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Abstract
This paper presents a novel dynamic ensemble learning (DEL) algorithm for designing ensemble of neural networks (NNs).

DEL algorithm determines the size of ensemble, the number of individual NNs employing a constructive strategy, the

number of hidden nodes of individual NNs employing a constructive–pruning strategy, and different training samples for

individual NN’s learning. For diversity, negative correlation learning has been introduced and also variation of training

samples has been made for individual NNs that provide better learning from the whole training samples. The major benefits

of the proposed DEL compared to existing ensemble algorithms are (1) automatic design of ensemble; (2) maintaining

accuracy and diversity of NNs at the same time; and (3) minimum number of parameters to be defined by user. DEL

algorithm is applied to a set of real-world classification problems such as the cancer, diabetes, heart disease, thyroid, credit

card, glass, gene, horse, letter recognition, mushroom, and soybean datasets. It has been confirmed by experimental results

that DEL produces dynamic NN ensembles of appropriate architecture and diversity that demonstrate good generalization

ability.

Keywords Neural network ensemble � Backpropagation algorithm � Negative correlation learning � Constructive

algorithms � Pruning algorithms

1 Introduction

Neural network (NN) structures have been used for

knowledge representation [1], modelling [2–4], prediction

[5, 6], design automation [7], classification [8, 9], identi-

fication [10], and nonlinear control [11] applications in

many domains. All these applications mainly used the

monolithic structure for NN. In a monolithic structure, the

NN is represented by a single NN architecture for the

whole task to be performed [12–14]. Scalability is a major

impairment for monolithic NN for a wide range of appli-

cations. Incremental learning is also not possible as the

addition of new elements to NN requires retraining of the

NN with old and new data [15, 16]. An inevitable phe-

nomenon in the retraining of NN is the catastrophic for-

getting (also known as crosstalk), which was first reported

by McCloskey and Cohen [17]. Two types of crosstalk

phenomena can get exposed during retraining: temporal

crosstalk and spatial crosstalk. In temporal crosstalk,

learned knowledge is lost during retraining of a new task.

In spatial crosstalk, NN cannot learn two or more tasks

simultaneously [18]. Kemker et al. [19] demonstrated that

catastrophic forgetting problem in incremental learning

paradigm has not been resolved despite many claims and

showed methods of measuring such catastrophic forgetting

can be measured. A number of attempts have been made to

mitigate the phenomenon such as regularization, rehearsal

and pseudorehearsal, life-long learning-based dynamic

combination, dual-memory models and ensemble methods

[16, 20–23]. A collection or committee of individual NNs

can also be advantageous for addition of a new NN to store
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new knowledge mitigating forgetting phenomena where

tasks can be subdivided [24]. Instead of employing a large

NN for a complex problem, the researchers are impressed

by the idea of decomposing the problem into smaller

subtasks leading to smaller architecture, shorter training

time and increased performance [24, 25]. NN ensemble-

based classifier can also improve generalization ability

[25, 26]. The structure of an NN ensemble is illustrated in

Fig. 1. Each NN in the ensemble (1 through n) is first

trained on the training instances. The output of the

ensembles is calculated from the predicted outputs,

Oi; i ¼ 1; 2; . . .; n, of the individual NNs [26]. The chal-

lenge here is to design a learning algorithm for ensemble

NN. The initial weights, topology of NNs, training datasets,

and training algorithms also play decisive roles in the

design of ensembles [23, 25]. In general, NN ensembles are

designed by mostly varying these parameters.

Many algorithms similar to NN ensembles [25] have

been reported in the literature such as mixer of experts

[27], boosting [28] and bagging [29]. The main drawbacks

of these algorithms are manual design and predefined

number of neurons in the hidden layer and the number of

NNs in an ensemble.

In general, ensemble and modular approaches are

employed for combining NNs. The ensemble approach

attempts to generate a reliable and accurate output by

combining the outputs of a set of trained NNs rather than

selecting the best NN, whereas the modular approach

strives to have each NN as self-contained or autonomous

[14, 24]. In modular approach, the problem is divided into

a number of tasks. Each task is assigned to an individual

NN to be accomplished. It is not possible to know the best

size of NN a priori. The size of NN is defined by the

number of layers and the number of neurons in each layer.

Moreover, the backpropagation (BP) [30, 31] algorithm is

not useful for training NN unless the topology is known.

Therefore, finding the correct topology is the foremost

design issue. In order to define the topology of an NN, a

number of parameters such as the number of layers, the

number of hidden neurons, activation functions, and degree

of connectivity have to be determined. A second issue is to

determine the training parameters that include the initial

weights of the NN, the learning rate, acceleration term,

momentum term and weight update rule. The choice of the

topological and training parameters has significant impact

on the training time and the performance of the NN.

Unfortunately, there is no straightforward method of

selecting the parameters; rather the designer has to depend

on the expert knowledge or employ empirical method.

The performance of NNs in an ensemble is dependent on

a number of factors such as (1) the topology of the NNs and

the initial structure; (2) the training method; (3) the

learning rate; (4) the input and output representations; and

(5) the content of the training sample [32]. Eventually, the

numbers of NNs and the number of neurons in the hidden

layers in NNs determine the performance of an ensemble.

In most of the cases, these are predefined by human experts

based on available a priori information. Formal learning

theory is used to estimate the size of the ensemble system

based on the complexity, and the examples required

learning the particular function. In such cases, the gener-

alization error becomes high if the number of examples is

small. Consequently, choosing appropriate NN topology is

still something of an art. The data examples play a crucial

role in learning where learning is sensitive to initial

weights and learning parameters [33–35].

