
ORIGINAL ARTICLE

Dynamically pre-trained deep recurrent neural networks
using environmental monitoring data for predicting PM2.5

Bun Theang Ong1 • Komei Sugiura1 • Koji Zettsu1

Received: 11 November 2014 / Accepted: 5 June 2015 / Published online: 26 June 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Fine particulate matter (PM2:5) has a consid-

erable impact on human health, the environment and cli-

mate change. It is estimated that with better predictions,

US$9 billion can be saved over a 10-year period in the

USA (State of the science fact sheet air quality. http://

www.noaa.gov/factsheets/new, 2012). Therefore, it is cru-

cial to keep developing models and systems that can

accurately predict the concentration of major air pollutants.

In this paper, our target is to predict PM2:5 concentration in

Japan using environmental monitoring data obtained from

physical sensors with improved accuracy over the currently

employed prediction models. To do so, we propose a deep

recurrent neural network (DRNN) that is enhanced with a

novel pre-training method using auto-encoder especially

designed for time series prediction. Additionally, sensors

selection is performed within DRNN without harming the

accuracy of the predictions by taking advantage of the

sparsity found in the network. The numerical experiments

show that DRNN with our proposed pre-training method is

superior than when using a canonical and a state-of-the-art

auto-encoder training method when applied to time series

prediction. The experiments confirm that when compared

against the PM2:5 prediction system VENUS (National

Institute for Environmental Studies. Visual Atmospheric

Environment Utility System. http://envgis5.nies.go.jp/ose

nyosoku/, 2014), our technique improves the accuracy of

PM2:5 concentration level predictions that are being

reported in Japan.
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1 Introduction

Air pollution remains a serious concern and has attracted

the attention of industries, governments, as well as the

scientific community. One type of air pollutant that has

attracted immense attention is fine particulate matter or

PM2:5—particles \2.5 lm. PM2:5 is a widespread air

pollutant, consisting of a mixture of solid and liquid par-

ticles suspended in the air. Thus, PM2:5 is a global issue

that transcends geographical boundaries and calls for an

interdisciplinary approach to solve a global problem,

around which both industries and governments should play

an active role. The environmental and health impacts [1, 2]

of PM2:5 are well documented [3–5]. Organizations and

governments such as the World Health Organization [6],

the USA Environmental Protection Agency (EPA) [4],

UK [7], Japan [8], to mention a few, have implemented

policies to support clean air in their respective towns and

cities [5].

Today, most of the major air quality indexes, such as the

Pollutant Standards Index (PSI) or the Air Quality Index

(AQI), take into account the concentrations of PM2:5 in

their equations. These indexes were developed in order to

provide the public with an indicator of how polluted the air
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is, along with the health implications that each level may

imply. Very often, recommendations are also provided to

the public. In December 2012, the EPA decided to

strengthened its air quality standards by revising the role of

PM2:5 concentrations on the AQI. Concretely, the upper

end of the range for the ‘‘Good’’ category has changed

from the level of 15.0 lg per cubic meter (lg=m3
) to

12.0 lg=m3
. This is a difference of only 3 lg=m3

. But in

the eye of the EPA, this difference was enough to judge the

previous value as not adequate to protect the public health,

as required by law. Now, what is the validity of this new

enforcement if the current PM2:5 prediction systems are not

accurate enough to make the distinction between 12 and

15 lg=m3
? In other words, what about the capability of the

existing prediction models to meet the increasingly strict

and sharp new standards?

From a governmental point of view, the costs involved

due to air pollution are huge. The National Oceanic and

Atmospheric Administration (NOAA) of the US Depart-

ment of Commerce estimates that exposure to poor air

quality is responsible for as many as 60,000 premature

deaths each year and that this amount could be reduced

with better predictions [9]. It is also estimated that more

effective prediction methods will save US$9 billion and

64,000 jobs over a 10-year period in the USA [9]. In China,

an estimated 8572 premature deaths occurred in four major

Chinese cities in 2012, due to high levels of PM2:5 pollu-

tion, and Beijing experienced a loss of US$328 million in

the same year because of PM2:5 pollution [10].

Presently, the large majority of the models being in use

to address PM2:5 in Japan are climate models based on

Eulerian and Lagrangian grids or on Trajectory models [8].

However, an alternative to these expert models resides in

artificial neural networks (NN), where high accuracy in

prediction tasks has been reported [11]. In particular, a

form of NN known as recurrent neural networks (RNN), in

contrast with feedforward neural networks (FNN), has been

shown to exhibit very good performance in modeling

temporal structures [12] and has been successfully applied

to many real-world problems [13]. However, it has been

shown that shallow NN rapidly reach their limits due to

their need for large amount of (labeled) data, which is

going in contradiction with their inability to scale in

complexity with the size of the network to handle the

volume of data [14]. But recently, with the advent of open

and big data and the alleviation of critical difficulties

residing in training dense NN composed of many layers

[15, 16], it has become possible to construct more complex

and efficient networks. These complex networks are known

as deep neural networks (DNN), and the training of such

networks is often included in the appellation deep learning

(DL). A review of the basic concepts of NN and DL is

provided in Sect. 3.

In this work, our ultimate goal is to compute PM2:5

concentration predictions in Japan using real sensor data

and with improved accuracy over the currently employed

prediction models. To do so, we introduce a deep RNN

(DRNN) specifically designed for PM2:5 prediction that is

enhanced with a new pre-training method (see Fig. 1),

written DynPT for convenience. DynPT improves DL

techniques on the task of time series modeling, which is a

field that has not received much attention yet from the DL

community. Specifically, our PM2:5 predictor is a DRNN

that is composed of nonlinear stacked auto-encoders. The

difference with conventional training of auto-encoders

(AE) is that in our case, all the components of the output

(or ‘‘teacher’’) are not initially available, and as the training

progresses, components are introduced chronologically.

