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Abstract
In this study, an entropy-based grey wolf optimizer (IEGWO) algorithm is proposed for solving global optimization

problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between exploitation

and exploration, and the premature convergence of grey wolf optimizer algorithm and consists of three aspects: Firstly, we

proposed an information entropy-based population generation strategy to optimize the distribution of initial grey wolf pack.

Secondly, a modified dynamic position update equation based on information entropy is introduced to maintain the

population diversity in the process of iteration, thus avoiding premature convergence. Thirdly, a nonlinear convergence

strategy is proposed to balance the exploration and exploitation. The performance of the proposed IEGWO algorithm is

assessed on the CEC2014 and CEC2017 test suites and compared with other meta-heuristic algorithms. Furthermore, two

engineering design problems and one real-world problem are also solved using the IEGWO algorithm. The experimental

and statistical results indicate that the IEGWO algorithm has better solution accuracy and robustness than the compared

algorithms in solving global optimization problems.

Keywords Global optimization � Grey wolf optimizer � Information entropy � Meta-heuristic

1 Introduction

Meta-heuristic algorithms play an important role in solving

complex problems in different applications due to their

simple structure and easy implementation (Manna et al.

2021; Kumar et al. 2021), such as chip design

(Venkataraman et al. 2020), diseases diagnosis (Arjenaki

et al. 2015), production inventory problem (Das et al. 2021;

Manna and Bhunia 2022), feature selection (Hu et al.

2021), and path planning (Qu et al. 2020). Many nature-

inspired algorithms have been proposed by simulating the

swarm intelligence behavior of various biological systems

in nature, such as particle swarm optimization (PSO)

(Eberhart and Kennedy 1995), fruit fly optimization algo-

rithm (FOA) (Wang et al. 2013), whale optimization

algorithm (WOA) (Mirjalili and Lewis 2016), butterfly

optimization algorithm (BOA) (Arora and Singh 2019),

conscious neighborhood-based crow search algorithm

(CCSA) (Zamani et al. 2019), sparrow search algorithm

(SSA) (Xue and Shen 2020), slime mold algorithm (SMA)

(Li et al. 2020), etc.

Grey wolf optimizer (GWO) (Mirjalili et al. 2014) is a

relatively novel meta-heuristic inspired by the hunting

behavior of grey wolf pack and is the only swarm intelli-

gence algorithm based on leadership hierarchy (Luo and

Zhao 2019). Due to its excellent optimization performance,

GWO has been increasingly focused and successfully

applied to many practical engineering problems. Zhang

et al. (2016) used GWO to solve the unmanned combat

aerial vehicle two-dimension path planning problem.

Hadavandi et al. (2018) hybridized GWO and neural net-

work to achieve the prediction of yarns tensile strength.

Samuel et al. (2020) combined empirical method and GWO

to optimize the extraction process of biodiesel from waste

oil. Sundaramurthy and Jayavel (2020) hybridized GWO

and PSO with C4.5 approach to realize the prediction of

rheumatoid arthritis. Kalemci et al. (2020) designed a

reinforced concrete cantilever retaining wall using GWO

algorithm. Karasu and Saraç (2020) classified the power

quality disturbances by combining GWO and k-Nearest
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Neighbor (KNN). Saxena et al. (2020) utilized GWO to

solve the problem of harmonic estimation in power net-

works. Zareie et al. (2020) developed a GWO-based

method to identify the influential users in viral marketing

and achieved the best results so far. Naserbegi and Aghaie

(2021) applied GWO to optimize the exergy of nuclear-

solar dual proposed power plant.

However, the ‘‘no free lunch’’ theorem (Wolpert and

Macready 1997) has logically demonstrated that no meta-

heuristic can perfectly handle all optimization problems.

For example, GWO is prone to get stuck at local optimum

when dealing with complex multimodal problems (Long

et al. 2018a). Therefore, several variants of GWO have

been developed. Rodrı́guez et al. (2017) introduced a fuzzy

operator in GWO algorithm to optimize the leadership

hierarchy of grey wolves. Long et al. (2017) added a

modulation index into GWO algorithm to balance the

exploration and exploitation. Tawhid and Ali (2017)

embedded genetic mutation operator in GWO to avoid

premature convergence. Gupta and Deep (2020) optimized

the search mechanism of GWO algorithm by applying

crossover and greedy selection. Adhikary and Acharyya

(2022) introduced random walk with student’s t distribu-

tion into GWO to balance the exploration and exploitation.

Mohakud and Dash (2022) proposed a neighborhood based

searching strategy that integrates individual haunting

strategies and global haunting strategies to balance the

exploration and exploitation of GWO.

The above researches indicate that increasing population

diversity and balancing exploration and exploitation are an

effective approach to improve the performance of GWO.

For this purpose, this paper proposed a modified GWO

called information entropy-based GWO (IEGWO). In the

IEGWO, an initial population generation method based on

information entropy is proposed to optimize the distribu-

tion of initial grey wolf pack, a dynamic position update

mechanism based on information entropy is introduced to

maintain the population diversity in the process of itera-

tion, and a nonlinear convergence factor strategy is pro-

posed to balance the exploration and exploitation. The

proposed IEGWO algorithm is tested on 10 well-known

benchmark functions to analyze the influence of informa-

tion entropy and nonlinear strategy. The performance of

IEGWO is tested and compared with other GWO variants

on CEC2014 (Liang et al. 2013) and CEC2017 (Awad et al.

2016) problems. In this paper, the IEGWO is also applied

to solve two engineering design problems and to optimize

the model parameters in the field of hyperspectral imaging.

The rest of this paper is structured as follows. The next

section introduces the original GWO. In Sect. 3 we present

the proposed IEGWO in detail. In Sect. 4, the IEGWO is

tested by 10 well-known benchmark functions, CEC2014

and CEC2017. In Sect. 5, results on two engineering

optimization problems and one practical problem are pre-

sented. The last section concludes this paper and provides

some ideas for future study.

