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Abstract
The essential idea of the residuation principle plays a fundamental role in the residuated lattice theory based onR-implications,
which are derived from left-continuous t-norms providing a general logical framework frequently applied to achieve solutions
for multiple criteria and decision-making problems. The definition of n-dimensional fuzzy R-implications (n-DRI) is intro-
duced, showing that the main properties of R-implications on the unit interval [0,1] can be preserved in the n-dimensional
upper simplex Ln([0, 1]), based on left-continuous n-dimensional t-norms. We also show a construction method for this
class of implications, studying its relationships with intrinsic properties such as identity, neutrality, ordering and exchange
principles. In addition, by considering the action of n-dimensional automorphisms, the conjugate of n-dimensional fuzzy
R-implications is studied. The characterization of n-dimensional fuzzy R-implications and a methodology to obtain these
operators from n-dimensional aggregations on Ln([0, 1]) is discussed, as the left-continuous n-dimensional t-norms. The rep-
resentable Łukasiewicz implication and minimum aggregation on Ln([0, 1]) are considered to compare multiple alternatives
in both approaches: (i) using admissible linear orders in Ln([0, 1]) provided by a sequence of aggregations and (ii) applying
the arithmetic means in n-dimensional data application, based on multiple attributes related to a selection of the best CIM
(computer-integrated manufacturing) software systems obtained from decision maker evaluations. The theoretical results on
n-DRI are carries out to the fuzzy module evaluation in cloud computing environments.

Keywords n-Dimensional fuzzy sets · n-Dimensional R-implications · Residuation property · Cloud computing

1 Introduction

The notion of an n-dimensional fuzzy set (n-DFS) or Ln-
fuzzy set theory was introduced by Shang et al. (2010) as
a special class of L-fuzzy set theory, generalizing the the-
ories underlying many other multivalued fuzzy logics: the
interval-valued fuzzy set theory (IVFS) (Sambuc 1975), the
Atanassov’s intuitionistic fuzzy set theory (Atanassov 1986)
(A-IFS) and its interval-valued approach (Atanassov and
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Gargov 1998). In the Ln-fuzzy set theory, n-dimensional
fuzzy set membership values are n-tuples of real numbers
in [0, 1], ordered in increasing order, called n-dimensional
intervals.

So, as the first question addressed in this work, does n-
dimensional intervals plays a role in the development of
scientific investigation? A historical and hierarchical anal-
ysis of n-DFS and other important extensions of the fuzzy
set (FS) theory have been extensively studied, as highlighted
by Bustince et al. (2016). As the general idea, an n-DFS con-
siders several uncertainty levels in its membership functions,
adding degrees of freedom and making it possible to directly
model uncertainties in computational systems based on FS
(Bedregal et al. 2012). Such uncertainties are frequently
associated with many causes such as using n-ary operators
modelling imprecise parameters in time-varying systems or
applying distinct expert knowledge possibly obtained from
questionnaires, and also including uncertain words from nat-
ural language provided by groups of experts.

Moreover, in what sense does n-dimensional fuzzy logic
differ from other ones, as the hesitant fuzzy logic? As an
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extension of fuzzy logic (FL) as old as HFS (Torra 2010) and
typical hesitant fuzzy sets (THFS) (Bedregal et al. 2014), but
less exploited, the study of n-DFS motivates us to promote
new investigations, consolidating this multi-valued logical
approach. In particular, the possibility of modelling repeat-
ing membership degrees in an n-dimensional interval and
so, preserving the frequency of such occurrence, which are
based on the expert’s opinions. It seems a promising area in
applied researches, providing solutions for multiple criteria
and decision-making problems (MCDM).

In addition, we can ask about the advantages of n-
dimensional R-implications? Klement and Navara (1999),
themselves predominantly started with a left-continuous
t-norm and studied the corresponding class of residual impli-
cation named as R-implications. Since there, R-implications
have been used as a fundamental methodology in approx-
imate reasoning and modelling fuzzy rules in inference
systems (Bedregal et al. 2009). In the broad sense, it is
frequently applied to fuzzy control, analysis of vagueness
in natural language and techniques of soft-computing. In
the narrow sense, as the case in this article, the extension
of theoretical research of R-implications contributes to a
branch of many valued logic and algebraic logics enabling an
investigation of deep logical questions involving the residu-
ation property (Alcalde et al. 2005; Baczyński 2004). See
other results covering operational semantics of program-
ming languages (Espana and Estruch 2004) and including
several classes of algebraic logics (Paiva et al. 2021; San-
tiago et al. 2019a, b). Moreover, an R-implication derived
from a left-continuous t-norm is a general logical framework
in mathematical morphology (González-Hidalgo and Mas-
sanet 2014), defining the morphological operators as fuzzy
dilation and fuzzy erosion. Another relevant application of
the residual implications in image processing Barrenechea
et al. (2011); Shi et al. (2013) is concerned with subset-
hood fuzzy sets and similarity measures (Santos et al. 2019),
performing the comparison of digital images represented by
multi-valued fuzzy sets. And, the essential idea of residuation
is also applied in automata theory (Farias et al. 2016).

To sum up, we are interested in the concept of n-DFS
underlying the formal Ln([0, 1])-residuation theory related
to n-dimensional R-implications (n-DRI), focusing on solu-
tions in the MCDM applied research area. For that, we aim
to expand the research from Zanotelli (2020) and completely
new results have been included in this new study of n-DRI.

1.1 Main contribution

The main results of n-dimensional R-implications (n-DRI)
on the class of n-dimensional simplex attempt to answer the
following research questions, followed by the corresponding
methodology to achieve their appropriate answers.

– In the previous literature on n-DFS, what basic concepts
of fuzzy connectives need to be reported in order to con-
solidate the study of R-implications in the n-dimensional
upper simplex Ln([0, 1])?

Based on the preliminaries studies, the extension of fuzzy
implication from unit interval [0, 1] to Ln([0, 1]) is revised.
We leverage the main concepts on conjugate and repre-
sentable n-DI, including the study of aggregating functions.
In particular t-norms alongwith fuzzy negations are related to
notions for n-dimensional intervals. Additionally, their inter-
relationship with the n-dimensional aggregation operator is
investigated, exploring the notion of Moore-continuity and
intrinsic properties as identity and exchange principles.

– How to extend the investigation of residual theory to the
n-dimensional upper simplex Ln([0, 1])?More precisely,
what are the necessary and sufficient conditions support-
ing that an n-DRI can be generated from a n-DT? And, in
the reverse construction, what properties guarantee that
an n-DT can be induced by an n-DRI?

The residuation principle study is relevant, leading to
the characterization of the families of n-DRI based on the
left-continuous n-DT. So, this work establishes a method of
regaining (including minimal conditions) the residual opera-
tor, connecting an n-DRI togetherwith an n-DT. In addition, a
constructive methodology to obtain n-DRI is proposed based
on the characterization to left-continuousn-DT,which is gen-
erated by n-DI as an residual implication on Ln([0, 1]). Thus,
the study of conjugate-operator Iφ on Ln([0, 1]) emphasizes
the φ-conjugation on the class of n-DRI.

– How to construct n-DRI based on n-DA operators?

The interrelationship with the interval-valued aggregation
and R-implications can be extended, consolidating a con-
structive method to obtain the n-DRI ITT1,...,Tn

based on the
minimum operator and left-continuous t-norms. And, anal-
ogously, the operator TII1,...,In

can be defined, exploring the
minimal conditions under which it forms an adjoint par with
corresponding residuum operator ITT1,...,Tn

.

– And finally, what about possible applications of the con-
structive method to solve problems in on MCDM areas?

Using representable Łukasiewicz n-DRI and the minimum
operator on Ln([0, 1]), we are able to compare multiple
alternatives in both approaches: (i) using admissible linear
orders in Ln([0, 1]) provided by a M-sequence of aggrega-
tions; and (ii) applying the arithmeticmeans inn-dimensional
data. The selected case study is based on multiple attributes
related to a selection of the best CIM (computer-integrated
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manufacturing) software systems obtained from three deci-
sion maker evaluations. Concluding, in order to validate the
theoretical results on the n-DRI, an application is executed
in the Int-FLBCC environment, providing a evaluation for
host selection of cloud computing (CC) allocation of virtual
machines (VM).

1.2 Related papers

Extending the seminal studies of n-DFS, the main related
papers exploring logical properties of Ln([0, 1])-fuzzy con-
nectives are summarized in Table 1, also reporting aspects
related to Ln([0, 1])-fuzzy reasoning.

They considered the following themes: (i) extending the
study of fuzzy implications from [0, 1] to Ln([0, 1]) and
connecting main properties of n-dimensional fuzzy impli-
cations; (ii) formalizing multidimensional fuzzy sets as
extension in which the membership values can have dis-
tinct dimensions; (iii) considering the Moore-continuous
metric and representable Moore-continuous n-dimensional
fuzzy negations, preserving equilibrium points from [0, 1]
to Ln([0, 1])-fuzzy approach; (iv) characterizing the t-repre-
sentability n-dimensional triangular norms and conorms in
terms of inclusion monotonicity property; (v) studying fuzzy
grades based on n-dimensional fuzzy set; (vi) discussing on
Ln([0, 1])-fuzzy cut sets; and (vii) comparing Ln([0, 1])-
fuzzy ordered vectors via admissible orders. Many of them
are related to theoretical research (TR) and decision-making
problems (DMP), areas providing support to achieve solu-
tions in decision-making problems.

Consolidating the research on the n-dimensional upper
simplex Ln([0, 1]), this paper studies the possibility of
dealing with the main properties of n-DRI, exploring their
application to solve a CIM-MCMD problem extended from
Wen et al. (2018).

1.3 Outline of the paper

This paper is organized as follows. In preliminaries,we report
the main characteristics of n-dimensional intervals in the n-
dimensional upper simplex Ln([0, 1]), including concepts
as metric and left- and right-continuity w.r.t. the Moore-
continuity.

We also consider the action of automorphisms and adjoint
pairs on Ln([0, 1]). In Sect. 2.5, n-dimensional fuzzy nega-
tions are briefly discussed based on results from Bedregal
et al. (2012), also defining the concept of a dual constructor
on Ln([0, 1]).

In sequence, n-dimensional aggregation operators are
considered joining with the definition of admissible linear
orders on Ln([0, 1]). In particular, n-dimensional t-norms
are also studied including main properties in the class of

representable t-norms, dual and conjugate constructions on
Ln([0, 1]).

In Sect. 3, the concepts and reasonable properties of
n-dimensional fuzzy implications on Ln([0, 1]) are also stud-
ied, as well as the properties assuring their representable
expressions and conjugation constructions.

The core of the paper sits in Sects. 4 and 5, where prop-
erties of R-implications are extended to the n-dimensional
interval fuzzy set approach. The residuation property and
their main characterization based on left-continuity of n-
dimensional t-norms are studied. In such context, the action
of n-dimensional automorphisms is also discussed.And then,
a method to obtain n-DRI from n-DT operators, character-
izing the operators IT1,...,Tn and reporting conditions under
which main properties of implications are preserved by such
operators.

An application in CIM-MCDMarea is extended from hes-
itant fuzzy sets to n-dimensional fuzzy sets in Sect. 6, based
on Łukasiewicz implication operator. And, the conclusion
section highlights main results and briefly comments on fur-
ther work.

2 Preliminaries

In this section, we will briefly review some basic concepts
of FL, concerned with the study of n-dimensional intervals,
which can be found in Bedregal et al. (2011, 2018).

2.1 n-Dimensional fuzzy sets

Let X �= ∅ and Nn = {1, 2, . . . , n}. By Shang et al. (2010),
an n-dimensional fuzzy set B over X is given as

B = {(x, μB1(x), . . . , μBn(x)) : x ∈ X}, (1)

when all membership functions μBi : X → [0, 1], ∀i ∈ Nn

verify the condition μB1(x) ≤ · · · ≤ μBn(x), ∀x ∈ X .
The n-dimensional upper simplex is given as Bedregal

et al. (2011)

Ln([0, 1]) = {x = (x1, . . . , xn) ∈ [0, 1]n : x1 ≤ · · · ≤ xn},
(2)

and its elements are called n-dimensional intervals. For i =
1, . . . , n, the i-th projection of Ln([0, 1]) is the function πi :
Ln([0, 1]) → [0, 1] given by πi (x1, . . . , xn) = xi . For a
degenerate element x ∈ Ln([0, 1]), it holds that πi (x) =
π j (x), ∀i, j ∈ Nn , and it is denoted by /x/. So, x = πi (/x/),
∀i ∈ Nn .
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Remark 1 The usual order ≤ on [0, 1] is extended to higher
dimensions, for x, y ∈ Ln([0, 1]), as follows:

x ≤ y ⇔ xi ≤ yi ,∀i ∈ Nn . (3)

For every non-empty set A ⊆ Ln([0, 1]), the supremum
and infimum with respect to ≤-order is given as:

supA = (sup{π1(x) : x ∈ A}, . . . , sup{πn(x) : x ∈ A}),
inf A = (inf{π1(x) : x ∈ A}, . . . , inf{πn(x) : x ∈ A}).

In particular, when A = {x, y} we will use the infix notation
x ∨ y and x ∧ y instead of supA and inf A, respectively.

According Bedregal et al. (2011), Ln([0, 1])
= (Ln([0, 1]),∨,∧, /0/, /1/) is a distributive complete lat-
tice, which is a continuous lattice in the sense of Gierz et al.
(2003),with /0/ and /1/being their bottomand top elements,
respectively. Observe that L1([0, 1]) = [0, 1] and L2([0, 1])
correspond to the usual lattice of all the closed subintervals
on [0, 1].

2.2 Continuity on Ln([0, 1])
The continuity of functions is based on the particular topol-
ogy of their domain and codomain. There are topological
spaces which can be derived from metrics, and in this case,
the continuity of functions has an equivalent definition based
on the metrics. In this section, we will consider main proper-
ties and relevant notions of continuity in metric spaces. For
additional studies, see Dugundji (1966).

The function dnM : Ln([0, 1]) × Ln([0, 1]) → R
+ given

as

dnM (x, y) = max(|π1(x) − π1(y)|, . . . , |πn(x) − πn(y)|)
(4)

is a metric on Ln([0, 1]) called the n-dimensional interval
Moore-metric on Ln([0, 1]), see details in Mezzomo et al.
(2018), Proposition 3.1.