We have applied our model to the case of predicting the

PM2:5 concentration levels of 52 cities spread all around

Japan. For each city, the surrounding data come from

potentially several thousands of sensors. Therefore, in an

attempt to reduce the costs involved in tracking a large

amount of sensors and to allow the relationship between

response and predictors as understandable as possible for

the scientists, variable selection is included within DRNN.

As discussed in Sect. 4.3, conventional variable selection

techniques suffer from major drawbacks that make their

use in real-world applications unpractical. Here, we take

Fig. 1 Pipeline of the proposed method. A deep recurrent neural

network (DRNN) is dynamically pre-trained using a novel method

called DynPT followed by fine-tuning with elastic net. The resulting

trained network is then used in the execution phase to perform PM2:5

predictions with less features than required during the training phase
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advantage of the sparsity promoted in the internal weights

of DRNN to perform sensors selection without harming the

quality of the group of predictors that are selected nor the

accuracy of the predictions. To do so, during the fine-

tuning stage of DRNN using stochastic gradient descent,

we perform regularized regression by combining the L1 and

L2 penalties of the least absolute shrinkage and selection

operator (lasso) [17] and of the ridge regression method

[18], respectively. This technique is known as ‘‘elastic net’’

(EN) [19]. Thus, filtering the sensors is an effort toward:

• Reducing the computational and management costs that

inevitably occurs when exploiting a large amount of

data sources.

• Creating a physically interpretable response–predictors

relationship for the end users. Those needs are often

required in business-driven environments.

A detailed explanation of the proposed method is found

in Sect. 4. We summarize the main contributions of this

paper as follows:

• We introduce a novel pre-training method especially

designed for time series prediction. The algorithm is

described in Sect. 4.1, and the corresponding experi-

mental results are discussed in Sect. 5.1.

• We propose what might be one of the first empirical

research on PM2:5 concentrations levels prediction that

leverage the predictive power of DRNN [11, 20–23],

using exclusively real sensor data, and that takes

advantage of the spatial coherence in the selected

sensors. Details are found in Sect. 4.2.

• We present a practical way to reduce the computational

costs by filtering out sensors that do not contribute

significantly to better predictions based on one of the

first application of feature selection approaches in deep

learning. The theoretical background is presented in

Sect. 4.3, and the validity of the method is shown in

Sect. 5.4.

This work extends our previous paper presented in [24]

with more experimental results and with the sensors

selection method. A survey of the related work is provided

in Sect. 2. In the numerical experiments in Sect. 5, we

compare DynPT against the canonical AE and the

denoising AE, a state-of-the-art AE training method

introduced in [25]. The results demonstrate the validity of

our proposed approach and its adequacy to time series

prediction task. Furthermore, using exactly the same set of

features as and when compared to the PM2:5 prediction

system developed by the National Institute for Environ-

mental Studies in Japan [26], referred to as VENUS (for

Visual Atmospheric Environment Utility System) [27], our

method is proven to produce more accurate PM2:5 predic-

tions. All the data used for our experiments were publicly

available sensor data harvested over a 2-year period. In

Sect. 6, we discuss on and clarify practical aspects related

to hypotheses made in this work, and Sect. 7 concludes the

study.

2 Related work

To the best of the authors knowledge, this work is one of

the first empirical research on PM2:5 prediction with DNN

using exclusively real sensor data in environmental moni-

toring. There exists in the literature a limited number of

works that make use of DNN to predict PM2:5 concentra-

tions or time series in general. For instance, in [28] the

authors propose a method for time series prediction using a

deep belief network-based model composed of two

restricted Boltzmann machines. Some hyper-parameters

are optimized using a particle swarm optimization algo-

rithm. In [29], several DNN architectures are presented and

the efficacy of DNN for prediction tasks is further sup-

ported. A RNN is proposed in [30] to predict indoor air

quality by using past information of several pollutants and

other factors. These works, however, are rather an appli-

cation of conventional DL methods or do not significantly

improve the already known results on real-world situations.

DynPT is a novel way to train AE. Recently, a consid-

erable amount of researchers have been studying AE.

Originally, they were seen as a dimensionality reduction

technique, but it has been shown that they can also be

advantageously used to learn overcomplete representations

of the input features. However, as AE does not learn a

specific nonlinear basis, but instead a function that maps

incoming data onto a high-dimensional manifold, the

reconstruction error is deteriorated. This drawback is

alleviated by using the regularized AE [31]. The objective

is to constrain the representation in order to make it as

insensitive as possible with respect to changes in input. In

[32], sparse AE were introduced in the context of stacked

AE to create a form of sparsity regularization. Comparing

with the AE proposed in [31, 32], DynPT does not impose

constraints on the input nor sparsity conditions. Actually,

the weights in DynPT are intrinsically sparse initially. In

[25, 33], the authors propose the denoising AE and con-

tractive AE, respectively. In denoising AE, the task is to

learn to reconstruct the input from a noisy version instead

of a clean copy. In contractive AE, robust representations

are learned by adding an analytic contractive penalty when

minimizing the reconstruction error. The approach in

DynPT might share similarities with both denoising and

contractive AE in the sense that DynPT also learns from a

transformed version of the reconstruction error function.

However, DynPT does not resort to random noise nor

additional penalty terms in the error function and is
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specifically intended for time series. A previous approach

that supports the findings of this paper has been introduced

in [34]. The authors argue that the training of deep neural

networks can produce better results if the training examples

are not randomly presented but organized in a meaningful

order. Their experiments on shape recognition and lan-

guage modeling, as well as further discussions, highlight

the fact that this learning strategy can be advantageous in

some particular settings.

