algebra, then Vk(A) is a semi-Nelson algebra.

Going in the other direction, we can go from semi-Nelson
algebras to semi-Heyting algebras by means of the following
quotient:

Let A = 〈A; ∧,∨,→,∼, 1〉 ∈ SN , and define:

x ≡ y if and only if x → y = 1 and y → x = 1.

It can be proved that “≡” is an equivalence relation and a
congruence with respect of the operations ∧, ∨ and →. We
denote with [[a]] the equivalence class of an element a ∈ A
under the relation ≡.

We consider sH(A) = 〈A/≡;∩,∪,⇒,⊥,�〉, where

• ⊥ = [[∼ 1]],
• � = [[1]],
• [[x]] ∩ [[y]] = [[x ∧ y]],

• [[x]] ∪ [[y]] = [[x ∨ y]],
• [[x]] ⇒ [[y]] = [[x →

y]].

Then sH(A) ∈ SH ( Cornejo and Viglizzo 2018).
We will use the next result in the following sections:

Proposition 2.11 (Cornejo and Viglizzo 2018, Lemma 2.7
(h) and (l)) LetA ∈ SN , and a, b, c ∈ A. Then the following
properties hold:

(1) a → N b = b → N a = 1 if and only if a → b = b →
a = 1,

(2) If a → N b = 1 = b → N c = 1, then a → N c = 1.

Part (1) of the previous proposition tells us that the con-
gruence ≡ is the same as the one that can be defined if we
replace → with → N .

The following representation theorem establishes the con-
nection between semi-Heyting and semi-Nelson algebras
using Vakarelov’s construction and the quotient by the rela-
tion ≡.
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Theorem 2.12 (Cornejo and Viglizzo 2018, Theorem 5.3
and Corollary 5.2) If A ∈ SH, then A is isomorphic to
sH(Vk(A)) through the isomorphism g(a) = [[(a, a∗)]].
Also, if A ∈ SN , then A is isomorphic to a subalgebra of
Vk(sH(A)) through the application h(a) = ([[a]], [[∼ a]]).

3 Representations

Theorem 2.12 gives a representation of any semi-Nelson
algebra A as a subalgebra of Vk(sH(A)), but there can be
more than one non-isomorphic semi-Nelson algebra having
the same quotient semi-Heyting algebra sH(A) (up to iso-
morphism). In order to get a sharper representation, we are
going to consider pairs consisting of a semi-Heyting algebra
and one of its filters satisfying extra conditions. To be more
precise, we obtain a categorial equivalence between the cat-
egory of semi-Nelson algebras and a category whose objects
are pairs (H, F) where H is a semi-Heyting algebra and F
is a filter of H that contains all the dense elements of H and
satisfies an extra condition.

Recall the construction N (A, F) = {(a, b) ∈ A2 : a∧b =
0, a ∨ b ∈ F} for some Heyting algebra A, and F a filter of
A. For any A ∈ H, we consider Vk(A), and a subalgebra S
such that the projection over the first component, π1, verifies
π1(S) = A. It was shown in Viglizzo (1999) that there is a
filter F ⊆ A containing the dense elements of A such that
S = N(A,F).

To extend these results to the variety SH, we define:

Definition 3.1 Let H ∈ SH. A subset F ⊆ H is an i-filter,
if the following conditions hold:

(IF1) F is a lattice filter of H.
(IF2) D(H) ⊆ F .
(IF3) If z∨t ∈ F , then for all x ∈ H , (x ⇒ z)∨(x∧t) ∈ F .

It is immediate from the definition that every i-filter is
a filter. The converse is not true, as the following example
shows:

Example 3.2 Consider the semi-Heyting algebraA = 〈A; ∧,

∨, ⇒, 1〉, with the operation ⇒ indicated in the table:

�

� 0

1A

⇒ 0 1

0 1 0
1 0 1

The subset F = {1} of A is a filter, and it satisfies (IF2)
(since the only dense element is 1). But F does not satisfy

(IF3) because 1 ∨ 0 = 1 ∈ F , but (0 ⇒ 1) ∨ (0 ∧ 0) =
0 ∨ 0 = 0 /∈ F .