Remark 2 When the natural immersion of Ln([0, 1]) in
[0, 1]n is considered, the n-dimensional interval Moore-
metric coincides with the Chebyshev-metric (Mendelson
1990). Moreover, d1M is the usual distance on real numbers
restricted to [0, 1] and d2M is theMoore-metric (Dimuro et al.
2011).

Remark 3 Analogously what happen with the A-IFS con-
text (which is isomorphic to IVFS), the equivalence between
the Euclidean and the Hamming metrics is presented in
Deschrijver et al. (2004), from a topological point of view,
determining the analogous continuity notion. In particular,
the (Deschrijver et al. 2004, Theorem 5.1) proves that the

topologies induced by both metrics are the same. In anal-
ogous sense, the Moore and Euclidean metrics are both
topologically equivalent.

Of course, the context proposed in Deschrijver and Kerre
(2003) takes the complete lattice of intuitionistic fuzzy val-
ues, given as L∗ = {(x, y) ∈ [0, 1]2 : x + y ≤ 1}. And,
the (Deschrijver and Kerre 2003, Theorem 2.3) (see the third
item) shows that IVFS and A-IFS are identical from a math-
ematical point of view. In fact, the presented bijection �3

explicits the equivalence between the Euclidean and Ham-
mingmetrics in L∗ from theEuclidean andHammingmetrics
on L2([0, 1]), respectively.

One can observe that, since dnM is a metric, a continuity
notion for n-dimensional unary functions is also verified.
Thus, the study of the continuity of n-dimensional func-
tions of arbitrary m-arity considers a corresponding metric
on (Ln([0, 1]))m .
Proposition 1 Let dn,m

M : (Ln([0, 1]))m × (Ln([0, 1]))m →
R

+ be a function such that, for x = (x1, . . . , xm), y =
(y1, . . . , ym) ∈ (Ln([0, 1]))m, it is given as follows:

dn,m
M (x, y) = max(dnM (x1, y1), . . . , dnM (xm, ym)), (5)

Then, dn,m
M is a metric on (Ln([0, 1]))m.

Proof Clearly dn,m
M is symmetric and since dnM is ametric, for

x, y, z ∈ (Ln([0, 1]))m the next two conditions are verified:

1. dn,m
M (x, y) = 0 iff dnM (xi, yi) = 0, ∀i ∈ Nn iff xi = yi,

∀i ∈ Nn iff x = y;
2. ∀i ∈ Nn , dnM (xi, zi) ≤ dnM (xi, yi) + dnM (yi, zi) then we

obtain that

max(dnM (x1, z1), . . . , dnM (x1, z1))

≤ max(dnM (x1, y1) + dnM (y1, z1), . . .

. . . , dnM (xm, ym) + dnM (ym, zm))

= max(dnM (x1, y1), . . . , dnM (xm, ym)) + . . .

. . . + max(dnM (y1, z1), . . . , dnM (ym, zm)).

So, dn,m
M (x, z) ≤ dn,m

M (x, y) + dn,m
M (y, z). Concluding,

Proposition 1 is also verified. 
�
A function F : (Ln([0, 1]))m → Ln([0, 1]) is Moore-

continuous if it is a (dn,m
M , dnM )-continuous. In the following,

the convergence of sequences and limits on the set of real
intervals [0, 1] are extended to Ln([0, 1]).
Definition 1 A function f : N → Ln([0, 1]) is an n-
dimensional interval sequence (n-DS) if f (i) = xi ,∀i ∈ N

usually denoted by (xi )i∈N.
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Definition 2 An n-DS (xi )i∈N converge to a ∈ Ln([0, 1]),
denoted by xi → a or lim

n→∞ xi = a, if the following holds

∀ε > 0, ∃n0 ≥ 0suchthatdnM (xi , a) < ε,∀n > n0.

By previous definitions, ∀k ∈ Nn−1, it holds that

(i) xk ≤ xk+1, then (xi )i∈N is an increasing n-DS; and
(ii) xk ≥ xk+1, then (xi )i∈N is an decreasing n-DS.

A function F : (Ln([0, 1]))2 → Ln([0, 1]) is a
(right) left-continuous for the first variable if it verifies
for each countable (decreasing) increasing chain (xi )i∈N on
(Ln([0, 1]),≤), the following property:

(
RC : lim

i→∞F(xi , y) = F( lim
i→∞ xi , y)

)
(6)

LC : lim
i→∞F(xi , y) = F( lim

i→∞ xi , y) (7)

And, analogous construction can be demanding to the second
variable, by taking (decreasing) increasing chain (yi )i∈N on
(Ln([0, 1]),≤).

Proposition 2 Let (xi )i∈N be an n-DS. Then, (xi )i ∈ N con-
verges to a ∈ Ln([0, 1]) iff (πk(xi ))i∈N converges to πk(a),
for each k ∈ Nn.

Proof Straightforward. 
�
Corollary 1 Let (xi )i∈N be an increasing (decreasing) n-DS.
Then (xi )i∈N converges to some a ∈ Ln([0, 1]).
Proof Straightforward from Proposition 2 and from the fol-
lowing well-known two facts:

(i) each increasing (decreasing) bounded sequence of real
numbers converges;

(ii) if (xi )i∈N and (yi )i∈N are two converging increasing
(decreasing) sequences of real numbers such that xi ≤
yi for each i ∈ N, then limi→∞ xi ≤ limi→∞ yi .


�

2.3 Automorphisms on Ln([0, 1])
The notion of preserving n-dimensional fuzzy automor-
phisms (n-DFA) is discussed now. In Bedregal et al. (2012),
an n-DFA is defined as a function ϕ : Ln([0, 1]) →
Ln([0, 1]) which is bijective and the following condition is
satisfied: x≤ y iff ϕ(x) ≤ ϕ(y). And, Aut(Ln([0, 1])) and
Aut([0, 1]) denote the sets of all automorphims on Ln([0, 1])
and [0, 1], respectively.

From (Bedregal et al. 2012, Theorem 3.4), let ϕ :
Ln([0, 1]) → Ln([0, 1]). Then, ϕ ∈ Aut(Ln([0, 1])) iff
there exists ψ ∈ Aut([0, 1]) such that ϕ(x) = (ψ(π1(x)),

. . . , ψ(πn(x))). So, we will denote ϕ by ψ̃ . Thus, the fol-
lowing holds:

ψ̃(x) = (ψ(π1(x)), . . . , ψ(πn(x))). (8)

In Bedregal et al. (2012), when ϕ ∈ Aut(Ln([0, 1]))
then ϕ is alsoMoore-continuous, strictly increasing such that
ϕ(/0/) = /0/ and ϕ(/1/) = /1/. Moreover, by (Bedregal
et al. 2012, Proposition 3.4) when ψ ∈ Aut(U ), the follow-
ing holds:

ψ̃−1 = ψ̃−1. (9)

And, let a function F : (Ln([0, 1]))m → Ln([0, 1]) and an
automorphismϕ ∈ Aut(Ln([0, 1])). The action ofϕ over a F
is described as the function Fϕ : (Ln([0, 1]))m → Ln([0, 1])
given as

Fϕ(x1, . . . , xm) = ϕ−1(F(ϕ(x1), . . . , ϕ(xm))) (10)

Thus, Fϕ is said the conjugate of F .

2.4 Adjoint pair on Ln([0, 1])
Let F ,G : (Ln([0, 1]))2 → Ln([0, 1]). A pair (F ,G) is an
adjoint pair if it satisfies the residuation principle:

RP : F(x, y) ≤ z ⇔ y ≤ G(x, z). (11)

2.5 Fuzzy negations on Ln([0, 1])
By Bedregal et al. (2012), the notion of fuzzy negation was
extended to Ln([0, 1]) and their main concepts are reported
below.

Definition 3 A function N : Ln([0, 1]) → Ln([0, 1]) is an
n-dimensional fuzzy negation (n-DN) if it satisfies:

N1: N (/0/) = /1/ and N (/1/) = /0/;
N2: If x ≤ y then N (x) ≥ N (y).

An n-DNN is strict if it is Moore-continuous and verifies
the condition N (x) < N (y) when y < x. Moreover, when
an n-DN N satisfies the involution condition:

N3: N (N (x)) = x for each x ∈ Ln([0, 1]),

it is called a strong n-DN.

Let ϕ ∈ Aut(Ln([0, 1])). As reported in literature, see
(Bedregal et al. 2018, Proposition 4.2),N is (strict, strong)
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n DN iff N ϕ is (strict, strong) n-DN such that, for all x ∈
Ln([0, 1]), it holds that:

N ϕ(x) = ϕ−1(N (ϕ(x))). (12)

Studies on n-DN extend the preliminary results on
representability of fuzzy negations (FN) (Bedregal et al.
2012, Prop. 3.1), preserving their main properties. When
N1, . . . , Nn are FN such that N1 ≤ · · · ≤ Nn , then the func-
tion ˜N1 . . . Nn : Ln([0, 1]) → Ln([0, 1]) is the representable
n-DN given as:

˜N1 . . . Nn(x) = (N1(πn(x)), . . . , Nn(π1(x))). (13)

When N = N1 = · · · = Nn , ˜N1 . . . Nn is denoted as Ñ .

Example 1 Considering ND1, ND2 : [0, 1] → [0, 1] as fuzzy
negations, respectively, given as follows:

ND1(x) =
{
1, i f x = 0,
0, otherwise; ND2(x) =

{
0, i f x = 1,
1, otherwise;

and, NS, NK , NR : [0, 1] → [0, 1] given as NS(x) = 1− x ,
NK (x) = 1 − √

x and NR(x) = 1 − x2. From (13), the
following is verified:

(i) ˜ND1, NR, NS, NK , ND2 : Ln([0, 1]) → Ln([0, 1]) is
a representable n-DN;

(ii) ÑD1, ÑS, ÑK , ÑR, ÑD2 : Ln([0, 1]) → Ln([0, 1]) are
the related n-dimensional interval extensions.

Reporting the strategy to obtain fuzzy negations from n-
DN, based on degenerate elements (Bedregal et al. 2018):

Proposition 3 Let N be an n-DN. Then, the function Ni :
U → [0, 1] is a fuzzy negation defined by

Ni (x) = πi (N (/x/)),∀i ∈ Nn, x ∈ U . (14)

Now, exploring the continuity property presented in pre-
vious work (Mezzomo et al. 2018, Theorem 3.1):

Theorem 1 (Mezzomoet al. 2018,Theorem3.1)Let N1, . . . ,

Nn be fuzzy negations such that N1 ≤ · · · ≤ Nn. Then, the

n-DN ˜N1 . . . Nn : Ln([0, 1]) → Ln([0, 1]) given by (13) is
Moore-continuous iff every Ni , i ∈ Nn, is continuous.

Corollary 2 Each strong n-DN is Moore-continuous.

Concluding, letN be a strong n-DN andF : (Ln([0, 1]))n
→ Ln([0, 1]) be a function. TheN -dual ofF is the function
FN : (Ln([0, 1]))n → Ln([0, 1]) given as

FN (x1, . . . , xn) = N (F(N (x1), . . . ,N (xn))). (15)

2.6 Aggregations and admissible orders on
Ln([0, 1])

Data analysis using aggregation functions and dealing with
new trends is unable to answer both mathematical and
practical concerns, motivating for study of n-dimensional
aggregation functions.

By Bedregal et al. (2018), a k-ary n-dimensional aggre-
gation function (n-DA) M : Ln([0, 1])k → Ln([0, 1]) is
a function satisfying, for all (x1, . . . , xk), (y1, . . . , yk) ∈
Ln([0, 1])k , the following conditions:

A1: M(/0/, . . . , /0/) = /0/ and M(/1/, . . . , /1/) = /1/;
A2: xi ≤ yi ,∀i ∈ Nk ⇒ M(x1, . . . , xk) ≤ M(y1, . . . , yk).

When n = 1 then L1([0, 1]) = [0, 1] and therefore, each
1-DA is a k-ary aggregation function M : [0, 1]k → [0, 1].
Example 2 For i ∈ Nn , j ∈ Nk consider πi (x j ) ≡ xi j .
The arithmetic mean and minimum operators AM,∧ :
(Ln([0, 1]))k → Ln([0, 1]) are given as follows:

AM(x1, . . . , xk) = 1

k

(
k∑

i=1

xi1, . . . ,
k∑

i=1

xin

)
; (16)

∧ (
x1, . . . , xk) = (

n
min
i=1

x1i , . . . ,
n

min
i=1

xki

)
. (17)

By DeMiguel et al. (2017), a linear order� on Ln([0, 1])
is called admissible if � refines ≤. So, it satisfies the follow-
ing condition: x ≤ y ⇒ x � y,∀x, y ∈ Ln([0, 1]).
Definition 4 Let M = (M1, . . . , Mn) be a sequence of
aggregation functions Mi : [0, 1]n → [0, 1], ∀i ∈ Nn . For
x, y ∈ Ln([0, 1]), we consider the following relations:

1. x �M y iff ∃k ∈ Nn , Mj (x) = Mj (y), ∀ j ∈ Nk−1 and
Mk(x) < Mk(y);

2. x �M y iff x �M y or x = y.

The next results are shown by De Miguel et al. (2017):

Proposition 4 Let M = (M1 . . . Mn) be a sequence of
aggregations functions Mi : [0, 1]n → [0, 1], for i ∈ Nn.
The�M-order on Ln([0, 1]) is admissible iff for each x, y ∈
Ln([0, 1]), it holds that:

Mi (x) = Mi (y),∀i ∈ Nn ⇔ x = y.

