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Abstract
To solve engineering problems with evolutionary algorithms, many expensive function evaluations (FEs) are required. To

alleviate this difficulty, surrogate-assisted evolutionary algorithms (SAEAs) have attracted increasingly more attention in

both academia and industry. Most existing SAEAs either waste computational resources due to the lack of accuracy of the

surrogate model or easily fall into the local optimum as the dimension increases. To address these problems, this paper

proposes an adaptive surrogate-assisted particle swarm optimization algorithm. In the proposed algorithm, a surrogate

model is adaptively selected from a single model and an ensemble model by comparing the best existing solution and the

latest obtained solution. Additionally, a model output criterion based on the standard deviation is suggested to improve the

stability and generalization ability of the ensemble model. To verify the performance of the proposed algorithm, 10

benchmark functions with different modalities from 10 to 50 dimensions are tested, and the results are compared with those

of five state-of-the-art SAEAs. The experimental results indicate that the proposed algorithm performs well for most

benchmark functions within a limited number of FEs. Moreover, the performance of the proposed algorithm in solving

engineering problems is verified by applying the algorithm to the PX oxidation process.

Keywords Surrogate-assisted evolutionary algorithm � Ensemble model � Radial basis functions � Particle swarm

optimization

1 Introduction

In recent years, due to the existence of complex nonlin-

earities in actual engineering processes, commonly used

optimization algorithms (such as gradient descent) easily

fall into a local optimum. To solve this problem, evolu-

tionary algorithms have emerged, and have achieved great

success in practical industrial problems. For instance, Zhu

et al. (2019) employed adaptive particle swarm optimiza-

tion (PSO) and the genetic algorithm to different con-

strained engineering design problems, and the results

demonstrated the superiority of evolutionary algorithms for

application in the engineering process. Mohamed (2017)

applied differential evolution to engineering optimization

problems and obtained efficient and robust solutions.

However, in complex practical problems, function evalu-

ations (FEs) often involve costly numerical simulations or

expensive experiments, which is a great challenge for the

promotion of evolutionary algorithms. To address this

problem, many researchers have developed various surro-

gate-assisted evolutionary algorithms (SAEAs). The prin-

ciple of SAEAs is to replace some of the real FEs in the

evolution process with a surrogate model. The computa-

tional cost of constructing a surrogate model to approxi-

mate the fitness for candidate solutions is much lower than

that of conducting real FEs.

The surrogate model is an analytical model (Alizadeh

et al. 2020) that uses a limited number of samples and a

given model structure to fit a model expression that

approximates the input–output relationship. Common sur-

rogate models used in SAEAs include radial basis functions

(RBFs) (Liu et al. 2016; Sun et al. 2017), polynomial

regression (Wu et al. 2018; Si et al. 2011), the Kriging

model (Fu et al. 2020; Huang et al. 2018), artificial neural
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networks (Pan et al. 2019), support vector machine (SVM)

(Zhai et al. 2019), and ensemble surrogate models (Wang

et al. 2017; Li et al. 2019). Many experiments have been

conducted to compare the performance of different surro-

gate models (Dı́az-Manrı́quez et al. 2017; Jia et al. 2020),

and the compared results have shown that the RBF models

have high global and local approximation capabilities.

The process in which individuals are selected for eval-

uation using the real fitness function and then used to

update the surrogate model is called the ‘‘infill criterion’’ or

‘‘model management’’ (Urquhart et al. 2020; Huang et al.

2018). Model management plays an important role in

SAEAs. A variety of research on this process has been

reported, and the most direct criterion is to evaluate those

individuals that have the best fitness or high approximation

accuracy based on the results obtained from the surrogate

model (Fan et al. 2020; Zhang et al. 2015; Regis 2014);

these solutions may improve the accuracy of the surrogate

model in promising regions of search space (Wang et al.

2017). In addition, Liu et al. (2017) and Hüllen et al. (2020)

posited that solutions with high uncertainty may be good

candidates for evaluation, as the exact evaluation of these

solutions can push the search to unexplored or not-well-

explored regions (Li et al. 2020; Jin 2011). To further

improve the accuracy of the surrogate model and obtain

higher-quality optimal solutions, both exploration and

exploitation should be simultaneously considered (Pan

et al. 2021), which is also referred to as the balance

between global and local model management. For example,

Liu et al. (2018) employed derivative-based optimization

to find a few local optimal solutions, and then made an

SAEA work harmonically from the not-well-distributed

local optimization results, which ultimately achieved a

global optimization effect. Wang et al. (2017) proposed a

global model management method inspired by committee-

based active learning, which searches for the best and most

uncertain solutions for updating the global surrogate

model. Simultaneously, a local surrogate model is con-

structed around the currently available optimal solution.