Observation 3.3 If we consider the structure N(H,F), with
H ∈ SH, an i-filter F, and (a, b), (c, d) ∈ N (H , F), then
(1) c ∧ d = 0 and (2) c ∨ d ∈ F. Notice that

(a ⇒ c) ∧ (a ∧ d) = a ∧ (a ⇒ c) ∧ d =
(SH2)

(a ∧ c)

∧d = a ∧ (c ∧ d) =
(1)

a ∧ 0 = 0.

Also, using (2) and (IF3) we have that (a ⇒ c)∨(a∧d) ∈
F, so the pair (a ⇒ c, a ∧ d) is in N (H , F) and we can use
it to define (a, b) → (c, d) = (a ⇒ c, a ∧ d).

Lemma 3.4 IfH ∈ SH and F is an i-filter ofH, then the sys-
tem 〈N (H , F); 
,�,→,∼,�〉 with the operations defined
as in (V1)-(V5) is a semi-Nelson algebra.

Proof Using that F is a filter we can prove that the oper-
ations 
, �, � and ∼ are well defined in N (H , F) (see
Monteiro and Viglizzo 2019). Also, by Observation 3.3, it
follows that the operation → is well defined. Furthermore,
following the proof of Theorem 4.1 in Cornejo and Viglizzo
(2018), N(H,F) verifies the axioms (SN1)-(SN11) so it is is
a semi-Nelson algebra. 
�
Lemma 3.5 Let H ∈ SH. If S is a subalgebra of Vk(H),
such that π1(S) = H (with π1 the projection over the first
component of Vk(H)), then there exists an i-filter E of H
such that S = N (H , E).

Proof Let E = {x ∈ H : x = a ∨ b for some (a, b) ∈ S}.
We are going to prove that E is an i-filter.

It was shown in Viglizzo (1999) that if H ∈ H, then E is
a filter of H. But that proof can be extended naturally to the
variety SH, because it only uses lattice properties.

Consider a dense element x ∈ H . Since π1(S) = H , then
there exists y ∈ H such that (x, y) ∈ S. Besides, since S is
a subalgebra of Vk(H), (0, 1) ∈ S, and therefore (x, y) →
(0, 1) = (x ⇒ 0, x ∧ 1) = (x∗, x) = (0, x) ∈ S. Hence,
x ∈ E because x = x ∨ 0, and we conclude that E satisfies
(IF2).

Suppose now that for z, t ∈ H we have z ∨ t ∈ E ,
Since z ∨ t ∈ E , there exists a pair (a, b) ∈ S such

that z ∨ t = a ∨ b. But S is a subalgebra of Vk(H), so
∼ (a, b) = (b, a) ∈ S, and therefore (a, b) ∪ (b, a) =
(a∨b, a∧b) = (a∨b, 0) ∈ S. Thismeans that (z∨t, 0) ∈ S,
and hence

∼ (z ∨ t, 0) = (0, z ∨ t) ∈ S. (3.1)

Using the hypothesis π1(S) = H , and x, z, t ∈ H ,
it follows that there exist some x ′, z′, t ′ ∈ H such that
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(x, x ′), (z, z′), (t, t ′) ∈ S. This implies that the next term
belongs to S:

((x, x ′) → (z, z′)) ∪ ((x, x ′) ∩ (t, t ′))
= (x ⇒ z, x ∧ z′) ∪ (x ∧ t, x ′ ∨ t ′)
= ((x ⇒ z) ∨ (x ∧ t), (x ∧ z′) ∧ (x ′ ∨ t ′)). (3.2)

Since (x ∧ z′)∧ (x ′ ∨ t ′) = (x ∧ z′ ∧ x ′)∨ (x ∧ z′ ∧ t ′) =
0 ∨ (x ∧ z′ ∧ t ′) = x ∧ z′ ∧ t ′, (3.2) yields

((x ⇒ z) ∨ (x ∧ t), x ∧ z′ ∧ t ′) ∈ S. (3.3)

Combining (3.1) with (3.3), we get

((x ⇒ z) ∨ (x ∧ t), x ∧ z′ ∧ t ′) ∪ (0, z ∨ t)

= ((x ⇒ z) ∨ (x ∧ t), x ∧ z′ ∧ t ′ ∧ (z ∨ t)) ∈ S. (3.4)

Since x∧z′∧t ′∧(z∨t) = (x∧z′∧t ′∧z)∧(x∧z′∧t ′∧t) =
(x ∧ t ′ ∧ (z ∧ z′)) ∨ (x ∧ z ∧ (t ∧ t ′)) = 0 ∨ 0 = 0, from
(3.4), it follows that

((x ⇒ z) ∨ (x ∧ t), 0) ∈ S.