2 Grey wolf optimizer

The GWO algorithm (Mirjalili et al. 2014) mimics the

social leadership and hunting behavior of the grey wolf

pack. In this algorithm, the wolves are divided into two

parts, one is dominant wolf pack, and the other wolves are

named as x. The dominant wolf pack includes a, b and d
wolves, representing the optimal solution, suboptimal

solution, and the third optimal solution, respectively.

To mimic the hunting behavior, the following motion

equations are used:

D~ ¼ jC~ � X~PðtÞ � X~ðtÞj ð1Þ

X~ðt þ 1Þ ¼ X~PðtÞ � A~ � D~ ð2Þ

where t represents the current iteration; X~P and X~ are the

position vectors of the prey and a grey wolf, respectively; A~

and C~ denote the coefficient vectors, which can be calcu-

lated as follows:

A~¼ 2a~ � r~1 � a~ ð3Þ

C~ ¼ 2 � r~2 ð4Þ

where r~1 and r~2 denote random vectors between 0 and 1; a~

is the convergence factor linearly decreased from 2 to 0 as

follows:

a~ðtÞ ¼ 2� 2t

m
ð5Þ

where m indicates the maximum number of iterations.

Figure 1 shows the movement mechanism of GWO,

where the red, yellow, purple and blue circles represent a,
b, d and x wolves, respectively. In this process, the x

Fig. 1 Evolution of position in GWO

4670 K. Yao et al.

123



wolves move to the center of a, b and d wolves by applying
the following formulas:

D~a ¼ jC~1 � X~a � X~j; D~b ¼ jC~2 � X~b � X~j;D~d

¼ jC~3 � X~d � X~j ð6Þ

X~1 ¼ X~a � A~1 � D~a; X~2 ¼ X~b � A~2 � D~b; X~3

¼ X~d � A~3 � D~d ð7Þ

X~ðt þ 1Þ ¼ X~1 þ X~2 þ X~3

3
ð8Þ

where A~1, A~2 and A~3 are the same as A~, C~1, C~2 and C~3 are

the same as C~. Figure 2 presents the pseudocode of GWO

algorithm.

3 Information entropy-based grey wolf
optimizer

The theorem of entropy was originally proposed by

Shannon (1948) to describe the complexity of spatial

energy distribution, which plays a fundamental and

important role in the field of modern information theory.

The formula of information entropy is as follows (Feng

et al. 2022):

Hðp1; p2; . . .pnÞ ¼ �
Xn

i¼1

piðxÞ log2 piðxÞ ð9Þ

where n is the number of information records in a system

and pi(x) is the probability of the ith record. For meta-

heuristic algorithms, the information entropy can also be

used to reflect the diversity of population. Inspired by this

idea, the information entropy is introduced into GWO to

increase the population diversity in the process of gener-

ating initial population and updating position. Besides, a

nonlinear convergence factor a~ is proposed to balance the

exploration and exploitation.

3.1 Initial population generation based
on information entropy

In the original GWO, the initial population is generated by

random sampling. However, in practical application, it is

inevitable that some grey wolves may be overly concen-

trated in a local area, resulting in a restricted search range.

To optimize the distribution of initial population in the

solution space, an information entropy-based sampling

method was proposed. Suppose that there is a population

with group size of N and dimension of D, the entropy Hj of

the jth dimension can be defined by:

Hj ¼
XN�1

i¼1

1

N � 1

XN

k¼iþ1

�Pik log2 Pik � ð1� PikÞ log2ð1� PikÞ
N � i

Pik ¼ 1�
jxi

j
� xkj j

2ðubj � lbjÞ
ð10Þ

where ubj and lbj denote the upper and lower limits of the

jth dimension, respectively. The value of Pik describes the

similarity probability of the jth dimension between the ith

and the kth individuals. The entropy value of the whole

population H is defined by:

H ¼ 1

D

XD

j¼1

Hj ð11Þ

The process of generating initial population is as

follows:

Step1: Set a critical value H0 for entropy (for example,

H0 = 0.25).

Step2: Generate the first individual by random sampling

method in the solution space.

Step3: Generate a new individual by random sampling. If

the entropy value of the population H[H0, the new

individual will be retained; otherwise, a new individual

will be regenerated until H[H0.

Step4: Repeat Step 3 until enough individuals are

generated.

3.2 Dynamic position update equation

In the original GWO algorithm, all the x wolves constantly

move to the center of a, b and d wolves in the process of

iteration. As a consequence, GWO is prone to fall into local

optimum due to the over learning from the dominant wolf

pack and the rapid reduction in population diversity. To

maintain the population diversity during the process of

updating position and weaken the influence of dominant

wolf pack, we modified the position-updating equation as

follows:
Fig. 2 Pseudocode of GWO algorithm

An information entropy-based grey wolf optimizer 4671

123



X~ðt þ 1Þ ¼ w1X~1 þ w2X~2 þ w3X~3

w1 ¼
Pxa

Pxa þ Pxb þ Pxd
;

w2 ¼
Pxb

Pxa þ Pxb þ Pxd
;w1 ¼

Pxd

Pxa þ Pxb þ Pxd

ð12Þ

where Pxa, Pxb and Pxd are the same of Pik in Eq. (10). It

can be seen from Eq. (12) that each w wolf updates its

position according to its similarity to the dominant wolf

pack to avoid over-concentration of wolves. It should be

noted that the weights of w1, w2 and w3 are constantly

changing in the process of iteration. Thus, it can bring more

information and maintain the diversity of population.