The purpose of this research is to design an NN

ensemble that addresses the following issues: (1) automatic

determination of NN ensemble architecture (i.e. the num-

ber of NNs in the ensemble), (2) automatic determination

of the size of individual NNs (i.e. the number of hidden

neurons in individual NNs), and (3) variation of training

examples for each individual NN’s better learning. Real-

world classification problems are used to verify the effec-

tiveness and the generalization ability of the ensemble.

The paper is organized as follows: Sect. 2 presents the

related works. Section 3 contains the description of DEL

algorithm. Section 4 presents the datasets description,

experimental results and comparison. Section 5 presents a

discussion. Some conclusions are made in Sect. 6.

2 Related works

In ensemble learning, the individual NNs are called base

learners. They are single classifiers, which are trained and

combined together to ease individual errors and crop gen-

eralization independently. Hitherto, efforts have been made
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Fig. 1 A neural networks ensemble
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to design ensemble by combining NNs based on either the

accuracy or the diversity [25, 36, 37]. There are evidences

that accurate and diverse NNs can produce a good

ensemble that distribute errors over different regions of the

input space [38, 39]. Rosen [40] proposed an ensemble

learning algorithm that also trains individual NNs

sequentially where the individual NNs minimize training

errors as well as de-correlate previous training errors.

Sequential training of an NN does not affect the NNs that

were previously trained, which is a major disadvantage in

ensemble learning. Consequently, there is no correlation

between the errors of the individual NNs [41]. The topol-

ogy of the mixtures-of-experts (ME) [27] can produce

biased individual NNs which may be negatively correlated

[32]. The disadvantage of ME is that it needs a separate

gating NN and also can not provide a balance control over

the bias–variance–covariance tradeoff [34].

A two-stage design approach is employed in most of the

architectures mentioned above where individual NNs are

generated first followed by combining them. As the com-

bination stage does not provide any feedback to design

stage, some individual NNs designed independently may

not contribute significantly to the ensemble [34]. There-

fore, some researchers proposed a one-stage design process

and used a penalty term into the error function of each NN.

The researchers also proposed the simultaneous and inter-

active training for all NNs in the ensemble instead of the

independent and sequential training [41]. NNs with nega-

tive correlation can be created by reassuring specialization

and cooperation among the NNs in an ensemble. This will

enable NNs to learn the different regions of training data

space and ensure the ensemble learns the whole data space.

To ensure interaction between NNs and simultaneous

learning in an ensemble, some researchers employed evo-

lutionary computing [32]. Liu et al. [32] applied evolu-

tionary algorithm for ensemble learning of NNs with

negative correlation. This approach can determine the

optimal number of NNs and the combinations of NNs in an

ensemble using fitness sharing mechanism.

Chen and Yao [33] employed multi-objective genetic

algorithm [42] for regularized negative correlation learning

(NCL) optimizing errors of the base NNs and their diver-

sity in ensemble. Mousavi and Eftekhari [43] proposed

static ensemble selection and deployed the popular multi-

objective genetic algorithm NSGA-II [42]. This combina-

tion of static ensemble selection and NSGA-II ensures

selecting the best classifiers and their optimal combination.

There are two other widely popular approaches to

ensemble learning, namely constructive NN ensemble

(CNNE) [44] and pruning NN ensemble (PNNE) [45].

CNNE determines the number of NNs in the ensemble and

the hidden neurons of the individual NNs by employing

NCL [34, 41] in an incremental fashion. On the other hand,

PNNE employs a competitive decay approach. PNNE uses

a neuron cooperation function in each NN for the hidden

neurons and a selective deletion of NNs in the ensemble

based on the criterion of over-fitting. PNNE employs NCL

to ensure diversity of the NNs in the ensemble.

Islam et al. [29] proposed two incremental learning

algorithms for NNs in ensemble using NCL: NegBagg and

NegBoost. NegBagg fixes the number of hidden neurons of

NNs in ensemble by constructive method. NegBoost also

uses constructive method to fix the number of hidden

neurons of NNs as well as the number of NNs in the

ensemble.

Yin et al. [46] proposed a two-stage hierarchical

approach to ensemble learning called dynamic ensemble of

ensembles (DE2). DE2 comprises component classifiers and

interim ensembles. The final DE2 is obtained by weighted

averaging. Cruz et al. [47] used a two-phase dynamic

ensemble selection (DES) framework. In the first phase,

DES extracts meta-features from training data. In the sec-

ond phase, DES uses a meta-classifier to estimate the

competence of the base classifier to be added to the

ensemble.

Chen and Yao [48] show that NCL considers the entire

ensemble as a single machine with the objective of mini-

mizing the mean square error (MSE) and NCL does not

employ regularization while training. They proposed a

regularized NCL (RNCL) incorporating a regularization

term for the ensemble which enables the RNCL decom-

posing the training objectives into sub-objectives each of

which is implemented by an individual NN. RNCL shows

improved performance over the NCL even when noise

level is higher in datasets.

Semi-supervised learning is the mechanism of learning

using a large amount of unlabelled data and a small amount

of labelled data. Chen and Wang [49] proposed a semi-

supervised boosting framework taking three assumptions

such as smoothness, cluster and manifold into considera-

tion where they used a cost function comprising the margin

cost on labelled data and the regularization penalty on

unlabelled data. Experiments on benchmarks and real-

world classification reveal constant improvement by the

algorithm. Semi-supervised learning is a widely popular

method due to its higher accuracy at a lower effort.