3 Problem statement and theoretical background

3.1 Time series prediction problem

Given a set of r sensors s, we denote the set of the resulting

r time series data by S ¼ fs1; . . .; srg. In this paper, we

define the task of performing predictions as estimating, at a

given time t, the value in the time series at time ðt þ
1; . . .; t þ NÞ of the time series sz, with z 2 ½1; r� using the

latest ðt; t � 1; . . .; t � DÞ values of sz [ A, where A is a

subset of S, N is the prediction horizon (in hours) and D is

the amount of past data used as input.

By using NN and a set of historical datasets, the problem

consists of designing a model that can fit the inputs with the

desired output. Here, the inputs are time series of past

values of measured PM2:5 mass concentration in Japanese

cities, along with other features such as the wind speed or

rain precipitations. The NN architectures that we have

implemented and that we compare aim at predicting the

concentration level of PM2:5 several hours ahead from the

current instant given historical datasets.

The estimation error of a prediction for each model is

assessed using the root mean squared error (RMSE) mea-

sure defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1ðyi � ~yiÞ2

N

s

; ð1Þ

where yi are the known true values of PM2:5 and ~yi are the

predictions. Throughout this paper, whenever we state that a

problem is learnedwith good accuracy or precision, wemean

that RMSE is small, if not explicitly specified otherwise.

3.2 Neural networks and deep networks

An artificial neural network is a computational model that

is composed of interconnected simple processing elements

called nodes and typically organized in layers. Any pattern

can be injected to the network via the input layer. The

information is then processed by one or more hidden lay-

ers. There exist many different kinds of NN. Some of the

most representative models are the multilayer perceptrons

(MLP), the Hopfield networks and the Kohonen’s self-or-

ganizing networks [35].

Recurrent neural networks (RNN) are a class of neural

networks that possess feedback connections between units,

thus forming a directed cycle. This allows them to exhibit

dynamic temporal behavior by using information contained

in their past inputs to compute future outputs. Their high-

dimensional hidden state and nonlinear behavior make

them particularly suitable for integrating the information

over many time steps and for expressing complex

sequential relationships.

Neural network (NN) have the potential to fully take

advantage of large amount of datasets to model complex

nonlinear models and without the necessity to understand

the intrinsic science behind the phenomenon being studied.

Although this statement is true in theory, in practice shal-

low NN have suffered from their inability to efficiently

handle very complex and huge data [15]. In response, deep

networks are composed of many (vertical) layers. It has

been shown that deep networks can build an improved

feature space and efficiently represent highly varying

functions [14]. Their recent success is often attributed to

more computing power and to new training methods that

take advantage of large amount of data to greedily train

layer by layer the network in an unsupervised fashion,

before refining the weights with usual methods in a

supervised way [16].

Formally, the discrete-time dynamical system of the

DRNN architecture for time series considered in this paper

is written as follows [36]. Given an input xi and an output

~yi, where i represents dynamic time, we denote the hidden

state of the wth layer with h
w
i . DRNN with f layers is

updated using the following equation:

hwi ¼ gðu|xiÞ ðw ¼ 1Þ;
hwi ¼ gðd|i h

w�1
i Þ ð1\w\ f� 1Þ;

hwi ¼ gðd|i h
w�1
i þ c|hwi�1Þ ðw ¼ f� 1Þ;

~yi ¼ f ðv|hiÞ ðw ¼ fÞ;

8

>

>

<

>

>

:

ð2Þ

where g is a nonlinear activation function, f is a nonlinear

output function, u is the input-to-hidden weight matrix, c is

the recurrent weight matrix, d represents the weight matrix

from the lower layer and v is the hidden-to-output weight

matrix. A common choice for the activation function g and

the one adopted in this work is the hyperbolic tangent

function. The most standard activation functions are the

hyperbolic tangent (tanh) and the logistic function (sigm).

Function tanh though has some advantages over sigm. The

work of LeCun et al. [37] describes in detail why it is

desired to have some of the properties of tanh. Addition-

ally, other more advanced activation functions are being
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developed, but it is not the scope of the paper to discuss

those research issues.

Auto-encoders are a particular form of MLP initially

introduced to perform training via backpropagation without

teacher data [38]. This is realized by setting the target

output values equal to the input values. Therefore, an auto-

encoder is trained to minimize the error between the input

data and its reconstruction. This particularity allows them

to learn automatically the features from unlabeled data in

an unsupervised way. Stacked auto-encoders is a NN

composed of multiple layers of auto-encoders. The outputs

of each layer are fed into the inputs of the upper layer [14].

Formally, we define an encoder function l that aims at

computing a feature vector p from an input x, such that

p ¼ lðx; hÞ, where h ¼ fu; d; c; vg is the set of weight

parameters. Giving the dataset x, we define p ¼ lðx; hÞ,
where p is the ‘‘representation’’ obtained from x. The

reconstruction q from p is obtained by calling the decoder

function d. Its role is to map the representation back into

the input space with q ¼ dðp; hÞ. During the training, the

parameters h for l and d are learned simultaneously and the

goal is to minimize the reconstruction error:

EAEðhÞ ¼ Lðx; dðlðx; hÞ; hÞÞ

¼ 1

2DM

X

D

i¼1

X

M

j¼1

ðxij � dðlðxij; hÞ; hÞÞ2;
ð3Þ

where L is a loss function defined here as the mean squared

error, D is the number of latest past data per sensors and M

is the number of sensors. EAEðhÞ is minimized by back-

propagating the error and updating the parameters. In the

particular case when the target output values are equal to

the input values, the encoder and decoder functions reduce

to the affine mappings.