By the definition of E , it follows that

(x ⇒ z) ∨ (x ∧ t) ∨ 0 = (x ⇒ z) ∨ (x ∧ t) ∈ E .

Hence, E is an i-filter.
Let us prove now that N (H , E) = S. It is clear that S ⊆

N (H , E). If we have (a, b) ∈ N (H , E), then a∧b = 0, and
a∨b ∈ E , so there exists (c, d) ∈ S such that c∨d = a∨b.
Then, as before (c, d)∪ (d, c) = (c∨d, 0) = (a∨b, 0) ∈ S.
On the other hand, since π1(S) = H , there exists some b′ ∈
H such that (b, b′) ∈ S, and therefore (b, b′) → (0, 1) =
(b∗, b) ∈ S. By properties of the pseudocomplement, a∧b =
0 implies that a ≤ b∗ and hence (a ∨ b) ∧ b∗ = (a ∧
b∗) ∨ (b ∧ b∗) = a ∨ 0 = a, so we can conclude that
(a ∨ b, 0) ∩ (b∗, b) = ((a ∨ b) ∧ b∗, 0∨ b) = (a, b) ∈ S. 
�
Theorem 3.6 Every semi-Nelson algebra A is isomorphic to
an algebra of the formN(H,F), for some semi-Heyting alge-
bra H and some i-filter F of H.

Proof By Theorem 2.12, every semi-Nelson algebra A can
be obtained as a subalgebra of Vk(sH(A)), and clearly
π1(Vk(sH(A))) = sH(A), soA is isomorphic toN(sH(A),E),
where E is the i-filter of Lemma 3.5. 
�

Much in the same manner as for the case of Heyting alge-
bras, for H ∈ SH, the i-filters E such that π1(N (H , E)) =
H are exactly the ones that contain the dense elements of H :

Lemma 3.7 If H ∈ SH, and F is an i-filter of H, then
π1(N (H , F)) = H.

Proof If x ∈ H , by Lemma 2.7, we have that x ∨ x∗ ∈
D(H) ⊆ F . Also, x∧x∗ = 0 is valid, so (x, x∗) ∈ N (H , F)

and x ∈ π1(N (H , F)). 
�

3.1 Categorial equivalence

We define now the category sHF, which has as objects pairs
(H, F), where H ∈ SH, and F is an i-filter of H , and as
morphisms, functions f : (H, F) −→ (H′, F ′) such that
f : H −→ H ′ is a homomorphism of semi-Heyting algebras
and f (F) ⊆ F ′.

Consider now the category sN of semi-Nelson algebras
and their morphisms; our objective now is to establish an
equivalence between these categories. For this, we define
functors α : sHF −→ sN and β : sN −→ sHF.

Proposition 3.8 The application α : sHF −→ sN defined
on the objects of sHF by α((H, F)) = N(H,F), and on
morphisms by α( f )(a, b) = ( f (a), f (b)) for all (a, b) ∈
N (H , F), is a functor from sHF to sN.

Proof Let us check that α is well defined. If (H, F) is an
object of sHF, then α((H, F)) = N(H,F) is a semi-Nelson
algebra due to Lemma 3.4.

Now we take a morphism f : (H, F) −→ (H′, F ′).
Since f is a Heyting homomorphism, we have by straightfor-
ward calculations that: α( f )((a, b) → (c, d)) = ( f (a ⇒
c), f (a ∧ d)) = ( f (a), f (b)) → (( f (c), f (d))) =
α( f )(a, b) → α( f )(c, d), and similarly for the rest of the
operations.

We denote by I dX the identity morphism for an object
X in a category. Then, for all (a, b) ∈ N (H , F), (a, b) =
(I d(H ,F)(a), I d(H ,F)(b))), thereforeα(I d(H,F)) = I dα(H,F).