3.3 Nonlinear convergence factor a~

From the original paper of GWO, the grey wolves attack

toward prey when the value |A|\ 1 and diverge from prey

when the value |A|[ 1. Therefore, the exploration and

exploitation are balanced by the linear convergence factor

a~ using Eq. (5), and the ratio is 1:1. However, the real

search process is highly complex, and the linear strategy is

difficult to adapt to it. Based on the above consideration,

we proposed a nonlinear convergence factor a~ as follows:

where t denotes the current iteration, m indicates the

maximum number of iterations and k is the nonlinear

modulation parameter in [0, 1]. The iterative curves of

convergence factor a~ with different values of k are shown

in Fig. 3.

Compared with the original GWO algorithm, the value

of a~ is increased in the early stage to explore more

unknown regions and then reduced to narrow the search

range in the later stage. In other words, the modification is

to enhance the global exploration in the early stage and the

local exploitation in the later stage, and the parameter k is

used to control the proportion of exploration and

exploitation. The ratio of iterations used for exploration

and exploitation with different values of k is shown in

Table 1.

The pseudocode of the proposed IEGWO is presented in

Fig. 4. The influence of parameter k to the performance of

IEGWO will be discussed in the parameter setting

experiment.

4 Results and discussion

4.1 Comparison with GWO

4.1.1 Benchmark functions and parameter settings

In this section, the impact of information entropy and

nonlinear convergence factor on the performance of

IEGWO is analyzed by 10 well-known benchmark func-

tions, including 5 unimodal benchmark functions and 5

multimodal benchmark functions. These functions are lis-

ted in Table 2, where fmin denotes the theoretical optimal

value in search range. The 2-D versions of these functions

are shown in Fig. 5.

In all experiments, the maximum number of iterations,

the population size, and the dimension of test functions

Fig. 3 Iterative curves of nonlinear convergence factor a~ with

different values of k

a~¼

2� 2k þ 2k �P1 log2 P1 � ð1� P1Þ log2ð1� P1Þ½ �;P1 ¼
1

2
1þ t

km

� �
; 0\t\km

2� 2k; t ¼ km

ð2� 2kÞ 1� ð�P2 log2 P2 � ð1� P2Þ log2ð1� P2ÞÞ½ �;P2 ¼
1

2

t � km

m� km

� �
; km\t\m

8
>>>><

>>>>:

ð13Þ

4672 K. Yao et al.

123



were fixed as 500, 30, and 30, respectively. Each algorithm

was executed 30 times independently. All programs were

coded in MATLAB 2016b and ran on a computer with

CPU of AMD Ryzen7 5800U (4.4 GHz) under Windows

10 system.

4.1.2 The impact of information entropy and nonlinear
convergence factor

To investigate the impact of information entropy and

nonlinear convergence factor, the GWO, IEGWO with

original linear convergence factor (IEGWO-L), and

IEGWO with different k values were executed on the 10

benchmark functions, and the results are shown in Table 3.
Fig. 4 Pseudocode of IEGWO algorithm

Table 1 Ratio of exploration and exploitation with different values of k

k 0 (%) 0.125 (%) 0.25 (%) 0.375 (%) 0.5 (%) 0.625 (%) 0.75 (%) 0.875 (%) 1 (%)

Exploration 22.2 27.8 34.2 41.4 50 58.6 65.8 72.2 77.8

Exploitation 77.8 72.2 65.8 58.6 50 41.4 34.2 27.8 22.2

Table 2 Test functions

Function type Function formula Range fmin

Unimodal functions
F1ðxÞ ¼

Pn

i¼1

x2i
[- 100, 100] 0

F2ðxÞ ¼
Pn

i¼1

jxij þ
Qn

i¼1

jxjj
[- 10, 10] 0

F3ðxÞ ¼
Pn

i¼1

Pi

j¼1

xj

 !2 [- 100, 100] 0

F4ðxÞ ¼ maxi jxij; 1� i� nf g [- 100, 100] 0

F5ðxÞ ¼
Pn

i¼1

ix4i þ random ½0; 1� [- 1.28, 1.28] 0

Multimodal functions F6ðxÞ ¼ ½x2i � 10 cosð2pxiÞ þ 10� [- 5.12, 5.12] 0

F7ðxÞ ¼ �20 exp �0:2
ffiffi
1
n

p Pn

i¼1

x2i

� �
� exp 1

n

Pn

i¼1

cosð2pxiÞ
� �

þ 20þ e
[- 32, 32] 0

F8ðxÞ ¼ 1
4000

Pn

i¼1

x2i �
Qn

i¼1

cos xiffi
i

p

� �
þ 1

[- 600, 600] 0

F9ðxÞ ¼
p
n

10 sinðpy1Þ þ
Xn�1

i¼1

ðyi � 1Þ 1þ 10 sin2ðpyyþ1Þ
� �

þ ðyn � 1Þ2
( )

þ
Xn

i¼1

uðxi; 5; 100; 4Þ

Xn

i¼1

uðxi; a; k;mÞ ¼
kðxi � aÞm; xi [ a

0;�a\xi\a

kð�xi � aÞm; xi\� a

8
><

>:

[- 50, 50] 0

F10ðxÞ ¼ 0:1

sin2ð3px1Þþ
Xn

i¼1

ðxi � 1Þ2 1þ sin2ð3pxi þ 1Þ
� �

þðxn � 1Þ2 1þ sin2ð2pxnÞ
� �

8
>><

>>:

9
>>=

>>;
þ
Pn

i¼1

uðxi; 5; 100; 4Þ

[- 50, 50] 0
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The unimodal functions (F1–F5) can be used to evaluate

the exploitation performance of algorithms, while the

multimodal functions (F6–F10) are utilized to examine the

exploration strength and the ability of avoiding local op-

timum of algorithms. As seen from Table 3, the opti-

mization performance of IEGWO-L outperforms that of

GWO on all benchmark functions. Although the improve-

ment in solution accuracy is small on the unimodal func-

tions, it is significant on the multimodal functions, which is

because the increase in population diversity improves the

ability of the algorithm to jump out of the local optimum.