4 Proposed method

4.1 Dynamic pre-training for time series

The training of deep networks was subject to many diffi-

culties (large volume of data required, high computing

power indispensable, efficient training algorithms neces-

sary) [14, 15]. Recently, some of these drawbacks could be

alleviated by performing an initial unsupervised pre-train-

ing phase that generates intermediate representations. Here,

we consider the task of time series prediction and we

introduce a novel pre-training principle for unsupervised

learning based on the motivation that when performing

multistep-ahead time series prediction [39], the interme-

diate representation learning does not need to follow the

whole information right away at the very beginning.

Instead, we argue that slowly acquiring the information and

hence slowly adjusting the weights of the network along

with the chronologically increasing information makes this

training principle closer to what is happening physically

and biologically and ultimately yields better representa-

tions for time series.

Let us introduce some notations before describing the

method formally. In the proposed approach, the number of

epochs is fixed. This setting is not rare in real-world

applications, where the computational budget can be

severely restricted. Let H be the maximum allowed number

of epochs and e be the current running epoch value during

the training. We also introduce the notion of number of

‘‘temporal fragmentation’’ or ‘‘fragments,’’ written g. This
number represents the initial degree of separation in the

components that are trained apart chronologically. An input

is written x ¼ fx1; . . .; xDg, where D is the input time series

length.

Then, the fragment size, or number of components

contained in a fragment, is obtained with:

m ¼ D=g; ð4Þ

and the epochs allocation per fragment with:

c ¼ H=g: ð5Þ

For convenience, we will assume that m and c are integers.
Initially, the components of the training dataset x are

divided into fragments while making sure that the

chronological order is preserved. The g fragments Zj are

constructed using:

Zj ¼ fxkjk ¼ m� ðj� 1Þ þ i; i ¼ 1; . . .;mg; ð6Þ

where j ¼ 1; . . .; g. For each fragment, a dedicated weight

is created. They are designated as w1; . . .;wg and belong to

[0, 1] (let us note that the weights wj are not to be con-

founded with the weights of the neural network, which are

referred to as h ¼ fu; d; c; vg).
During the training phase, the weights wj; j ¼ 1; . . .; g,

are updated at each epoch as follows:

wjðeÞ ¼

0
�

e � ðj� 1Þc
�

;
1

c� 1
ðe� jcÞ þ 1

�

ðj� 1Þc\ e � jc
�

;

1
�

e[ jc
�

:

8

>

>

<

>

>

:

ð7Þ

A dummy example illustrating this algorithm is provided at

the end of this section.

Afterward, the fragments are weighted and the con-

catenated result is stored in accordance with:

~x ¼ fw1Z1; . . .;wgZgg: ð8Þ

Finally, different from Eq. (3) for a canonical AE, the

reconstruction error minimized by stochastic gradient

descent for DynPT at epoch e becomes:

Neural Comput & Applic (2016) 27:1553–1566 1557

123



EDynPTðhÞ ¼ Lð~x; dðlðx; hÞ; hÞÞ

¼ 1

2DM

X

D

i¼1

X

M

j¼1

ð~xij � dðlð~xij; hÞ; hÞÞ2;
ð9Þ

where h ¼ fu; d; c; vg is the set of weight parameters of the

network.

All the hyper-parameters are chosen via cross-valida-

tion. An illustration of the mechanism of DynPT on a

simple dummy example is given in Fig. 2. The example

consists of a time series having 10 time steps as an input

(D = 10). The number of epochs is set to H = 100 and the

number of temporal fragments to g ¼ 5, giving a number of

m = 2 number of time steps per fragments and the epochs

allocation per fragment is c ¼ 20. We have set

x ¼ f4; 6; 2; 8; 5; 7; 9; 2; 5; 7g. At epoch e = 0, before the

training actually begins, the teacher data are ~x ¼
f0; 0; . . .; 0g because all the weights wj; j ¼ 1; . . .; 5 have

the null value. As the training progresses with e, the value

of the weights increases linearly until it reached the value

1, one after another, following the weight function depicted

in Fig. 2. Weights are applied to groups of time steps, i.e.,

the fragments. In the example, it takes 20 epochs for w1 to

see its value increasing from 0 to 1. Afterward, it keeps its

maximal value. From epochs 21 to 40, weight w2 follows

its predecessor by increasing its value to 1. The process is

repeated until the last epoch, where all weights eventually

have their values set to the value 1.

4.2 DRNN with heterogeneous sensor data

The set of features selected to train DRNN are the same as

the ones employed by VENUS. This choice allows us to

directly compare our results against VENUS. The set of

features consists of hourly measured:

• PM2:5 concentrations (PM),

• wind speed (WS),

• wind direction (WD),

• temperature (TEMP),

• illuminance (SUN),

• humidity (HUM) and

• rain (RAIN).

We will refer to the number of features as M, for conve-

nience. Six of these (PM, WS, WD, SUN, HUM and

TEMP) were provided by the National Institute for Envi-

ronmental Studies [26], which is a Japanese independent

administrative body. The rain or precipitation data were

provided by the Japan Meteorological Agency [40]. For

each feature, we harvested the data of 52 cities spread all

over Japan. Figure 3 depicts time series plots of some of

the data sources: PM, RAIN, WS and SUN. Let us note that

performing feature selection (the process of selecting a

subset of relevant features) is not the main focus of this

current work. Rather, our model aims at improving the

predictions given standard features adopted in environ-

mental monitoring.