When the evolutionary search using the global model

management strategy is not further improved, the entire

evolutionary search is switched to the local search, and

vice versa. Sun et al. (2015) constructed a global surrogate

model and multiple local surrogate models for approxi-

mating the fitness of the population. The global model

guides the search for the optimal solution, and the local

surrogate model improves the accuracy of fitness

estimation.

While the methods mentioned previously can achieve

good results, with the increase of the dimension, some of

these methods easily fall into the local optimum or con-

tinue to switch between global and local searches. This

indicates that the existing relevant approaches cannot

successfully find an optimal solution and also waste com-

putational resources. In addition, the solution obtained via

an SAEA defaults to the current optimal solution and is not

compared with the best solution that already exists. The

reliability of this operation largely depends on the surro-

gate model. Various strategies have been reported to

improve the effectiveness of the surrogate models in

SAEAs to the greatest extent. For instance, Liang and

Rasheed (2008) proposed an adaptive surrogate-assisted

genetic algorithm that adaptively selects the type of sur-

rogate model and adjusts the complexity and frequency of

use of the model as the search process proceeds. Nguyen

and Long (2021) proposed the use of adaptive control to

determine the effective proportion of evaluations con-

ducted by the real fitness function and the surrogate model

during the search process, which overcomes the imbalance

between exploitation and exploration resulting from the use

of a fixed proportion of the two evaluation methods.

Loshchilov et al. (2012) used covariance matrix adaptation

evolutionary strategies (CMA-ES) as the optimization

algorithm and an SVM as the surrogate model and pro-

posed an algorithm that adaptively adjusts the life length of

the surrogate model (the number of CMA-ES generations

before updating the surrogate model) and the hyper-pa-

rameters of the surrogate model. These methods adaptively

adjust the type and frequency of surrogate models based on

the optimization results during the search process, which

helps to improve the quality of the surrogate models and

obtain better solutions while reducing the computational

cost.

Inspired by the idea of adaptive methods, and to avoid

the invalid calculation caused by the insufficient prediction

accuracy of the surrogate model to the greatest extent, an

adaptive surrogate-assisted PSO (ASAPSO) algorithm is

proposed in this study and takes advantage of the ability of

ensemble learning to improve the prediction accuracy of

the ensemble model (Ye et al. 2018). In the ASAPSO

algorithm, a strategy of adaptively selecting a surrogate

between an ensemble model based on RBF models and a

single RBF model is executed to assist the PSO algorithm

to search for an optimal solution. The strategy relies on the

comparison of the solution obtained by the surrogate-as-

sisted PSO algorithm and the best solution in the current

training data set. Additionally, considering the limitation of

samples and the randomness of sampling, rather than

simply calculating the average of the sub-models, the

influence of abnormal conditions in the process of model-

ing is taken into account when calculating the output of the

ensemble model. The output criterion is used to enhance

the stability and generalization of the ensemble model.

The remainder of this manuscript is organized as fol-

lows. Section 2 provides a brief overview of the related

techniques. The proposed ASAPSO algorithm is elaborated
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in Sect. 3. Section 4 introduces the comparative experi-

mental studies on benchmark functions. In Sect. 5, the

proposed algorithm is applied to a chemical engineering

problem. Finally, Sect. 6 summarizes this paper.

2 Related techniques

2.1 RBF model

The basic concept of constructing an RBF model is to

determine a set of reliable sample points xiði ¼ 1; 2; � � � ; nÞ.
The radial distance /iði ¼ 1; 2; � � � ; nÞ between variable x

and each sample point xiði ¼ 1; 2; � � � ; nÞ can be expressed

as follows:

/i ¼ x� xik kði ¼ 1; 2; � � � ; nÞ ð1Þ

where x� xik k represents the Euclidean distance from

unknown point x to sample point xi. The original complex

high-dimensional problem is transformed into a simple

low-dimensional problem by introducing the radial dis-

tance. The values at unknown sample points are calculated

by the linear superposition of the basis function ui. The

RBF model is typically used to construct the functional

approximation of the following expression:

f̂ ðxÞ ¼
Xn

i¼1

bi � uið x� xik kÞ ð2Þ

where b ¼ ½b1; b2; � � � ; bn�T is the weight coefficient. The

use of Eq. (2) as the surrogate model should meet the

following condition:

f̂ ðxiÞ � f ðxiÞ ð3Þ

where f̂ ðxiÞ and f ðxiÞ ,respectively, refer to the predicted

and actual values of the sample point xi. The substitution of

Eq. (3) into Eq. (2) yields the following:

f ¼ bTU ð4Þ

U ¼

uð x1 � x1k kÞ; � � � ; uð xn � x1k kÞ
uð x1 � x2k kÞ; � � � ; uð xn � x2k kÞ

..