Finally, for any two given morphisms f : (H′, F ′) −→
(H′′, F ′′), and g : (H, F) −→ (H′, F ′), we have that for
all (a, b) ∈ N (H , F), α( f ◦ g)(a, b) = (( f ◦ g)(a), ( f ◦
g)(b)) = ( f (g(a)), f (g(b))) = α( f )((g(a), g(b))) =
((α( f )) ◦ (α(g)))(a, b). 
�
Definition 3.9 Let A ∈ SN . We say that an element a ∈ A
is positive if ∼ a ≤ a. We denote by A+ the set of positive
elements of A.

Observation 3.10 If A ∈ SN , then A+ = {x∨ ∼ x : x ∈
A}. Indeed, if x ∈ A+, then ∼ x ≤ x, so x = x∨ ∼ x. On
the other hand, if y = x∨ ∼ x, by (SN4) and (SN5) it follows
that y = x∨ ∼ x ≥ x∧ ∼ x =∼ (∼ x ∨ x) =∼ y.

We write [[A+]] for the set {[[a]] : a ∈ A+}.
Lemma 3.11 If A ∈ SN , then [[A+]] is an i-filter of sH(A).

Proof By Theorem 2.12, there exists a subalgebra S of
Vk(sH(A)) such that A is isomorphic to S, and the isomor-
phism is given by h(a) = ([[a]], [[∼ a]]) for all a ∈ A.
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Therefore, S = {([[a]], [[∼ a]]) : a ∈ A}. Then, it is immedi-
ate that π1(S) = sH(A).

ByLemma3.5, S = N (sH(A), E), where E = {[[a]]∨[[∼
a]] : a ∈ A} is an i-filter of sH(A). But E = [[A+]], due to
observation 3.10, which completes the proof. 
�
Proposition 3.12 The application β : sN −→ sHF defined
on the objects of sN by β(A) = (sH(A), [[A+]]), and on
morphisms f : A −→ A′ by β( f )([[a]]) = [[ f (a)]] for all
a ∈ A, is a functor from sN to sHF.

Proof Let us check that β is well defined. For an object A of
sN, sH(A) is a semi-Heyting algebra, and by Lemma 3.11
we have that [[A+]] is an i-filter of sH(A). Therefore,
(sH(A), [[A+]]) is an object in sHF.

For any semi-Nelson morphism f : A −→ A′, we calcu-
late: β( f )([[a → b]]) = [[ f (a → b)]] = [[ f (a) → f (b)]] =
[[ f (a)]] ⇒ [[ f (b)]] = β( f )([[a]]) ⇒ β( f )([[b]]), and simi-
larly for the other operations.

Also, if [[x]] ∈ [[A+]], then by observation 3.10 we can
write [[x]] = [[y∨∼ y]], for some y ∈ A, and soβ( f )([[x]]) =
β( f )([[y∨ ∼ y]]) = β( f )([[y]])∪β( f )([[∼ y]]) = [[ f (y)]]∪
[[ f (∼ y)]] = [[ f (y)]]∪[[∼ f (y)]] = [[ f (y)∨ ∼ f (y)]]. Since
f (y) ∈ f (A) ⊆ A′, it follows thatβ( f )([[x]]) ∈ [[A′+]]. This
shows that β( f )([[A+]]) ⊆ [[A′+]], so β( f ) is a morphism
in sHF.

It is straightforward to check that β preserves identities
and compositions, so it is indeed a functor. 
�

The connection between theorems 3.8 and 3.12 is the fol-
lowing:

Theorem 3.13 The functorsα andβ establish an equivalence
between the categories sHF and sN.

Proof Notice thatβα(A, F) = β(N(A,F)) = (sH(N(A,F)),

[[N (A, F)+]]), with sH(N(A,F)) = {[[(x, y)]] : (x, y) ∈
N (A, F)} = {[[(x, y)]] : x, y ∈ A, x ∧ y = 0, x ∨ y ∈ F}.

We define now ηA(x) = [[(x, x∗)]], for each object A of
sHF and for all x ∈ A, and we prove that η = {ηA} is a
natural isomorphism from idsHF to βα.

ηA is well defined: Since x∧x∗ = 0 and alsoD(A) ⊆ F it
follows that x∨x∗ ∈ D(A) ⊆ F . Hence, (x, x∗) ∈ N (A, F).