The vast majority of the conventional air pollution or

PM2:5 concentrations levels prediction models use complex

physics and chemistry. They require expert knowledge and

heavily rely on parametrization. Moreover, these models

do not behave well with large amount of data because of

their exponential scaling with the size of the data. In

contrast, NN let the data themselves build the predictor,

which results in a powerful generalization ability. But as

data-driven methods, NN unfortunately suffer from the

illness found in the data: real-world data are indeed rarely

complete and 100 % accurate. For these reasons, DRNN

are an excellent match as DRNN are able to extract the

useful information from the data while being robust enough

to handle the noise and errors. Moreover, RNN are known

Fig. 2 Mechanism of DynPT on a simple dummy example. The

example consists of a time series having 10 time steps as an input

(D = 10). The number of epochs is set to H = 100 and the number of

temporal fragments to g ¼ 5, giving a number of m = 2 number of

time steps per fragments and the epochs allocation per fragment is

c ¼ 20
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for being inherently deep in time, as their hidden state is a

function of all previous hidden states. This allows them

learning the temporal dependencies in the data and, in

particular, in PM2:5 variations. More specifically, our pro-

posed approach also takes the data of nearby cities to

predict PM2:5. In representation learning, this is known as

the (temporal and) spatial coherence. Indeed, temporally or

spatially close observations tend to lead to a small move on

the surface of the high-density manifold. In the case of

PM2:5, those dependencies are easily observable and

learned by DRNN.

For training the network, 2-year data of various features

were injected. The historical data of each feature were

divided into three sets: training set, validation set and

testing set, having 60, 20 and 20 % of the data of each

feature, respectively. We have adopted a threefold cross-

validation scheme on the data and have averaged the

results. The parameters that were used to train the network

are reported in Table 1. All the hyper-parameters were also

found via cross-validation. Different values for the hyper-

parameters than those reported will most probably lead to

equivalent or worse results with the datasets at hand. We

have experimentally verified and reported this fact for the

number of epochs in the discussion section in Sect. 6.4.

For each of the 52 cities for which data could be obtained,

the data of all the features of a city, that we will refer to as

‘‘target’’ city, were injected, i.e., fPMtarget;WStarget;WDtarget;

SUNtarget;HUMtarget;TEMPtarget; RAINtargetg, along with

fPM1; . . .; PMKg data of K surrounding cities that are geo-

graphically the closest capital cities from the target. Figure 4

illustrates the network topology with K close cities. The input

consisted in D hours of past values of data. The resulting

output is a predicted sequence of N values in the PM time

series of the target city (see Table 1). The output is produced

by a RNN layer, fed by one DynPT layer, itself above none to

many AE layers.

Before using the data, preprocessing was performed

to clean the datasets from known outliers. The data

were also normalized to make all the input range

between [0, 1].

Fig. 3 Time series plots showing characteristics of the PM, RAIN,

WS and SUN data sources (from top to bottom) over a period of 200 h

Table 1 Training and model parameters

Datasets span 17,545 units

Unit 1 h

Training set 60 %

Validation set 20 %

Test set 20 %

Prediction horizon (N) 12

Past data (D) 48

Number of sensors (M) 10

Training method Stochastic gradient descent

Learning rate pre-training value (PT) 1e-2

Learning rate fine-tuning value (FT) 1e-3

Momentum value (CM) 0.8

Number of close cities (K) 3

Value for cross-validation (k) 3

Maximum epochs (H) 200

Temporal fragmentation (g) 25
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4.3 Sensors filtering based on sparsity

In practical applications of regression tasks, two measures are

of prime importance for scientists: the accuracy of the pre-

dictions and the easiness of interpretation of the model based

on the relationship between response (output) and predictors

(inputs). The ordinary least squares method is known to

perform poorly regarding both criteria. As an alternative, the

ridge regression [18] makes use of the L2 penalty and is

known for achieving better accuracy. However, the model

uses all the inputs, which makes the variables selection pro-

cess difficult. The lasso method [17], on the other hand,

employs the L1 penalty on the regression coefficients, which

allows much better automatic variable selection thanks to its

sparse representation. In our scenario, sparse representation is

an important factor to take into account. Unfortunately, lasso

suffers from two major drawbacks: if there is a group of

variables that are highly correlated together, lasso will arbi-

trarily select only one variable from the group. Also, if the

number of observations is much larger than the number of

predictors, then the accuracy is dominated by ridge regression

[17]. To overcome these drawbacks, the elastic net was

introduced in [19]. It is a regularized method that linearly

combines the L1 and L2 penalties. It combines the advantages

of both lasso and ridge regression.

Here, the elastic net method is implemented within

DRNN via the stochastic gradient descent (SGD) algorithm

that is used during the fine-tuning of DRNN as follows.

Given the set of weight parameters h ¼ fu; d; c; vg as

defined in Sect. 3.2, SGD will minimize the regularized

training error EregðhÞ given by:

EregðhÞ ¼
1

2N

X

N

i¼1

ðyi � ~yiÞ2 þ
k
2
ðð1� sÞjhj þ sh>hÞ; ð10Þ

where N is the prediction horizon, k[ 0 is a nonnegative

hyper-parameter and 0\s\1 is a parameter that controls

the convex combination of L1 and L2 penalty types.

This implementation may be one of the first to suc-

cessfully combine EN-based feature selection to monitor-

ing sensors within the training of DRNN.

5 Numerical results

5.1 Dynamic pre-training DynPT

In order to assess the validity of the proposed dynamic pre-

training method, we performed comparative experiments

against a canonical AE and also against the widely used

denoising AE [25]. Indeed, the denoising AE shares many

similarities with DynPT (but DynPT is specifically inten-

ded to solve time series prediction tasks). Each case was

run 10 times on the PM2:5 dataset of 52 cities in Japan. The

reported results are the averaged RMSE over all the runs

and over all the cities. The model is a neural network

initialized by stacking an AE and a basic MLP layer in

order to produce 12 h predictions based on 48 h of past

information. For convenience, this model will be referred

to as CanAE, DenAE and DynPT, when the AE layer is a

canonical AE, when the network is trained with corrupted

input data and when the network is trained with the pro-

posed dynamic process, respectively. In all cases, the net-

work was pre-trained and fine-tuned by stochastic gradient

descent.