.

uð x1 � xnk kÞ; � � � ; uð xn � xnk kÞ

2
6664

3
7775; f ¼

½f ðx1Þ; f ðx2Þ; � � � ; f ðxnÞ�T .

The coefficient b can be obtained by Eq. (5).

b ¼ U�1f ð5Þ

In the process of building the RBF model, the reason-

able selection of the radial function has a great influence on

the accuracy of the model. As shown in Table 1, the

common radial functions are the Gaussian, multiple

quadratic (MQ), inverse quadratic, thin-plate spline, and

cubic spline functions. As presented in the table, e is a

constant greater than 0, and is used to control the scope of

the radial function.

Among these radial functions, the MQ and Gaussian

functions are the most widely used. The MQ function has

the advantages of high calculation efficiency, good model

fitting accuracy, and excellent stability. It is usually

selected when the RBF is used for interpolation (Gao et al.

2020). The Gaussian function is selected when using a

three-layer network to realize RBF approximation (Wang

et al. 2019). The MQ function was selected for use in the

present work.

2.2 Particle swarm optimization algorithm

The PSO algorithm searches for the optimal solution to the

problem by simulating the behavioral characteristics of

biological populations, such as birds and fish. It has been

widely used in the field of engineering optimization design

due to its simple algorithm and strong optimization ability

(Sun et al. 2015). The algorithm starts by randomly

locating a swarm of particles in the search space, each of

which has its own position and velocity. During each

iteration, the velocity and position of the particle are,

respectively, updated by Eqs. (6) and (7):

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1r1ðPiðtÞ � xiðtÞÞ þ c2r2ðPgðtÞ
� xiðtÞÞ

ð6Þ
xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ ð7Þ

where viðtÞ ¼ ðvi1ðtÞ; vi2ðtÞ; � � � ; viDðtÞÞ and xiðtÞ ¼
ðxi1ðtÞ; xi2ðtÞ; � � � ; xiDðtÞÞ are, respectively, the velocity and

position of particle i at the t-th iteration, PiðtÞ ¼
ðpi1ðtÞ; pi2ðtÞ; � � � ; piDðtÞÞ is the best historical location for

the discovery of particle i (called the individual best),

PgðtÞ ¼ ðpg1ðtÞ; pg2ðtÞ; � � � ; pgDðtÞÞ is the best historical

location for the swarm (called the global best), r1 and r2 are

two random numbers generated uniformly within the range

[0,1], and c1 and c2 are positive constants called the

coefficients of acceleration, which are usually set to 1.5.

Table 1 The common used radial functions

Radial function Expression (r ¼ x� xik k)

Gaussian uðrÞ ¼ e�er2

Multiple quadratic(MQ) uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ r2

p

Inverse quadratic uðrÞ ¼ 1ffiffiffiffiffiffiffiffiffi
e2þr2

p

Thin-plate spline uðrÞ ¼ r2 logðer2 þ 1Þ
Cubic spline uðrÞ ¼ ðr þ eÞ2
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Finally, wðtÞ is the inertia weight factor, which is updated

according to Eq. (8) as the number of iterations changes:

wðtÞ ¼ 0.9� 0.5*
t

tmax

ð8Þ

where tmax is the maximum number of iterations.

3 The proposed ASAPSO algorithm

In some existing SAEAs, the evolutionary search process

easily falls into a local optimum due to the lack of accuracy

of the surrogate model or the defects of the evolutionary

algorithms. As a consequence, the SAEA cannot obtain a

satisfactory optimal solution. To solve this problem, the

ASAPSO algorithm is proposed in this paper. The main

contributions of the proposed algorithm include the fol-

lowing two aspects.

(1) An adaptive surrogate selection method is suggested,

which depends on the comparison between the

solution obtained via the surrogate-assisted PSO

algorithm and the best solution in the current training

data set. This method is used to ensure the effec-

tiveness of the optimization and to reduce the com-

putational cost while simultaneously improving the

quality of the optimal solution.

The prediction accuracy of the surrogate model

will largely determine the search direction of the

optimal solution. A single RBF model has low pre-

diction accuracy when dealing with complex prob-

lems, which tends to result in premature convergence

and invalid computations. While an ensemble model

has high prediction accuracy in most cases, consid-

ering that it applies the bootstrap method to ran-

domly select subsets for building sub-models, the

corresponding sub-models may be over-fitted when

the number of samples in the subsets is too small,

which will lead to a decrease in the prediction

accuracy of the ensemble model.