Proposition 5 Let M = (M1, . . . , Mn) be a sequence of
aggregation functions Ai : [0, 1]n → [0, 1], ∀i ∈ Nn which
is given as Mi (x) = αi1(π1(x))+· · ·+αin(πn(x)), whenever
αi1 + · · · + αin = 1 and 0 ≤ αi j ≤ 1, ∀i, j ∈ Nn. The �M-
order on Ln([0, 1]) is admissible iff the correspondingmatrix
[M] = (

αi j
)
n×n is regular.
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Example 3 LetM1, M2, M3, M4 : [0, 1]4 → [0, 1] be aggre-
gations defined as follows:

M1(x) = 0.25x1 + 0.25x2 + 0.25x3 + 0.25x4;
M2(x) = 0.5x1 + 0.15x2 + 0.15x3 + 0.2x4;
M3(x) = 0.2x1 + 0.2x2 + 0.3x3 + 0.3x4;
M4(x) = 0.1x1 + 0.4x2 + 0.1x3 + 0.4x4

Under the conditions of Proposition 5, [M] = (
αi j

)
4×4 is

a regular matrix meaning that Mi (x) = Mi (y),∀i ∈ N4 ⇔
x = y. And, therefore, the�M-order on L4(U ) is admissible
for M = {M1, M2, M3, M4}.

2.7 Triangular norms on Ln([0, 1])
InMezzomo et al. (2017), the notion of t-norms on [0, 1]was
extended to Ln([0, 1]), and their main properties are reported
below.

Definition 5 (Bedregal et al. 2012, Def.3.4) A function T :
(Ln([0, 1]))2 → Ln([0, 1]) is an n-dimensional t-norm (n-
DT) if it is commutative, associative, monotonic w.r.t. the
≤-order and has /1/ as its neutral element. For x, y, z ∈
Ln([0, 1]), it is expressed as follows:

T 1: T (x, y) = T (y, x);
T 2: T (x, T (y, z)) = T (T (x, y), z);
T 3: If x ≤ y, then T (x, z) ≤ T (y, z);
T 4. T (x, /1/) = x.

Let T be n-DT. The natural n-DN of T is the function
NT : (Ln([0, 1]))2 → Ln([0, 1]) given as

NT (x) = sup{z ∈ Ln([0, 1]) : T (x, z) = /0/}. (18)

According to Bedregal et al. (2012), the conditions under
which an n-DT on Ln([0, 1]) can be obtained from a finite
subset of t-norms on [0, 1] are reported as follows.

Theorem 2 (Bedregal et al. 2011, Theorem 3.3) If there
exist t-norms T1, . . . , Tn such that T1 ≤ · · · ≤ Tn then

˜T1, . . . , Tn : (Ln([0, 1]))2 → Ln([0, 1]) is an n-DT defined
by

T̃1. . .Tn(x, y) = (T1(π1(x), π1(y)), . . ., Tn(πn(x), πn(y))).

Thus, the n-DT ˜T1 . . . Tn is called of t-representable.

Example 4 Considering the t-norms on [0, 1] given as:

TD(x, y) =
{
0, if x, y ∈ U ,

min(x, y), otherwise; TP (x, y) = xy;
TLK (x, y) = max(x + y − 1, 0); TM (x, y) = min(x, y).

1. The natural n-DT and its n-DN are given as (T̃D, ÑD2),
(T̃P , ÑS), (̃TLK , ÑS), (T̃M , ÑS).
2. ˜TD, TLK , TP , TM : Ln([0, 1])2 → Ln([0, 1]) is an exam-
ple of t-representable n-DT.

Proposition 6 (Bedregal et al. 2012, Theorem 3.6) Let T be
a n-DT and ϕ ∈ Aut(Ln([0, 1])). Then, the conjugate oper-
ator T ϕ : (Ln([0, 1]))2 → Ln([0, 1]) is an n-DT given as

T ϕ(x, y) = ϕ−1(T (ϕ(x), ϕ(y))). (19)

3 Fuzzy implications on Ln([0,1])
Studies on n-dimensional fuzzy implications (n-DI) on the
lattice (Ln([0, 1]),≤)were carried out, extending the prelim-
inary studies on representability of fuzzy implications (FI)
(Cornelis et al. 2004; Deschrijver et al. 2004) and also pre-
serving their main properties. Thus, an n-DI can be seen as
an extension of interval-valued fuzzy implication (Bedregal
et al. 2007, 2010; Reiser et al. 2009; Zanotelli et al. 2018;
Zapata et al. 2017) and of an interval-valued Atanassov’
intuitionistic fuzzy implication (Reiser and Bedregal 2013;
Reiser et al. 2013). So, their properties on [0, 1] can also be
investigated in an n-dimensional sense on Ln([0, 1]).
Definition 6 (Zanotelli et al. 2018, Def.7) A function I :
(Ln([0, 1]))2 → Ln([0, 1]) is a n-dimensional fuzzy impli-
cator if I meets the boundary conditions:

I0(a): I(/1/, /1/) = I(/0/, /1/) = I(/0/, /0/) = /1/;
I0(b): I(/1/, /0/) = /0/.

Other properties of implicators are reported below:

I1: x ≤ z → I(x, y) ≥ I(z, y);
I2: y ≤ z → I(x, y) ≤ I(x, z);
I3: I(/1/, y) = y;
I4: I(x, x) = /1/;
I5: N (x) = I(x, /0/) is an n-DN;
I6: I(x, I(y, z)) = I(y, I(x, z));
I7: I(x, y) = /1/ ⇒ x ≤ y;
I8: I(x, y) = /1/ ⇔ x ≤ y.

Definition 7 An n-dimensional fuzzy implicator I which
also satisfies I1 and I2 is called an n-DI or fuzzy impli-
cation on Ln([0, 1]).

Since the set of n-DI (denoted by I(Ln([0, 1]))) extends
the set of fuzzy implications (denoted by I([0,1]), the related
properties Ik are given by I k, ∀k ∈ N8.

See themain results fromBaczyński and Jayaram research
(Baczyński and Jayaram 2008a, Lemma 1.3.4), which are
now extended to Ln([0, 1]).
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Proposition 7 When I : (Ln([0, 1]))2 → Ln([0, 1]) verifies
I6 and I8, it satisfies I0(a), I0(b), I1, I3 and I4.

Proof Since /0/ ≤ /1/, by I8, it holds that I0(a):
I(/0/, /0/) = I(/0/, /1/) = I(/1/, /1/) = /1/; I4: By
I8, it is immediate that I(x, x) = /1/. I1: If x1 ≤ x2, by
I4 the following is verified:

I(I(x2, y), I(x2, y)) = /1/

⇒ I(x2, I(I(x2, y), y)) = /1/ (by I6)
⇒ x2 ≤ I(I(x2, y), y) (by I8)
⇒ x1 ≤ I(I(x2, y), y)

⇒ I(x1, I)(I(x2, y), y) = /1/ (by I8)
⇒ I(x2, y) ≤ I(x1, y) (by I6)

I3: By I6 and I8, we consider both conditions:

(i) I(y, I(/1/, y)) = I(/1/, I(y, y)) = I(/1/, /1/) =
/1/. So, it holds that y ≤ I(/1/, y);

(ii) By I4, I(I(/1/, y), I(/1/, y)) = /1/. It means that
I(/1/, I(I(/1/, y), y)) = /1/. And then, we have that
/1/ ≤ I(I(/1/, y), y). So, I(I(/1/, y), y) = /1/. By
I8, it holds that I(/1/, y) ≤ y. Thus, by (i) and (i i),
we have that I(/1/, y) = y.

I0(b): Straightforward from I3, I(/1/, /0/) = /0/. There-
fore, Proposition 7 holds. 
�

3.1 Conjugate-operatorsI' on Ln([0, 1])
This section discusses the conjugate operator acting on n-DI
and preserving their main properties.

Proposition 8 Let I : (Ln([0, 1]))2 → Ln([0, 1]) be a
function and ϕ ∈ Aut(Ln([0, 1])). Properties from I0
to I8 are invariant under the conjugate-operator Iϕ :
(Ln([0, 1]))2 → Ln([0, 1]) given by

Iϕ(x, y) = ϕ−1 (I(ϕ(x), ϕ(y))) . (20)

Proof Let I be an n-DI verifying properties from I0 to I8.
For x, x1, x2, y ∈ Ln([0,1]) it holds that: I0 : Next boundary
conditions hold straightforward once ϕ(/0/) = ϕ−1(/0/) =
/0/ and ϕ(/1/) = ϕ−1(/1/) = /1/ and so, I satisfies I0.
I1 : Consider x1 ≤ x2. By the monotonicity of ϕ, ϕ(/1/) =
ϕ−1(/1/) and because I satisfies I1, we obtain the following
expression:

Iϕ(x1, y) = ϕ−1 (I(ϕ(x1), ϕ(y)))

≥ ϕ−1 (I(ϕ(x2), ϕ(y))) = Iϕ(x2, y).

I2 : Analogous to I1.

I3 : Iϕ(/1/, y) = ϕ−1 (I(/1/, ϕ(y))) = ϕ−1(ϕ(y)) = y.

I4 : Iϕ(x, x) = ϕ−1 (I(ϕ(x), ϕ(x))) = ϕ−1(/1/) =
/1/.

I5 : Iϕ(x, /0/) = ϕ−1 (I(ϕ(x), /0/))

= ϕ−1(NI(ϕ(x)))

= NI
ϕ(x).So, by[15, Prop.4.2]is an-DN.

I6 : If I satisfies the exchange principle, then

Iϕ(x, Iϕ(y, z)) = Iϕ(x, ϕ−1(I(ϕ(y), ϕ(z))))

= ϕ−1(I(ϕ(x), I(ϕ(y), ϕ(z))))

= ϕ−1(I(ϕ(y), I(ϕ(x), ϕ(z))))

= Iϕ(y, ϕ−1(I(ϕ(x), ϕ(z))))

= Iϕ(y, Iϕ(x, z)).

I7 : Since I verifies I7, we obtain the next result:

Iϕ(x, y) = /1/ ⇔ ϕ−1 (I(ϕ(x), ϕ(y))) = /1/

⇔ (I(ϕ(x), ϕ(y))) = /1/

⇒ ϕ(x) ≤ ϕ(y) ⇔ x ≤ y.

I8 : Since I verifies I8, the next result is verified:

Iϕ(x, y) = /1/ ⇔ ϕ−1 (I(ϕ(x), ϕ(y))) = /1/

⇔ (I(ϕ(x), ϕ(y))) = /1/

⇔ ϕ(x) ≤ ϕ(y) ⇔ x ≤ y.

Concluding, Proposition 8 holds. 
�

3.2 Representable fuzzy implications on Ln([0, 1])
This section studies the representability of n-DI which is
invariant under their main properties (Zanotelli et al. 2018,
Prop. 6).

Proposition 9 Consider the functions I1, . . . , In : [0, 1]2 →
[0, 1] such that I1 ≤ · · · ≤ In. The function ˜I1 . . . In :
(Ln([0, 1]))2 → Ln([0, 1]) given by

Ĩ1. . .In(x, y)=(I1(πn(x), π1(y)), . . ., In(π1(x), πn(y))), (21)

is an n-dimensional fuzzy implicator iff I1, . . . , In are also
fuzzy implicators.

ByProposition9,I is called a representablen-dimensional
fuzzy implicator if there exist fuzzy implicators I1 ≤ · · · ≤
In such that I = ˜I1 . . . In .

Remark 4 When I1 = · · · = In = I , the expression ˜I1 . . . In
in (21) is denoted by Ĩ .
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Remark 5 For x, y ∈ Ln([0, 1]), ˜I1 . . . In ∈ I(Ln([0, 1]))
and i ∈ Nn , the following holds:

1. πi ( ˜I1 . . . In(x, y)) = Ii (πn+1−i (x), πi (y));
2. πi ( ˜I1 . . . In(/x/, /y/)) = Ii (x, y);
3. πi ( Ĩ (/x/, /y/)) = I (x, y).

Extending the result from Proposition 9, next proposi-
tion states that I is a representable n-DI if there exist fuzzy

implications I1 ≤ · · · ≤ In such that I = ˜I1 . . . In , and its
converse construction can also be verified.

Proposition 10 (Zanotelli et al. 2018, Prop. 8)Let I1, . . . , In :
[0, 1]2 → [0, 1] be functions such that I1 ≤ · · · ≤ In.

The function ˜I1 . . . In : (Ln([0, 1]))2 → Ln([0, 1]) ∈
I(Ln([0, 1])) iff Ii ∈ I (U ) for each i ∈ Nn.

Other main properties of fuzzy implicators on [0, 1] are
preserved by a representable n-DI.

Proposition 11 Let I1, . . . , In : [0, 1]2 → [0, 1] be func-
tions such that I1 ≤ · · · ≤ In, i ∈ Nn and k ∈ {3, 5, 6, 7}.
An n-DI ˜I1 . . . In : (Ln([0, 1]))2 → Ln([0, 1]) verifies the
property Ik iff each Ii : [0, 1]2 → [0, 1], for i ∈ Nn, verifies
the corresponding property I k.

Proof (⇐) Firstly, let I1, . . . , In ∈ I (U ) such that I1 ≤
· · · ≤ In , satisfying property I k, for k ∈ {3, 5, 6, 7, 9}.
For ˜I1 . . . In ∈ I(Ln([0, 1])) given by (21) and x, y, z ∈
Ln([0, 1]), the following holds:

I3 : ˜I1 . . . In(/1/, y) = (I1(1, y1), . . . , In(1, yn))

= (y1, . . . , yn) = y (by (21); I3)
I5 : ˜I1 . . . In(x, /0/) = (I1(xn, 0), . . . , In(x1, 0))

= (NI1(xn), . . . , NIn (x1)) (by (21))

= ˜NI1 . . . NIn (x) (by (13); I5).

Based on Corollary 6.2 (Zanotelli et al. 2018), if i ≤ j ,

NIi ≤ NI j . So, ˜I1 . . . In(x, /0/) = ˜NI1 . . . NIn (x, /0/) is an
n-DN.

I6 : ˜I1 . . . In(x, ˜I1 . . . In(y, z))

= ˜I1 . . . In(x, (I1(yn, z1), . . . , In(y1, zn))) (by (21))

= (I1(xn, I1(yn, z1)), . . . , In(x1, In(y1, zn)))

= (I1(yn, I1(xn, z1)), . . . , In(y1, In(x1, zn))) (by (21), I5)

= ˜I1 . . . In(y, ˜I1 . . . In(x, z)) (by (21)).

