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Abstract
Label manipulation attacks are a subclass of data poisoning attacks in adversarial machine learning used against different

applications, such as malware detection. These types of attacks represent a serious threat to detection systems in envi-

ronments having high noise rate or uncertainty, such as complex networks and Internet of Thing (IoT). Recent work in the

literature has suggested using the K-nearest neighboring algorithm to defend against such attacks. However, such an

approach can suffer from low to miss-classification rate accuracy. In this paper, we design an architecture to tackle the

Android malware detection problem in IoT systems. We develop an attack mechanism based on silhouette clustering

method, modified for mobile Android platforms. We proposed two convolutional neural network-type deep learning

algorithms against this Silhouette Clustering-based Label Flipping Attack. We show the effectiveness of these two defense

algorithms—label-based semi-supervised defense and clustering-based semi-supervised defense—in correcting labels

being attacked. We evaluate the performance of the proposed algorithms by varying the various machine learning

parameters on three Android datasets: Drebin, Contagio, and Genome and three types of features: API, intent, and

permission. Our evaluation shows that using random forest feature selection and varying ratios of features can result in an

improvement of up to 19% accuracy when compared with the state-of-the-art method in the literature.

Keywords Adversarial machine learning (AML) � Semi-supervised defense (SSD) � Malware detection � Adversarial

example � Label flipping attacks � Deep learning

1 Introduction

Machine learning (ML) algorithms have the ability to

accurately predict patterns in data. However, some of the

data can come from uncertain and untrustworthy sources.

Attackers can exploit this vulnerability as part of what is

known as adversarial machine learning (AML) attacks.

Poisoning attacks or data poisoning attacks are a subclass

of AML attacks, in which attackers inject malicious data

into the training set in order to compromise the learning

process, and effect the algorithm performance in a targeted

manner. Label flipping attacks are a special type of data

poisoning, in which the attacker can control labels assigned

to a fraction of training points. Label flipping attacks can

significantly diminish the performance of the system, even

if the attacker’s capabilities are otherwise limited. Recent
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work in AML looks into effectiveness of poisoning attacks

in degrading the performance of popular classification

algorithms, such as support vector machines (SVMs) [38],

embedded features selection methods [35, 37], neural net-

works [11], and deep learning systems [25]. Most attacks in

the literature assume attackers can manipulate both features

and labels associated with the poisoning data. However,

sometimes the attacker’s capabilities are limited to

manipulating labels, and he is only able to flip the labels to

fool the ML classifier. These types of attacks are known as

flipping attacks. Deep neural networks (DNNs) have

gained significant success in classifying well-labeled data.

However, label flip-type poisoning attacks can reduce the

accuracy of these algorithms [36]. Therefore, there is a

need for alternative methods for training DNNs that take

label flipping attacks into account. Such methods should be

able to identify and correct mislabeled samples or reweight

the data terms in the loss function according to the

extracted label.

There are a number of works in the literature focused on

identifying and dealing with poisoning attacks. For exam-

ple, an algorithmic method evaluates the impact of each

training sample on the performance of learning algorithms

[4]. Although this method is effective in some cases, it

cannot be generalized to the large dataset. Among other

defensive mechanisms, the outlier detection is used to

identify and remove suspicious samples. But, this method

has a limited performance (i.e., accuracy) against label

flipping attacks [26]. Another category of related works

mainly focuses on learning strategies that can be applied on

flip labels. Such solutions are divided into two categories.

In the first group it can directly learn flipped labels, while

in the second group, it can focus on an extra set of clean

data. In the first case, the label flipping module is used to

identify correctly labeled data [24, 34] and to modify the

changes on the labels to reset the data terms in the loss

function. Performance of this technique is significantly

impacted by its label cleaning precision and its rate of flip

sample estimation. In the second group of methods, an

additional set of clean data is used to guide the learning

agent through flipped data [28]. Despite promising results,

both groups of methods have a common default. They try

to fix the flipped labels, or they reweight the terms for data

points. This default will inevitably cause errors for some

data points.

Motivated by these considerations, in this paper, we

consider the binary classification for sampling and analysis

of Android malware. We only assume the weakest capa-

bility for the attacker. That is, we assume that the attacker

has no perfect knowledge about the learning algorithm, the

loss function optimized by the system, or the initial the

training data and a set of features used by the learning

algorithm. We show that having the system identifying and

retraining the wrong label, and using our proposed semi-

supervised (SS) approach to training will result in better

results. To this end, we suggest a solution that covers the

existing data points that are mislabeled and improves the

accuracy of the classification algorithm. To do so, we

present an architecture for learning flipped data. Then, we

identify a small part of the mislabeled training set, whose

labels are likely to be correct, and the flipped labels asso-

ciated with other data are ignored. Afterward, we train a

deep neural network in a SS manner based on selected data.

1.1 Contributions

In this context, several natural questions are arising, such

as: How can we define attack based on label flipping

algorithm which can fool the classifier? Is it possible to

design an enhanced ML model to improve system security

by presenting some secure algorithms against a given label

flipping attack? How can we tune and test the counter-

measure solutions to deal with label flipping attack? The

answer to these queries is the goal of this paper. More in

detail, the goal of the paper summarizes as follows: First,

we rank the data points within each class and then hold the

label for the points that have higher rankings. If no clean

set is available, the ranking is based on the multi-way

classification neural network, which is trained from the

original training dataset. In fact, a binary classifier is

learned that, while clean labels are available, separates data

containing clean labels and flipped labels. Second, we

apply a temporary ensemble for semi-supervised deep

neural network training. Hence, our original contributions

are as follows:

• We present an architecture for learning flipped data

which reflects our main focus in the malware detection

system.

• We propose a label flipping poisoning technique to

attack the Android malware detection based on deep

learning: where an algorithm is proposed for crafting

efficient prototypes so that the attacker can deceive the

classification algorithm. In this technique, we use

silhouette clustering to find an appropriate sample to

flip its label.

• We introduce a DL-based semi-supervised approach

against label flipping attacks in the malware detection

system called LSD, which uses label propagation and

label spreading algorithms along with CNNs to predict

the correct value of labels for the training set.