The generalization of an ensemble is related to the

accuracy of the base NNs and the diversity among NNs

[37, 38]. Higher accuracy for the base NNs leads to the

lower diversity among them. To strike a balance of the

dilemma between accuracy and diversity in an ensemble,

Chen et al. [50] proposed a semi-supervised NCL

(SemiNCL) where a correlation penalty term on labelled

and unlabeled data is incorporated into the cost function of

each individual NNs in the ensemble.
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Though the semi-supervised learning has been very

successful for labelled and unlabelled data, its generaliza-

tion ability is sensitive to incorrect labelled data. To miti-

gate this limitation, Soares et al. [51] proposed a cluster-

based boosting (CBoost) with cluster regularization. In

CBoost, the base NNs in the ensemble jointly perform a

cluster-based semi-supervised optimization. Extensive

experimentation shows that the CBoost has significant

generalization ability over the other ensembles.

Recently, Rafiei and Adeli [52] reported a new neural

dynamic classification algorithm. A comprehensive review

of multiple classifier systems based on the dynamic

selection of classifiers was reported by Britto et al. [53].

Recent developments in ensemble methods are analysed by

Ren et al. [54]. Cruz et al. [55] reported a review on the

recent advances on dynamic classifier selection techniques.

Dynamic mechanism is used in the generalization phase in

those studies, while the dynamic mechanism is employed

in the training phase in DEL.

3 Dynamic ensemble learning (DEL)

3.1 Main steps of the algorithm

Unlike fixed ensemble architecture, DEL automatically

determines the number of base learner NNs and their

architectures in an ensemble during the training phase. The

DEL algorithm is presented in 8 steps in the sequel. The

flow diagram of the DEL algorithm is shown in Fig. 2.

Step 1 Create an ensemble with minimum architecture

comprising two NNs. Each NN consists of an input layer,

two hidden layers, and an output layer. The number of

neurons in the input and output layers is determined by the

system. Next, apply a constructive algorithm [56] based on

Ash’s [57] dynamic node creation method for the first (later

on the odd number of NNs in sequence in the ensemble)

NN training. Initially, this NN starts with a small archi-

tecture containing one node in each hidden layer. For the

second (later on even number of NNs in sequence in the

ensemble) NN training, apply Reed’s pruning algorithm

[58]. In the pruning phase of NN training, the number of

neurons in the hidden layer is larger than necessary (i.e. it

starts with a bulky architecture). Initialize the connection

weights for each NN randomly within a small interval.

Step 2 Create separate training examples for each NN of

the ensemble. In general, subsets of training examples for

individual NNs are created by randomly picking from the

main set of the training examples. In this work, training

sets are created in such a way that if one NN learns from

training examples from the first to the last, other NN learns

from the last to the first of the same training examples.

Step 3 Train the NNs in the ensemble partially on the

examples for a fixed number of epochs specified by the

user using NCL [34, 41] regardless of whether the NNs

converge or not [59].

Step 4 Compute the training error Ei for the ith NN in the

ensemble according to the following rule:

Ei ¼ 100
Omax � Omin

N:S

XN

n¼1

XS

S¼1

ðdðn; sÞ � Fiðn; sÞÞ2 þ kPiðn; sÞ
h i

ð1Þ

where Omax is the maximum value and Omin is the minimum

value of the target outputs, respectively, N is the total

number of examples, S is the number of output neurons, d(n,

s) is the desired output, and Fi(n, s) is the actual output of

the neuron s in the nth training data. The rule in Eq. (1) is a

combination of the rule proposed by Reed [58] and NCL for

an NN error. The error Ei is independent of the size of the

training examples and the number of output neurons.

Step 5Compute the ensemble errorEwhereE is the average of

Ei of the base learner NNs. If E is small and acceptable, the

ensemble architecture is believed to have the highest gener-

alization ability and output the final ensemble. If E is not
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Fig. 2 Flow diagram of the DEL algorithm
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acceptable, then either the ensemble architecture or the indi-

vidual base learner NNs undergo change.

Step 6 Check the neuron addition and/or deletion criterion

of individual NNs. In this criterion, hidden neurons are

added or deleted if the error of individual NNs does not

change after a specified number of epochs chosen by the

user (see Sect. 3.2). If the criterion is not met, then the

individual NNs are not good enough and the ensemble

undergoes addition of new learner NN.

Step 7 Add and/or delete hidden neurons to/from the NNs

to meet the addition and/or deletion criterion (see Sect. 3.2)

and continue training using NCL.

Step 8 Add a new NN to the ensemble (see Sect. 3.3) if the

previous NN addition improves the performance of the

ensemble. Initialize and create different training sets for

the new NN as in step 2. Go to step 3 for further training of

the ensemble.

The above-mentioned procedure (steps 1–8) is imple-

mented in DEL that determines the architecture of

ensemble. For example, the networks in Fig. 1 work as

follows: network 1 has 2 hidden layers, uses constructive

algorithm for node addition, and trains examples from first

to last. On the contrary, network 2 has 2 hidden layers, uses

pruning algorithm for node deletion, and trains examples

from last to first. Then, network 3 has a single hidden layer,

uses constructive algorithm for node addition, and trains

using examples from first to last. Similarly, network 4 has a

single hidden layer, uses pruning algorithm for node

deletion, and trains using examples from last to first and so

on. The idea of varying the training examples is to enable

the NNs to learn different regions of the data distribution.

Major components of DEL are the addition/deletion of

hidden neurons to/from learners NNs and addition of NN to

ensemble described in Sects. 3.2–3.4.

3.2 Nodes addition/deletion to/from individual
NNs

Both constructive and pruning algorithms provide some

benefits as well as some drawbacks. At the training period

of individual NNs, there may be some portions which may

be critical or stable either for constructive or pruning

algorithms. If all the NNs in the ensemble learn either only

by constructive or only by pruning algorithm, then their

learning will be very similar.