I7 : ˜I1 . . . In(x, y) = /1/

⇔ (I1(xn, y1), . . . , In(x1, yn)) = /1/ (by (21)).

So, it implies that ˜I1 . . . In(x, y) = /1/

⇔ I1(xn, y1) = 1, . . . , In(x1, yn) = 1 ⇒ xn ≤ y1

⇒ x1 ≤ y1, . . . , xn ≤ yn ⇒ x ≤ y (by I7).

(⇒) Let ˜I1, . . . , In ∈ I(Ln([0, 1])), given by (21),
verifying properties Ik, for k ∈ {3, 5, 6, 7, 9}. Based on
πi -projections, for i ∈ Nn , the following holds for each
x, y, z ∈ U :

I3 : ByI3, ˜I1 . . . In(/1/, /y/) = /y/ implies Ii (1, y) = y.

I5 : ByI5, if ˜I1 . . . In(/x/, /0/) = N (/x/) is an − DN.

So, by Prop. 3, Ii (x, 0) = Ni (x)is a fuzzy negation.

I6 : ByI6,we have that
˜I1 . . . In(/x/, ˜I1 . . . In(/y/, /z/))

= ˜I1 . . . In(/y/, ˜I1 . . . In(/x/, /z/)).

So, Ii (x, Ii (y, z)) = Ii (y, Ii (x, z)),∀i ∈ Nn .

I7 : ByI7,∀i ∈ Nn, Ii (x, y) = 1

⇒ ˜I1 . . . In(/x/, /y/) = /1/ ⇒ /x/ ≤ /y/ ⇒ x ≤ y.

Therefore, Proposition 11 is verified. 
�

Proposition 12 Let ˜I1 . . . In : (Ln([0, 1]))2 → Ln([0, 1])
such that I1 ≤ · · · ≤ In are fuzzy implicators on [0, 1].
However, ˜I1 . . . In does not verify the properties I4 and I8.

Proof It is immediate that ˜I1, . . . , In does not verify I4, by
taking x = (0, . . . , 0, 1), we have that

˜I1, . . . , In(x, x) = (I1(1, 0), I2(0, 0), . . . , In(0, 1))

and then, ˜I1, . . . , In(x, x) = (0, 1, . . . , 1) �= /1/. In addi-

tion, since ˜I1, . . . , In not satisfies I4, then it also not satisfies
I8.


�
Example 5 In the following, an example of a representable n-
DI is presented. Let IK D, IRC , ILK , IW B : [0, 1]2 → [0, 1]
be fuzzy implications given by the expressions below:

IK D(x, y) = max(1 − x, y); IRC (x, y) = 1 − x + xy;
ILK (x, y) = min(1, 1 − x + y); IW B(x, y) =

{
1, x ≤ 1,
y, otherwise.

Based on results stated by Baczyński and Jayaram
(Baczyński and Jayaram 2008a, pp. 57, 192 and 196)
the following comparisons are verified: IK D ≤ IRC ≤
ILK ≤ IW B . So, the function ˜IK D, IRC , ILK , IW B is a rep-
resentable n-DI on Ln([0, 1]). One can observe that, for x =
(0.0, 0.1, 0.5, 0.8) and y = (0.2, 0.6, 0.9, 1.0), it holds that
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I(x, y) = ˜IK D, IRC , ILK , IW B(x, y) = (0.2, 0.8, 1.0, 1.0).
Moreover, based on Remark 4, it holds that:

ĨK D(x, y) = (0.2, 0.6, 0.9, 1.0) ;
ĨRC (x, y) = (0.36, 0.8, 0.99, 1.0);
ĨLK (x, y) = (0.4, 1.0, 1.0, 1.0);
ĨW B(x, y) = (1.0, 1.0, 1.0, 1.0).

3.3 Moore-continuous functions on Ln([0, 1])
Based on the intuitive notion and main properties of n-DI,
Theorem 3 introduces the notion of Moore-continuous func-
tions for representable n-DI.

Theorem 3 An n-DI ˜I1 . . . In : (Ln([0, 1]))2 → Ln([0, 1])
is Moore-continuous iff Ii is continuous, for i = 1, . . . n.

Proof (⇒) Let (x1, y1), (x2, y2) ∈ [0, 1]2, i ∈ Nn and ε > 0.

Since ˜I1 . . . In be aMoore-continuous function on Ln([0, 1]).
If (/x1/, /y1/), (/x2/, /y2/) ∈ (Ln([0, 1]))2, there exists
δ > 0 such that dn,2

M ((/x1/, /y1/), (/x2/, /y2/)) < δ, which
implies in the following result:

dnM ( ˜I1 . . . In(/x1/, /y1/), ˜I1 . . . In(/x2/, /y2/)) < ε.

Thus, ifmax(|x1−x2|, |y1−y2|) < δ, by Eq. (5), we have that
dn,2
M ((/x1/, /y1/), (/x2/, /y2/)) < δ. And, one can easily

observe that dnM ( ˜I1 . . . In(/x1/, /y1/), ˜I1 . . . In(/x2/, /y2/))
< ε. So, it means that the following result holds

dnM ((I1(x1, y1), . . . , In(x1, y1)),

(I1(x2, y2), . . . , In(x2, y2))) < ε.

Hence, by (4), |Ii (x1, y1) − Ii (x2, y2)| < ε. Therefore, Ii is
continuous.

(⇐) Let ε > 0 and (x1, y1), (x2, y2) ∈ (Ln([0, 1]))2. By
continuity of Ii , for each i ∈ Nn , there exists δi > 0 such
that, if max(|πi (x1)−πi (x2)|, |πi (y1)−πi (y2)|) < δi then
|Ii (πi (x1), πi (y1)) − Ii (πi (x2), πi (y2))| < ε. Thus, consid-
ering δ = min{δi : i ∈ Nn}, we have that

dn,2
M ((x1, y1), (x2, y2)) < δ

⇒ max(dnM (x1, x2), dnM (y1, y2)) < δ

⇒ max(|π1(x1) − π1(x2)|, . . . , |πn(x1) − πn(x2)|,
|π1(y1) − π1(y2)|, . . . , |πn(y1) − πn(y2)|) < δ

⇒ max(|πn−i+1(x1) − πn−i+1(x2)|, |πi (y1) − πi (y2)|) < δi

⇒ |Ii (πn−i+1(x1), πi (y1)) − Ii (πn−i+1(x2), πi (y2))| < ε

⇒ max(|I1(πn(x1), π1(y1)) − I1(πn(x2), π1(y2)|, . . . ,
|In(π1(x1), πn(y1)) − In(π1(x2), πn(y2)|) < ε

⇒ max(|π1( ˜I1, . . . , In(x1, y1)) − π1( ˜I1, . . . , In(x2, y2))|, . . . ,

|πn( ˜I1, . . . , In(x1, y1)) − πn( ˜I1, . . . , In(x2, y2))|) < ε

⇒ dnM ( ˜I1, . . . , In(x1, y1), ˜I1, . . . , In(x2, y2)) < ε.

Therefore, ˜I1 . . . In is a (dn,2
M , dnM )-continuous function on

Ln([0, 1]) × Ln([0, 1]) and Theorem 3 holds. 
�

4 R-implications on Ln([0,1])
TheR-implication arises from the notion of residuum in intu-
itionistic logic or, equivalently, from the notion of residue
in the theory of lattice-ordered semigroups. Observe that
the R-implication is well-defined only if the t-norm is left-
continuous, which justifies the name “residuum of T ”, since
the R-implication satisfies the residuation condition when
the underlying t-norm is left continuous. Moreover, a t-norm
T is left-continuous if and only if it satisfies the residuation
condition (Baczyński 2004).

In this section, these main characteristics of R-imp-
lications extended from [0, 1] to Ln([0, 1]) are discussed.
Definition 8 A function IT : (Ln([0, 1]))2 → Ln([0, 1]) is
called an n-dimensional R-implication (n-DRI) if there exists
n-DT T : (Ln([0, 1]))2 → Ln([0, 1]) such that

IT (x, y) = sup{z ∈ Ln([0, 1]) : T (x, z) ≤ y}. (22)

Next proposition extends results from (Baczyński and Jayaram
2008b, Theorem 5.5).

Proposition 13 If T is an n-DT then IT ∈ I(Ln([0, 1])).
Moreover, it verifies I0, I1, I2, I3 and I4. In addition, it
also verifies I5, meaning that its natural negationNI coin-
cides with the NT given in (18).

Proof Let T be an n-DT and IT be the function defined
by Eq. (22). Let x, y, z ∈ Ln([0, 1]). (I0): The boundary
conditions hold as follows:

IT (/1/, /1/) = sup{z ∈ Ln([0, 1]) : T (/1/, z) ≤ /1/} = /1/;
IT (/0/, /1/) = sup{z ∈ Ln([0, 1]) : T (/0/, z) ≤ /1/} = /1/;
IT (/0/, /0/) = sup{z ∈ Ln([0, 1]) : T (/0/, z) ≤ /0/} = /1/;
IT (/1/, /0/) = sup{z ∈ Ln([0, 1]) : T (/1/, z) ≤ /0/} = /0/.

(I1): Let x1, x2 ∈ Ln([0, 1]). Based on monotonicity of T ,
when x1 ≤ x2, taking z ∈ Ln([0, 1]) such that T (x2, z) ≤ y
we should have that T (x1, z) ≤ y. So, the inclusion {z ∈
Ln([0, 1]) : T (x1, z) ≤ y} ⊃ {z ∈ Ln([0, 1]) : T (x2, z) ≤
y} implies that sup{z ∈ Ln([0, 1]) : T (x1, z) ≤ y} ≥
sup{z ∈ Ln([0, 1]) : T (x2, z) ≤ y}. Therefore, IT (x1, y) ≥
IT (x2, y).
(I2): Analogous to I1.
(I3): IT (/1/, y) = sup{z ∈ Ln([0, 1]) : T (/1/, z) = z ≤

123



8414 R. Zanotelli et al.

y} = y.
(I4): IT (x, x) = sup{z ∈ Ln([0, 1]) : T (x, z) ≤ x} = /1/.
(I5): IT (x, /0/) = sup{z ∈ Ln([0, 1]) : T (x, z) ≤ /0/} =
NT (x), by (18), which is an n-DN according to Bedregal
et al. (2012). Concluding, Proposition 13 is verified. 
�

Based on results presented in Proposition 13, the natural
negation NI coincides with the NT given in Eq. (18) when
I is an n-DRI and T their underlying n-DT on Ln([0, 1]).
Corollary 3 There is no representable n-DI which is an n-
DRI.

Proof Straightforward from Props. 12 and 13. 
�

4.1 Residuation property onLn([0, 1])
The following results show the necessary and sufficient con-
ditions under which the pair of functions (IT , T ) verifies the
residuation property on Ln([0, 1]).
Lemma 1 Let T be an n-DT. If T is left-continuous, i.e. for
each increasing n-DS (yi )i∈N and x ∈ Ln([0, 1]), we have
that

LC : lim
i→∞ T (x, yi ) = T (x, lim

i→∞ yi ).

Then T is a join-morphism, i.e. x, y, z ∈ Ln([0, 1]), we have
that

T (x, y ∨ z) = T (x, y) ∨ T (x, z).

Proof x, y, z ∈ Ln([0, 1]) and a increasing n-DS (yi )i∈N

and (zi )i∈N such that limi→∞ yi = y and limi→∞ zi = z.
So, limi→∞ yi ∨ zi = y ∨ z and thereby, since T is left-
continuous,

T (x, y ∨ z) = T (x, limi→∞ yi ∨ zi )
= limi→∞ T (x, yi ∨ zi )
= limi→∞(T (x, yi ) ∨ T (x, zi ))
= limi→∞ T (x, yi ) ∨ limi→∞ T (x, zi )
= T (x, limi→∞ yi ) ∨ T (x, limi→∞ zi )
= T (x, y) ∨ T (x, z). 
�

Proposition 14 Let T be an n-DT and x, y ∈ Ln([0, 1]). If
T is left-continuous then there exists an increasing sequence
(zi )i∈N ⊆ 
 = {z ∈ Ln([0, 1]) : T (x, z) ≤ y} such that
limi→∞ zi = sup
.

Proof If t, s ∈ 
 then there exists z1, z2 ∈ Ln([0, 1]) such
that, t = T (x, z1) ≤ y and s = T (x, z2) ≤ y. From Lemma
1, T (x, z1 ∨ z2) = t ∨ s ≤ y. Therefore, 
 is a directed set,
i.e. for each t, s ∈ 
, t ∨ s ∈ 
. Since from Bedregal et al.
(2011); Zanotelli et al. (2020) Ln([0, 1]) = (Ln([0, 1]),≤)

is a complete lattice, then its dcpo (Abramski and Jung 1994,

Example 2.1.14). In addition, it is a ω-continuous domain,
once Ln([0, 1]) ∩ Q

n is basis of Ln([0, 1]), and therefore,
from (Abramski and Jung 1994, Proposition 2.2.13), the
directed subset of
 ofLn contain an ω-chain z1 ≤ z2 ≤ · · ·
with the same supremum. Hence (zi )i∈N is an increasing
sequence such that limi→∞ zi = sup
. 
�
Theorem 4 Let T be an n-DT. The following statements are
equivalent:

1. T is left-continuous;
2. (T , IT ) is an adjoint pair;
3. IT (x, y) = max{z ∈ Ln([0, 1]) : T (x, z) ≤ y}.

Proof (1.) ⇒ (2.) Let T be a left-continuous n-DT and
assume that T (x, t) ≤ y, for some x, y, t ∈ Ln([0, 1]). So,
we have that t ∈ {z ∈ Ln([0, 1]) : T (x, z) ≤ y}. Therefore,
IT (x, y) ≥ t. Conversely, let u = IT (x, y). Then, by Propo-
sition 14, there exists an increasing sequence (zi )i∈N such
that T (x, zi ) ≤ y and lim

i→∞ zi = u. So, if t ≤ u, it holds that

T (x, t) ≤ T (x,u) = T (x, lim
i→∞ zi ) = lim

i→∞ T (x, zi ) ≤ y.

(2.) ⇒ (3.) Assuming that T and IT verify RP , we
obtain that T (x, IT (x, y)) ≤ y and then, IT (x, y) ∈ {z :
T (x, z) ≤ y}. Therefore, we conclude that IT (x, y) =
max{z : T (x, z) ≤ y}.