• We implement a countermeasure method based on

clustering algorithms as a defense mechanism. It is a

DL-based semi-supervised approach against label flip-

ping attacks in the malware detection system that

improves the detection accuracy of the compromised
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classifier. In this approach, we use four clustering

metrics and validation data to relabeled poisoned labels.

• We conduct our experiments on two scenarios on three

real Android datasets using three feature types com-

pared to the cutting-edge method and deeply analyze

the trade-offs that emerge. The source code of the paper

is available in GitHub [31].

To the best of our knowledge, none of the previous works

in the literature has conducted a similar analysis. The closet

paper to our method is KNN-based semi-supervised

defense (KSSD) [26], in which the authors have entailed

KNN strategy to relabel samples by considering the dis-

tance between them. However, the work in [26] is tailored

to the relabeling of samples, they are unable to specify

some similar samples that may be malware and benign and

may mislabel the features of benign sample due to low

distance of samples. Unlike the [26], in this paper we

explicitly tackle the poisoning samples located far from the

decision boundary and relabel them. Also the defense

method presented in [26] is unable to distinguish overlap-

ping areas of two classes and cannot correctly label the

poisoning samples located there, while our defense meth-

ods impose the model to tackle such data points and rela-

beling them.

1.2 Organization of the paper

We organize the rest of the paper as follows: Sect. 2

overviews the related works. Section 3 details the problem

definition, the presented architecture, and the related

components. Section 4 presents our proposed attack model

inspired by AML architecture and reports the proposed

defense strategies against the raised attack. We evaluate the

performance of the algorithms in Sect. 5. In Sect. 6, we

detail the results of the experiment and provide some open

discussion regarding our method. Section 7 presents con-

clusions and future work. Table 1 shows the important

abbreviations used in this paper.

2 Related work

In this section, we classify the related work in the literature

into two different defense classes: (i) we will cover defense

approaches that try to correct labels in Sect. 2.1, and (ii)

defense strategies that ignore poisoned labels and adopt

semi-supervised learning methods to protect the model

against attacks are then covered in Sect. 2.2. Hence, we

draw conceptual relationships and delineate the most recent

defense strategies applied to tackle the label flipping attack

and identify relevant major alternatives for comparison.

2.1 Defense algorithms against poisoning
attacks

The problem of classification with label noise—mislabel-

ing in class variable—is an active area of research. The

paper [10] gives a comprehensive overview of both the

theoretical and applied aspects of this area. Label flipping

mechanism is a solution to cover label noise in the clas-

sifiers [7]. This method can model the overall label flipping

probability. However, it is lack of considering individual

specific characteristics in label noise. In [19], the authors

create a lightweight method called Curie to protect SVM

classifier against poisoning attacks. The preliminary idea

behind this method is to distinguish the suspicious data

points and remove them outside the dataset before starting

the learning step of the SVM algorithm. In other words,

Curie’s algorithm flips labels in the training dataset to

defend SVM classifiers against poisoning attacks. They

cluster the data in the feature space and try to calculate the

average distance of each point from the other points in the

same cluster with related weight and train model and test in

some datasets. They present that their defense method is

able to correct 95% of samples in the training dataset.

Additionally, the authors in [22] describe a poisoning

algorithm to solve the bi-level optimization problem based

on back-gradient optimization [21]. The proposed algo-

rithm applies automatic differentiation technique to com-

pute the gradient in the optimization problem. This

algorithm using gradient method to resolve the optimiza-

tion problem takes several computational times, and it can

pose challenges in complex networks such as neural net-

works and deep learning. Thus, they apply a novel tech-

nique named back-gradient optimization to allow

computing the gradient of interest in a more computa-

tionally efficient and stable manner to shape their ML

Table 1 Important abbreviations used in this paper

Notations Description

AML Adversarial machine learning

SSL Semi-supervised learning

LSD Label-based semi-supervised defense

CSD Clustering-based semi-supervised defense

KSSD KNN-based semi-supervised defense

GAN Generative adversarial network

CNN Convolutional neural network

LP Label propagation

LS Label spreading

RI Rand index

MI Mutual information

FMI Fowlkes–Mallows index
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model. Authors in [32] explicitly investigate data poisoning

attacks for the semi-online setting, unlike other works

which are mostly based on the offline setting. The work in

[29] argues that it is possible to perform targeted attacks on

specific testing data without declining the overall perfor-

mance of classifier along with any control of adversary

over the labeling of training data. The methodology pro-

posed in [3] is suitable to identify and remove poisonous

data in IoT systems. This method, mainly, exploits data

provenance to identify manipulated data before the training

step to improve the performance of classification. Com-

pared to our method, the defense method presented in [3]

cannot correctly label the poisoning samples while our

defense methods impose the model to tackle such data

points and relabeling them. The work in [6] focuses on

building an automatic robust multiple kernel-based logistic

regression classifier against poisoning attacks without

applying any cross-validation. Despite the fact that pro-

posed classifier may improve performance and learning

speed, it does suffer from the lack of any theoretical

guarantees. To address this issue, they extend their method

and entail new structure to resist the negative effect of

random label noise as well as a wide range of non-random

label noises [5].

2.2 Semi-supervised learning defense
algorithms

Another active area of research is the one dealing with

learning from unlabeled data. The semi-supervised learning

approach, along with applying unlabeled data to learn

better models, is particularly relevant to our work. The

semi-supervised approaches include multi-view learning

like [9], co-training [28, 33], graph-based methods like

[15], and semi-supervised ML solutions like SVM [20],

and our proposed work (DL-based semi-supervised solu-

tion). These approaches try to tackle that many successful

learning algorithms need access to a large set of labeled

data. To address this issue, i.e., lack of availability of

labeled data, a combination of tri-training with a deep

model is used in [9] to build Tri-Net, which can use mas-

sive set of unlabeled data to help to learn with limited

labeled data. The semi-supervised deep learning model

generates three modules to exploit unlabeled data by con-

sidering model initialization, diversity augmentation, and

pseudo-label editing. Graph-based transduction approach

that works through the propagation of few labels, called

label propagation, was used in [15] to improve the clas-

sification performances and obtain estimated labels. This

method consists of two steps. In the first step, the classifier

trains through labeled and predicts pseudo-labeled. In the

second step, the nearest neighbor graph constructs based on

the previous trained classifier. A limitation to this approach

is that practically graph models are often mis-specified.