The comparison between the obtained optimal

solution and the best solution in the current training

data set is used to determine whether the currently

selected surrogate model can assist the PSO algo-

rithm in searching for a better solution. If a better

solution is obtained, it indicates that the solution in

the current training data set is converging toward

the real optimal solution, and the selection of a

single RBF model as the surrogate will help to

exploit the region around the real optimal solution

while reducing the time required to construct an

ensemble model. If a better solution is not obtained,

it indicates that the prediction accuracy of the

current surrogate model is inadequate and misleads

the PSO algorithm in the wrong direction, and the

selection of an ensemble model as the surrogate

will help to improve the quality of the optimal

solution.

(2) An ensemble model output criterion is suggested. Its

purpose is to enhance the stability and generalization

ability of the ensemble model.

Considering the limitations of the data in practical

engineering problems and the randomness of boot-

strap sampling, the T sub-models, respectively,

established by using different subsets have a certain

degree of correlation. To reduce the influence of this

correlation, the output of the ensemble model is

obtained by reasonably analyzing and processing the

output of the T sub-models. Two statistics, the

average, and median, are used to obtain the output of

the ensemble model. The average is susceptible to

outliers; thus, when there are no outliers among the

T predicted values, the generalization ability of the

ensemble model can be improved by averaging over

T sub-models. Additionally, the median is not easily

affected by outliers; thus, when there are outliers

among the T predicted values, the median of the

T sub-models can be chosen to eliminate the

influence of outliers on the ensemble model. Based

on the preceding analysis, an approach based on the

standard deviation is suggested in this paper. The

calculation of the ensemble model output includes

two steps.

Step 1 Calculate the standard deviation (r) of all pre-

dicted values of the T sub-models via Eq. (9), where T is

the number of sub-models and Y is the average of the T

predicted values.

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

i¼1

ðYi � YÞ

T

vuuut
ð9Þ

Step 2 If all the predicted values of the T sub-models are

within the range ½Y � 3r; Y þ 3r�, the output of the

ensemble model is equal to the average of the T sub-

models; otherwise, the median of the T sub-models is

used as the output of the ensemble model.

Consider a minimization of the function as an example.

The input variable is the decision variable X with dimen-

sion D. The output variable is the function value of X. The

maximum number of real FEs (FEmax) is used as the ter-

mination condition of the ASAPSO algorithm. The detailed

steps of ASAPSO are as follows.

Step 1 M samples X ¼ ½x1; x2; � � � ; xM �T are taken from

the definition domain of the function by using Latin
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hypercube sampling (LHS) (Yondo et al. 2018). j is the

number of real FEs; set j = 0.

Step 2 Calculate the real fitness of X, obtain

Y ¼ ½Y
1
; Y

2
; � � � ; Y

M
�T , and construct the initial training

data set Dt = [X,Y]. Additionally, j = M, Yjbest = mini-

mize(Y), and Ygbest = Yjbest.

Step 3 If j is less than FEmax, go to step 4; otherwise, go

to step 10.

Step 4 If Ygbest is less than or equal to Yjbest , go to step 5;

otherwise, go to step 7.

Step 5 Construct the RBF model using Dt.

Step 6 Obtain the optimal solution, gbest, of the RBF

model by using the PSO algorithm, and go to step 9.

Step 7 Construct an ensemble model using Dt.

Step 8 Obtain the optimal solution, gbest, of the

ensemble model by using the PSO algorithm.

Step 9 Evaluate gbest via a real fitness function, obtain

Ygbest, and add (gbest,Ygbest) to Dt. Additionally, set j =

j ? 1 and Yjbest = minimize(Y), and return to step3.

Step 10 Output the solution with Yjbest in Dt.

To provide a more intuitive understanding of the pro-

posed ASAPSO algorithm, a flowchart is presented in

Fig. 1. The pseudo-code of the ASAPSO algorithm is

presented in Algorithm 1.
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4 Experimental studies

In the experiments, all algorithms under comparison began

with 5D (where D is the dimension of the problem) exact

FEs and were terminated after 11D exact FEs were

exhausted. The parameters of the PSO algorithm were the

same in all algorithms under comparison, the size of the

population was 100, and the maximum number of iterations

was 100. If the ensemble scale is too large, the calculation

cost will grow linearly with the increase of the ensemble

size (Wang et al. 2019), which will reduce the computa-

tional efficiency; thus, T = 20 was selected in all experi-

ments. For bootstrap sampling, the probability of each

sample in Dt being selected is 0.5 (Wang et al. 2019),

which guarantees the diversity of the ensemble in principle.

Information on the common benchmark functions is pre-

sented in Table 2.