Even though NCL forces the NNs to learn from different

regions of the data space, the learning will not be perfect if

the NNs in the ensemble have the same architecture. Dif-

ferent architectures of the NNs in the ensemble will pro-

vide a different weight on the accuracy and diversity,

which justifies the deployment of the hybrid ‘constructive–

pruning strategy’ in DEL.

3.3 NN addition to the ensemble

In DEL, constructive algorithm is used to add NNs in

the ensemble. New NNs are added to the ensemble if the

previous addition improves the performance of the

ensemble. This addition process continues until the mini-

mum ensemble error criterion has been met.

3.4 Different training sets for individual NNs

Varying the examples into different training sets enables

efficient learning and can help the ensemble learning from

the whole training examples. Training sets are varied by

maintaining one important criterion, i.e. training sets

should have appropriate number of examples so that indi-

vidual NNs obtain the necessary information for learning.

In DEL, if the first NN in the ensemble learns from odd-

positioned training examples, the second one learns from

even-positioned training examples, and the third one learns

from other training examples in a similar fashion. In some

cases, subsets of training examples are created just by

partitioning or by randomly selecting. The pseudocode of

DEL algorithm is shown in Algorithm 1.

Algorithm 1: DEL algorithm

Step 1: Create ensemble with minimum architecture
1. Create an ensemble comprising 2 NNs with minimum 

architecture of 1 input -2 hidden-1 output layers
2. Number of neurons in input and output layer is 

determined by the system
3. Apply Ash’s constructive algorithm for dynamic node 

creation for the first NN training
4. Apply Reed’s pruning algorithm for the second NN 

training
Step 2: Create training examples

1 Create separate training examples for each NN
Step 3: Training NNs in ensemble
1. Train NNs partially for fixed number of epochs using 

NCL
Step 4: Compute training error
1. Compute the training error Ei for the ith NN using Eq. 

(1)
Step 5: Compute ensemble error
1. Compute the ensemble error E
2. If E < acceptable 
3. Output final ensemble

Endif
Step 6: Check node addition/deletion criterion
1. If (addition/deletion criterion is not met)
2. Add NN to ensemble 
3. Go to Step 2
4. Else
5. Add/delete hidden nodes to NN
6. Go to Step 3
7. Endif
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4 Experimental analysis

The effectiveness and performance of DEL are verified on

real-world benchmark problems. The datasets of the

selected benchmark problems are taken from the UCI

machine learning repository [60].

Different tests were carried out on DEL algorithm with

varying parameter settings. For setting the correlation

strength parameter k to nonzero, the DEL performs as

described in Sect. 3. For the correlation strength parameter

k equal to zero, it is the individual NN’s independent

training. The independent training is performed using

standard backpropagation algorithm [30].

The learning rate and correlation strength parameter k
were chosen between [0.05, 1.0] and [0.1, 1.0], respec-

tively. The initial weights for NNs were randomly gener-

ated within the interval of [- 0.5, 0.5]. The winner-takes-

all method of classification is used. Both the majority

voting method and the simple averaging method are used

for computing the generalization ability of the DEL.

Medical and non-medical datasets described in Sects. 3.1

and 3.2 are used in the experimentation. Table 1 shows the

summary of benchmark datasets.

4.1 Medical datasets

The medical datasets comprise four datasets from medical

domain: the cancer, the diabetes, the heart disease, and the

thyroid dataset. These datasets have some characteristics in

common:

• DEL uses the similar input attributes that an expert uses

for diagnosis.

• The datasets pose a classification problem, which the

DEL has to classify to a number of classes or predict a

set of quantities.

• Acquisition of examples from human subjects is

expensive, which results in small datasets for training.

• Very often the datasets have missing values of attributes

and contain a small sample of noisy data [59], which

make the classification or prediction challenging.

4.1.1 The breast cancer dataset

The breast cancer dataset comprises 699 examples. 458

examples are benign, and 241 examples are malignant.

There are 9 attributes of a tumour collected from expensive

microscopic examinations. The attributes relate to the

thickness of clumps, the uniformity of cell size and shape,

the amount of marginal adhesion, and the frequency of bare

nuclei. The problem is to classify the tumour as either

benign or malignant.

4.1.2 The diabetes dataset

The diabetes dataset comprises 768 examples of which 500

belong to class 1 and 268 belong to class 2. Datasets are

collected from female patients of 21 years of age or older

and of Pima Indian heritage. There are 8 attributes to be

classified as either ‘tested positive for diabetes’ or ‘tested

not positive for diabetes’.

4.1.3 The heart disease dataset

The heart disease datasets comprise 920 examples. The

datasets are collected from expensive medical tests on

patients. There are 35 attributes to be classified as presence

or absence of heart disease.

4.1.4 The thyroid dataset

The thyroid disease dataset comprises 7200 examples

collected from patients through clinical tests. There are 21

attributes to be classified in three classes, i.e. normal,

hyper-function and subnormal function. 92% of the

Table 1 Summary of

benchmark datasets
Dataset No. of examples Attributes Classes Training set Test set

Cancer 699 9 2 349 175

Diabetes 768 8 2 384 192

Heart 920 35 2 460 230

Thyroid 7200 21 3 3600 1800

Credit C 690 51 2 345 172

Glass 214 9 6 107 53

Gene 3175 120 3 1588 793

Horse 364 58 3 182 91

Letter 20,000 16 26 16,000 4000

Mushroom 8124 125 2 4062 2031

Soybean 683 82 19 342 171
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patients are normal, which insists that the classifier accu-

racy must be significantly higher than 92%.

4.2 Non-medical datasets

The non-medical datasets comprise seven datasets from

different other domains: the credit card, glass, gene, horse,

letter, mushroom, and soybean datasets.