However, this could potentially be overcome by employing

highly expressive model families like neural networks [17].

Hence, in S3VM method [20], the authors adopt the SVM

solution to find the flipped label examples in a dataset and

improve the safeness of the semi-supervised support vector

machines (S3VM). They indicate that the performance of

their method is not statistically significantly worse than the

solution shaped with labeled data alone. The major limi-

tation of this method is that it is not easy to use such

method for large amounts of noisy samples and outliers,

and it exponentially reduces ML performance.

3 System model and proposed architecture

In this section, we first provide a formal definition our

problem (Sect. 3.1). Then, in Sect. 3.2, we introduce the

proposed Android malware detection architecture used in

the paper. In particular, Fig. 1 will describe the compo-

nents of the proposed architecture.

3.1 Problem definition

Consider the datasets as follows.

D ¼ fðxi; yiÞ 2 ðX; YÞg; i ¼ 1; . . .; n ð1Þ

where n is the number of malware samples. If xi has the j

feature, we have xij ¼ 1. Otherwise xij ¼ 0, and

X � f0; 1gk—a k-dimensional space. The variable y rep-

resents the label of the samples with yi 2 f0; 1g and the D

set has an unknown distribution on X � Y . We assume the

training set is defined as follows.

S ¼ fðxk; ykÞg; k ¼ 1; . . .;m ð2Þ

where S is the label set. The flipping attack label aims to

find a collection such as P containing samples in S so that

when their labels are flipped, it minimizes the desired

target for the attacker. For simplicity, we assume that the

attacker’s goal is to maximize the loss function which we

define it as Lðw; ðxj; yjÞÞ.

3.2 Proposed architecture

In this section, we present our architecture to tackle the

Android malware detection problem in IoT systems

(Fig. 1).

In Fig. 1, we present a general scheme of our proposed

architecture and the proposed attack and defense algo-

rithms which use for Android applications. In this archi-

tecture, we assume a complex set of IoT devices (i.e., IoT

systems), which are communicating with each other,
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represented by the yellow oval in the figure. We assume

that some of the IoT devices are using Android OS plat-

forms. We also assume that an attacker can get access to

some of the IoT devices. Hence, he can manipulate the data

they transferring to each other. As a result, the data traffic

of each Android data can include those from malware apps,

represented by the black Android app symbol in our figure.

Each Android app, whether malware and benign, presents

as a vector of different features with various labels. ML

algorithms exposed to adversary attacks can add a variety

of perturbations to data to fool ML algorithms. Hence, in

this architecture, an adversary can get access to the dataset

and flip the labels by adding some perturbation of existing

labels. Our feature selection component gives the ability to

select the choice of features. We then generate a binary

vector of each Android app and input the result to the ML

model. A final component of our architecture is the

detection system composed of the ML model and our

proposed defense algorithms. Our architecture can increase

the robustness of our detection system against label flip-

ping attacks and increase the accuracy of malware/benign

classifications. In the following section, we explore our

attack and defense algorithms.

4 Proposed attack and defensive solutions

In this section, the proposed classification algorithm used

in the paper is described first in Sect. 4.1. We then describe

our attack strategy, inspired by silhouette clustering

method in Sect. 4.2. Section 4.3 presents our two defense

solutions against the attack proposed in the previous sec-

tion. Finally, we report the computational complexity of

our strategies in Sect. 4.4.

4.1 Classification algorithm

In this paper, we incorporate a deep CNN to classify the

binary samples. We adopt the overfitting method to find out

how good our dataset size is. Shift invariant or CNN is a

multilayer perceptron strategy to tackle the fully connected

neurons in each layer and help to prone the overfitting data

and can include more complex patterns. To do so, we try to

classify our data using a training set and then repeat the

classification using cross-validation. If we increase the data

size, it gives better results in CNN classification

processing.

Figure 2 presents the proposed CNN architecture for the

classification algorithm. In this figure, we can see that we

apply three sequential layers of one-dimensional convolu-

tion (Conv-1D) that has 16, 32, and 64 filters. In each of

Fig. 1 Architecture overview of

proposed method.

ML ¼ machine learning; SLFA

is our attack method and LSD

and CSD are our defense

methods
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these layers, we have kernel size with value 2 and stride

with value 2. We apply maxpooling between the convo-

lution layers to prevent overfitting by reducing the com-

putational load, memory, and number of parameters. Each

maxpooling layer creates four pool sizes with two strides.

After applying three convolutional layers, we adopt a

flattened layer and a dense layer. In the dense layer, we use

Adam optimizer and Sigmoid activation function to shape

the classification algorithm and the outside of the dense

layer is the classified data.

4.2 Attack strategy: Silhouette Clustering-based
Label Flipping Attack (SCLFA)

In this subsection, we apply silhouette clustering method to

flip the labels. We name this attack Silhouette Clustering-

based Label Flipping Attack (SCLFA). Silhouette cluster-

ing is a type of clustering technique in which we can

interpret and validate the consistency of data clusters.

Silhouette provides a concise visual presentation object

classifications. This technique defines a measurement

called silhouette value (SV) that expresses the self-cluster

similarity or cohesion of per object comported to other

clusters or separation, which is between ½�1; 1�. If the

silhouette value is one, it presents well matching of the

object to its own cluster and is less likeness to other

neighboring clusters. If the majority of the objects in a

cluster have high SVs, it indicates that the cluster objects

and the clustering are appropriately configured. We utilize

a Euclidean distance method to calculate the SV in this

paper. We define the label flipping attack (LFA) as follows:

Definition 1 LFA in SCLFA: LFA is a type of attack that

the attacker tries to use some algorithms to modify the

label of features and changes the interval of each sample in

a cluster. In this paper, we use the silhouette clustering

algorithm to implement LFA. To put it simply, in SCLFA,

we assign an interval ½�1; 1� for each sample, which

indicates whether the sample is in the correct cluster. If the

silhouette value (SV) is negative, it means that the selected

sample is a good candidate for flipping the label, and

according to the silhouette algorithm, it is definitely

belonging to another cluster. Hence, we change the label of

such sample. Let Li be the label of the i-th sample out of n

samples in the dataset. Thus, we can write it as Eq. (3):

Li ¼
ðxi; yiÞ; SV[ 0

ðxi; j1 � yijÞ; otherwise

�
ð3Þ

Algorithm 1 presents the label flipping poisoning attack.