ηA is surjective: If [[(x, y)]] ∈ βα(A, F), then [[(x, y)]] =
[[(x, x∗)]]. Indeed, since (x, y) → (x, x∗) = (x ⇒ x, x ∧
x∗) = (1, 0) and (x, x∗) → (x, y) = (x ⇒ x, x ∧ y) =
(1, 0), so by definition we have that [[(x, y)]] = [[(x, x∗)]].
Therefore, ηA(x) = [[(x, y)]].

ηA is injective: If [[(x, x∗)]] = [[(y, y∗)]], then (x, x∗) →
(y, y∗) = (x ⇒ y, x ∧ y∗) = (1, 0). Therefore, from x ⇒
y = 1, using properties of semi-Heyting algebras we obtain
x ≤ y. Analogously, (y, y∗) → (x, x∗) = (y ⇒ x, y ∧
x∗) = (1, 0) implies y ≤ x .

ηA is a sHF-morphism:

• ηA(x) ∪ ηA(y) = [[(x, x∗)]] ∪ [[(y, y∗)]] = [[(x, x∗) �
(y, y∗)]] = [[(x ∨ y, x∗ ∧ y∗)]] = [[(x ∨ y, (x ∨ y)∗)]] =
ηA(x ∨ y).

• ηA(x) ∩ ηA(y) = [[(x, x∗)]] ∩ [[(y, y∗)]] = [[(x, x∗) 

(y, y∗)]] = [[(x ∧ y, x∗ ∨ y∗)]]. Also, ηA(x ∧ y) = [[(x ∧
y, (x∧y)∗)]]. Since (x∧y, x∗∨y∗) → (x∧y, (x∧y)∗) =
((x ∧ y) ⇒ (x ∧ y), (x ∧ y) ∧ (x ∧ y)∗) = (1, 0) and
(x ∧ y, (x ∧ y)∗) → (x ∧ y, x∗ ∨ y∗) = ((x ∧ y) ⇒
(x∧ y), (x∧ y)∧(x∗ ∨ y∗)) = (1, (x∧ y∧x∗)∨(x∧ y∧
y∗)) = (1, 0), we have that ηA(x)∩ηA(y) = ηA(x ∧ y).

• ηA(x) ⇒ ηA(y) = [[(x, x∗)]] ⇒ [[(y, y∗)]] =
[[(x, x∗) ⇒ (y, y∗)]] = [[(x ⇒ y, x ∧ y∗)]]. Also,
ηA(x ⇒ y) = [[(x ⇒ y, (x ⇒ y)∗)]]. Since (x ⇒
y, x ∧ y∗) → (x ⇒ y, (x ⇒ y)∗) = ((x ⇒ y) ⇒
(x ⇒ y), (x ⇒ y) ∧ (x ⇒ y)∗) = (1, 0) and (x ⇒
y, (x ⇒ y)∗) → (x ⇒ y, x∧ y∗) = ((x ⇒ y) ⇒ (x ⇒
y), (x ⇒ y)∧ (x∧ y∗)) =

(SH2)
(1, x∧ (y∧ y∗)) = (1, 0),

we have that [[(x ⇒ y, x ∧ y∗)]] = [[(x ⇒ y, (x ⇒
y)∗)]]. Therefore, we conclude that ηA(x) ⇒ ηA(y) =
ηA(x ⇒ y).

• ηA(F) ⊆ [[N (A, F)+]]
If y ∈ ηA(F), then y = ηA(x), for some x ∈ F . Hence,
y = [[(x, x∗)]], with x ∈ F .
We observe that for x ∈ F , we have that (x, 0) ∈
N (A, F). Besides, [[(x, x∗)]] = [[(x, 0)]]because (x, 0) →
(x, x∗) = (x ⇒ x, x ∧ x∗) = (1, 0) and (x, x∗) →
(x, 0) = (x ⇒ x, x ∧ 0) = (1, 0).
Therefore, we can write y = [[(x, 0)]]. Now, since
∼ (x, 0) = (0, x) ≤ (x, 0), it follows that (x, 0) ∈
N (A, F)+, and hence y ∈ [[N (A, F)+]].