The reduction in standard deviation (Std Dev) indicates

that the introduction of information entropy can effectively

improve the robustness of GWO. With the increase in k, the

performance of IEGWO is evidently improved, and when

the value of k is greater than 0.75, the IEGWO outperforms

GWO and IEGWO-L obviously. Therefore, for unimodal

functions, more exploration helps to improve the opti-

mization accuracy and robustness, while for multimodal

functions, the optimization performance of IEGWO

increases and then decreases as the proportion of explo-

ration increases, and when the value of k is 0.875, the error

of the objective function values reaches the lowest, indi-

cating that the exploration and exploitation are well

balanced.

4.1.3 Wilcoxon test

In order to statistically assess the performance of GWO and

IEGWO, Wilcoxon test at a 5% significance is utilized. The

results are recorded in Table 4, where the following rating

criteria are applied.

1. A—IEGWO has better performance and p-

value B 0.05.

2. B—The performance of the two algorithms is compa-

rable and p-value[ 0.05.

3. C—IEGWO has poor performance and p-

value B 0.05.

From Tables 1 and 4, it can be seen that when the

exploration ratio is greater than 65.8%, the performance of

IEGWO is significantly better than that of GWO. When the

exploration ratio reaches 72.2%, all the ratings of IEGWO

are A, indicating that more proportion of exploration can

effectively improve the optimization performance of

IEGWO. However, with the increasing proportion of

exploration, the performance of IEGWO on multimodal

functions decreases due to the scarcity of exploitation.

Therefore, 0.875 is an appropriate value for the parameter

k, which provides a good balance between exploitation and

exploration.

4.1.4 Computational complexity and running time

The computational complexity is an important index to

evaluate the running time of an optimization algorithm,

which can be defined based on the structure of the algo-

rithm (Gupta and Deep 2019). The major computational

cost of GWO and IEGWO is in the while loop, both equal

to O (N 9 D 9 T), where N is the population size, D is the

dimension of the problem, and T is the maximum number

of iterations. Figure 6 shows the total time consumed by

GWO and IEGWO to run 30 times on each function. As

shown in Fig. 6, the running time of IEGWO is approxi-

mately 6% longer than that of GWO, which is mainly due

to the fact that some grey wolf individuals need to be

regenerated to meet the critical value of information

entropy in the process of generating initial population.

4.1.5 Convergence analysis

The convergence curves of GWO and IEGWO (k = 0.875)

are shown in Fig. 7. Due to the expansion of the search

range in the early stage, the error in objective function

Fig. 5 2-D version of test functions
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Table 3 Experimental results of GWO and IEGWO