Description of Algorithm 1. In this algorithm, we present

the proposed method, SCLFA, for the flipping label of the

training sample. This method is based on the K-means

clustering algorithm. In this way, we first create a model

based on the K-means algorithm that divides the X train

samples into two clusters and predicts the label for each

sample (lines 1–2). Then, in line 3, we calculate the sil-

houette values for samples and predicted labels for the

samples. As previously stated, values close to 1 indicate

that the sample is fitted in the appropriate cluster, and as

the values of silhouette are less than 1 and close to �1, it

means that the sample is clustered incorrectly. In the pro-

posed method, we flipped the label of samples that have a

silhouette value less than zero. In this way, we probably

have chosen the examples that have the potential to be in

the other cluster (lines 4–8).

Fig. 2 Proposed classification algorithm architecture. Conv ¼ convolution; ðA;B;CÞ ¼ ðfilters, kernel size, strideÞ; ðC;DÞ ¼ ðpool size, strideÞ
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4.3 Defensive strategies

In this subsection, we discuss these countermeasures

against the label flipping attack. In detail, we describe

label-based semi-supervised defense (LSD) and clustering-

based semi-supervised defense (CSD), which are presented

in Sects. 4.3.1 and 4.3.2, respectively. In this paper, we

assume our data are only partially labeled. Our defense

strategies begin by investigating which validation data in

training samples may have been flipped. It would then

predict new labels for these data and replace their labels.

Figure 3 shows the overview of the semi-supervised

learning (SSL) model for both defense strategies.

4.3.1 LSD defense

In this section, we design LSD algorithm to give a priority

between semi-monitoring learning (SML) methods. In

other words, we adopt validation data as inputs of SML

algorithms to predict the label for each sample and then

rank the predicted labels. The goal of the LSD algorithm is

to find the samples for which the labels in the flipped

training set are likely to have the correct values. Then, we

need to give the selected data and its labels to the SSL

algorithm. We need to create a validation set to monitor the

training process and select the suitable parameters. That is,

in the LSD method, we first rank the data points within

each class and then hold the label for the points that have

the highest rankings. If no clean set is available, ranking is

applied which is designed based on the multi-way classi-

fication neural network. Hence, ranking is trained from the

original training dataset. In fact, in this defense mecha-

nism, we try to learn a binary classifier, while clean labels

are available. Then, we separate data containing clean

labels and flipped labels. Formally speaking, in this defense

strategy, in the first stage, we apply the label propagation

(LP) algorithm to assign the labels to unlabeled data points.

Then, in the next stage, we use label spreading (LS) to

minimize the noises happen in labeling the samples. In the

LSD method, we plan to design a method which works like

an ensemble learning such that it uses propagation models

to predict labels for flipping. In this way, we provide a two-

stage framework for learning flipped labels. In the fol-

lowing, we describe LP and LS.

• Label propagation (LP) LP is a type of semi-supervised

ML algorithm that can give a label to the unlabeled

sample data. First, LP gives labels a small dataset of

samples and makes classifications. In other work, LP

aims to propose the labels to the unlabeled data points.

That is, LP helps to find the community structure in real

complex networks [2]. LP compared to the other

practical methods in the literature has much lower

processing time and could support a priori information

needed about the network structure, and it does not

require any knowledge of data point and samples before

propagation. However, LP could produce several solu-

tions for each set of data points.

• Label spreading (LS) LS algorithm is a type of

propagation method that can apply the normalized

graph Laplacian and soft clamping in an affinity matrix

to influence on the labels. It also can diminish the

regularization properties of a loss function and make it

robust against the noise [18]. LS algorithm repeats on

the modified version of a graph of data points and can

normalize the edge weights by computing the normal-

ized graph Laplacian matrix.

LP and LS algorithms create on a kernel of the system in

which positively effect on the performance of the algorithm

and enhance the chance of scalability of the problem. To be

precise, and as an example, the RBF kernel can generate a

fully connected graph that can demonstrate a dense matrix.

Such big size matrix, in each iteration, could join with the

cost performance of full matrix multiplication calculation

and results in increasing the time complexity, which causes

a problem for scalable case studies. In this paper, we fix the

problem by utilizing LP and LS algorithms on a KNN

kernel system which provides much more memory-friendly

sparse matrix and can exponentially save on execution

latency.

In the first stage of LSD algorithm, we use validation set

to train the LP and LS algorithms. Then, we use these

algorithms to predict labels of training set. At the same

time, we train the CNN classifier with the validation data

and predict new labels for training set samples. In the

second stage, we use voting between all available labels,

i.e., LP output, label spreading, CNN predicted labels, and

poisoned labels.

In the second stage of LSD algorithm, we apply a

temporary ensembling for semi-supervised deep neural

network training. Then, we present a semi-supervised two-

stage algorithm for training flipped labels, which include

two main components. We discover and select some

samples from the labeled training set, for which there are

strong indications that their labels are correct. Afterward,

we aim to learn a semi-supervised deep neural network that

only uses the selected labels from the first previous stage.

Finally, the ML model network can easily classify previ-

ously unseen test data. We summarize the proposed LSD

countermeasure algorithm in Algorithm 2.

Fig. 3 Overview of SSL model
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Description of Algorithm 2 It presents the semi-supervised

defense, which is based on Label estimation. As seen in

this algorithm, in lines 3–5, the label spreading algorithm is

applied, which is used to find labels of training data. The

label spreading algorithm is trained using validation data

and then created a model used to predict labels of training

data. Similarly, lines 6–8 use the label propagation algo-

rithm to predict training data labels. This algorithm, like

the label spreading algorithm, is a semi-supervised algo-

rithm. In lines 9 and 10 of this algorithm, convolutional

neural network as the third part of the ensemble learning

approach is used, which is trained with validation data and

is used to predict the training data label. The final part of

the LSD method is the voting between the results of the

three methods described and the poisoned label, which is

the result of voting as the label for training samples.