4.2.1 The credit card dataset

The credit card dataset comprises 690 examples collected

from real credit card applications by customers with a good

mix of numerical and categorical attributes. There are 51

attributes to be classified as credit card granted or not

granted by the bank. 44% of the examples in the datasets

are positive. The datasets also contain 5% missing values

in the examples.

4.2.2 The glass dataset

The classification of glass dataset is used for forensic

investigations. The datasets comprise 214 examples col-

lected from chemical analysis of glass splinters. There are

70, 76, 17, 13, and 19 examples for 6 classes, respectively.

The datasets contain 9 attributes of continuous value to be

classified into 6 classes.

4.2.3 The gene dataset

The gene dataset comprises 3175 examples of intron/exon

boundaries of DNA sequences elements or nucleotide. A

nucleotide is a four-valued nominal attribute and encoded

binary, i.e. {- 1, 1}. There are 120 attributes to be clas-

sified into three classes: exon/intron (EI) boundary, intron/

exon (IE) boundary, or none of these. EI boundary is called

donor, and IE boundary is called acceptor. 25% examples

of the dataset are donors, and 25% examples are acceptors.

4.2.4 The horse dataset

The horse dataset comprises 364 examples of horse colic.

Colic is an abdominal pain in horses, which can result in

death. There are 58 attributes collected from veterinary

examination to be classified into three classes: horse will

survive, die, or euthanized. The dataset contains 62%

examples of survival, 24% examples of death, and 14%

examples of euthanized. About 30% of the values in the

dataset are missing, which poses challenges in

classification.

4.2.5 The letter recognition dataset

Alphabet consists of 26 letters, and recognition of letters is

a large classification problem. It is a tough benchmark

problem for the DEL algorithm. The dataset contains

20,000 examples of digitized patterns. Each example was

converted into 16 numerical attributes (i.e. real valued

vector), which are to be classified into 26 classes.

4.2.6 The mushroom dataset

The mushroom dataset comprises 8124 examples based on

hypothetical observations of mushroom species described

in a book. There are 125 attributes of the mushrooms

collected based on the shape, colour, odour, and habitat.

30% of the examples have one missing attribute value.

48% of examples are poisonous. The classifier has to cat-

egorize the mushrooms as edible or poisonous.

4.2.7 The soybean dataset

The soybean dataset comprises 683 examples collected

from the descriptions of beans. The attributes are based on

the normal size and colour of leaf, the size of spots on leaf,

hallow spots, normal growth of plant, the rooted roots, and

the plant’s life history, treatment of seeds, and the air

temperature. There are 82 attributes to be classified into 19

diseases of soybeans. There are missing values of attributes

in most of the examples.

4.3 Experimental setup

Datasets are divided into training and testing sets, and no

validation set is used in the experimentation. The classifi-

cation error rate is calculated according to:

Ci ¼ 100 � T:T:P � C:P

T:T:P
ð2Þ

where T.T.P denotes the total number of test patterns and

C.P denotes the total number of correctly classified pat-

terns. The numbers of examples in the training and test sets

are chosen based on the reported works in the literature so

that a comparison of results is possible. The size of the

training and testing sets used in DEL is shown in Table 1.

4.4 Experimental results

A summary of the experimental results of the DEL algo-

rithm carried on 11 datasets described in Sects. 4.1 and 4.2

is presented in Table 2. The classification error is defined

as the percentage of wrong classifications in the test set

defined by Eq. 2. Table 3 shows the comparison of DEL

with its component individual networks in terms of
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classification error rates for glass dataset. It shows the error

rates for glass datasets are relatively higher than the other

datasets. This is due to the error rates of the individual NNs

that led to the higher error rate of the ensemble. Table 4a

shows the accuracy of NNs and the common intersection

and the diversity of the NNs of ensemble for the glass

dataset is shown in Table 4b. The accuracy X means the

correct response sets of the individual NNs, whereas the

diversity 1 means the number of different examples cor-

rectly classified by individual NNs. If Si is the correct

response set of the ith NN in the testing set, Xi is the size of

Si, and Xi1;i2;...;ik is the size of the set Si1 \ Si2; . . .;\Sik,
then the diversity 1 of the ensemble is Xi ¼ Xi1;i2;...;ik. For

the glass dataset, DEL produced an ensemble of four NNs

Table 2 Results obtained applying the proposed learning model for 11 benchmark datasets

Dataset Ensemble Epoch Error

Initial Final Training Classification

Cancer 9-4-2-2

9-12-2-2

(9-8-2-2), (9-10-2-2), (9-8-2), (9-10-2) 113 0.01 0.571

Diabetes 8-4-4-2

8-9-4-2

(8-8-4-2), (8-7-4-2), (8-8-2), (8-7-2), (8-8-2), (8-7-2) 212 5.00 22.917

Heart disease 35-9-2-2

35-13-2-2

(35-12-2-2), (35-11-2-2), (35-12-2), (35-11-2), (35-10-2) 85 4.00 15.652

Thyroid 21-8-3-3

21-18-2-3

(21-12-3-3), (21-16-2-3), (21-12-3), (21-16-3), (21-12-3), (21-16-3) 400 0.71 4.444