All methods were trained on 200 epochs. The learning

rate values for pre-training and fine-tuning were set equal

to 1e-2 and 1e-3, respectively. In DynPT, the number of

temporal fragmentation g was set equal to 25. For DenAE,

model selection was conducted for several values of cor-

ruption rate m. The reported result corresponds to the best

DenAE model found for this task, which was obtained with

m ¼ 0:2. This value is consistent with the typically rec-

ommended rates found in the literature.

Figure 5 reports the results for CanAE, DenAE and

DynPT. It can be observed that the best results on average

in terms of RMSE were obtained by DynPT. Very inter-

estingly, this figure also reveals an important fact: the

performance of DenAE was poorer that CanAE. This

observation demonstrates that although state-of-the-art AE

such as DenAE achieve outstanding performance in image

classification and other fields, this may not be necessarily

Fig. 4 DRNN topology with K close cities. The input consists of D

hours of past values of data. The resulting output is a predicted

sequence of N values in the PM time series of the target city (PMtarget)
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true for other tasks such as time series prediction. The good

results of DynPT demonstrate that our proposed dynamic

pre-training helps achieving better predictions than a

canonical AE and is also more suitable that the widely

adopted denoising AE.

5.2 DRNN for sensor data

In order to determine which NN architecture is the most

suitable for PM2:5 prediction with the sensor data at hand

and DynPT, we have implemented four types of NN with

different parameters: a feedforward NN (FNN), a fully

recurrent NN (RNN), a deep feedforward NN (DFNN) and

a deep recurrent NN (DRNN) (described in Sect. 4). We

have considered a time step of 1 h to predict N = 12 h in

advance with a delay of past values of D = 48 h. Each case

was run 10 times on 52 cities in Japan. The reported results

are the averaged RMSE over all the runs and over all the

cities. The parameters are reported in Table 1.

The network topology of the four types of NN has

ranged from 4 to 9 layers with 30 and 300 nodes for each of

the layers. The number of nodes did not need to be the

same for each layers, but in our experiments, this simple

setting was enough to make the differences between the

models clear. Figure 6a, b reports the RMSE for 30 and

300 nodes, respectively. Independently of the architecture,

it can be observed that increasing the number of layers

rapidly leads to overfitting. The best results were obtained

with 4 or 5 layers. With our data, having 300 nodes con-

sistently produced better results than with 30 nodes only.

The numbers also validate the fact that unsupervised pre-

training has a beneficial effect on the model, with DFNN

and DRNN performing better than their equivalent without

pre-training. Overall, the most successful architecture and

topology was DRNN with 5 layers and 300 nodes each.

5.3 DRNN against VENUS

At this point, we focus on the best model found in the

previous experiment (i.e., DRNN with 5 layers and 300

nodes each) and will refer to it as DRNN in the rest of the

text. We assess the performance of DRNN against the

PM2:5 prediction system developed by the National Insti-

tute for Environmental Studies in Japan. The system, called

VENUS, for Visual Atmospheric Environment Utility

System, is a regional PM2:5 prediction system based on a

combination of weather and chemical transport calculation.

It uses numerous types of regional meteorological data, the

emission data of various air pollutants and a mixture of

other calculated factors.

In order to reproduce the same experimental environ-

ment, we gathered the same meteorological data as used as

inputs by VENUS. The features are as follows: hourly

measured PM2:5 concentrations, wind speed, wind direc-

tion, temperature, illuminance, humidity and rain. Fur-

thermore, to simulate the behavior of VENUS, we have to

place ourselves in the context of a classification task.

Indeed, although VENUS is able to produce exact predic-

tions, the publicly available data that we use to perform the

Fig. 5 Comparison of the RMSE obtained by CanAE, DenAE and

DynPT on the 12-h-ahead PM2:5 prediction task for 52 Japanese cities

Fig. 6 RMSE for different types and topologies of NN on the task of

predicting PM2:5: 4–9 layers with 30 nodes each in (a) and with 300

nodes each in (b)
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comparison are classified as belonging to one of six labels

according to the predicted PM2:5 concentration level. The

classes correspond to various levels of air purity and the

potential effects on human health, as with the PSI or AQI.

We have extracted the predicted values of PM2:5 by

VENUS during the period ranging from December 2013 to

February 2014, and we have compared its classification

performance based on the actual values of PM2:5. The

classification threshold was selected as being the upper

level of the ‘‘moderate air quality’’ level. It was straight-

forward to transform our initial regression task in order to

get the outputs fit the classes of VENUS and simulate this

classification task. By doing so, we could calculate the

precision (P), recall (R) and F-measure (F) of VENUS

during that period, that we denote as PVENUS, RVENUS and

FVENUS, respectively. P, R and F are computed using the

following equations:

P ¼ tp

tp þ fp
; ð11Þ

R ¼ tp

tp þ fn
; ð12Þ

F ¼ 2PR

Pþ R
; ð13Þ

where the notations tp; fp and fn stand for true positives, false

positives and false negatives, respectively. They compare the

results of the classifier under test with the known real values

of PM2:5 that occurred during the concerned period. The

results are reported in Table 2, which figures the perfor-

mance of VENUS in its normal operation conditions (several

inputs) and DRNN using past values of PM2:5 only.

Those numbers are then compared with DRNN as a

classifier, during the same period but using public data. The

average precision, average recall and average F-measure of

DRNN are, respectively, denoted as PDRNN;RDRNN and

FDRNN. It can be observed that even without any external

factor, the simple use of previous historical PM2:5 datasets

is enough to outperform VENUS, with FDRNN ¼ 0:615

against FVENUS ¼ 0:567.