4.3.2 CSD defense

The main idea behind this approach is to use clustering

techniques to correct flipped labels. As each of the clus-

tering methods has its specific measure, in this method it is

suggested to use the voting between the labels determined

by different clustering methods for determining the label of

the flipped samples. Hence, we use four indices to analyze

the accuracy of our generated clusters and the predicted

one and identify the most likely adversarial examples and

flip their labels.

Description of Algorithm 3 In this algorithm, we explain

the CSD method. In lines 1–3 of this algorithm, we use the

proposed CNN model and validation data and predict the

labels of the training data. In lines 4–7, the algorithm

describes four cluster metrics, namely RI, MI, HM, and

FMI, and computes their values. Each of these metrics is a

measure for the accuracy of clustering. The main idea

behind this approach is that the training samples are labeled

in such a way that the mentioned measure does not differ

significantly from the values calculated from the validation

data. Therefore, in lines 8–16, we add one sample of the

training data to the validation dataset, calculate the values

of the clustering with four metrics, and compare them with

the base values. If the difference is less than 0.1 (i.e., we

consider as a threshold), then we consider the sample to be

properly labeled. As a result, the output of this algorithm is

the labeled sample, which can be used as a validation data

and selected sample for training the ML model.

The indices are defined as below.

• Rand index (RI) Rand measure/index is a statistical

index to calculate the similarity between two data

clusterings [27]. It is a value between zero and one such

that zero indicates that two sets of clustered data do not

have any pair point and one indicates that the data

clustering is the same. Also, RI can be used to adjust a

group for elements that we called them adjusted Rand

index. In other words, RI is a metric of the accuracy of

two sets of data points, which represents the frequency

of occurrence of total pairs. Formally speaking, RI

presents the probability of how can we randomly select

two pairs X1 and X2 in two partitions of the same big

set.

• Mutual information (MI) MI, or information gain, is a

measure to realize the amount of information and

dependency between two separate variables by observ-

ing them [23]. It is a type of entropy of a random

variable that can understand the joint distribution of a

pair data point which calculates by the product of the

marginal distribution of those pair samples. Since the
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data we are dealing with are fallen in the group of

discrete data with discrete distribution, we can calculate

the I MI of two jointly discrete random variables X1

and X2 as follows:

IðX1;X2Þ ¼
X
x12X1

X
x22X2

pðX1;X2Þðx1; x2Þ log2

pðX1;X2Þðx1; x2Þ
pX1

ðx1ÞpX2
ðx2Þ

� � ð4Þ

where pðX1;X2Þ is a joint probability mass function for

the two samples of X1 and X2 , and pX1
is a marginal

probability of sample X1 and pX2
is a marginal proba-

bility of sample X2.

• Homogeneity metric (HM) This metric uses for vali-

dating the data points which are members of a single

class. HM is independent of being changed the score

value of data point when a permutation of the class or

labels is applied [14]. We can define HM values as

HM as follows:

HM ¼ 1 � HðYT jYPRÞ
HðYTÞ

ð5Þ

where HM can be between 0 and 1. Note that low

values of HM explain a low homogeneity or vice

versa. If we have a sample data Y, we define YPR, YT are

the predicted and the corrected values for that sample;

hence, HðYTÞ is the HM value for that sample when it is

correctly placed and predicted to be placed in one single

class, respectively. Besides, the
HðYT jYPRÞ
HðYT Þ indicates that

the predicted sample is not placed correctly in a single

class. We aim to approach this fraction smaller and

reach it to zero ðHM ! 1Þ. We can achieve this goal

when we reduce the knowledge of YPR and diminish the

uncertainty of YT that results in the fraction above

become smaller, and we have HM around 1.

• Fowlkes–Mallows index (FMI) Fowlkes–Mallows

Index (FMI) metric is a popular metric to understand

the similarity between two generated clusters, whether

hierarchical or benchmark classification clusters [12].

The higher similarity between two clusters (created

cluster and the benchmark one) indicates higher FMI

values. FMI is an accurate metric used to evaluate the

unrelated data and also is reliable even with added

noises to the data results.

4.4 Computational complexity

In following section, we evaluate computational com-

plexity analysis on the presented attack and defensive

methods. Assume that the number of samples in X train

and X validation is n and m, respectively. We list the

computational complexity of the methods. So, we have

• Time complexity of SCLFA attack Focusing on SCLFA,

the computation of all possible configurations in lines

1–2 of Algorithm 1 creates a model based on the K-

means method and predicts the correct n training

samples, resulting in Oðn2 � kÞ. Since, in this method,

k ¼ 2, the time complexity is in the order of Oðn2Þ. In

line 3 of this algorithm, silhouette values are computed

for n training data samples, which has a complexity of

Oðn2Þ. Lines 4–8 of the algorithm include a for loop

that performs the correction of the m validating labels

and has a complexity of OðmÞ. Overall, the computa-

tional complexity of Algorithm 1 is in the order of

Oðn2Þ þ Oðn2Þ þ OðmÞ=Oðn2Þ, 8 n � m.

• Time complexity of LSD defense Focusing on LSD, the

computation of Algorithm 2 directly relates to the LS

method, which has a complexity of OðnÞ. Similarly, in

lines 6–8, the model is based on the LP algorithm, which

has a complexity of OðnÞ. Then, lines 9 and 10 present

CNN model creating, according to [13], which has a

computational complexity of all convolutional layers.

CNN computational complexity is OðRd
i¼1nðl�1Þ�

s2
l � m2

l Þ, where l is the index of a convolutional layer;

d is the depth (number of convolutional layers); nl is the

width or the number of filters in the lth layer–nðl1Þ is the

number of input channels of the l-th layer; sl is the spatial

size (length) of the filter; and ml is the spatial size of the

output feature of CNN which has a time complexity in the

order of Oðn3Þ. Then, we perform voting between results

that has a complexity of Oð1Þ (line 11). Overall, the

computational complexity of LSD defense algorithm is

OðnÞ þ OðnÞ þ Oðn3Þ þ Oð1Þ=Oðn3Þ.
• Time complexity of CSD defense Focusing on CSD, the

computation of Algorithm 3 relies on CNN model

construction based on validation data (lines 1–2). Then,

we predict the label for training data samples based on

this generated ML model. Therefore, the computational

complexity of this part is in the order of Oðn3Þ.
Focusing on the RI, MI, HM and FMI clustering metric

calculations, they have a complexity of OðnÞ (lines 4–

7). Then, we calculate the values of these parameters

for m samples. Hence, the complexity of this loop of the

CSD algorithm is in the order of Oðn� mÞ (lines 8–16).