Credit card 51-10-2-2

51-28-2-2

(51-13-2-2), (51-26-2-2), (51-13-2), (51-26-2), (51-13-2) 350 0.77 12.209

Glass 9-5-7-6

9-11-7-6

(9-10-7-6), (9-9-7-6), (9-10-6), (9-9-6) 300 3.74 26.415

Gene 120-14-5-3

120-18-6-3

(120-17-5-3), (120-16-6-3), (120-18-3), (120-16-3) 275 0.05 10.971

Horse 58-13-2-3

58-18-2-3

(58-17-2-3), (58-16-2-3), (58-17-3), (58-16-3), (58-17-3) 350 6.50 23.077

Letter recognition 16-20-23-26

16-24-23-26

(16-23-23-26), (16-22-23-26), (16-23-26), (16-22-26) 215 0.004 12.2

Mushroom 125-1-2-2

125-7-2-2

(125-4-2-2), (125-6-2-2), (125-4-2) 95 0.002 0.591

Soybean 82-22-7-19

82-26-8-19

(82-25-7-19), (82-24-8-19), (82-25-19), (82-24-19), (82-25-19) 261 0.0006 4.094

Table 3 Comparison of

ensemble’s classification error

with its component NNs for the

glass database

Ensemble/NN Architecture Classification error

Ensemble (9-10-7-6), (9-9-7-6), (9-11-6), (9-9-6) 26.415

NN1 9-10-7-6 30.189

NN2 9-9-7-6 37.736

NN3 9-11-6 32.075

NN4 9-9-6 32.075

Table 4 For the test datasets of glass problem: (a) the accuracy and

intersection of NNs; (b) the measure of diversity of these individual

NNs [61]

(a) Accuracy of NNs

X1 = 37 X2 = 33 X3 = 36 X4 = 36

X12 = 33 X13 = 34 X14 = 34 X23 = 30

X24 = 30 X34 = 34 X123 = 30 X124 = 30

X134 = 33 X234 = 30 X1234 = 29

(b) Diversity of NNs in ensemble

112 = 4 113 = 5 114 = 5 123 = 9

124 = 9 134 = 4 1123 = 7 1124 = 7

1134 = 5 1234 = 5 11234 = 9
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(N1, N2, N3, and N4). The sizes of the correct responses are

S1 = 37, S2 = 33, S3 = 36, and S4 = 36. The large varia-

tions in accuracies are caused by the incremental learning

used by DEL. The ensemble started with N1 and N2 and

trained them. When the two failed to achieve a successful

ensemble, DEL added N3 and N4 at a final step. The size of

S1 \ S2 \ S3 \ S4 was only 29 resulting in diversity 1 = 8

among N1, N2, N3, and N4.

It is demonstrated here that the DEL uses a smaller

number of training cycles to find the dynamic ensemble

architecture with a small classification error. For example,

for the glass dataset DEL with dynamic architecture pro-

duces a final ensemble with only four individual networks.

Only five hidden nodes were added to individual networks

training with constructive algorithm, and two hidden nodes

were deleted from individual networks’ while training with

a pruning algorithm. DEL achieved a classification error of

26.415% for this dataset. According to the comparison with

other algorithms shown in Table 5, DEL achieves the

lowest percentage of classification error.

To demonstrate how a hidden neuron’s output changes

during the entire training period, the hidden neurons’ out-

put for the cancer dataset is shown in Fig. 3. Constructive

algorithm was used for training one network. The indi-

vidual network started the training with one node in its first

hidden layer and two nodes in its second hidden layer.

During the training period, four nodes were added to the

first hidden layer of the network and nodes in second

hidden layer were kept fixed at two nodes. The outputs

stabilize and the convergence curve becomes smooth after

about 100 iterations, indicating that the learning may not

require a very large number of iterations.

Figure 4 shows the training error profile of ensemble for

cancer, heart disease, glass, and soybean datasets. Two

from medical and two from non-medical datasets are

chosen. During the intermediate period of the training,

individual networks were added to the ensemble by con-

structive strategy and hidden nodes were added as well as

deleted from corresponding individual networks using a

hybrid constructive–pruning strategy. For example, for

cancer dataset in Fig. 4, the ensemble started with two

individual networks with architecture (9-4-2-2) and (9-12-

2-2). The NN architecture (9-4-2-2) has 9 inputs, two

hidden layers with 4 and 2 neurons, respectively, and 2

outputs. The NN architecture (9-12-2-2) has 9 inputs, two

hidden layers with 12 and 2 neurons, respectively, and 2

outputs. Constructive algorithms for individual network (9-

4-2-2) and pruning algorithm for individual network (9-12-

2-2) were applied during training. During the training,

individual NNs with architectures (9-4-2) and (9-12-2)

were added to the ensemble. Hidden nodes were added to

individual networks (9-4-2-2) and (9-4-2) as constructive

algorithms were used to train them. Hidden nodes were

deleted from individual networks (9-12-2-2) and (9-4-2) as

these two were trained using pruning algorithm. After

addition of individual networks and hidden nodes by con-

structive strategy and deletion of hidden nodes by pruning

strategy, the final ensemble with individual NN architec-

tures of (9-8-2-2), (9-10-2-2), (9-8-2), and (9-10-2) was

attained.

Figure 5a, b shows the training error profiles of indi-

vidual NNs with constructive algorithm. For example,

Fig. 5a shows the curves of individual networks for which

constructive algorithms were applied starting with archi-

tectures (9-4-2-2) (indicated by solid line) and (9-4-2)

(indicated by dash line) for cancer dataset. At the inter-

mediate period of training, hidden nodes were added to

individual networks by the dynamic node creation (DNC)

method until this node addition increased the performance

of the ensemble. Finally, all these constructive networks in

the ensemble completed training with (9-8-2-2) and (9-8-2)

architectures. Solid lines indicate NNs with 2 hidden lay-

ers, and dash lines indicate NN with single hidden layer

from Figs. 5, 6, 7 and 8.