To judge whether there is statistical significance

between the ASAPSO algorithm and other algorithms, the

Wilcoxon rank-sum test (Masato et al. 2020) at a signifi-

cance level of a ¼ 0:05 was conducted. In Tables 3, 4, 5,

‘‘�’’ indicates that there is no statistically significant dif-

ference between the results obtained by the ASAPSO

algorithm and the compared algorithms, ‘‘ ? ’’ indicates

that the ASAPSO algorithm is significantly better than the

compared algorithms, and ‘‘ - ’’ indicates that the

ASAPSO algorithm is significantly outperformed by the

compared algorithm. The last row of Tables 3, 4, 5 sum-

marizes the results of the Wilcoxon rank-sum test as w/t/l

(win/tie/lose).

4.1 Effects of the model-based criterion

To demonstrate the effects of the model-based criterion on

the proposed ASAPSO algorithm, the ASAPSO algorithm

was compared with two of its variants (ASAPSO-S and

ASAPSO-E). ASAPSO-S is similar to ASAPSO except

that it selects only a single RBF to assist the PSO algo-

rithm. Moreover, ASAPSO-E is similar to ASAPSO except

that it selects an ensemble model to assist the PSO algo-

rithm. Ten benchmark functions with 10-D and 20-D were

used to compare the three algorithms. The average best

fitness, standard deviation, and running time of the three

algorithms over 30 independent runs are reported in

Table 3, and the individual instances with best fitness are

highlighted.

The average ranks of the three algorithms reported in

Table 3 demonstrate that the proposed ASAPSO algorithm

is the best of the three algorithms. However, according to

the results of the Wilcoxon rank-sum test, ASAPSO-E

outperformed ASAPSO on the 10-D Quartic problem and

performed similarly to ASAPSO on the 20-D Quartic

problem. The reason for this may be that the Quartic

problem has a small search space, and an ensemble model

with high prediction accuracy can be obtained using a

limited number of samples, which is conducive to obtain-

ing higher-quality optimal solutions. The ASAPSO-E

algorithm outperformed the ASAPSO algorithm on the

10-D Sphere, Griewank, and Schwefel2.21 problems.

Additionally, ASAPSO-S slightly outperformed ASAPSO

on the 10-D Ellipsoid problem and achieved similar per-

formance on the 10-D Rosenbrock problem. These findings

indicate that the ASAPSO algorithm is not suitable for

solving low-dimensional problems with large design

spaces. The reason for this may be that it cannot search the

entire design space in detail within a limited number of FEs

when the dimension is low. With the increase of the

dimension, the number of real fitness evaluations increases;

consequently, increasingly more optimal solutions are

added to the training data set, and the prediction accuracy

Start

Initialize X withM samples 
by LHS, set j = 0

Calculate the real fitness (Y) of X,
construct Dt = [X,Y], j = M

Y j
be st = minimize(Y), Ygbest = Y j

be st

Construct the RBF
model using Dt

Obtain the optimal 
solution (gbest) of the 

RBF model by using PSO 

Construct the ensemble 
model using Dt

Output the solution 
with Y jbe st

Calculate the real fitness(Ygbest)of 
gbest,  add (gbest,Ygbest) to Dt, 

set j = j + 1, Y j
be st = minimize(Y)

NY Ygbest ≤ Y j
be st

j < FEmax
Y

N

Obtain the optimal solution 
(gbest) of the ensemble 

model by using PSO 

Fig. 1 The flowchart of the ASAPSO algorithm
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of the surrogate model continually increases. The conver-

gence profiles of the algorithms of the 10-D and 20-D

Rastrigin problems are shown in Fig. 2. It can be con-

cluded from the figure that in the ASAPSO-S algorithm,

due to the low quality of the single RBF model, the search

direction of the optimal solution may be easily misled,

which leads to the problem of premature convergence.

Moreover, due to the higher prediction accuracy of the

ensemble model in the ASAPSO-E algorithm, better opti-

mal solutions, and faster convergence were obtained. The

ASAPSO algorithm can quickly mitigate the impact of

incorrect optimal solutions on the search direction of the

optimal solution by adaptively selecting a surrogate model,

which improves the quality of the optimal solution while

ensuring the convergence speed. Additionally, by com-

paring the running times of the three algorithms reported in

Table 3, it is evident that the adaptive selection of the

surrogate model can significantly reduce the computational

cost while ensuring the quality of the optimal solution.

Overall, the effectiveness of the model-based criterion on

the ASAPSO algorithm was demonstrated.

4.2 Low-dimensional problems

To verify the performance of the proposed ASAPSO

algorithm in low dimensions, it was applied to 10-D, 20-D,

and 30-D problems, and its performance was compared

with those of several existing algorithms, namely CAL-

SAPSO (Wang et al. 2017), WTA1 (Goel et al. 2007), and

MAES-ExI (Emmerich et al. 2006), the main characteris-

tics of which are described as follows.

(1) CALSAPSO is an ensemble-assisted evolutionary

algorithm aided by multiple surrogates, namely PR,

RBF, and Kriging models, and an active learning-

based surrogate management strategy is employed.