As a result, the overall computational complexity of

CSD defense method is Oðn� mÞ þ Oðn3Þþ
OðnÞ=Oðn3Þ,8 n � m.

5 Experimental evaluation

In this section, we report the results of our proposed attack

and defense algorithms in different scenarios: with feature

selection consideration (WFS) and without feature
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selection consideration (WoFS). Given the two scenarios,

we conduct our experiments on our attack (SCLFA) and

defense algorithms (LSD and CSD) against KNN-based

semi-supervised defense (KSSD) [26]. The source code of

the paper is available in GitHub [31].

5.1 Simulation setup

We describe the test metrics, datasets, features, classifica-

tion parameter, and comparison defense algorithm below.

5.1.1 Test metrics

To provide a comprehensive evaluation of our attack and

defense algorithms, we use the following indices: accuracy,

precision, recall, false-positive rate (FPR), true-negative

rate (TNR), miss rate (FNR), F1-score, and area under

cover (AUC):

• Accuracy Accuracy metric is defined in:

Acc ¼ Xþ v
Xþ vþ Kþ m

ð6Þ

where X is true positive; v is true negative; K is false

positive; and m is false negative metrics.

• Precision Precision is the fraction of relevant samples

between the retrieved samples which is shown in

Precision ¼ X
Xþ K

ð7Þ

• Recall The recall is expressed in

Recall ¼ X
Xþ m

ð8Þ

• F1-score This metric defines as a harmonic mean of

precision and recall which is defined as

F1-Score ¼ 1
1

Recall
þ 1

Precision

¼ 2 � Precision � Recall

Precision þ Recall

ð9Þ

• False-positive rate (FPR) This metric represents a ratio

between the number of negative events incorrectly

classified as positive (false positives) and the total

number of actual negative events. This metric is

described in Eq. (10):

FPR ¼ K
Kþ v

ð10Þ

• Area under curve (AUC) AUC measures the trade-off

between misclassification rate and FPR. This metric can

be calculated as (11):

AUC ¼ 1

2

X
Xþ K

þ v
vþ K

� �
ð11Þ

• False negative rate (FNR) This metric is a method for

determining the case that the condition does not hold,

while in fact it does. In this work, we also called it miss

rate. This metrics can be calculated as (12):

FNR ¼ m
mþ X

ð12Þ

5.1.2 Datasets

Our experiments utilized the following three datasets:

• Drebin dataset This dataset is an Android example

collection that we can apply directly. The Drebin

dataset includes 118,505 applications/samples from

various Android sources [1].

• Contagio dataset It consists of 11,960 mobile malware

samples and 16,800 benign samples [8].

• Genome dataset This dataset is an Android example

which is supported by the National Science Foundation

(NSF) project of the United States. From August 2010

to October 2011, the authors collected about 1200

samples of Android malware from different categories

as a genome dataset [16].

5.1.3 Features

In this paper, we consider various malicious sample fea-

tures like permissions, APIs and intents. We summarize

them as follows:

• Permission Permission is a essential profile of an

Android application (apk) file that includes information

about the application. The Android operating system

processes these permission files before installation.

• API API feature monitors various calls to APIs on an

Android OS, such as sending SMS or accessing a user’s

location.

• Intent Intent feature applies to represent the communi-

cation between different components which is known as

a medium.

5.1.4 Parameter setting

We rank the features to better manage the huge amount of

features using the RandomForestRegressor algorithm.

Then, we repeat our experiments for 300 manifest features

with higher ranks to determine the optimal number of

features for modification in each method. In each test, we

randomly consider 60% of the dataset as training samples,
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20% as validation samples, and 20% as testing samples.

We run our experiments on an 8-core Intel Core i7 with

speed 4 GHz with 16 GB RAM on an OS Win10 64-bit.

5.1.5 Comparison of defense algorithms

We compare our proposed algorithms to defend against

label flipping attacks with KNN-based semi-supervised

defense (KSSD) [26] and GAN-based defense [30]. The

comparison results show that our proposed methods are

more robust in detecting label flipping attacks. In the KSSD

method, authors adopt K-nearest neighbor (KNN) method

to mitigate the effect of label flipping attacks. A relabeling

mechanism for suspected malicious malware is suggested.

The KNN algorithm uses the training set to assign a label to

each sample. The aim is to ensure the homogeneity of the

label between the close examples, especially in areas that

are far from the decision boundary. In the training set,

authors first select K-nearest neighbors using the Euclidean

distance. Then, if the fraction of the data points that are

among the most commonly enclosed labels in K are equal

to or greater than the threshold of t with 0:5	 t	 1 they

select them. The training sample available in the K-nearest

neighbor is relabeled with the most common label. Given

that we only have two types of labels in detecting malware,

they assign the dominant label in K to the nearest neighbor

to the sample. Algorithm 4 presents the KSSD defense.

We indicate that poisoning sample points that are far

from the decision boundary are likely to be relabeled and

reduce the negative performance consequences on the

classification algorithm. Although the algorithm gains

validation of genuine points at the same time, i.e., in areas

where the two classes overlap (especially for values of t

close to 0.5), we can have a similar amount of the correct

points that are labeled in two classes, and it confirms that

the KSSD label correction solutions presented in Algo-

rithm 4 must be the same for the two classes. Therefore,

this type of labeling shall not considerably influence the

classification algorithm.

Another comparison made in this paper is the GAN-

based defense presented in [30]. Algorithm 5 illustrates the

proposed method in this study. This algorithm works by

generating new samples to train the machine learning

model again. Specifically, in this paper, we use the GAN as

a synthetic data generator set. GAN has two functions

called Generator and Discriminator. The former one can

modify the less likely malware samples. To do so, in the

training phase, it selects one random feature from the

highest ranked features with zero value. Then, it changes

the selected feature value to one to generate new sample. In

the latter function, the GAN uses this function as a clas-

sifier to predict the class variable. It modifies the features

until the discriminator function is cheated and labels such a

sample among the benign samples. Besides, we gather the

wrongly estimated malware samples into a synthetic data

generator set. Besides, we use 80% of the synthetic data

generator set with the training dataset to update the AML

model. We use the remaining synthetic data generator

samples (i.e., 20% of the data samples) with the test dataset

to test/analyze the classification. It is found that the pro-

posed methods even outperform the GAN-based method,

since the proposed GAN is only flipping-focused research

with respect to the important features of decision making,

while the proposed methods in this paper are based on the

value of labels.