Figure 6a, b shows training error profiles of individual

NNs with pruning algorithm. The pruning algorithm has an

impact on error profiles which is visible from the non-

smooth curves. Figure 6a shows the curves of individual

NNs applied to cancer dataset starting with (9-12-2-2) and

(9-12-2) architectures. At the intermediate training period,

hidden nodes were deleted from individual networks by the

sensitivity calculation method until this node deletion

increased the performance of the ensemble. Finally, all

these pruning networks in the ensemble ended up training

with (9-10-2-2) and (9-10-2) architectures.

Figure 7a, b shows the curves of hidden nodes addition

to the individual NNs training applying constructive algo-

rithm. In this case, individual networks with small archi-

tecture started training and at the intermediate training

period, hidden nodes were added to the first hidden layer of

the individual network sensitivity by the dynamic node

creation method. For example, Fig. 7a shows the curves of

the hidden nodes addition to individual networks trained

using constructive algorithm for cancer dataset. Here, the

individual network started training with (9-4-2-2) and (9-4-

2) architectures and finally ended up training with (9-8-2-2)

and (9-8-2) architectures.

Figure 8a, b shows the curves of the hidden nodes

deletion from the individual NNs training applying pruning

algorithm. Individual networks with architecture larger

than necessary started training in this case and at the

intermediate training period, hidden nodes that deem not

necessary were deleted from the first hidden layer of the

individual network by the sensitivity calculation method.

Hidden node with the lowest sensitivity was deleted. If

the deleted node does not possess the lowest sensitivity,
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then the weights were restored. For example, Fig. 8a shows

the curves of hidden nodes deletion from individual net-

works training by pruning algorithm for cancer dataset.

Individual networks here started training with (9-12-2-2)

and (9-12-2) architectures and finally completed training

with (9-10-2-2) and (9-10-2) architectures.

Figure 9a, b shows the curves of individual networks

addition during the training period. Individual networks

were added to the ensemble applying constructive strategy.

Initially, the number of NNs in the ensemble was two.

When addition increased the performance of the ensemble,

the number was increased. For example, Fig. 9a shows the

curve of individual network addition to the ensemble for

cancer dataset. The curve shows that network addition to

the ensemble completed training with four networks.

4.5 Correlations among the individual NNs

In Tables 6, 7, and 8, Corij means correlation between

individual networks j and i in the ensemble.

The distinguishable difference between Tables 6 and 7

is the negative correlation strength parameter k = 0.2, so

that the correlation between any two networks is positive in

Table 6. But in Table 7, the negative strength correlation

parameter is k = 1.0 so that in almost all cases the value of

correlation between any two networks is negative.

The distinguishable difference between Tables 8 and 9

is the negative correlation strength parameter k = 0.2 in

Table 8 so that the correlation between any two networks is

positive. But in the case of Table 9, the negative correla-

tion strength parameter is k = 1.0, which results in negative

correlation between any two networks in many cases.
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Fig. 3 The hidden nodes output of a network with initial architecture

(9-4-2-2) and final architecture (9-8-2-2) for the cancer datasets
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Fig. 4 The error profile of the ensemble: cancer dataset; glass dataset;

soybean dataset; and heart disease dataset
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Fig. 5 The error of the individual networks for constructive algo-

rithm: a for the cancer dataset; b for the heart disease dataset. Solid

line indicates NN with 2 hidden layers, and dash line indicates NN

with single hidden layer (shown in Table 2)
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4.6 Comparison

To verify the performance of DEL algorithm, the results

are compared with popular empirical study of ensemble

network by Opitz and Maclin [62], a semi-supervised

ensemble learning algorithm, i.e. SemiNCL by Chen et al.

[50], and a fully semi-supervised ensemble approach to

multiclass semi-supervised classification in two versions,

i.e. CBoost-Sup and CBoost-Semi by Soares et al. [51].

Opitz and Maclin have studied a number of networks such

as a simple NN, an ensemble with varying initial weights,

Bagging ensemble, and Boosting ensemble. They used

resampling based on Arcing and Ada method. A confidence

level of 95% can be achieved by an ensemble method than

a single-component classifier [34]. Opitz and Maclin didn’t

apply thyroid, gene, horse, and mushroom datasets in their

experiments; therefore, the results are not available for

comparison and marked as ‘-’ in the table. Chen et al. [50]

and Soares et al. [51] both have presented test errors by

mean ± standard deviation % with 5%, 10%, and 20% of

labelled data. They also didn’t apply cancer, diabetics,

heart, thyroid, gene, letter, mushroom and soybean datasets

in their experiments; therefore, the results are not available

for comparison and marked as ‘-’ in the table.

5 Discussions

Most of the existing ensemble learning methods use trail-

and-error method to determine the number and architecture

of NNs in the ensemble. Most of them use a two-stage

design process for designing an ensemble. In the first stage,

individual NNs are created, and in the second stage these

NNs are combined. In the ensemble, the number of NNs
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Fig. 6 The error of the individual networks for pruning algorithm:

a for the cancer dataset; b for the heart disease dataset. Solid line

indicates NN with 2 hidden layers and dash line indicates NN with

single hidden layer (shown in Table 2)

0 20 40 60 80 100 120
3

4

5

6

7

8

9

Iterations

N
o.

 H
id

de
n 

N
od

es

(a)

0 20 40 60 80 100 120 140 160
4

5

6

7

8

9

10

11

12

Iterations

N
o.

 H
id

de
n 

N
od

es

(b)

Fig. 7 Hidden nodes addition for individual networks training with

constructive algorithm: a for the cancer dataset; b for the glass

dataset. Solid line indicates NN with 2 hidden layers, and dash line

indicates NN with single hidden layer (shown in Table 2)
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and the number of hidden neurons in the individual net-

works are predefined and fixed. These existing methods use

two cost functions for designing the ensemble. One is for

the accuracy, and another is for diversity. In most of the

existing ensemble methods, individual NNs are trained

independently or sequentially rather than simultaneously,

which lead to loss of interaction among NNs in the

ensemble. In ensemble training, the previously trained

network is not affected.