(3.) ⇒ (1.) Let T be a n-DT and (yi )i∈N be an increasing
n-DS. Then by Corollary 1 it converges to a z ∈ Ln([0, 1]),
i.e. z = limi→∞ yi . Then, from the monotonicity of T , we
have the inequality T (x, limi→∞ yi ) ≥ limi→∞ T (x, yi ).
Now, let y = limi→∞ T (x, yi ), implying that T (x, yi ) ≤ y,
∀i ∈ N. Then, yi ∈ {t ∈ Ln([0, 1]) : T (x, t) ≤ y},∀i ∈ N.
Based on such results we obtain that yi ≤ IT (x, y), ∀i ∈ N.
And so, we can deduce that limi→∞ yi ≤ IT (x, y). Again,
by RP, we obtain that

T (x, lim
i→∞ yi ) ≤ y

meaning that limi→∞ T (x, yi ) ≥ T (x, limi→∞ yi ). There-
fore, T (x, limi→∞ yi ) = limi→∞ T (x, yi ). Concluding,
Theorem 4 is verified. 
�
Proposition 15 If T is a left-continuous n-DT then IT is an
n-DI satisfying I6 and I8. Moreover, IT is left-continuous
w.r.t the first variable and right-continuous w.r.t. the second
variable.

Proof First observe that once T is left-continuous, then by
Theorem 4 the pair (T , IT ) satisfies RP .

From Proposition 13 we know that IT is an n-DI. (I6):
Let x, y, z ∈ Ln([0, 1]). So, the next holds:

IT (x, IT (y, z))

= max{t ∈ Ln([0, 1]) : T (x, t) ≤ IT (y, z)}; (by (22))
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= max{t ∈ Ln([0, 1]) : T (y, T (x, t)) ≤ z}; (byRP)

= max{t ∈ Ln([0, 1]) : T (x, T (y, t)) ≤ z}; (by T 1, T 3)

= max{t ∈ Ln([0, 1]) : T (y, t) ≤ IT (x, z)}; (ByRP)

= IT (y, IT (x, z)) (by (22)).

(I8): Let x, y ∈ Ln([0, 1]). If x ≤ y, then T (x, /1/) = x ≤
y, by RP IT (x, y) = /1/. Conversely, if IT (x, y) = /1/,
then because of RP we obtain that T (x, /1/) ≤ y meaning
that x ≤ y. (LC): Now, suppose that IT is not left-continuous
w.r.t. the first variable in some point (x∗, y∗) ∈ Ln([0, 1]) ×
Ln([0, 1]). So, there exists an increasing chain (xi )i∈N such
that limi→∞ xi = x∗ and a = limi→∞ IT (xi , y∗) �=
IT (x∗, y∗) = b. Thus, because for each i ∈ N, xi ≤ x∗
and IT satisfy I1, then a > b. Since, for each i ∈ N,
IT (xi , y∗) ≥ a then, by Property RP , we obtain that
T (xi , a) ≤ y∗ and therefore limi→∞ T (xi , a) ≤ y∗. Hence,
since T is left-continuous, we have T (x∗, a) ≤ y∗. There-
fore, fromRP ,b = IT (x∗, y∗) ≥ a,which is a contradiction
with a > b. So, IT is a left-continuous functionw.r.t. the first
variable. (RC): Now, consider IT as a binary function which
does not verify the right-continuity property w.r.t. the second
variable in some point (x∗, y∗)∈ Ln(U ) × Ln([0, 1]). Thus,
there exists a decreasing chain (yi )i∈N such that limi→∞ yi =
y∗ and a = limi→∞ IT (x∗, yi ) �= IT (x∗, y∗) = b. So,
because for each i ∈ N, yi ≥ y∗ and IT satisfy I2,
then a > b. On the other hand, since for each i ∈ N,
a ≤ IT (x∗, yi ) then, by RP , we have that T (x∗, a) ≤ yi
for each i ∈ N. So, in the limit, T (x∗, a) ≤ lim

i→∞ yi = y∗

and therefore, by RP , a ≤ IT (x∗, y∗) = b, which is a
contradiction with hypothesis a > b. Concluding, IT is a
right-continuous function w.r.t. the second variable. There-
fore, Proposition 15 is verified. 
�

4.2 Conjugation of R-implications on Ln([0, 1])
In the following theorem, results from (Baczyński and
Jayaram 2008b, Prop.2.5.10) are extended, showing how n-
dimensional automorphisms act on an n-DRI, generating a
new n-DRI.

Theorem 5 Let IT : (Ln([0, 1]))2 → Ln([0, 1]) be an n-
DRI and ϕ ∈ Aut(Ln([0, 1])). Then, the function Iϕ

T :
(Ln([0, 1]))2 → Ln([0, 1]) defined by Eq. (20) is an n-DRI,
in fact

Iϕ

T (x, y) = IT ϕ (x, y). (23)

Proof For x, y ∈ Ln([0, 1]), by the continuity of bijection ϕ

and from Eqs. (10), (19), (20) and (22), the following results
are verified:

Iϕ

T (x, y) = ϕ−1(IT (ϕ(x), ϕ(y)))

= ϕ−1(sup{ϕ(z) ∈ Ln([0, 1]) : T (ϕ(x), ϕ(z)) ≤ ϕ(y)})
= sup{ϕ−1(ϕ(z)) ∈ Ln([0, 1]) : T ϕ(x, z) ≤ ϕ−1(ϕ(y))}
= sup{z ∈ Ln([0, 1]) : T ϕ(x, z) ≤ y} = IT ϕ (x, y)

From Proposition 6, T ϕ : (Ln([0, 1]))2 → Ln([0, 1]) is an
n-DT implying thatIT ϕ : (Ln([0, 1]))2 → Ln([0, 1]) is also
an n-DRI. Therefore, Theorem 5 is verified. 
�
Corollary 4 Let IT : (Ln([0, 1]))2 → Ln([0, 1]) be an
n-DRI and ϕ ∈ Aut(Ln([0, 1])). Then, Properties I3, I4
and I5 are invariant under the conjugate ϕ-operator
Iϕ

T : (Ln([0, 1]))2 → Ln([0, 1]). In addition, if T is
left-continuous then the n-DI Iϕ

T satisfies the following prop-
erties: I6, I7 and I9 .

Proof It follows from Propositions 8, 13 and 15. 
�

4.3 Characterizing R-implications on Ln([0, 1])
We present a characterization of n-DRI, based on a left-
continuous n-DT obtained from n-DI by a residuation
principle.

Since I(Ln([0, 1])) is a complete lattice and each I ∈
I(Ln([0, 1])) verifies the right boundary condition, meaning
thatI(x, /1/) = /1/, then the functionTI : (Ln([0, 1]))2 →
Ln([0, 1]) given as

TI(x, y) = in f {t ∈ Ln([0, 1]) : I(x, t) ≥ y}, (24)

is a well-defined function on Ln([0, 1]).
Remark 6 Let ĨRC be the n-dimensional extension of the
Reichenbach fuzzy implication given in Example 5. For
x > 0 we obtain T̃IRC (x, /1/) = /1/, meaning that T̃IRC
does not satisfy T 4. Concluding, Eq.(24) does not always
generate an n-DT.

Remark 7 According to Corollary 3 the function ĨLK ,
reported inExample 5, does not verify the conditions defining
an n-DRI. In addition, let TLK be the Łukasiewicz t-norm.
One can easily verify that ĨTLK does not coincide to ĨLK .

Lemma 2 Let I be an n-DI. If I is right-continuous w.r.t. the
second variable, i.e. for each decreasing n-DS (yi )i∈N and
x ∈ Ln([0, 1]), we have that

RC : lim
i→∞ I(x, yi ) = I(x, lim

i→∞ yi ).

Then I is a meet-morphism, i.e. x, y, z ∈ Ln([0, 1]), we have
that

I(x, y ∧ z) = I(x, y) ∧ I(x, z).

Proof Analogous to Lemma 1. 
�
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Proposition 16 Let I be an n-DI and x, y ∈ Ln([0, 1]). If I
is right-continuous, then there exists an decreasing sequence
(zi )i∈N ⊆ 
 = {z ∈ Ln([0, 1]) : I(x, z) ≥ y} such that
limi→∞ zi = inf 
.

Proof It follow from Proposition 14 and duality between
(Ln([0, 1]),≤) and (Ln([0, 1]),≥), which also is a complete
lattice and a ω-continuous domain. 
�
Proposition 17 For I ∈ I(Ln([0, 1])) the following state-
ments are equivalent:

1. I is right-continuous w.r.t. the second variable;
2. (TI , I) is an adjoint pair;
3. The infimum in Eq. (24) is the minimum, i.e. for x, y ∈

Ln([0, 1]), we have that

TI(x, y) = min{t ∈ Ln([0, 1]) : I(x, t) ≥ y}. (25)

Proof (1.) ⇒ (2.) Firstly, suppose that I is a fuzzy impli-
cation which is right-continuous w.r.t. the second variable
and also, that I(x, z) ≥ y for some x, y, z ∈ Ln([0, 1]).
This implies that z ∈ {t ∈ Ln([0, 1]) : I(x, t) ≥ y}
and hence TI(x, y) ≤ z. Conversely, if TI(x, y) ≤ z,
for x, y, z ∈ Ln([0, 1]). Let u = TI(x, y). From Propo-
sition 16, there exists a decreasing sequence (zi )i∈N such
that I(x, zi ) ≥ y and lim

i→∞ zi = u. So, if u ≤ t then,

I(x, t) ≥ I(x,u) = I(x, lim
i→∞ zi ) = lim

i→∞ I(x, zi ) ≥ y.

(2.) ⇒ (3.) Assuming that (TI , I) is an adjoint pair. Since
TI(x, y) ≤ TI(x, y), one has that I(x, TI(x, y)) ≥ y. So,
by the definition of TI the infimum in (24) is the minimum.
(3.) ⇒ (1.) From the monotonicity of I w.r.t the second
variable, for each decreasing sequence (yi )i∈N ∈ Ln([0, 1])
and x ∈ Ln([0, 1]), the following holds:

I(x, lim
i→∞ yi ) ≤ lim

i→∞ I(x, yi ). (26)

When y = lim
i→∞ I(x, yi ) then I(x, yi ) ≥ y,∀i ∈ N.

Thus, yi ∈ {t ∈ Ln([0, 1]) : I(x, t) ≥ y},∀i ∈ N. So,
yi ≥ TI(x, y),∀i ∈ N, meaning that lim

i→∞ yi ≥ TI(x, y). In

addition, by (24) and I2, it holds that

I(x, lim
i→∞ yi ) ≥ I(x, TI(x, y)) ≥ y = lim

i→∞ I(x, yi ). (27)

From the above inequalities in Eqs. (26) and (27), we obtain
the following result:

I(x, lim
i→∞ yi ) = lim

i→∞ I(x, yi ),∀x, yi ∈ Ln([0, 1]),∀i ∈ N.

Meaning that I is right-continuous w.r.t. the second variable.
Thus, Proposition 17 is verified. 
�

Theorem 6 If a function I : (Ln([0, 1]))2 → Ln([0, 1])
satisfies I2, I6, I8 and verifies the right-continuity w.r.t. the
second variable, thenTI givenbyEq. (25) is a left-continuous
n-DT. Moreover I = ITI and

I(x, y) = max{t ∈ Ln([0, 1]) : TI(x, t) ≤ y}. (28)

Proof First observe that once I is right-continuous, then by
Proposition 17 the pair (TI , I) satisfies RP .

Since I satisfies I6 and I8, by Proposition 7, it also sat-
isfies I0(a), I0(b), I1, I3 and I4. In particular, I satisfies
I2 and then it is an n-DI. For each x, y, z ∈ Ln([0, 1])
the following results are verified. (T 1) By I6, for each
t ∈ Ln([0, 1]), I(y, I(x, t)) = 1 ⇔ I(x, I(y, t)) = 1.
And, by I8, it means that I(x, t) ≥ y ⇔ I(y, t) ≥ x. Then,
the following holds:

TI(x, y) = inf{t ∈ Ln([0, 1]) : I(x, t) ≥ y}
= inf{t ∈ Ln([0, 1]) : I(y, t) ≥ x} = TI(y, x).

(T 2) Let t ∈ Ln([0, 1]). From properties RP and I6:

TI(x, TI(y, z)) = inf{t ∈ Ln([0, 1]) : I(x, t) ≥ TI(y, z)}
= inf{t ∈ Ln([0, 1]) : I(y, I(x, t)) ≥ z}
= inf{t ∈ Ln([0, 1]) : I(x, I(y, t)) ≥ z}
= inf{t ∈ Ln([0, 1]) : I(y, t) ≥ TI(x, z)}
= TI(y, TI(x, z)).

(T 3) For x, y1, y2 ∈ Ln([0, 1]) and y1 ≤ y2, we have that
{t ∈ Ln([0, 1]) : I(x, t) ≥ y1} ⊇ {t ∈ Ln([0, 1]) : I(x, t) ≥
y2}. Then, it implies that TI(x, y1) ≤ TI(x, y2).

(T 4) For x ∈ Ln([0, 1]), by I3, we get the following:
TI(x, /1/) = TI(/1/, x) = inf{t ∈ Ln([0, 1]) : I(/1/, t) ≥
x}. Then, TI(x, /1/) = inf{t ∈ Ln([0, 1]) : t ≥ x} = x. So,
we conclude that T is a n-DT.