Function Algorithm Average Std Dev Minimum Maximum

F1 GWO 1.01E-27 1.75E-27 1.57E-29 6.78E-27

IEGWO-L 2.29E-28 2.21E-28 1.06E-29 7.21E-28

IEGWO (k = 0.000) 2.34E-13 1.70E-13 2.28E-14 6.53E-13

IEGWO (k = 0.125) 9.87E-16 1.15E-15 5.35E-17 6.46E-15

IEGWO (k = 0.250) 1.40E-18 1.66E-18 6.22E-20 7.29E-18

IEGWO (k = 0.375) 2.53E-22 4.36E-22 3.95E-24 2.21E-21

IEGWO (k = 0.500) 7.81E-26 2.30E-25 1.29E-27 1.26E-24

IEGWO (k = 0.625) 7.67E-30 1.44E-29 4.64E-31 7.36E-29

IEGWO (k = 0.750) 5.97E-33 9.80E-33 8.99E-35 4.42E-32

IEGWO (k = 0.875) 3.29E-36 8.27E-36 9.40E-39 4.32E-35

IEGWO (k = 1.000) 7.91E-40 1.27E-39 4.63E-42 5.95E-39

F2 GWO 1.32E-16 1.17E-16 1.02E-17 4.70E-16

IEGWO-L 8.13E-17 4.94E-17 9.98E-18 1.70E-16

IEGWO (k = 0.000) 2.52E-08 1.20E-08 7.45E-09 6.20E-08

IEGWO (k = 0.125) 1.26E-09 5.55E-10 5.21E-10 2.62E-09

IEGWO (k = 0.250) 2.13E-11 1.09E-11 3.94E-12 4.57E-11

IEGWO (k = 0.375) 1.35E-13 8.30E-14 2.96E-14 4.13E-13

IEGWO (k = 0.500) 8.50E-16 6.33E-16 1.23E-16 2.73E-15

IEGWO (k = 0.625) 5.95E-18 6.02E-18 6.12E-19 2.50E-17

IEGWO (k = 0.750) 6.59E-20 5.28E-20 8.33E-21 2.08E-19

IEGWO (k = 0.875) 5.65E-22 5.61E-22 1.23E-22 2.54E-21

IEGWO (k = 1.000) 5.70E-24 6.02E-24 3.66E-25 2.41E-23

F3 GWO 1.62E-05 4.71E-05 2.86E-08 2.40E-04

IEGWO-L 2.74E-06 6.94E-06 1.02E-08 2.24E-05

IEGWO (k = 0.000) 3.10E-02 4.16E-02 9.14E-04 1.59E-02

IEGWO (k = 0.125) 1.64E-02 4.91E-02 7.16E-05 2.70E-01

IEGWO (k = 0.250) 1.11E-03 1.40E-03 4.32E-06 4.21E-03

IEGWO (k = 0.375) 2.74E-04 5.33E-04 4.68E-07 2.08E-03

IEGWO (k = 0.500) 1.12E-04 3.04E-04 2.86E-09 1.63E-03

IEGWO (k = 0.625) 4.17E-05 1.37E-04 8.78E-10 5.51E-04

IEGWO (k = 0.750) 1.14E-06 2.35E-06 3.32E-10 1.12E-05

IEGWO (k = 0.875) 2.52E-07 8.18E-07 1.68E-11 3.77E-06

IEGWO (k = 1.000) 5.34E-08 1.63E-07 5.57E-12 7.29E-07

F4 GWO 7.43E-07 7.27E-07 6.23E-08 3.09E-06

IEGWO-L 3.17E-07 2.31E-07 3.41E-08 9.18E-07

IEGWO (k = 0.000) 4.17E-03 2.26E-03 1.38E-03 1.08E-02

IEGWO (k = 0.125) 7.51E-04 6.70E-04 2.36E-04 2.85E-03

IEGWO (k = 0.250) 5.63E-05 3.51E-05 1.04E-05 1.45E-04

IEGWO (k = 0.375) 8.64E-06 1.31E-05 9.32E-07 6.87E-05

IEGWO (k = 0.500) 6.27E-07 8.72E-07 4.45E-08 4.55E-06

IEGWO (k = 0.625) 6.85E-08 8.92E-08 2.50E-09 4.05E-07

IEGWO (k = 0.750) 5.14E-09 4.20E-09 9.98E-10 2.16E-08

IEGWO (k = 0.875) 7.33E-10 8.05E-10 1.95E-11 2.93E-09

IEGWO (k = 1.000) 1.29E-10 1.55E-10 4.73E-12 7.67E-10
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Table 3 (continued)

Function Algorithm Average Std Dev Minimum Maximum

F5 GWO 2.12E-03 1.21E-03 7.16E-04 6.38E-03

IEGWO-L 1.95E-03 8.65E-04 5.50E-04 3.31E-03

IEGWO (k = 0.000) 5.05E-03 2.04E-03 1.60E-03 9.82E-03

IEGWO (k = 0.125) 3.45E-03 1.60E-03 6.19E-04 8.32E-03

IEGWO (k = 0.250) 2.41E-03 1.19E-03 2.26E-04 4.86E-03

IEGWO (k = 0.375) 2.26E-03 1.21E-03 1.73E-04 4.95E-03

IEGWO (k = 0.500) 1.58E-03 9.78E-04 3.27E-04 4.04E-03

IEGWO (k = 0.625) 1.65E-03 9.78E-04 3.97E-04 3.50E-03

IEGWO (k = 0.750) 1.42E-03 8.23E-04 5.12E-04 4.36E-03

IEGWO (k = 0.875) 1.24E-03 6.94E-04 4.14E-04 2.99E-03

IEGWO (k = 1.000) 1.20E-03 6.69E-04 2.49E-04 2.73E-03

F6 GWO 2.3658 3.9833 5.68E-14 12.1458

IEGWO-L 1.3073 2.9159 5.68E-14 8.5567

IEGWO (k = 0.000) 14.6802 6.1002 5.1678 29.5166

IEGWO (k = 0.125) 3.6039 3.2711 1.14E-12 15.5130

IEGWO (k = 0.250) 2.6884 4.6974 4.55E-13 20.4066

IEGWO (k = 0.375) 2.1049 3.3490 5.68E-14 10.5640

IEGWO (k = 0.500) 0.6802 2.4129 0 12.2120

IEGWO (k = 0.625) 0.6679 1.8368 0 6.6453

IEGWO (k = 0.750) 0.0340 0.1864 0 1.0210

IEGWO (k = 0.875) 1.33E-14 2.86E-14 0 1.14E-13

IEGWO (k = 1.000) 0.0758 0.4152 0 2.2743

F7 GWO 1.02E-13 1.29E-14 7.90E-14 1.29E-13

IEGWO-L 8.94E-14 9.83E-15 7.19E-14 1.00E-13

IEGWO (k = 0.000) 1.09E-07 4.97E-08 3.91E-08 2.35E-07

IEGWO (k = 0.125) 8.03E-09 4.16E-09 3.15E-09 2.08E-08

IEGWO (k = 0.250) 1.81E-10 1.88E-10 4.13E-11 1.01E-09

IEGWO (k = 0.375) 3.66E-12 3.27E-12 4.66E-13 1.42E-11

IEGWO (k = 0.500) 1.57E-13 5.03E-14 1.00E-13 2.92E-13

IEGWO (k = 0.625) 4.14E-14 1.06E-14 2.93E-14 7.55E-14

IEGWO (k = 0.750) 2.53E-14 5.65E-15 1.51E-14 4.00E-14

IEGWO (k = 0.875) 1.52E-14 2.87E-15 7.99E-15 2.22E-14

IEGWO (k = 1.000) 1.70E-14 3.46E-15 1.51E-14 2.93E-14

F8 GWO 4.51E-03 7.07E-03 0 1.73E-02

IEGWO-L 1.22E-03 3.86E-03 0 1.22E-02

IEGWO (k = 0.000) 8.16E-03 1.01E-02 1.63E-13 3.11E-02

IEGWO (k = 0.125) 4.07E-03 9.01E-03 5.44E-15 3.55E-02

IEGWO (k = 0.250) 2.45E-03 6.47E-03 1.11E-16 2.31E-02

IEGWO (k = 0.375) 3.96E-03 8.38E-03 0 2.63E-02

IEGWO (k = 0.500) 3.15E-03 8.77E-03 0 3.31E-02

IEGWO (k = 0.625) 1.23E-03 4.70E-03 0 2.02E-02

IEGWO (k = 0.750) 1.07E-03 4.09E-03 0 1.74E-02

IEGWO (k = 0.875) 3.18E-04 1.74E-03 0 9.53E-03

IEGWO (k = 1.000) 9.32E-04 3.61E-03 0 1.66E-02
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values of IEGWO is larger than that of GWO in some

functions (F1–F4, F7). However, the expansion also

increases the possibility of finding better solutions by

exploring more unknown regions, so the error reduction

rate of IEGWO is accelerated in the middle stage. In the

late stage of optimization, IEGWO has higher solution

accuracy due to the enhancement of local exploitation.