(2) WTA1 is an ensemble-based SAEA with weights

assigned by the root-mean-square errors of the PR,

RBF, and Kriging models. In the experiment, WTA1

continued to evaluate the optimal solution of the

surrogate ensemble and added it to the training data

set for model updating.

(3) MAES-ExI is a Kriging-based SAEA with expected

improvement (ExI) as its criterion for selecting

solutions to evaluate.

To prevent randomness, each algorithm was indepen-

dently run 30 times in the experiment. The average best

fitness and standard deviation obtained by the four com-

pared algorithms are reported in Table 4, and the best

average fitness of the four algorithms for each problem is

indicated in bold.

As revealed by the statistical results presented in

Table 4, when the termination condition was satisfied, the

performance ranking of the four algorithms was as follows:

ASAPSO was the best, CALSAPSO was the second-best,

WTA1 was the third-best, and MAES-ExI was the worst.

The performance of ASAPSO was less competitive than

those of the CALSAPSO and WTA1 algorithms on a

portion of 10-D problems. The reason for this may be that

the CALSAPSO and WTA1 algorithms are both ensemble

surrogate-assisted PSO algorithms, and the ensemble sur-

rogate has high prediction accuracy. For the ASAPSO

algorithm, only 60 new solutions were evaluated with the

real fitness function throughout the optimization process,

and most of the new solutions could be obtained by using

the RBF-assisted PSO algorithm; thus the ensemble model

did not work significantly well.

On the 30-D Rastrigin and Rosenbrock problems, the

performance of the CALSAPSO algorithm was similar to

that of the ASAPSO algorithm. The reason for this is that

the combination of global and local search in the CAL-

SAPSO algorithm is a useful way to locate the optimal

solution region when dealing with complex problems. The

CALSAPSO algorithm outperformed the ASAPSO algo-

rithm on the Sphere and Griewank problems, possibly

because they have a large search space, and the sparse

location of the search space cannot be fully explored within

a limited number of FEs. In addition, for most functions,

Table 2 Information on the

common benchmark functions
Function Problem Decision space Optimum Characteristics

F1 Ellipsoid [-5.12,5.12]D 0 Uni-modal

F2 Sum square [-10,10]D 0 Uni-modal

F3 Sphere [-100,100]D 0 Uni-modal

F4 Griewank [-600,600]D 0 Multi-modal

F5 Schwefel2.21 [-100,100]D 0 Multi-modal

F6 Alpine [-10,10]D 0 Multi-modal

F7 Quartic [-1.28,1.28]D 0 Multi-modal

F8 Ackley [-32,32]D 0 Multi-modal

F9 Rastrigin [-5,5]D 0 Very complicated multi-modal

F10 Rosenbrock [-2.048,2.048]D 0 Multi-modal with narrow valley

An adaptive surrogate-assisted particle swarm optimization… 15057
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the ASAPSO algorithm obtained better optimal solutions

with the increase of the dimension. The reason for this may

be that the 11D�5D = 6D solutions evaluated with the real

fitness function were added to Dt throughout the search

process. As the dimension increases, the number of sam-

ples in Dt also increases, which improves the prediction

accuracy of the surrogate model and contributes to the

quality of the optimal solution.

To obtain a more comprehensive understanding of the

performance of the ASAPSO algorithm, three representa-

tive test functions were analyzed, and the convergence

profiles of three representative benchmark functions on

D = 10, 20 are presented in Fig. 3. The Alpine function is a

classical multi-modal minimization test function. When it

tends to infinity in the definition domain, the function will

produce a large number of differentiable local extrema

along the direction of the independent variable, which is

very difficult to optimize. The function is used to detect the

optimization ability of the algorithm. From Fig. 3a and b, it

is evident that ASAPSO exhibited a strong optimization

ability; in particular, on the 20-D problem, it converged to

the optimal solution when the number of FEs reached half

the value of FEmax. Ackley is a multi-modal function; with

the increase of the dimension, its direction gradient and

forward direction are various, so the global convergence

rate of the algorithm can be detected by this function. As

revealed in Fig. 3c and d, both on the 10-D and 20-D

problems, ASAPSO quickly converged to an optimal

solution, which was significantly better than those obtained

by the other three algorithms. Finally, Ratrigin is a very

complicated multi-modal problem that has a large number

of local optima; thus, it can be used to detect the abilities of

the algorithm to jump out of the local optima and conduct a

global search. Moreover, its local optima are regular, and it

can be used to check the practicability of the algorithm.

According to Fig. 3e and f, both on the 10-D and 20-D

problems, ASAPSO found an optimal solution that was

significantly better than those of the other three algorithms.