Finally, we check the naturality of η, that is, the following
diagram commutes:

A
ηA ��

f
��

βα(A)

βα( f )
��

A′ ηA′ �� βα(A′)

Notice that since ηA is an isomorphism, η−1
A ([[(x, y)]]) =

x for every x ∈ A. Then we have

(η−1
A′ ◦ βα( f ) ◦ ηA)(x) = η−1

A′ (βα( f )([[(x, 0)]]))
= η−1

A′ ([[α( f )(x, 0)]]) = η−1
A′ ([[ f (x), 0)]] = f (x).

Thus f = η−1
A′ ◦ βα( f ) ◦ ηA, and therefore ηA′ ◦ f =

βα( f ) ◦ ηA.
Now we consider the functor αβ, which transforms every

object A of sN into N(sH(A), [[A+]]). On a morphism
f : A −→ A′ it is defined by αβ( f )([[x]], [[y]]) =
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([[ f (x)]], [[ f (y)]]). We define for each object A of sN, δA :
A −→ N(sH(A), [[A+]]) by δA(x) = ([[x]], [[∼ x]]).

δA is well defined: On the one hand, [[x]] ∩ [[∼ x]] =
[[x∧ ∼ x]] = [[0]], because (x∧ ∼ x) → 0 = (x∧ ∼ x) →
(x∧ ∼ x ∧ 0) = (x∧ ∼ x) → N 0 = 1 and 0 → N (x∧ ∼
x) = 1 by well-known properties of Nelson algebras. On the
other hand, using (SN5) and De Morgan properties we have
∼ (x∨ ∼ x) =∼ x ∧ x ≤ x∨ ∼ x , so x∨ ∼ x ∈ A+.
Therefore [[x]] ∪ [[∼ x]] = [[x∨ ∼ x]] ∈ [[A+]].

δA is surjective: If ([[x]], [[y]]) ∈ αβ(A, F), then ([[x]], [[y]]) =
([[x]], [[∼ x]]). Indeed, this is a consequence of ([[x]], [[y]]) →
([[x]], [[∼ x]]) = ([[x]] ⇒ [[x]], [[x]] ∩ [[∼ x]]) =
([[1]], [[x∧ ∼ x]]) = ([[1]], [[0]]) and ([[x]], [[∼ x]]) →
([[x]], [[y]]) = ([[x]] ⇒ [[x]], [[x]] ∩ [[y]]) = ([[1]], [[0]]).
Therefore δA(x) = ([[x]], [[y]]).

δA is injective: If ([[x]], [[∼ x]]) = ([[y]], [[∼ y]]), then
[[x]] = [[y]] and [[∼ x]] = [[∼ y]], so we have the following:
x → y = 1, y → x = 1, ∼ x →∼ y = 1, ∼ y →∼ x = 1.
By proposition 2.11 (1), we have that x → N y = 1, y → N

x = 1, ∼ x → N ∼ y = 1, and ∼ y → N ∼ x = 1. These
four equalities imply that x = y (see Viglizzo 1999, (1.15)).

δA is a sN-morphism:

• δA(x)�δA(y) = ([[x]], [[∼ x]])�([[y]], [[∼ y]]) = ([[x]]∪
[[y]], [[∼ x]] ∩ [[∼ y]]) = ([[x ∨ y]], [[∼ x∧ ∼ y]]) =
([[x∨ y]], [[∼ (x∨ y)]]) = δA(x∨ y). In a similar manner,
we can prove that δA(x) 
 δA(y) = δA(x ∧ y).

• ∼ δA(x) =∼ ([[x]], [[∼ x]]) = ([[∼ x]], [[x]]) = δA(∼
x).

• δA(x) → δA(y) = ([[x]], [[∼ x]]) → ([[y]], [[∼ y]]) =
([[x]] ⇒ [[y]], [[x]] ∩ [[∼ y]]) = ([[x → y]], [[x∧ ∼ y]]).
By (SN10) and (SN11), we see that [[x∧ ∼ y]] = [[∼
(x → y)]]. Hence δA(x) → δA(y) = ([[x → y]], [[x∧ ∼
y]]) = ([[x → y]], [[∼ (x → y)]]) = δA(x → y).