Now, assuming that TI is not left-continuous w.r.t. the
second variable at some point (x,y0) ∈ (Ln([0, 1]))2.
Thus, there exists an increasing chain (yi )i∈N such that
limi→∞ yi = y∗ and a = limi→∞ TI(x,yi ) �= TI(x,y∗) =
b. Since TI is increasing, then a < b and TI(x,yi ) ≤ a,
for all i ∈ N. On the other hand, since for each i ∈ N,
TI(x,yi ) ≤ a then, by RP , yi ≤ I(x,a) for each i ∈ N. So,
in the limit, y∗ = lim

i→∞ yi ≤ I(x,a) and therefore, by RP ,

we have that b = TI(x,y∗) ≤ a which is a contradiction
to a < b. Then, TI is a left-continuous n-DT. Now, let ITI
the n-DRI generated by TI . For each x, y ∈ Ln([0, 1]), by
Proposition 17, the following is verified:

TI(x, I(x, y))

= min{t ∈ Ln([0, 1]) : I(x, t) ≥ I(x, y)} ≤ y

⇒ I(x, y) ∈ {t ∈ Ln([0, 1]) : TI(x, t) ≤ y}.
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Then, I(x, y) ≤ ITI (x, y). In addition, by RP and I2, we
have that:

ITI (x, y) ≤ I(x, TI(x, ITI (x, y))) ≤ I(x, y).

So, ITI (x, y) = I(x, y). And, Theorem 6 holds. 
�
We also have the following connection between left-

continuous n-DT and n-DRI generated from them.

Lemma 3 T = TIT if T is a left-continuous n-DT.

Proof From Proposition 15, IT ∈ I(Ln([0, 1])) satisfies
I6, I8 and is right-continuous w.r.t. the second variable.
By Theorem 6, the function TIT is a left-continuous n-
DT. Since T is left-continuous and by Theorem 4 the pair
(T , IT ) satisfies RP , then for x, y ∈ Ln([0, 1]) it holds
that: IT (x, T (x, y)) = max{t ∈ Ln([0, 1]) : T (x, t) ≤
T (x, y)}, i.e. IT (x, T (x, y)) ≥ y and therefore, we have
that T (x, y) ∈ {t ∈ Ln([0, 1]) : IT (x, t) ≥ y}. Hence,

T (x, y) ≥ TIT (x, y). (29)

Conversely, since T is left-continuous, from Proposition 4,
T (x, IT (x, z)) ≤ z, for any z ∈ Ln([0, 1]). If z =
TIT (x, y), then TIT (x, y) ≥ T (x, IT (x, TIT (x, y))). Fur-
ther, since IT is right-continuous, from Proposition 17 we
get also IT (x, TIT (x, y)) ≥ y. Thereby, by RP , we obtain
the following result:

TIT (x, y) ≥ T (x, y). (30)

From Eqs. (29) and (30), we get TIT (x, y) = T (x, y),
∀x, y ∈ Ln([0, 1]). So, Lemma 3 is verified. 
�

Other results in the characterization of n-DRI generated
from left-continuous n-DT are shown below.

Theorem 7 For a function I : (Ln([0, 1]))2 → Ln([0, 1])
the following statements are equivalent:

1. I is an n-DRI obtained from a left-continuous n-DT;
2. I satisfies I2, I6, I8 and right-continuity w.r.t. the sec-

ond variable.

Moreover, the representationof n-DRI, up toa left-continuous
n-DT, is unique in this case.

Proof Consider function I : (Ln([0, 1]))2 → Ln([0, 1]).
The following holds: (1.) ⇒ (2.) Let I be an n-DRI gener-
ated from a left-continuous n-DT T . By Lemma 3, T is TI .
From Proposition 15 it satisfies properties I2, I6 and I8.
Moreover, it is also right-continuous w.r.t. the second vari-
able. (2.) ⇒ (1.) Let I : (Ln([0, 1]))2 → Ln([0, 1]) be a
function satisfyingI2, I6, I8 and it is right-continuousw.r.t.

the second variable. By Theorem 6, we get that I = ITI
where TI defined by Eq. (25) is a left-continuous n-DT.
Hence I is an n-DRI generated from the left-continuous n-
DTTI . And, the uniqueness of the representation of ann-DRI
up to a left-continuous n-DT follows from Lemma 3.

Concluding, it is shown that Theorem 7 is verified. 
�
The next corollary follows fromTheorem 7 characterizing

left-continuous t-norms on Ln([0, 1]).
Corollary 5 For T : (Ln([0, 1]))2 → Ln([0, 1]), the follow-
ing statements are equivalent:

1. T is a left-continuous n-DT;
2. There exists I ∈ FI, which satisfies I6, I8 and it is also

right-continuous w.r.t. the second variable, such that T
is given by (25).

Proof Straightforward from Theorem 7. 
�
Lemma 4 If I : Ln([0, 1])2 → Ln([0, 1]) is continuous
function except at the point (/0/, /0/) satisfying I2, I6, I7
and I(x, /0/) = ND1(x), then the function TI defined by
(24) is a continuous n-DT.

Proof Since I is right continuous w.r.t. the second variable,
fromTheorem 6, TI is a left-continuous n-DT and, by Propo-
sition 17, (TI , I) is an adjoint pair, i.e. I and TI satisfy
property RP . Thus, in order to prove that n-DT TI is a
continuous function, suppose the contrary, i.e. that TI is
not right-continuous. Then there exist x, y ∈ Ln([0, 1]) and
z, z′ ∈ Ln([0, 1]) such that

z = TI(x, y) < z′ < lim
h→0+ TI(x, y + h). (31)

considering the sum of THFE.1

From RP property, we have I(x, z) ≥ y and by I2,
we have I(x, z′) ≥ y. Moreover, by RP , we also have
that z′ ≤ TI(x, y), which is a contradiction. Thus, TI is
right-continuous and hence, it is also continuous. Therefore,
Lemma 4 is verified. 
�

5 Obtaining n-DRI from n-DA operators

This section extends main results in Liu and Wang (2006)
from interval-valued fuzzy set theory to n-dimensional sim-
plex. In particular, the class of n-DRI is constructed based on
binary n-DA aggregation operators, given as the minimum
operator and left-continuous t-norms.

1 The operator + : Ln([0, 1])2 → Ln([0, 1]) is given as x + y =
(min(x1 + y1, 1), . . . ,min(xn + yn, 1)), ∀x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Ln([0, 1]).
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Proposition 18 Let T1, . . . , Tn : [0, 1]2 → [0, 1] be left-
continuous t-norms such that T1 ≤ · · · ≤ Tn. Then, for
all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Ln([0, 1])
the function TT1,...,Tn : (Ln([0, 1]))2 → Ln([0, 1]) given
as TT1...Tn (x, y) = (

minni=1 T1(xn−i+1, yi ), . . . , Tn(x1, yn)
)

and shortly expressed as follows:

TT1...Tn (x, y) =
(

n
min
i=k

Tk(xn−i+k, yi )

)
k∈N∗

n

(32)

verifies T 1, T 2, T 4, LC and RP properties on Ln([0, 1]).
Proof Let T1, . . . , Tn : [0, 1]2 → [0, 1] be left-continuous
t-norms such that T1 ≤ · · · ≤ Tn . For all x, y, x′ ∈ Ln([0, 1])
the following holds:

(T 1)TT1,...,Tn (x, y) =
(

n
min
i=k

Tk(xn−i+k, yi )

)
k∈N∗

n

=
(

n
min
i=k

Tk(yi , xn−i+k)

)
k∈N∗

n

=
(

n
min
i=k

Tk(yn−i+k, xi )

)
k∈N∗

n

= TT1,...,Tn (y, x).

(T 2)x ≤ x′ ⇒ TT1,...,Tn (x, y) =
(

n
min
i=k

Tk(xn−i+k, yi )

)
k∈N∗

n

≤
(

n
min
i=k

Tk(x
′
n−i+k, yi )

)
k∈N∗

n

= TT1,...,Tn (x′, y).

(T 4)TT1,...,Tn (x, /1/) =
(

n
min
i=k

Tk(xn−i+k, 1)

)
k∈N∗

n

=
(

n
min
i=k

xn−i+k

)
k∈N∗

n

= (x1, x2, . . . , xn) = x.

(LC) Let xl be a non-decreasing sequence in Ln([0, 1]).
Then, the following holds:

lim
l→∞ TT1,...,Tn (xl , y)

= lim
l→∞

(
n

min
i=k

Tk(x
l
n+k−i , yi )

)
k∈N∗

n

=
(

n
min
i=k

lim
l→∞ Tk(x

l
n+k−i , yi )

)
k∈N∗

n

=
(

n
min
i=1

T1( lim
l→∞ xln+1−i , yi ), . . . , Tn( liml→∞ xl1, yn)

)

=
(

n
min
i=k

Tk( lim
l→∞ xln+k−i , yi )

)
k∈N∗

n

= TT1,...,Tn ( lim
l→∞ xl , y).

Since TT1,...,Tn satisfies LC and the proof of Theorem 4
((1.) ⇒ (2.)) does notmakeuseT 3, then this sameproof also
proves RP for TT1,...,Tn and ITT1,...,Tn

. Concluding, Proposi-
tion 18 is verified. 
�

In the next proposition, it is shown that the operator
TT1,...,Tn forms an adjoint pair with its residuum operator,
in spite of not being necessarily a n-dimensional t-norm.

Corollary 6 Let T1, . . . , Tn : [0, 1]2 → [0, 1] be left-con-
tinuous t-norms such that T1 ≤ · · · ≤ Tn. Then, the pair of
functions (TT1,...,Tn , ITT1,...,Tn

) is an adjoint pair.

Proof Follows from Propositions 17 and 18. 
�
The characterization of an ITT1,...,Tn

operator is presented
in the following theorem.

Theorem 8 Let T1, . . . , Tn : [0, 1]2 → [0, 1] be left-
continuous t-norms on [0, 1] such that T1 ≤ . . . ≤ Tn
and I1, . . . , In be their corresponding residual implica-
tions. Then II1,...,In = ITT1,...,Tn

if the function II1,...,In :
(Ln([0, 1]))2 → Ln([0, 1]), for ∀x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Ln([0, 1]), is given as follows:

II1,...,In (x, y) =
(

n
min
i=1

Ii (xi , yi ),
n

min
i=2

Ii (xi , yi ), . . . , In(xn, yn)

)
,

(33)

and, shortly expressed in the next equation

II1,...,In (x, y) =
(

n
min
i=k

Ii (xi , yi )

)
k∈N∗

n

, (34)

which is called as the II1,...,In -operator.

Proof Let T1, . . . , Tn : [0, 1]2 → [0, 1] be left-continuous
t-norms on [0, 1] such that T1 ≤ · · · ≤ Tn and I1, . . . , In
be their corresponding residual implications. For all x, y ∈
Ln([0, 1]) we have the next results:

TT1,...,Tn (x, II1,...,In (x, y)) ≤ y ⇔
⇔ n

min
i=k

Tk(xn+k−i ,
n

min
j=k

I j (x j , y j )) ≤ yk,∀k ∈ Nn

⇔ Tk(xk,
n

min
j=k

I j (x j , y j ) ≤ yk,∀k ∈ Nn

⇔ n
min
j=k

I j (x j , y j ) ≤ Ik(xk, yk),∀k ∈ Nn (by RP).

So, TT1,...,Tn (x, II1,...,In (x, y)) ≤ y. Then, implying that
II1,...,In (x, y) ∈ {z ∈ Ln([0, 1]) : TT1,...,Tn (x, z) ≤ y}. Con-
sequently, two results need to be considered:

(i)II1,...,In (x, y) ≤ sup{z ∈ Ln([0, 1]) : TT1,...,Tn (x, z) ≤ y}
= ITT1,...,Tn

(x, y).

Now, let z ∈ Ln([0, 1]) such that TT1,...,Tn (x, z) ≤ y. Then,
for each k ∈ Nn , minni=k Tk(xn+k−i , zi ) ≤ yk . So, there
exists i ≥ k such that Tk(xn+k−i , zi ) ≤ yk and therefore,
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Tk(xk, zk) ≤ yk . Hence, byRP , it holds that zk ≤ Ik(xk, yk)
for each k ∈ {1, . . . , n} and therefore zk ≤ minni=k Ii (xi , yi ).
And, the following holds:

z ≤
(

n
min
i=1

Ii (xi , yi ),
n

min
i=2

Ii (xi , yi ), . . . , In(xn, yn)

)

And, z ≤ II1,...,In (x, y). It holds that:

(i i)II1,...,In (x, y) ≥ sup{z ∈ Ln([0, 1]) : TT1,...,Tn (x, z) ≤ y}
= ITT1,...,Tn

(x, y).

Therefore, from (i) e (ii), Theorem 8 is verified. 
�
Corollary 7 Let T1, . . . , Tn : [0, 1]2 → [0, 1] be left-
continuous t-norms on [0, 1] such that T1 ≤ . . . ≤ Tn
and I1, . . . , In be their corresponding residual implica-
tions. Then, we have

(
II1,...,In , TT1...Tn

)
is an adjoint pair

on Ln([0, 1]).
Proof It follows from Corollary 6 and Theorem 8. 
�

5.1 Main properties related toII1,...,In -operator

Now, the conditions underwhich themain properties of fuzzy
implications are preserved by action of the II1,...,In -operator
on Ln([0, 1]), are investigated.
Proposition 19 Let I1, . . . , In : [0, 1]2 → [0, 1] be impli-
cations such that In ≤ · · · ≤ I1 satisfying I k, for k ∈
{1, 2, 3, 4, 5, 8}. TheII1,...,In -operator expressed as (34) ver-
ifies Ik property.

Proof Let I1, . . . , In : [0, 1]2 → [0, 1] be implications such

that In ≤ · · · ≤ I1. Observe that
n

min
i=k

Ii (xi , yi ) = I j (x j , y j )

for some j = k, . . . , n, implying that: (I0): Firstly, the
boundary conditions hold:

II1,...,In (/0/, /0/) =
(

n
min
i=k

Ii (0, 0)

)
k∈Nn

= /1/;

II1,...,In (/0/, /1/) =
(

n
min
i=k

Ii (0, 1)

)
k∈Nn

= /1/;

II1,...,In (/1/, /1/) =
(

n
min
i=k

Ii (1, 1)

)
k∈Nn

= /1/;

II1,...,In (/1/, /0/) =
(

n
min
i=k

Ii (1, 0)

)
k∈Nn

= /0/.