5.2 Experimental results

In this section, we test our presented attack algorithm

(SCLFA) on our originally trained classifiers and validate

our defense algorithms (LSD and CSD) against adversarial

label flipped examples (KSSD) and GAN-based synthetic

data generator on the above three Android malware

datasets.
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5.2.1 Comparing methods based on precision, recall, F1-
score

In this test scenario, we aim to compare the defense

algorithms (Fig. 4) and attack method compares with the

data without triggering the data, i.e., no-attack (Fig. 5).

Specifically, in Fig. 4, we provide precision, recall, and F1-

score values for different defense algorithms. Both recall

(sensitivity) and precision (specificity) metrics indicate

generated errors. The recall is a measure that could show

the rate of total detected malware. That is, the proportion of

those correctly identified is the sum of all malware (i.e.,

those that are correctly identified by the malware plus those

that are incorrectly detected by benign). Our goal in this

section is to design a model with high recall that is more

appropriate to identify malware. To give more insight,

Fig. 4a–i reports the permission, API and intent data for the

Drebin, Contagio, and Genome datasets, respectively.

Three considerations hold in this figure: (i) the value of

precision/recall and even F1-score for KSSD algorithm and

GAN-based algorithm is clearly lower than our LSD and

CSD methods (as expected), and it confirms that our pro-

posed defense algorithm is able to identify the more benign

samples compared to other methods correctly. (ii) CSD

algorithm has higher precision and recall values compared

to the LSD algorithm. (iii) In this feature group, our pro-

posed algorithms have a higher precision/recall/F1-score

value for intent-type features in all datasets compared to

two other feature sets in which our defense algorithm can

detect more benign samples correctly in different data

samples.
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Fig. 4 Comparison between DEFENSE algorithms with reference to precision, recall, and F1-Score for API, intent and permission features in

various datasets
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Focusing on the attack consequences, Fig. 5 presents the

precision, recall, and F1-score values for our attack algo-

rithm, SCLFA, and the similar data when there is no any

attack triggered for the ranked selected features and all

three datasets with full features. In this figure, we under-

stand that our attack strategy can completely fool the ML

model and impose to falsify classification and exponen-

tially decrease the precision and recall values. It can be

seen that the diminishing rate is about 45% for intent

features in all three datasets and its ratio is higher for

Drebin dataset (the precision/recall pair bars in Fig. 5c). It

is considering that the feature selection has a positive

influence on the ML performance. From the attacker point

of view, it is essential to impact negatively the ML model

classification ability. Thus, our attack strategy gives the

lead for such cases, and its adverse effects are more

apparent in Contagio API features, where SCLFA influ-

ences on both selected features and full feature scenarios

and can misclassify about 23% of the samples (the pair bars

in Fig. 5d).

5.2.2 Comparing methods based on FPR and accuracy

In this part, we present the FPR and accuracy values for the

attack and defense algorithms for nine states, which con-

sists of three features and three datasets, and show them in

Fig. 6. The attack algorithm aims to increase the FPR rate,

and defense algorithm seeks to improve the accuracy and

decrease the FPR rate accordingly. Considering these

points, we evaluate the algorithms on two mentioned
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various datasets
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scenarios: considering full features (labeled ‘‘�F’’) and

feature selection scenario (labeled as ‘‘�Selc’’).

Focusing on Fig. 6a, we compare our attack algorithm

(SCLFA) with the no-attack mode for two mentioned

scenarios. As we can understand from this figure, our

SCLFA label flipping method compared to the no-attack

mode poses problem for all nine states (i.e., listed in the x-

axis of the figure) and results in lower accuracy to all

feature types and their major drastic are higher in intent

features for all datasets (see the ‘X’ shape marks in the

lower part of Fig. 6a). In this case, the accuracy has

dropped more than 20% compared to the absence of an

attack. It confirms that the proposed attack method is more

successful in attack to the intent features. In all datasets,

the algorithms behave roughly the same, and the reduction

in the accuracy of the API is more intense. As we see, the

accuracy of the proposed attack method in the case of using

all data is lower than that of the 300 features.

Focusing on Fig. 6b, we compare the accuracy of

defense algorithms for full-featured and selected features

scenarios. In this figure, almost in all cases, the CSD

method can provide higher accuracy than other defense

algorithms (the blue mark points in Fig. 6b) and is fallen in

a range of (62%, 98%). Therefore, it can detect more

benign samples. The CSD method is more accurate than

LSD in all 9 states, and its average accuracy is about 95%,

97.6% and 98.5% for full feature consideration scenario in

Drebin, Contagio and Gnome datasets, respectively, while

this value for KSSD defense algorithm is about 80%, 79%

and 77%, respectively.

Focusing on Fig. 6c, the FPR value of our attack algo-

rithm (SCLFA) is compared to the time we have no attack

in datasets. Concerning the intent features in all datasets,

the SCLFA algorithm, it has an FPR value and can fool

more malware samples compared to other features in all

datasets. In other words, increasing the FPR values means

increasing the number of false positives, which is the goal

of an attacker, and as can be seen from the comparison of

Fig. 6c with a, by increasing FPR, the accuracy value

decreases. As a result, the results of these two fig-

ures confirm each other.
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Focusing on Fig. 6d, we compare the FPR values of

defense algorithms. From this figure, we can understand

that the CSD algorithm tries to decrease the FPR values

more than two other defense algorithms in most of the

states. It is important to note that having high accuracy

does not mean that the defense algorithm can successfully

protect the dataset against the poisoning data, and it is

essential to decrease the FPR in that state. Hence, we need

to point-to-point check each state of this figure with a

similar state in Fig. 6b. From these comparisons, we con-

clude that the CSD algorithm performs better than LSD and

KSSD.