From Fig. 7, it can be concluded that the proposed strate-

gies effectively improve the performance of GWO.

4.1.6 Comparison with other modified GWO algorithms

The previous section shows that IEGWO has better per-

formance than GWO in terms of exploitation and explo-

ration. In this section, the IEGWO is compared with

E-GWO (Duarte et al. 2020), IGWO (Long et al. 2018a),

EEGWO (Long et al. 2018b), and FH-GWO (Rodrı́guez

et al. 2017) on 30 dimensional CEC2014 and CEC2017

problems based on the average error in objective function

value. The parameter setting of the three algorithms is the

same as reported in their original papers. The comparison

is presented in Tables 5 and 6. For clarity, the best solu-

tions are marked in boldface. Tables 5 and 6 show that the

proposed IEGWO has the smallest error in 21 of the 30

functions on CEC 2014 and 18 of the 29 functions on CEC

2017. The outcomes obtained by applying the Wilcoxon

test are also recorded in the same tables. Whether for the

unimodal, multimodal, and hybrid benchmark problems,

the IEGWO provides better results compared to other

GWO variants in most of the tested functions. Therefore, it

can be concluded that the performance of IEGWO is sig-

nificantly better than that of the other modified GWO

algorithms.

5 Real applications of IEGWO

The proposed IEGWO algorithm is applied to two classical

engineering applications: tension/compression spring

design and pressure vessel design, which are often used as

constrained optimization benchmark problems (Mirjalili

et al. 2014). Besides, the IEGWO is also employed to

optimize the model parameters in the field of hyperspectral

imaging.

5.1 Tension/compression spring design

The aim of the problem is to minimize the weight of a

spring with constraints such as minimum deflection, shear

stress, and surge frequency. The design variables include

Table 3 (continued)

Function Algorithm Average Std Dev Minimum Maximum

F9 GWO 0.0466 0.0201 0.0194 0.090

IEGWO-L 0.0396 0.0171 0.0183 0.076

IEGWO (k = 0.000) 0.0981 0.1049 0.0133 0.5874

IEGWO (k = 0.125) 0.0362 0.0171 0.0131 0.0729

IEGWO (k = 0.250) 0.0504 0.0998 0.0127 0.5695

IEGWO (k = 0.375) 0.0419 0.0256 0.0062 0.1130

IEGWO (k = 0.500) 0.0386 0.0198 0.0195 0.1062

IEGWO (k = 0.625) 0.0370 0.0202 0.0111 0.0944

IEGWO (k = 0.750) 0.0360 0.0152 0.0125 0.0734

IEGWO (k = 0.875) 0.0358 0.0210 0.00626 0.0842

IEGWO (k = 1.000) 0.0389 0.0189 0.0132 0.1080

F10 GWO 0.6107 0.2920 0.1837 1.3925

IEGWO-L 0.5236 0.1963 0.1114 0.7720

IEGWO (k = 0.000) 1.1242 0.2621 0.4016 1.5961

IEGWO (k = 0.125) 0.5528 0.2192 0.1000 1.0598

IEGWO (k = 0.250) 0.4917 0.2106 0.2013 1.1431

IEGWO (k = 0.375) 0.5043 0.2155 0.0970 1.0649

IEGWO (k = 0.500) 0.4920 0.2461 0.0923 1.0324

IEGWO (k = 0.625) 0.4893 0.1746 0.1982 0.9455

IEGWO (k = 0.750) 0.4814 0.2090 0.1004 0.8997

IEGWO (k = 0.875) 0.4594 0.1841 0.1005 0.7576

IEGWO (k = 1.000) 0.4736 0.1423 0.2019 0.8379
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wire diameter d(x1), the mean coil diameter D(x2), and the

number of active coils N(x3). The mathematical formula-

tion of this problem is stated as follows:

Minimize f ðxÞ ¼ x21x2ðx3 þ 2Þ

s.t:

g1ðxÞ ¼
x32x3

71785x41
þ 1� 0

g2ðxÞ ¼
4x22 x1x2

12566ðx31x2 x41Þ
þ 1

5108x21
� 1� 0

g3ðxÞ ¼
140:45x1
x22x3

þ 1� 0

g4ðxÞ ¼
x1 þ x2
1:5

� 1� 0

Variable range

0:05� x1 � 2; 0:25� x2 � 1:3; 2� x3 � 15

The GA (Coello and Montes 2002), CPSO (He and Ling

2007), SMA (Li et al. 2020), FH-GWO (Rodrı́guez et al.

2017), IGWO (Long et al. 2018a), EEGWO (Long et al.

2018b), E-GWO (Duarte et al. 2020), and the proposed

IEGWO are applied to solve this problem. The population

size and maximum iterations of all algorithms are set to 20

and 1500. The results obtained by conducting 30 runs are

shown in Table 7. In the same table, the outcomes of the

statistical results obtained by using Wilcoxon test are also

recorded. The table verified the better performance of

IEGWO compared to other meta-heuristic algorithms.

5.2 Pressure vessel design

The goal of this problem is to minimize the cost including

material, forming and welding of a vessel as shown in

Fig. 8. The design variables include shell thickness Ts(x1),

head thickness Th(x2), inner radius R(x3), and shell length

L(x4). The mathematical formulation of this problem is as

follows:

Table 4 Results of Wilcoxon test

Function Rating

k = 0.000 k = 0.125 k = 0.250 k = 0.375 k = 0.500 k = 0.625 k = 0.750 k = 0.875 k = 1.000

F1 C C C C C A A A A

F2 C C C C C A A A A

F3 C C C C C B A A A

F4 C C C C B A A A A

F5 C C C C B B A A A

F6 C C C B A A A A A

F7 C C C C C A A A A

F8 C C C B A A A A A

F9 C B C B B A A A B

F10 C B B B B B B A A

Fig. 6 Running time of GWO

and IEGWO

4678 K. Yao et al.

123



Fig. 7 Convergence curves of

GWO and IEGWO
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Minimize

f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21x4

þ 19:84x21x3

s.t:

g1ðxÞ ¼ �x1 þ 0:0193x3 � 0

g2ðxÞ ¼ �x2 þ 0:00954x3 � 0

g3ðxÞ ¼ �px23x4 � 4
3
px33 þ 1296000� 0

g4ðxÞ ¼ x4 � 240� 0

Variable range
0� x1; x2 � 99

10� x3; x4 � 200

The proposed IEGWO, GA (Coello and Montes 2002),

CPSO (He and Ling 2007), SMA (Li et al. 2020), FH-

GWO (Rodrı́guez et al. 2017), IGWO (Long et al. 2018a),

EEGWO (Long et al. 2018b), and E-GWO (Duarte et al.