(I1) If x ≤ x′ then the following holds:

II1,...,In (x, y) =
(

n
min
i=k

Ii (xi , yi )

)
k∈Nn

=
(

n
min
i=1

Ii (xi , yi ),
n

min
i=2

Ii (xi , yi ), . . . , In(xn, yn)

)

≥
(

n
min
i=1

Ii (x
′
i , yi ),

n
min
i=2

Ii (x
′
i , yi ), . . . , In(x

′
n, yn)

)

=
(

n
min
i=k

Ii (x
′
i , yi )

)
k∈Nn

= II1,...,In (x′, y);

(I2) If y ≤ y′ then the next results hold:

II1,...,In (x, y) =
(

n
min
i=k

Ii (xi , yi )

)
k∈Nn

=
(

n
min
i=1

Ii (xi , yi ),
n

min
i=2

Ii (xi , yi ), . . . , In(xn, yn)

)

≤
(

n
min
i=1

Ii (xi , y
′
i ),

n
min
i=2

Ii (xi , y
′
i ), . . . , In(xn, y

′
n)

)

=
(

n
min
i=k

Ii (xi , y
′
i )

)
k∈Nn

= II1,...,In (x, y′);

(I3)II1,...,In (/1/, y) =
(

n
min
i=k

Ii (1, yi )

)
k∈Nn

=
(

n
min
i=1

Ii (1, yi ),
n

min
i=2

Ii (1, yi ), . . . , Ii (1, yn)

)

=
(

n
min
i=1

yi ,
n

min
i=2

yi , . . . , yn

)
= (y1, y2, . . . , yn) = y;

(I4)II1,...,In (x, x) =
(

n
min
i=k

IIi (xi , xi )

)
k∈Nn

=
(

n
min
i=1

I1(xi , xi ),
n

min
i=2

Ii (xi , xi ), . . . , In(xn, xn)

)
= /1/;

(I5)II1,...,In (x, /0/) =
(

n
min
i=k

Ii (xi , 0)

)
k∈N∗

n

=
(

n
min
i=1

Ii (xi , 0),
n

min
i=2

Ii (xi , 0), . . . , In(xn, 0)

)

= (min(I1(x1, 0), I2(x2, 0), . . . , In(xn, 0)),

min(I2(x2, 0), . . . , In(xn, 0)), . . . , In(xn, 0))

= (In(xn, 0), In(xn, 0), . . . In(xn, 0))

= (Nn(xn), Nn(xn) . . . , Nn(xn)) = Ñn(/xn/)

(I8)II1,...,In (x, y) = /1/

⇔
(

n
min
i=k

Ii (xi , yi )

)
k∈Nn

= /1/

⇔ n
min
i=1

Ii (xi , yi ) = 1 or . . . or In(xn, yn) = 1

⇔ xi ≤ yi ,∀i ∈ Nn ⇔ x ≤ y.

Therefore, Proposition 19 is verified. 
�
Example 6 Let ILK given in Example 5and TLK given in
Example 4. Consider the restriction from Ln([0, 1]) to the
interval approach on L2([0, 1]). By Theorem 8, we have an
adjoint pair (IILK , TTLK ), such that

IILK (x, y) = [min(ILk(x1, y2), ILK (x2, y1)), ILk(x2, y2)];
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TTLK (x, y) = [TLk(x1, y1),min(TLK (x1, y2), TLK (x2, y1))].

And, by Liu and Wang (2006), taking the representable n-
DT T̃LK (x, y) = [TLK (x1, y1), TLK (x2, y2)], we also have
(IILK , T̃LK ) as another adjoint pair on L2([0, 1]).

6 Modelling a CIM-application on Ln([0,1])
This section extents the application described in (Wen
et al. 2018, Example 1) from HFS to n-DS, in order to
solve the multi-criteria decision-making (MCDM) problem
considering multiple alternatives in the selection of CIM
(computer-integrated manufacturing) software.

6.1 Describing the CIM-MCDM problem

In order to help the user in the selection of seven kinds of
CIM software systems available in the market nowadays, a
data processing company aims to clarify differences of such
systems (Chen et al. 2013).

The evaluations expressed by n-DFS are shown in Table 2.
In this case study, A = {A1, A2, . . . , A7} (n2 = 7) be the set
of CIM software alternatives and X be the set of 4 attributes
related to functionality (x1), usability (x2), portability (x3)
and maturity (x4) (n1 = 4). See Table 2, related to matrix
[D]7×4 = (xki )k=1...7,i=1...4 whose elements are given as an
3-dimensional interval xi j , containing selected opinions of
three decision makers and providing their evaluations with

values between 0 and 1 for all alternative Ai w.r.t. each
attribute.

6.2 Applying the residual implicationIILK

The triangle product relation � ⊆ (L4([0, 1]))7 is given as
� ≡ F∧ ◦ I, considering the operators:

– I ≡ IILK ,ILk ,ILK : (L3([0, 1]))2 → L3([0, 1]) intro-
duced in Theorem 8, expressed by (34) considering the
Łukasiewicz fuzzy implication ILK presented in Exam-
ple 5; and

– F∧ : L4([0, 1])4 → L4([0, 1]) as the minimum operator
in Eq. (17).

Taking k, j ∈ {1, . . . , 7}, the action of �-operator can be
given by 7× 7-matrix whose elements zk, j = �(xki , x j i ) ∈
L4([0, 1]) are given as follows:

zk, j =
{(

F∧ ◦ I (xki , xli )(i=1...4)
)
(k, j=1...7) , if k �= j

(1, 1, 1, 1), otherwise.
(35)

And, the result comparisons are achieved whenever the
ordered elements z(k, j) ∈ L4([0, 1]) are obtained based on
the admissible linear order �[M]-order, described in Propo-
sition 5.

See the action of operator in Eq. (35) resulting on the
matrix L7×7 = (z(k j))k, j=1...7 presented in Table 3.

Illustrating the action of �-operator over the 3-dimen-
sional intervals reported in Table 2, consider the related 1st

Table 2 Information related to
The n-dimensional interval
components

D-matrix x1 x2 x3 x4

A1 (0.8, 0.85, 0.95) (0.7, 0.75, 0.8) (0.65, 0.65, 0.80) (0.3, 0.3, 0.35)

A2 (0.85, 0.85, 0.9) (0.6, 0.7, 0.8) (0.2, 0.2, 0.2) (0.15, 0.15, 0.15)

A3 (0.2, 0.3, 0.40) (0.4, 0.4, 0.5) (0.9, 0.9, 1) (0.45, 0.5, 0.65)

A4 (0.8, 0.95, 1) (0.1, 0.15, 0.2) (0.2, 0.2, 0.3) (0.6, 0.7, 0.80)

A5 (0.35, 0.4, 0.5) (0.7, 0.9,1) (0.4, 0.4, 0.4) (0.2, 0.3, 0.35)

A6 (0.5, 0.6, 0.7) (0.8, 0.8, 0.9) (0.4, 0.4, 0.6) (0.1, 0.1, 0.2)

A7 (0.8, 0.8, 1) (0.15, 0.2, 0.35) (0.1, 0.1, 0.2) (0.7, 0.7, 0.85)

Table 3 Action of �-operator in n-dimensional intervals

A1 A2 A3 A4 A5 A6 A7

A1 (1,1,1,1) (0.4,0.8,0.9,0.95) (0.4,0.65,1,1) (0.4,0.5,1,1) (0.55,0.6,0.9,1) (0.7,0.75,0.8001) (0.4,0.45,0.95,1)

A2 (0.95,1,1,1) (1,1,1,1) (0.35,0.7,1,1) (0.4,0.95,1,1) (0.5,1,1,1) (0.65,0.95,1,1) (0.5,0.9,0.95,1)

A3 (0.7,0.75,1,1) (0.2,0.5,1,1) (1,1,1,1) (0.3,0.7,1,1) (0.4,0.7,1,1) (0.5,0.55,1,1) (0.2,0.75,1,1)

A4 (0.55,0.9,1,1) (0.35,0.9,0.9,1) (0.35,0.8,1,1) (1,1,1,1) (0.45,0.55,1,1) (0.4,0.65,1,1) (0.85,0.9,1,1)

A5 (0.8,1,1,1) (0.8,0.8,0.8,1) (0.5,0.85,1,1) (0.2,0.8,1,1) (1,1,1,1) (0.8,0.9,1,1) (0.3,0.7,1,1)

A6 (0.9,1,1,1) (0.6,0.8,0.95,1) (0.6,0.7,1,1) (0.3,0.7,1,1) (0.8,0.8,0.9,1) (1,1,1,1) (0.35,0.6,1,1)

A7 (0.5,0.95,1,1) (0.3,0.9,1,1) (0.4,0.75,1,1) (0.85,0.9,1,1) (0.5,0.5,1,1) (0.35,0.7,1,1) (1,1,1,1)
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and 2nd lines (A1 and A2 alternatives). So, the component
z21 is given as:

z21 = F∧(yi )i=1...4;
yi = IILK (x2i , x1i )

= (min(ILK (x1, y1), ILK (x2, y2), ILK (x3, y3)),

min(ILK (x2, y2), ILK (x3, y3)), I (x3, y3)) ∈ L3(U ).

It holds that:

y1 = IILK (x21, x11) = I((0.85, 0.85, 0.9), (0.8, 0.85, 0.95))

= (min(ILK (0.85, 0.8), ILK (0.85, 0.85), ILK (0.9, 0.95)),

min(ILK (0.85, 0.85), ILK (0.9, 0.95)), ILK (0.9, 0.95))

= (min(min(1, 1 − 0.85 + 0.8),min(1, 1 − 0.85 + 0.85)),

min(1, 1 − 0.9 + 0.95)),min(min(1, 1 − 0.85 + 0.85)),

min(1, 1 − 0.9 + 0.95)),min(1, 1 − 0.9 + 0.95)) = (0.95, 1, 1);
y2 = IILK (x22, x12) = I((0.6, 0.7, 0.8), (0.7, 0.75, 0.8))

= (min(ILK (0.6, 0.7), ILK (0.7, 0.75), ILK (0.8, 0.8)),

min(ILK (0.7, 0.75), ILK (0.8, 0.8)), ILK (0.8, 0.8))

= ((min(1, 1 − 0.6 + 0.7),min(1, 1 − 0.7 + 0.75),

min(1, 1 − 0.8 + 0.8)), (min(1, 1 − 0.7 + 0.75),

min(1, 1 − 0.8 + 0.8)),min(1, 1 − 0.8 + 0.8)) = (1, 1, 1);
y3 = IILK (x23, x13) = I((0.2, 0.2, 0.2), (0.65, 0.65, 0.8))

= (min(ILK (0.2, 0.65), ILK (0.2, 0.65), ILK (0.2, 0.8)),

min(ILK (0.2, 0.65), ILK (0.2, 0.8)), ILK (0.2, 0.8))

= ((min(1, 1 − 0.2 + 0.65),min(1, 1 − 0.2 + 0.65),

min(1, 1 − 0.2 + 0.8)), (min(1, 1 − 0.2 + 0.65),

min(1, 1 − 0.2 + 0.8)),min(1, 1 − 0.2 + 0.8)) = (1, 1, 1);
y4 = IILK (x24, x14) = I((0.15, 0.15, 0.15), (0.3, 0.3, 0.35))

= (min(ILK (0.15, 0.3), ILK (0.15, 0.3), ILK (0.15, 0.35)),

min(ILK (0.15, 0.3), ILK (0.15, 0.35)), ILK (0.15, 0.35))

= (min(1, 1 − 0.15 + 0.3),min(1, 1 − 0.15 + 0.3),

min(1, 1 − 0.15 + 0.35)),min(min(1, 1 − 0.15 + 0.3),

min(1, 1 − 0.15 + 0.35)),min(1, 1 − 0.15 + 0.35)) = (1, 1, 1).

And, z21 = �(x2i , x1i ) = F∧◦IILK (x2i , x1i )(i=1...4),which
can be expressed as follows:

z21 = (∧(0.95, 1, 1),∧(1, 1, 1),∧(1, 1, 1),∧(1, 1, 1))

= (0.95, 1, 1, 1).

It results on the ordered component z(21), as shown inTable 3,
placed in row-2 and column-1. The other components can be
obtained analogously.

6.2.1 Solving the CIM-MCDM problem on Ln([0, 1])

Since many elements in Table 3 of 4-dimensional interval
componentsmay not be comparable by the usual partial order
≤L4(U ),we consider the setMof aggregation sequence given
inExample 3, to apply the�[M]-order as the admissible linear
order described in Proposition 5. Such interval data preserv-
ing strategy enables us to consider the uncertainty associated
with input data modelling the possible indecision of special-
ist preferences. In addition, we remain capable to guarantee
the comparison of all output interval data.

Thus, using this strategy, we are not restricted to the use
of aggregation operators (as the arithmetic mean) performed
over the elements in Table 3, presenting the ordered val-
ues related to each component z(kl) ∈ L4(U ) resulting from
action of �-operator over data provided by evaluations in
such MCDM problem.

See, the components z(72) = (0.3, 0.9, 1.0, 1.0) and
z(27) = (0.5, 0.9, 0.95, 1.0), which are incomparable w.r.t.
the partial order≤Ln([0,1]), meaning that z(72) �Ln([0,1]) z(27)

and z(27) �Ln([0,1]) z(72) hold. So, theM-aggregation (M =
{M1, M2, M3, M4}), as presented in Example 3, enables the
comparison between z(27) and z(72).

In fact, z(27) �[M] z(72) since we have M1
(
z(54)

) =
M1

(
z(45)

)
but M2

(
z(54)

) = 0.57 ≤ 0.66 = M2
(
z(45)

)
. The

above calculations are highlighted in the following:

[M]z(72) =

⎡
⎢⎢⎣
0.25 0.25 0.25 0.25
0.50 0.15 0.15 0.20
0.20 0.20 0.30 0.30
0.10 0.40 0.10 0.40

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.20
0.80
1.00
1.00

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.75
0.57
0.80
0.84

⎤
⎥⎥⎦ ;

[M]z(27) =

⎡
⎢⎢⎣
0.25 0.25 0.25 0.25
0.50 0.15 0.15 0.20
0.20 0.20 0.30 0.30
0.10 0.40 0.10 0.40

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.50
0.90
0.95
1.00

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.75
0.66
0.80
0.77

⎤
⎥⎥⎦ .