In DEL, we presented a dynamic approach to determine

the topology of an ensemble. This dynamic approach

determines the number and architecture of the individual

NNs in the ensemble. Such a dynamic approach is entirely

new to designing NN ensemble. In DEL, better diversity

among the NNs has also been maintained. In DEL, con-

structive strategy has been used for automatic determina-

tion of the number of NNs and constructive–pruning

strategy has been used for automatic determination of the

architecture of NNs in the ensemble. The hybrid con-

structive–pruning strategy has provided better diversity for

the whole ensemble (Table 4b). NCL has been used for

diversity of NNs in the ensemble encouraging individual

networks to learn different regions and aspects of data

space. But, if different NNs attempt to learn different

regions with inaccurate architecture, learning will also be

insufficient or improper by this attempt. Different training

sets for individual networks are created which also help

maintaining diversity among the NNs in the ensemble

(Table 4b). In some cases, different training sets were
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Fig. 8 Hidden nodes deletion for individual networks training with

constructive algorithm: a for the cancer dataset; b for the glass

dataset. Solid line indicates NN with 2 hidden layers, and dash line

indicates NN with single hidden layer (shown in Table 2)
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Fig. 9 Individual network addition to the ensemble at the training

period: a for the cancer dataset; b for the soybean dataset

Table 6 Correlation of networks for the cancer dataset for g = 0.1,

k = 0.2. In this case, iteration continued 116. In ensemble, individual

networks required is 4

Cor12 = 0.018309 Cor13 = 0.021606 Cor14 = 0.019284

Cor23 = 0.017636 Cor24 = 0.015741 Cor34 = 0.018576
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created by variation of training examples, and in other

cases by random choice of the training examples. As NN is

a kind of unstable learning, random redistribution of the

training samples has provided better learning in the case of

an unstable learning. Both three- and four-layered indi-

vidual networks were used to design the ensemble.

DEL uses a minimum number of parameters, i.e. only

one correlation strength parameter k. An incremental

training approach has been used in DEL because even after

choosing the appropriate architecture of the ensemble, DEL

has to be trained several times for finding the correct value

of the learning rate parameter and the correlation strength

parameter k. DEL uses only one cost function (the

ensemble error E) during training, not two cost functions,

one for accuracy and the one for diversity used in some

other ensemble method in the literature. DEL uses a one-

stage design process. Individual networks are created and

combined at the same design stage. The advantage of DEL

is that it does not need any separate gating block. DEL uses

the parameter k as a balancing mechanism for bias–vari-

ance–covariance tradeoff. Since DEL generates uncorre-

lated networks in the ensemble, individual networks in this

ensemble are well diversified.

DEL algorithm uses both simple averaging and majority

voting combination methods. For some problems, simple

averaging method performed better, and for some other

problems majority voting method performed better.

Despite problem dependent, the choice of the correlation

strength parameter k is important in DEL. To delete hidden

nodes from individual networks in an ensemble, initially a

network larger than necessary is considered. But, assessing

the initial size of the NN is challenging, which is still an

unknown parameter in DEL algorithm.

6 Conclusions

DEL is a new algorithm for designing and training NN

ensembles. Traditional way of ensemble designing is still a

manual trial-and-error process, whereas DEL is an auto-

matic design approach. The number of NNs and their

architectures are determined by DEL algorithm.

The major benefits of the proposed DEL algorithm

compared to existing ensemble algorithms are (1) auto-

matic creation of ensemble architectures; (2) preservation

of accuracy and diversity among the NNs in the ensemble;

and (3) minimum number of parameters specified by

designer.

DEL emphasizes both accuracy and diversity of NNs in

ensemble to improve the performance. Constructive and

constructive–pruning strategies are used in DEL to achieve

the accuracy of individual NNs. To maintain diversity of

NNs, NCL and different training sets are used. The per-

formance of DEL algorithm was confirmed on benchmark

problems. In almost all cases, DEL outperformed the oth-

ers. However, the performance of DEL needs to be eval-

uated further on some regression and time series problems.
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Table 7 Correlation of networks for the cancer dataset for g = 0.1, k = 1.0

Cor12 = (- 0.006913) Cor13 = 0.013130 Cor14 = (- 0.017219)

Cor23 = (- 0.006320) Cor24 = (- 0.005632) Cor34 = (- 0.005960)

Table 8 Correlation of individual networks for the diabetes dataset

for g = 0.1, k = 0.3. In this case, iteration continued 212. In the

ensemble, the number of individual networks required to complete

training was 6

Cor12 = 0.018343 Cor13 = 0.016651 Cor14 = 0.015793

Cor15 = 0.017334 Cor16 = 0.015708 Cor23 = 0.022907

Cor24 = 0.021727 Cor25 = 0.023847 Cor26 = 0.021609

Cor34 = 0.019722 Cor35 = 0.021647 Cor36 = 0.019616

Cor45 = 0.020531 Cor46 = 0.018605 Cor56 = 0.020420

Table 9 Correlation of networks for the diabetes dataset for g = 0.1,

k = 1.0

Cor12 = 0.024974 Cor13 = 0.006464 Cor14 = 0.000086

Cor15 = 0.029325 Cor16 = (- 0.015724) Cor23 = 0.007256

Cor24 = 0.000096 Cor25 = 0.032919 Cor26 = (- 0.017651)

Cor34 = 0.000025 Cor35 = 0.008520 Cor36 = (- 0.004569)

Cor45 = 0.000113 Cor46 = (- 0.000060) Cor56 = (- 0.020727)
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