2020) are applied to solve this problem. The population

size and maximum iterations of all algorithms are set to 20

and 2000. The results obtained by conducting 30 runs are

shown in Table 8. In the same table, the outcomes of the

statistical results obtained by using Wilcoxon test are also

recorded. Except for SMA, the performance of IEGWO is

significantly better than that of the other algorithms.

However, the optimal solution found by IEGWO is better

than the best known solution so far.

5.3 Optimization of model parameters
in the field of hyperspectral imaging

In recent years, many researchers have applied hyper-

spectral imaging (HSI) technique in the nondestructive

testing of food and agricultural products and developed

various methods to improve the performance of models

(Yao et al. 2022; Suktanarak and Teerachaichayut 2017).

Among them, parameter optimization is a commonly used

Table 5 Comparison of average

error in objective function

values on CEC 2014

Problem E-GWO IGWO EEGWO FH-GWO IEGWO

F1 4.35E?08 2.33E?08 5.18E?08 7.85E?07 6.89E107

F2 5.32E?09 1.18E?10 7.01E?09 4.33E?09 3.41E109

F3 2.15E104 5.30E?04 2.50E?04 4.05E?04 3.94E?04

F4 4.02E?02 7.87E?02 2.59E?03 5.21E?02 3.12E102

F5 2.10E?01 2.10E?01 2.19E?01 2.10E?01 2.09E101

F6 2.89E?01 2.71E?01 1.18E101 1.69E?01 1.53E?01

F7 1.78E?02 1.28E?02 2.11E?02 8.31E?01 3.00E101

F8 2.16E?02 2.21E?02 1.58E102 1.02E?03 9.35E?02

F9 1.96E?02 3.25E?02 1.38E?02 1.25E?02 1.11E102

F10 1.83E103 4.88E?03 1.85E?03 4.52E?03 2.53E?03

F11 3.23E103 5.91E?03 3.41E?03 4.25E?03 3.31E?03

F12 2.77E?00 2.65E?00 3.28E?00 2.43E?00 2.18E100

F13 1.59E?00 2.67E?00 4.97E?00 8.51E-01 5.42E201

F14 3.98E?01 4.23E?01 3.73E?01 1.01E?01 6.64E100

F15 7.54E?03 2.91E?03 8.02E?03 8.91E?02 4.43E102

F16 2.26E?01 1.28E?01 4.14E?01 1.88E?01 1.15E101

F17 6.90E?06 9.56E?06 8.98E?05 6.29E105 2.52E?06

F18 3.25E?06 4.14E?07 2.77E?06 2.01E106 1.09E?07

F19 6.58E?01 1.02E?02 5.89E?01 5.59E?01 5.28E101

F20 6.54E?04 3.85E?04 8.57E?05 2.25E?04 1.96E104

F21 4.35E?06 2.31E?06 5.75E?06 1.03E?06 8.20E105

F22 7.65E?02 6.87E?02 5.21E?02 4.98E?02 4.11E102

F23 4.21E?02 3.84E?02 2.31E?02 1.86E?02 1.37E102

F24 2.26E?02 2.00E?02 2.00E?02 2.00E?02 2.00E102

F25 2.56E?02 2.13E?02 2.10E?02 2.09E?02 2.09E102

F26 2.05E?02 1.80E?02 1.79E?02 1.75E?02 1.70E102

F27 3.44E?03 9.68E?02 3.91E?02 3.52E102 6.58E?02

F28 1.89E?03 4.09E?03 2.13E?02 2.00E102 1.46E?03

F29 1.27E?07 3.49E?07 1.02E?06 7.49E?05 3.46E105

F30 5.67E?05 4.35E?05 3.78E?05 8.71E?04 6.76E104

A/B/C 21/5/4 24/6/0 20/5/5 19/6/4
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and effective way to improve the accuracy and robustness

of the models.