Analogously, the other component comparisons, related
to z(i7) and z(i7), for 1 ≤ i ≤ 7, can be performed. And so,
we are able to conclude that A7 > A2. Summarizing, Table 4
presents all resulting comparisons related to 3-dimensional

Table 4 Applying admissible
M-order in the comparison
degrees between alternatives in
Table 5

z21 � z12 z12 � z21 z13 � z31 z14 � z41 z15 � z51 z16 � z61 z17 � z71
z31 � z13 z32 � z23 z23 � z32 z24 � z42 z25 � z52 z26 � z62 z27 � z72
z41 � z14 z42 � z24 z43 � z34 z34 � z43 z35 � z53 z36 � z63 z37 � z73
z51 � z15 z52 � z25 z53 � z35 z54 � z45 z45 � z54 z46 � z64 z47 = z74
z61 � z16 z62 � z26 z63 � z36 z64 � z46 z65 � z56 z56 � z65 z57 � z75
z71 � z17 z72 � z27 z73 � z37 z74 = z47 z75 � z57 z76 � z67 z67 � z76
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Table 5 n-Dimensional implication degree calculation

A1 A2 A3 A4 A5 A6 A7

A1 1.000 0.762 0.762 0.725 0.762 0.812 0.700

A2 0.987 1.000 0.762 0.837 0.875 0.900 0.837

A3 0.862 0.675 1.000 0.750 0.775 0.762 0.737

A4 0.862 0.787 0.787 1.000 0.750 0.762 0.937

A5 0.950 0.850 0.837 0.750 1.000 0.925 0.750

A6 0.975 0.837 0.825 0.750 0.875 1.000 0.737

A7 0.862 0.800 0.787 0.937 0.750 0.762 1.000

fuzzy sets reported in Table 3, where �[M]≡� are used by
reducing notation:

Moreover, based on all resulting comparisons, one can
observe that z(i1) � z(1i), for all i ∈ {1, . . . , 7}. Then A1 is
the superior CIM software alternative by comparing it with
other ones. The same analysis can be extended to other alter-
natives, resulting on next comparison: A1 > A3 > A6 >

A5 > A4 = A7 > A2.
Now, in order to avoid the above exhaustive comparisons,

we consider the data aggregating strategybasedon an average
operator.

6.2.2 Solving CIM-MCDM problem by applying data
aggregating strategy

The arithmetic mean performed over the previous data from
Table 3, given as follows

tk j =
(
1

4

4∑
i=1

zk j (i)

)
,∀k, j = 1 . . . 7, (36)

result in the data shown in Table 5. Thus, a new comparison
can be obtained. Based on such data analysis exploited from
Table 5, a new comparison is reached: A1 > A3 > A6 >

A4 = A5 = A7 > A2.
This comparison result coincides with the results pre-

sented in Wen et al. (2018), see Example 1.

6.2.3 Discussing the results for CIM-MCDM problem

For two or more experts providing the same membership
degree for an alternative w.r.t. data criterion, these degrees
collapse in the hesitant decision matrix. However, when the
modelling via n-dimensional sets is considered, it is possible
to repeat (e.g. the smaller and/or larger) values and preserve
the dimension of each vector. Thus, this process explains the
frequency of repetitions related to expert opinions in addition
to faithfully reflecting their evaluation for all criteria. There-
fore, the rating obtained is also more reliably influenced.

In this modelling via n-dimensional sets for this CIM-
MCDC proposal, even considering the same operator, which
is the fuzzy Łukasiewicz implication, the comparison for A4
and A5 alternatives can be presented. However, by consider
the media arithmetic as result data in the n-dimensional deci-
sion matrix, it coincides with the proposal via hesitant sets in
Wen et al. (2018). And so, it is not possible to decide which
is the best choice among A4 and A5 alternatives. Moreover,
one can observe that such problem situation may also change
the best options, just updating the input data.

Based on the second strategy considering the arith-
meticmean aggregation„ only the corresponding comparison
between alternatives A4 and A5 cannot be explicit (A4 =
A5). And, the comparison A5 > A4 is achieved in the first
strategy as suitable for these two distinct 4-dimensional inter-
vals. However, both strategies determine that the three best
alternatives are A1, A3 and A6. And also, the two worst
options are the alternatives A7 and A2. While avoiding mul-
tivalued data type reduction and assuming an opinion of
all experts, we consider admissible orders for comparison
between all results in the comparison matrix.

To sumup, the use of n-dimensional intervals in Ln([0, 1])
in modellingMCDM problems seems more intuitively, since
their inherent ordered components are relevant. Meaning
that, when admissible linear order is taking, it provides
detailed comparison in Ln([0, 1]).

7 Validating n-DRI in CC-environments

In order to validate the residuation study on n-DFI, this work
consider the Int-FLBCC (Interval Fuzzy Load Balancing
for Cloud Computing) model [16], improving energy con-
sumption efficiency while maintaining good Service Level
Agreement (SLA) and Quality of Service (QoS) levels. In
this sense, the detection of physical machines overload to
define priorities in the allocation and reallocation process of
virtual machines (VM) is a great challenge to perform load
balancing (LB) in cloud computing (CC-) environments .

The evaluation metrics in the dynamic consolidation
approach is related to main concepts in CC-migration and
performance w.r.t. SLA average violation, which have been
applied under QoS restrictions. The energy consumption of
CC-data centres is determined by the CPU and memory
usage, disk storage, power supplies and cooling systems,
described as a linear relationship between power consump-
tion and CPU usage.

The Int-FLBCC modelling fuzzy system considers a Rule
Base acting on three steps: Fuzzification, Inference, and
Defuzzification returning as output the utilization level of
each host. This system was performed using the Interval
Type-2 FuzzyLogic SystemToolbox (IT2FLT)module (Cas-
tro et al. 2007) and Juzzy (Wagner 2013).
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Table 6 Hosts of cloud

Vendor Model CPU name CPU characteristics Memory

1 ProLiant DL325 Gen10 AMD EPYC 7551P 2.0 GHz 32-Core, 2.0 GHz, 64MB L3 Cache 128 GB

2 PowerEdge R840 Intel Xeon Platinum 8180 2.50 GHz 28 core, 2.50 GHz, 38.5 MB L3 Cache 384 GB

(1) Hewlett Packard Enterprise (2) Dell Inc

The configuration of the Int-FLBCC test environment is
executed in the fuzzy module evaluation for host selection of
CC-allocation of VMs, considering the CloudSim (Rodrigo
et al. 2011) as the toolkit for modelling and simulating CC-
services. The open-source Java libraryWagner (2013) is used
to implement the fuzzy inference system.

For all experiments, real-world workloads provided as
part of the CoMon (Park and Vivek 2006) project, a mon-
itoring infrastructure for PlanetLab. The Infrastructure as a
Service (IaaS) cloud environment represented for the tests
considered 800 heterogeneous physical hosts and four types
of configurations as described in Table 6. The results as well
as the Int-FLBCC framework are available in GitHub2 in an
extended version of CloudSim 3.0.3.

The frequency of server CPU is mapped into MIPS clas-
sifications. Half of the hosts are the ProLiant DL325 Gen 10
with 4721 MIPS for each core, and the other half consists
of the PowerEdge R840 server with 4520 MIPS for each
core. Each server is modelled as 5 GB/s of network band-
width. Characteristics of VM types are similar to Amazon
EC2 instance types, including Medium High CPU Instance
(4000 MIPS, 32 GB); Extra Large Instance (3000 MIPS, 8
GB); Small Instance (2000MIPS, 8 GB); andMicro Instance
(2000 MIPS, 16 GB). As an interval schedule, the applied
measurement interval is 5min. See main characteristics of
each workload in Table 7. CPU load workload data for more
than 1000 VM of servers in over 500 locations worldwide
were used. And, the value of the workload data confirms that
the average CPU utilization is well below 50%.

In addition, 10 workload data sets collected on different
days are applied and allocated to each VM. All these exper-
iments considered the allocation algorithms: Inter-Quartile
Range (IQR), Local Regression Robust (LRR) and Median
Absolute Deviation (MAD).

Table 8 describes the abbreviated name of the three fuzzy
approaches, which are generated by combinations methods
of implications, intersections and unions, for each of the three
classical algorithms (CA): IQR, LRR and MAD.

7.1 Discussion of results

Firstly, in Fig. 1 the evaluation based on energy consumption
is presented, where it can be highlighted that the proposed

2 https://github.com/brunomourapaz/CloudSim.

Table 7 Characteristics of the workload data

Workload VMs Mean (%) St.dev. (%)

20110303 1052 12.31 17.09

20110306 898 11.44 16.83

20110309 1061 10.7 15.57

20110322 1516 9.26 12.78

20110325 1078 10.56 14.14

20110403 1463 12.39 16.55

20110409 1358 11.12 15.09

20110411 1233 11.56 15.07

20110412 1054 11.54 15.15

20110420 1033 10.43 15.21

Table 8 Operator settings in experiments

APP Implication Intersection Union

IQR2 Minimum Maxmin Minmax

IQR1 product Maxmin Minmax

IQR3 IILK T̃LK (T̃LK )ÑS

IQR4 IILK TTLK (TTLK )NS

LRR2 Minimum Maxmin Minmax

LRR1 product Maxmin Minmax

LRR3 IILK T̃LK (T̃LK )ÑS

LRR4 IILK TTLK (TTLK )NS

MAD2 Minimum Maxmin Minmax

MAD1 product Maxmin Minmax

MAD3 IILK T̃LK (T̃LK )ÑS

MAD4 IILK TTLK (TTLK )NS

(CA) Crisp Algorithm; (APP) Application Name

aggregation and implication methods managed to achieve
similar results and slightly better than the crisp algorithms.

The assessment of the SLA in cloud computing services
is of fundamental importance, as it contains the metrics
agreed between information technology companies and their
customers, such as minimum availability of computing
resources, and transfer rate of communication channels. In
this sense, this evaluation seeks to analyze the average lev-
els of SLA violation obtained through the simulations, using
the implication and aggregator methods defined in this work.
This assessment is shown in the graph of Fig. 2 and Table 9.
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Fig. 1 Energy consumption

Fig. 2 Overall SLA violation

The graph in Fig. 3 shows the evaluation of the number
of physical machines that were turned off in the pro-
cess of dynamic consolidation of VM in the execution of
the work proposal, occurring when physical machines are
underloaded. The VM associated with this group of phys-

Table 9 Numerical result of experiments

APP Energy VMM SLAV HS

IQR 108.9530 24363 0.1275 3574

IQR2 108.4401 24279 0.1252 3514

IQR1 108.6414 24397 0.1274 3535

IQR3 108.3517 24180 0.1267 3520

IQR4 108.5589 24395 0.1255 3501

LRR 91.1897 8286 0.0615 1260

LRR2 91.4924 8370 0.0611 1271

LRR1 91.1523 8249 0.0632 1253

LRR3 91.4060 8417 0.0617 1272

LRR4 91.3902 8247 0.0613 1255

MAD 107.0234 24134 0.1397 3484

MAD2 106.8981 23971 0.1382 3454

MAD1 106.6766 24007 0.1389 3439

MAD3 106.6782 23772 0.1363 3471

MAD4 106.8990 23963 0.1368 3481

(CA) Crisp Algorithm; (VMM) VMMigrations; (HS) Host Shutdown;
(SLAV) SLA Violation

Fig. 3 Number of host shutdowns

Fig. 4 Number of VM migrations

ical machines are moved to others that still have available
resources, thus allowing the shutdown of underloaded physi-
cal machines and thus contributing to the reduction of energy
consumption.

The number of VM migration is an important factor to be
evaluated, as a high movement of VM in the data centre
can cause the degradation of the performance of compu-
tational resources, and the communication channels in a
CC-environment, consequently, making it possible to obtain
worst levels of SLA. This evaluation is shown in the graph
in Fig. 4, for each VM allocation algorithm, and applying all
the proposed aggregation and implication methods.

The results obtained using the approaches in this paper, in
general, reached values close to the classical algorithms used
in the stages of dynamic VM consolidation. Analyzing cases
IQR2, IQR1, IQR3 and IQR5 for both energy consumption
and SLAV metrics the results were relatively better than the
classic IQR algorithm. For MAD3, the reduction in energy
consumption was slightly better than the classic case, as it
was the average SLA violation. In the other cases in which
the proposed approaches did not surpass the classic cases, the
values reached very close levels, so validating the proposal.

8 Conclusion

This work discusses n-dimensional R-implications, con-
sidering important properties, as residuation property and
left- and right-continuity. As a main contribution, proper-
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ties characterizing the class of R-implications on Ln([0, 1])
are studied, extending φ-conjugation constructions under R-
implications from [0, 1] to Ln([0, 1]).

We also present an axiomatic characterization of n-DRI
based on left-continuous n-DT, and the reverse construction,
themethodobtainingn-DT fromn-DI considering the residu-
ation principle. Such method provides an exhaustive study of
properties of the n-DRI, as essential conditions for an n-DRI
verifying the exchange principal and the ordering property
are discussed.

Moreover, the class of n-DRI is constructed based on
binaryn-DAaggregationoperators considering theminimum
operator and left-continuous t-norms. Finally, an illustration
on solving a CIM-MCDM application is extended from hes-
itant fuzzy sets to n-dimensional fuzzy sets. And, toward to
the consolidation of the Int-FLBCC modelling fuzzy sys-
tem improving performance for more than 2-dimensional
approach.

Ongoing work considers the extension of other fuzzy con-
nectives from [0, 1] to Ln([0, 1]), also related to special
classes of fuzzy implications as Dishkant implications and
Yager implications (Reiser et al. 2009; Yager 2004), also
including (T,N)-implications (Pinheiro et al. 2018) and resid-
uated implications generated from t-subnorms (Reiser et al.
2013) and overlaps (Dimuro and Bedregal 2015).

Since inherent ordering related to n-dimensional intervals,
further work considers the analysis of properties of n-DRI as
continuity and monotonicity based on the admissible linear
orders on Ln([0, 1]), contributing with comparison solutions
for decision making on multi-attributes based on a group of
specialists.

And finally, the sequence of new results is passing
through the investigation of other topics related to (left/right)-
continuity on the n-dimensional upper simplex Ln([0, 1]),
but considering the extension of the Euclidean distance
and/or its equivalence approach, the Hamming distance, as
pointed out in literature.
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