Finally, δ is a natural transformation: to see that this dia-
gram commutes,

A
δA ��

f
��

αβ(A)

αβ( f )
��

A′ δA′ �� αβ(A′)

we calculate αβ( f ) ◦ δA(x) = αβ( f )([[x]], [[∼ x]]) =
([[ f (x)]], [[ f (∼ x)]]) = ([[ f (x)]], [[∼ f (x)]]) = δA′ ◦ f (x).


�

Example 3.14 Consider the semi-Nelson algebra A, with
Hasse diagram indicated below, in which the operations →
and ∼ are given by the following tables:

�

�

�

�

�

�

�

�

� 0

a b

d c e

f g

1

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

A

→ 0 a b c d e f g 1

0 1 1 1 1 g 1 g 1 g
a 1 1 1 1 g 1 g 1 g
b 1 1 1 1 g 1 g 1 g
c 1 1 1 1 g 1 g 1 g
d e g e g 1 e 1 g 1
e d d f f a 1 c 1 g
f e g e g 1 e 1 g 1
g d d f f a 1 c 1 g
1 0 a b c d e f g 1

x 0 a b c d e f g 1
∼ x 1 g f c e d b a 0

S = {0, a, d, e, g, 1} is the universe of a subalgebra S of
A. Both S andA have the same quotient semi-Nelson algebra
H indicated below:

�

� �

�
[[0]]

[[d]] [[e]]

[[1]]

�
��

�
��

�
��

�
��

H
⇒ [[0]] [[d]] [[e]] [[1]]
[[0]] [[1]] [[e]] [[1]] [[e]]
[[d]] [[e]] [[1]] [[e]] [[1]]
[[e]] [[d]] [[0]] [[1]] [[e]]
[[1]] [[0]] [[d]] [[e]] [[1]]

E = {[[e]], [[1]]} is an i-filter ofH, andN(H,E) is isomor-
phic to S, while N(H,H) = Vk(H) is isomorphic to A.

4 Dually hemimorphic semi-Nelson algebras

In this section, we will show some results about the vari-
ety of dually hemimorphic semi-Heyting and semi-Nelson
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algebras, which were presented in definitions 2.8 and 2.9,
respectively. We omit some proofs of the following results,
since they can be found in Cornejo and San Martín (2020).

Lemma 4.1 Let A ∈ DSN . If we consider the equivalence
relation ≡ defined in Sect. 2.2, then that relation is compati-
ble with respect of the operation ′. Hence, ≡ is a congruence
in DSN .

In view of the previous lemma, we can define

[[x]]† = [[x ′]]

and moreover, it can be proved that dsH(A)=〈A/≡;∩,∪,

⇒,† ,⊥,�〉 ∈ DSH.

Definition 4.2 Let A = 〈A; ∩,∪,⇒,† ,⊥,�〉 ∈ DSH. For
(a, b) ∈ Vk(A), we define the following unary operation on
Vk(A):

(a, b)′ = (a†, b ∩ (a† ⇒ a)).

The operation is well defined. Indeed, using (SH2) we
have a†∩b∩(a† ⇒ a) = b∩a†∩(a† ⇒ a)= b∩a†∩a = 0.

Theorem 4.3 If A ∈ DSH, then the system Vk(A) =
〈Vk(A); 
,�,→,∼,′ ,�〉 is a dually hemimorphic semi-
Nelson algebra.

In a similar manner as in sect. 2.1, we have the following
representations:

Theorem 4.4 Cornejo and San Martín (2020) If A ∈ DSH,
then A is isomorphic to dsH(Vk(A)). Also, if A ∈ DSN ,
then A is isomorphic to a subalgebra of Vk(dsH(A)).

Now we will generalize the results of sect. 3. In Cornejo
and San Martín (2018), the authors introduced the category
SN c of centered semi-Nelson algebras whose objects are
algebras A = 〈A; ∧,∨,→,∼, c, 1〉 of type (2, 2, 2, 1, 0, 0)
such that c =∼ c, and the morphisms are the algebra
homomorphisms. The element c is called a center of the
algebra A, and it is necessarily unique. We can expand the
category SN c to DSN c of dually hemimorphic-centered
semi-Nelson algebras whose objects are algebras A =
〈A; ∧,∨,→,∼,′ , c, 1〉 of type (2, 2, 2, 1, 1, 0, 0) such that
c =∼ c, and themorphisms are the algebra homomorphisms.