Support vector regression (SVR) is a classical machine

learning algorithm, which has been widely used to solve

regression prediction problems (Xu et al. 2016). The

performance of SVR is mainly influenced by three

parameters, namely penalty factor (c), kernel parameter

(g), and insensitive loss function parameter (e). In this

section, the SVR model is used to establish a prediction

model for Haugh unit (HU) values of eggs based on HSI

Table 6 Comparison of average

error in objective function

values on CEC 2017

Problem E-GWO IGWO EEGWO FH-GWO IEGWO

F1 1.25E?10 9.21E?09 1.42E?10 2.88E?09 2.42E109

F3 5.10E?04 5.55E?04 1.41E?04 4.00E?04 3.72E103

F4 1.72E102 8.30E?02 1.44E?03 1.81E?02 1.97E?02

F5 2.16E?02 2.25E?02 1.44E?02 1.19E102 1.26E?02

F6 6.24E?01 4.84E?01 6.96E?01 1.31E?01 1.15E101

F7 3.29E?02 3.91E?02 1.55E102 2.05E?02 1.72E?02

F8 2.34E?02 2.11E?02 1.28E?02 9.76E?01 9.56E101

F9 3.68E?03 4.23E?03 1.44E?03 1.17E103 1.29E?03

F10 3.65E?03 6.67E?03 2.87E103 4.50E?03 4.05E?03

F11 6.38E?03 2.51E?03 9.91E?03 1.10E?03 1.08E103

F12 6.59E?08 4.78E?08 1.07E?09 9.81E?07 7.70E107

F13 6.65E?07 1.41E?08 5.59E?07 2.11E?07 1.66E107

F14 2.88E?06 7.72E?05 4.02E?06 2.54E?05 1.58E105

F15 9.65E?05 1.34E?06 8.87E?05 1.20E?06 6.88E105

F16 8.59E?02 1.51E?03 9.92E?02 7.03E102 9.59E?02

F17 3.68E?02 5.18E?02 3.58E?02 3.12E?02 3.04E102

F18 3.36E?06 2.22E?06 8.65E?08 8.55E?05 7.60E105

F19 2.87E?06 6.52E?06 5.09E?07 2.05E?06 1.50E106

F20 4.58E?02 6.16E?02 4.09E?02 4.89E?02 4.09E102

F21 2.78E102 4.83E?02 3.57E?02 3.31E?02 2.94E?02

F22 1.79E?03 3.89E?03 1.45E103 2.21E?03 1.85E?03

F23 5.97E?02 6.02E?02 5.89E?02 4.91E?02 4.73E102

F24 9.54E?02 8.90E?02 6.24E?02 4.52E102 5.80E?02

F25 8.65E?02 7.11E?02 1.01E?03 5.27E?02 4.97E102

F26 3.69E?03 4.15E?03 1.98E103 2.45E?03 2.26E?03

F27 7.34E?02 7.27E?02 7.09E?02 6.59E?02 5.68E102

F28 2.36E102 8.68E?02 1.06E?03 6.68E?02 6.44E?02

F29 9.98E?02 1.59E?03 1.01E?03 9.68E?02 9.17E102

F30 1.48E?07 2.86E?07 9.67E?07 9.98E?06 8.44E106

A/B/C 21/6/2 29/0/0 21/5/3 18/7/4

Table 7 Comparison results of

IEGWO and other algorithms

for spring design problem

Algorithm Optimum decision vector Optimum value Rating

d D N

GA 0.050008 0.317611 14.013288 0.0127192 A

CPSO 0.052971 0.388339 9.650182 0.0126953 A

SMA 0.051853 0.306716 11.061309 0.0126663 A

FH-GWO 0.050966 0.339565 12.370964 0.0126756 A

IGWO 0.052787 0.383698 9.866711 0.0126874 A

EEGWO 0.052189 0.368867 10.610792 0.0126698 A

E-GWO 0.052811 0.384300 9.837956 0.0126879 A

IEGWO 0.051608 0.354771 11.404317 0.0126656
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technique, and the proposed IEGWO is used to optimize

the three parameters.

Figure 9 shows the reflectance spectral curves of 330

egg samples with different HU values in the wavelength

range of 479–986 nm. The spectral reflectance is taken as

the input of SVR and the HU value is taken as the output.

As an example, the 330 egg samples are randomly divided

into training set and test set according to the ratio of 3:1 to

evaluate the performance of GA, PSO, GWO, and IEGWO.

In the process of parameter optimization, the fivefold

cross-validation root mean square error (RMSECV) of

training set is taken as the fitness function. The optimiza-

tion range of parameters c, g, and e are set to [10-4, 103],

[10-4, 103] and [10-4, 100]. The population size and the

maximum iteration are set to 20 and 50.

Figure 10 shows the optimal fitness curves of IEGWO-

SVR, GWO-SVR, PSO-SVR and GA-SVR models for 30

runs. As shown in Fig. 9, the IEGWO-SVR model has

higher accuracy and faster convergence speed than the

other three models.

Table 8 Comparison results of

IEGWO and other algorithms

for pressure vessel design

problem

Algorithm Optimum decision vector Optimum value Rating

TS TH R L

GA 0.8095 0.4361 41.9219 178.9994 6059.6894 A

CPSO 0.8052 0.4173 41.7064 181.6231 5996.2464 A

SMA 0.7828 0.3876 40.5602 196.6873 5895.3249 B

FH-GWO 0.7841 0.3881 45.6260 195.7812 5897.2074 A

IGWO 0.8113 0.4048 42.0324 177.4574 5956.7418 A

EEGWO 0.7911 0.4113 40.9830 190.9931 5969.7524 A

E-GWO 0.8195 0.4097 42.4577 172.2368 5974.8471 A

IEGWO 0.7783 0.3849 40.3261 199.9919 5886.3407

Fig. 8 Pressure vessel design problem

Fig. 9 Spectral curves of egg samples

Fig. 10 Optimal fitness curves of GA-SVR, PSO-SVR, GWO-SVR,

and IEGWO-SVR models
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6 Conclusion

This study proposes a modified version of GWO called

information entropy-based GWO (IEGWO). In the

IEGWO, an initial population generation method and a

dynamic position update equation based on information

entropy are proposed to maintain the population diversity.

In addition, a nonlinear convergence strategy is applied to

balance the exploration and exploitation. The IEGWO is

tested on 10 well-known benchmark functions, CEC2014

and CEC2017, and compared with the other meta-heuristic

algorithms. Two engineering design problems and one real-

world parameter optimization problem in the field of

hyperspectral imaging are also solved using IEGWO. The

experimental results show that the IEGWO has better

robustness and solution accuracy than the other compared

algorithms.

Although the IEGWO is efficient, it also has some

drawbacks that should be addressed. One is that the number

of parameters is larger than the original GWO algorithm,

and another is that the current study does not have auto-

matic adjustment for the parameter k. In the future wok, we

tend to study an adaptive parameter k to achieve the opti-

mal optimization effect. In addition, we are going to

investigate how to extend the IGWO algorithm to handle

multi-objective optimization and combinatorial optimiza-

tion problems.
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