5.4 Sensors selection

By using elastic net during the fine-tuning of DRNN, we

could obtain a significantly parsimonious model. However,

as our concern is to reduce the costs by filtering out non-

significant sensors from the model, we define the ‘‘sensors

sparsity,’’ abbreviated v as being the number of sensors that

have their input sparsity superior than a specified threshold.

Formally, we write the sensors sparsity of sensor a as being

va; a ¼ 1; . . .; r, where r is the initial number of sensors.

Then, sensor a is considered ‘‘sparse’’ if the quantity:

va ¼
P

~uij
D� n

�

�

�
~uij ¼

1
�

juijj � 1e� 3
�

;
0

�

otherwize
�

;

�� �

ð14Þ

for a ¼ f1; . . .; rg; i ¼ fa� Dþ 1; . . .; a� Dg; j ¼ f1;
. . .; ng, is � 0:9, where u is the input-to-hidden weight

matrix, D is the number of past data used per sensors and n
is the number of nodes in the first hidden layer.

We have conducted experiments using the ridge

regression, lasso method, elastic net and elastic net with

sparse auto-encoders. The performance of the methods

based on the RMSE and average number of filtered out

sensors by the input number of sensors v=M have been

compared. Table 3 reports the results, along with a mea-

sure of the overall sparsity. It can be observed that as

expected, the ridge regression yields better results than

lasso in terms of RMSE. Although lasso considerably

increased the overall weights sparsity over ridge regres-

sion, our measure ‘‘sensors sparsity’’ reveals that this alone

is not sufficient to filter out sensors from the model. Indeed,

lasso tends to select only one variable from a group of

highly correlated variables, thus spreading the sparsity over

all the sensors. By using elastic net, it was possible to

obtain a RMSE even lower than ridge regression and a

sparse network. However, the sensor sparsity level is not

satisfactory in this case either. It is with the combination of

sparse auto-encoders and elastic net that the best results in

terms of both RMSE and sensors sparsity could be

obtained. Although the overall sparsity is lower than with

lasso, on average for the 52 Japanese cities considered in

this work, the number of times a sensor has been found

‘‘sparse,’’ and thus, candidate for removal from the model

for a given city was 2.1 sensors, with a maximum rejection

of four sensors and a minimum of zero.

Table 2 Precision, recall and F-measure of VENUS and DRNN as

classifiers

Precision Recall F-measure

VENUS with multiple inputs 0.523 0.653 0.567

DRNN with PM2:5 Data 0.634 0.606 0.615

Values in bold indicate the best performance

Table 3 Performance of regularization methods based on RMSE and

sensors sparsity

Method Parameters RMSE Sparsity v=M

Ridge (baseline) k ¼ 1e�4; s ¼ 1 6.925e-2 0.00 0.0

Lasso k ¼ 1e�4; s ¼ 0 9.450e-2 0.61 0.0

Elastic net (EN) k ¼ 1e�4; s ¼ 0:9 6.923e-2 0.06 0.0

Sparse AE ? EN k ¼ 1e�4; s ¼ 0:9 6.919e-2 0.56 0.21

Values in bold indicate the best performance

k and s ¼ 1 are parameters that govern Eq. (10), v represents the

sensors sparsity and M is the number of sensors used as inputs of the

model
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In this experiment, the value of the parameters k and s
have been selected using cross-validation and in such a

way that the RMSE is minimized, while the sensor sparsity

is maximized, simultaneously. Details are provided in

Sect. 6.4.

6 Discussion

6.1 DRNN against autoregressive model

As the concentrations of PM2:5 may not necessarily change

very frequently, one may argue that the overall accuracy is

rather high even with much less complex methods. To verify

this hypothesis, we have compared the performance of

DRNN against an autoregressive (AR) model [41]. An AR

model is a representation of a type of random process that is

often adopted to describe time series. It is widely used in the

specialized literature to compare prediction models. The

output variables of anARmodel depend linearly on a number

of its own previous values, known as the order of the model.

We write an AR model of order p as AR(p).

The best AR model found using the same data as for

DRNN was an AR model of order 6 (AR(6)). To choose the

order, we have performed several experiments with can-

didates ranging from 1 to 10 and kept the order that pro-

vided the best results for AR. The results of the comparison

against DRNN reveal that there is a considerable loss of

accuracy when using AR. Indeed, the RMSE for AR(6) was

of 20.8, which is around three times worse than DRNN.

Therefore, the inaccuracy of AR models makes them

unpractical for the prediction of PM2:5. These findings are

consistent with the results found in the literature and

highlight the limitations of simple models over more

complex methods.

6.2 Benchmarking

To further validate our results, we have surveyed standard

time series benchmarks. Among them, we have retained the

benchmark known as the CATS benchmark [42]. The goal

is the prediction of 100 missing values of an artificial time

series with 5000 observations. The missing values are

grouped in five sets of 20 successive values. Although two

error criterion based on the mean squared error are pro-

posed in [42] to compare the performance of the algo-

rithms, only one is used for the ranking of the submissions

(E1), while the second criterion (E2) is for additional

information on the model properties. Here, we consider

only E1, described in [42].

We have compared DRNN against the recent work of

Kuremoto et al. [28] that also proposes a method for time

series prediction with a deep belief network-based model

composed of two restricted Boltzmann machines (RBMs).

Using the CATS benchmark and the original data, it is

reported in [28] that RBMs are superior than conventional

neural network models such as the MLP and the linear

model ARIMA [43]. However, in the same conditions,

DRNN yields even better results than RBMs, with

EDRNN
1 ¼ 1198 for DRNN against ERBMs

1 ¼ 1215 for

RBMs. The results are reported in Table 4.