This may be due to the premature convergence of the other

three algorithms in the face of a large number of local

Table 5 Average best fitness and standard deviation of three compared algorithms on 50-D

Function D ASAPSO iDEaSm GPEME

Avg Std Avg Std Avg Std

F1 50 4.11E?01 5.19E?00 7.66E?01 - 1.09E?01 2.02E?02 - 6.21E?01

F4 50 8.22E?00 6.88E-01 8.79E?01 - 3.41E?01 3.05E?02 - 5.58E?01

F8 50 4.87E?00 3.47E-01 1.77E?01 - 5.54E?00 1.98E?01 - 8.92E-01

F9 50 3.76E?02 1.53E?01 4.77E?02 - 3.33E?01 4.86E?02 - 3.67E?01

F10 50 2.10E?02 1.49E?01 6.37E?03 - 2.97E?02 2.03E?04 - 2.15E?03

Average rank 1 2 3

w/t/l 0/0/5 0/0/5

Fig. 2 The convergence profiles of the algorithms of the 10-D and 20-D Rastrigin problems
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extrema, and their inability to conduct a comprehensive

search in the global range. Before the termination condition

was satisfied, the quality of the optimal solutions obtained

by ASAPSO continued to improve, which indicates that

ASAPSO has a good global search ability.

Another observation is that the standard deviation of the

ASAPSO algorithm was the smallest for most problems,

Fig. 3 The convergence profiles of three representative benchmark functions on 10-D, 20-D
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especially when the average fitness obtained by the

ASAPSO algorithm was similar to or better than that of the

algorithm being compared; this finding implies that the

ASAPSO algorithm has higher stability than the compared

algorithms.

4.3 Scalability test

CALSAPSO, WTA1, and MAES-ExI were developed

primarily to address low-dimensional problems (Wang

et al. 2017). Therefore, the performance of ASAPSO in

dealing with high-dimensional problems with dimensions

over 30 was assessed via comparison with different algo-

rithms. Of the existing SAEAs, GPEME (Liu et al. 2014)

and iDEaSm (Awad et al. 2018) perform well on high-

dimensional problems. However, because the codes of the

GPEME and iDEaSm algorithms are not available, their

experimental results could only be copied from the existing

literature (Fan et al. 2020). Thus, to verify the scalability of

the ASAPSO algorithm, it was compared with the GPEME

and iDEaSm algorithms on five common benchmark

functions considered in the existing literature and this

paper, and D = 50. The main characteristics of the two

compared SAEAs are as follows.

(1) GPEME is an online single surrogate-assisted data-

driven evolutionary algorithm assisted by a Kriging

model, the surrogate management strategy of which

is the LCB-based infill sampling criterion.

(2) iDEaSm is an SAEA dedicated to solving high-

dimensional problems by optimizing the Kriging

correlation parameter h and using a differential

evolution algorithm as the search engine.

The experimental results of the GPEME and iDEaSm

algorithms were obtained by independently running each

algorithm 25 times. For a fair comparison, the ASAPSO

algorithm was also independently run 25 times. The aver-

age best fitness and standard deviation of the three com-

pared algorithms on the 50-D problems are reported in

Table 5. The best average fitness of the three algorithms for

each problem is indicated in bold.

It can be seen from Table 5 that for the five common 50-

D benchmark functions when the preset termination con-

dition was met, the performance ranking of the three

algorithms was as follows: ASAPSO was the best, iDEaSm

was the second-best, and GPEME was the worst. The

results of the Wilcoxon rank-sum test at the significance

level of a ¼ 0.05 reported in the last row of Table 5

demonstrate that the GPEME and iDEaSm algorithms

performed significantly worse than the ASAPSO algorithm.

The reason for this is that ASAPSO selects the RBF model

as the surrogate, which is suitable for overcoming the

problem of inadequate samples. Furthermore, the adaptive

selection of the single RBF model and the ensemble model

can guarantee the quality of the current optimal solution

and thus improve the accuracy of the surrogate model. The

reason why iDEaSm is more outstanding than GPEME on

high-dimensional problems is that it not only improves the

Kriging model by optimizing the hyperparameter h, but
also updates the surrogate model with a large number of

sample points. As mentioned in the original literature,

iDEaSm used 5000 sample points for 50-D problems.

However, the original Kriging model was used in GPEME.

Overall, the proposed ASAPSO algorithm achieved good

performance on high-dimensional problems as compared

with the two compared SAEAs.

5 Case study

To verify the performance of the ASAPSO algorithm in

dealing with real-world problems, the p-xylene (PX) oxi-

dation process is analyzed. The flowchart of the PX oxi-

dation reaction process is presented in Fig. 4.