We will prove that the categories DSN and DSN c actu-
ally coincide.

Proposition 4.5 IfA ∈ DSN , thenA is centered, with center
1′.

Proof We want to prove that ∼ 1′ = 1′, or equivalently, the
following conditions hold simultaneously:

∼ 1′ → 1′ = 1, 1′ →∼ 1′ = 1,

∼ 1′ →∼ (∼ 1′) = 1, ∼ (∼ 1′) →∼ 1′ = 1. (4.1)

By Proposition 2.11 (1), (4.1) is equivalent to

∼ 1′ → N 1′ = 1, 1′ → N ∼ 1′ = 1,

∼ 1′ → N ∼ (∼ 1′) = 1, ∼ (∼ 1′) → N ∼ 1′ = 1,

which is equivalent to show that

∼ 1′ → N 1′ = 1, (4.2)

1′ → N ∼ 1′ = 1. (4.3)

By (DSN4), (DSN5), and proposition 1, we have that ∼
1′ → N (∼ 1 ∧ (1′ → 1)) = 1, that is (1) ∼ 1′ → N 0 =
1. Since in every Nelson algebra 0 → N x = x holds for
all x , it follows that (2) 0 → N 1′ = 1′. By (1), (2) and
proposition 2.11 (2), we have that ∼ 1′ → N 1′ = 1, which
proves (4.2).

By (DSN2), we have (3) 1 = 1′ →∼ 1 = 1′ → 0 =
1′ → (1′ ∧ 0) = 1′ → N 0. Using again that 0 → N 1′ = 1′,
and proposition 2.11 (2), gives us ∼ 1′ → N 1 = 1, which
proves (4.3). 
�

Proposition 4.5 shows us that the category DSN can be
viewed as the category DSN c with a distinguished element
c, but despite the change of the language, both categories are
essentially the same.

It was proved in Cornejo and SanMartín (2018) that there
is a categorial equivalence between semi-Heyting algebras
and centered semi-Nelson algebras. Moreover, the function
h defined in the proof of Theorem 4.4 is an isomorphism.
This gives us the following:

Theorem 4.6 If A ∈ DSN , then A is isomorphic to
Vk(dsH(A)).

Observation 4.7 Another way of proving Theorem 4.6 is
the following: if we consider the structure N(H,E) as in
Lemma 3.5, and take H ∈ DSH, we have no guarantee that
this set is going to be closed under the operation †. If instead
we consider a subalgebra S such that π1(S) = H, then the
proof indicated in the lemma still holds for the varietyDSH,
since it does not use the operations ′ or †. Hence, the sets S
and N (H , E) are equal, so N (H , E) inherits the operations
from S. Indeed, due to Theorem 4.4, we know that the func-
tion h : A → Vk(dsH(A)) defined by h(a) = ([[a]], [[∼ a]])
is a monomorphism. Hence, A ∼= h(A). Let us take then
the subalgebra S = h(A) of Vk(dsH(A)). It is imme-
diate that π1(S) = dsH(A). Therefore, by Lemma 3.5,
h(A) = N(dsH(A),E) for E = {[[x]] ∈ dsH(A) : [[x]] =
[[a]] ∨ [[b]], ([[a]], [[b]]) ∈ S}.

Since S is a subalgebra of Vk(dsH(A)), we have that
([[1]], [[0]]) ∈ S, so the center ([[0]], [[0]]) = ([[1]], [[0]])′ is an
element of S. Then [[0]] = [[0]] ∨ [[0]] ∈ E. Since E is a filter,
this shows that E = dsH(A).
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We have proved that S = N (dsH(A),dsH(A)) =
Vk(dsH(A)), and therefore h is an isomorphism.

Example 4.8 Consider the semi-Nelson algebras A and its
subalgebra S from Example 3.14. We know by the results
above that S cannot be expanded by adding a unary operation
′ in such a way that the system B = 〈B; ∧,∨,→,∼,′ , 1〉
becomes a dually hemimorphic semi-Nelson algebra, since
S has no center.

On the other hand, any operation ′ that makes sH(A) into
a dually hemimorphic semi-Heyting algebra yields an opera-
tion † that will turn A into a dually hemimorphic semi-Nelson
algebra.
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