6.3 Fairness against VENUS

Although the data used in this paper to perform the

experiments were obtained from the same agency running

VENUS, it cannot be guaranteed that VENUS uses exactly

the same data. However, the categories to which belong the

set of features being the same, it is reasonable to claim that

the comparison between the methods is fair.

Regarding the computational efficiency of DRNN

against VENUS, the comparison was regrettably not pos-

sible yet. It is indeed difficult to provide absolutely fair

numbers for the following reasons. First, VENUS is based

on a model called Spectral Radiation-Transport Model for

Aerosol Species (abbreviated as SPRINTARS) [44], which

is a numerical model developed for simulating effects on

the climate system and condition of atmospheric pollution

by atmospheric aerosols on the global scale. PM2:5 is only

but one of the elements calculated by SPRINTARS. Sec-

ond, the source code is not openly available and is difficult

to reproduce. It can be argued, however, that as SPRIN-

TARS requires supercomputers and that the input–output

size of our proposed method is small enough to run with a

standard PC while reaching comparable accuracy, the

computational complexity of our proposed method is most

likely largely inferior than of VENUS.

6.4 Parameters tuning for the sensors reduction

and their significance

It was shown in Sect. 5.4 that an adequate combination of

ridge and lasso regression yields better performance both in

terms of RMSE and in sensors sparsity. Namely, for each

city, on average slightly more than two sensors were

removed from the inputs, without damaging the accuracy

of the predictions. Our goal to reduce the costs involved in

Table 4 CATS benchmark

results
Model E1 score

DynPT 1198

RBMs [28] 1215

ARIMA [43] 1216

MLP 1246

Value in bold indicates the best

performance
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managing the numerous sensors was therefore reached.

However, we note that the performances rely heavily on a

good tuning of the parameters k and s. The evolution of

RMSE and sensors sparsity, respectively, for values of k ¼
f0:01; 0:001; . . .; 0:000001g and s ¼ f0; 0:1; . . .; 1g is

plotted in Fig. 7a, b. Figure 7b shows that the higher the

value of k is, the more the number of filtered out sensors

increases. However, Fig. 7a reveals that in the extreme

case where almost all but one or two sensors are removed

from the model, the RMSE becomes very poor. When k is

low, RMSE tends to reach its minimum value, at the

expense of sensors sparsity that tends to reach the null

value, which is not beneficial in our scenario. The mini-

mum RMSE value that corresponds to a relative sensor

sparsity (v=M) larger than 1 was found at coordinates

(k ¼ 1e�4; s ¼ 0:9).

After filtering, a closer inspection into the significant

sensors has revealed that as expected, the PM2:5 data of the

target city along with the surrounding cities were always

considered as good predictors for the model. This demon-

strates that groups of highly correlated variables did not

suffer from the selection procedure. What was not expected

was that the RAIN sensor was rejected around half of the

time. The specialized literature provides a sound and sci-

entifically supported reason for that phenomenon. Indeed,

recent environmental studies demonstrate that the scav-

enging rates of fine particles that occur during rain events

depend on many factors, including the size of the particles

and the type of precipitations [45]. Although rain drops can

actually efficiently purify the atmosphere from particles of

a big enough diameter, the purification is found low in the

case of very small particles such as PM2:5. Actually, the

concentration of PM2:5 can even increase.

We also provide experimental evidences that cross-

validation could find adequate hyper-parameters for the

network. In Fig. 8, we report the results for the maximum

number of epochs H. Various values for H ranging from 50

to 400 have been considered, and the corresponding RMSE

is reported. It can be observed that the RMSE decreases

sharply for small values of H but start stagnating after

around H = 200, the value found automatically.

7 Conclusion and future work

In this paper, we have introduced a novel pre-training

method using auto-encoder especially designed for time

series prediction. Our motivation is that the training of

networks aiming at tackling time series forecasting tasks

yield different dynamics than those relying on more static

data. In light of this, we have proposed a pre-training

method that allows the weights of the network to slowly

adapt themselves to meet a dynamically and chronologi-

cally evolving output (teacher), which finally results in a

better learning representations of the input time series. The

new training method has been compared against a canon-

ical AE and the denoising AE on the task of PM2:5 pre-

diction. The very poor performance of the Denoising AE

reveals that it is not adapted to the time series prediction

task. On the other hand, our method achieved higher

accuracy and outperformed all the compared methods.

We have then introduced a deep recurrent neural net-

work using this training method and that takes advantage of

Fig. 7 RMSE (a) and sensors sparsity (b) for values of k ¼
f0:01; 0:001; . . .; 0:000001g and s ¼ f0; 0:1; . . .; 1g

Fig. 8 Evolution of RMSE with values for H ranging from 50 to 400
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the spatial coherence in the several thousands of sensors

from where the data are obtained. Our motivation is that

our final objective is to perform PM2:5 concentration pre-

dictions in Japan using exclusively real and publicly

available sensor data with improved accuracy over the

currently employed prediction models. The experiments

revealed that our goal was reached, and the comparative

experiments proved that our method could outperform the

PM2:5 prediction system VENUS.

Finally, we have shown that it was possible to filter out

unnecessary sensors from the model by using the elastic net

method. The technique could be applied effectively in deep

networks as well. The groups of highly correlated sensors

did not suffer from the selection, and the accuracy of the

results was preserved.

For future work, we intend to further improve on the

accuracy of the predictions with more advanced dynamic

pre-training algorithms while at the same time performing

more efficient sensors selection. The encouraging results

obtained from the algorithm presented in this work may

also be applied to other fields, such as health care or

finance.
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