Under high temperature and high pressure, terephthalic

acid (TA) can be obtained by the oxidation of PX via the

catalysis of cobalt acetate, manganese acetate, and bromine

ions, and then crystallizes to obtain TA containing the

impurities of 4-carboxybenzaldehyde (4-CBA) and p-toluic

(PT) acid. In this oxidation process, the combustion losses

of acetic acid (HAC) and PX in the reactor are two

important economic indices. In addition, the combustion of

HAC and PX will produce carbon monoxide (CO), a toxic

gas, and carbon dioxide (CO2), a greenhouse gas (Fan and

Yan 2015). Therefore, to obtain greater economic benefits

while reducing the impact of CO2 and CO in the air, it is

necessary to reduce the combustion losses of HAC and PX

during the reaction process. Via the analysis of the actual

working condition data, it was found that the change trends

of the combustion losses of HAC and PX were the same.

Thus, the reduction and optimization of PX combustion

PX material

Catalysts and 
accelerators

Acetic acid

Defoamer

Air

Mixture
Oxidation reactor

Crystallizer

Fig. 4 The flowchart of PX oxidation reaction process
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loss during the reaction process were carried out by the

ASAPSO algorithm as a case study.

The main factors that affect the reaction rate are the

reaction temperature, solvent ratio, cobalt (Co) catalyst

concentration, manganese (Mn) catalyst concentration,

bromine (Br) catalyst concentration, residence time, and

gas-phase oxygen concentration. Many research results

have indicated that there exists a critical value of oxygen

concentration (Liu and Li 2014). When the oxygen con-

centration is higher than the critical value, there is no effect

on the oxidation reaction; only when the oxygen concen-

tration is lower than this critical value will the oxidation

reaction be affected. The present study only considers the

case of a high gas-phase oxygen concentration, which

means that the influence of the gas-phase oxygen concen-

tration is removed. In addition, Co and Mn have the same

effect on the reaction rate. Based on this knowledge, the

decision variables in this case study were selected as the

mass flow of Br (x1, kg/hr), the mass flow of Co (x2, kg/hr),

the oxidation reactor temperature (x3, �C), the residence

time (x4, s), the solvent ratio (x5, mol/kg) and the crystal-

lization temperature (x6, �C). During the optimization

process, depending on the actual working conditions, the

upper limit of the decision variables is [300, 200, 210,

5983, 2.78, 187], and the lower limit of the decision vari-

ables is [200, 100, 183, 4135, 1.99, 185].

To ensure the quality of the product produced by the PX

oxidation process, the optimization was carried out under

the condition that the conversion rate of PX to TA was

maintained at a high level (99.54% in the actual working

conditions). The initial number of sample points was 30.

The ASAPSO algorithm was terminated when the number

of FEs reached 66. It should be noted that the real FEs were

conducted by Aspen Plus 10 software during the entire

optimization process. The comparison of PX combustion

loss under actual conditions and after optimization by four

algorithms is presented in Table 6.

It can be seen from Table 6 that the ASAPSO algorithm

obtained the best result among the four optimization

algorithms, and it reduced the PX combustion loss from

15.13 to 13.34, which proves that the proposed algorithm

could greatly reduce the PX combustion loss in the engi-

neering production process. Furthermore, due to the large

scale of factory production and the continuous expansion

of new production lines, the demand for raw materials is

also further improved by the algorithm. The optimization

scheme provides some effective measures for reducing the

use of raw materials. Moreover, the contents of the toxic

gas CO and the greenhouse gas CO2 in the factory pro-

duction process were reduced by the ASAPSO algorithm,

which can therefore make some contributions to solving

the problem of environmental pollution.

6 Conclusions

To overcome the problems of the existing SAEA methods

relying too much on the original samples and falling into a

local optimum, as well as the low accuracy of the surrogate

model, the adaptive surrogate-assisted PSO (ASAPSO)

algorithm was proposed in this paper; this algorithm tries to

find a better solution within a limited number of function

evaluations (FEs). In the proposed algorithm, an ensemble

model based on ensemble learning is used to help the PSO

algorithm search for an optimal solution when the currently

obtained optimal solution is worse than the best solution

that already exists; otherwise, the RBF-assisted PSO

algorithm is executed to search for an optimal solution. For

the ensemble model, a model output criterion is suggested

to reduce the impact of the correlation among base models

on the ensemble model output. To verify the good per-

formance of the proposed ASAPSO algorithm, 10 bench-

mark functions were tested in different dimensions. The

experimental results demonstrate that the ASAPSO algo-

rithm found better solutions than five state-of-the-art

algorithms for a majority of the problems. Moreover, to

prove the effectiveness of the proposed algorithm in solv-

ing engineering problems, the algorithm was applied to the

PX oxidation process, and satisfactory results were

obtained.
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