5.2.3 Comparing methods based on FNR and AUC

In this part of our work, we compare the AUC and FNR

values for attack and defense algorithms over three datasets

using three different feature sets. In Table 2, we present

these results for two scenarios: with feature selection

(WFS) and full features or without feature selection

(WoFS). Concerning the FNR concept, it shows the mis-

classification rate of data in a dataset. In the flipping attack,

the FNR rate increases, and it decreases with defense

algorithms. Also, the AUC and FNR values indicate that by

performing a flipping attack on the labels, FNR values

increase and AUC values decrease. The AUC and FNR

values are based on Eqs. (11) and (12) which relates to true

negative (K) and true positive (X). FNR and AUC values

with increasing FPR rates during an attack increase the X
value and are pleasant for the attacker. Defense strategies

try to decrease the FNR or miss rate of malware sample

corrections and help to increase the AUC. In Table 2, we

understand that both of our defense algorithms have higher

AUC and lower FNR rate for all datasets, and they confirm

our recently mentioned points.

5.2.4 Computational complexity comparisons

In this part of the paper, we compare the computational

complexity of our attack and the defense algorithms against

(KSSD) [26] and GAN-based Defense [30]. Table 3 com-

pares the time required for the testing phase of various

datasets and different features among the different pro-

posed algorithms for ranked features using RF and without

feature selection methods. In this table, focusing on the

defense algorithms, the implementation of KSSD defense

is the fastest compared to LSD, CSD, and GAN-based

algorithms. The reason behind it is that it randomly selects

and modifies the label of the features. However, its accu-

racy is much lower than LSD and CSD algorithms (the

Table 2 AUC and FNR comparisons in percent (%) for presented algorithms in various features, datasets in two test scenarios: WFS and WoFS

Other ML metrics Datasets

Ratio (%) Drebin Contagio Genome

Algorithms File type WoFS WFS WoFS WFS WoFS WFS

FNR AUC FNR AUC FNR AUC FNR FNR FNR AUC FNR AUC

Attack

SCLFA Permission 10.71 82.64 11.71 60.56 6.67 59.06 23.79 60.76 5.95 96.21 3.46 68.80

API 16.59 83.22 12.43 80.78 29.70 94.35 25.75 92.91 32.29 74.40 25.86 70.24

Intents 49.21 62.97 7.94 42.28 45.83 95.87 3.21 43.55 45.22 94.26 0.31 48.32

Defenses

LSD Permission 2.17 93.90 2.33 70.77 1.65 80.32 0.81 61.64 1.29 93.89 2.05 68.65

API 6.62 90.77 5.65 88.44 6.59 95.34 11.13 94.03 7.40 96.59 12.15 55.23

Intents 10.20 91.97 0.43 43.70 6.28 89.42 0.75 50.07 7.27 91.82 0.53 50.41

CSD Permission 1.44 95.08 3.22 73.98 0.94 93.18 0.84 91.36 1.33 97.06 1.58 69.07

API 2.53 98.40 2.04 98.28 1.47 95.05 0.42 91.39 0.84 98.42 0.65 96.83

Intents 2 93.74 0.54 45.60 1.75 93.18 0.55 50.31 1.10 94.12 0.40 51.43

GANX [30] Permission 48.95 47.00 11.06 70.93 47.91 0.54 25.28 61.19 33.62 55.49 3.51 69.14

API 11.11 87.37 12.46 78.92 16.96 93.80 20.78 95.58 27.26 59.77 24.78 70.76

Intents 87.35 8.96 6.99 43.50 33.46 57.75 2.10 71.60 26.36 60.84 0.57 83.29

KSSD [26] Permission 4.95 91.17 11.58 70.59 3.53 61.88 25.19 90.94 5.60 90.91 3.72 68.57

API 10.78 86.27 12.46 78.92 19.81 94.45 23.27 94.25 19.91 72.48 24.73 71

Intents 39.10 70.93 6.91 42.39 35.11 89.02 2.35 44.58 41.79 90.04 0.30 50.51

WFS With feature selection, WoFS without feature selection
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curves in Fig. 6b). However, both LSD and CSD algo-

rithms require processing of the DL algorithm on the

malicious dataset, with the LSD and GAN being the

slowest method among the four methods in correcting the

labels of poisoning samples.

Focusing on the computational complexity of ranked

features scenario, we can understand that the LSD and CSD

methods, running faster in intent and permission features

and these results are even quicker when we compared them

with API feature cases. We can conclude that the distri-

bution of API features may require more computations in

calculating LSD and CSD, and this is a normal behavior of

the algorithms. Because in the feature selection, we select

300 API features that have the highest rank based on the

RF feature selection algorithm, and this covers about 95%

of the API features from every data sets, but the selection

of 300 features from intents and permission intends

selecting at most 20% of the main features. Therefore, the

computational complexity of the proposed algorithm over

the API features when the 300 features are chosen is close

to the state in which all the features are used.

Focusing on the computational complexity of full fea-

ture comparisons scenario, we can see that since the

number of API features is much less than the intents and

permissions, the computational time of proposed algo-

rithms is less on these features. Similarly, we can conceive

the same results for the computational complexity of pro-

posed algorithms on the permission features than the

results of intent features (the permission row values for

WFoS cases in all datasets in Table 3). Also, from Table 3

we can realize that the proposed methods are slower than

the KSSD method. However, as we understand from the

comparisons of ML metrics, the KSSD method is a weak

method for label flipping attack (LFA) compared to our

proposed defense algorithms.

Additionally, the computational time of CSD with tak-

ing into account the high accuracy of this method and its

take less running time compared to the LSD method. So,

this behavior converts the CSD method into an attractive

way to defend against the LFA. Another point to be added

about the time of the LSD method is to consider the

structure of the method in which a CNN network is used,

whose time complexity is at least Oðn3Þ and this can be the

major drawback when it compares to the CSD algorithm.

6 Discussions

In the following, we explain the achievements and some

constraints on our attack and defense algorithms. From the

results, we can conclude that the proposed methods based

on semi-supervised learning can modify the flipped labels

to increase the accuracy of classification methods, includ-

ing CNN. Despite the promising results achieved by our

attack and defense algorithms, it is clear that our approa-

ches have some intrinsic limitations. Firstly, the critical

Table 3 Computational

complexity comparisons in

seconds (s) for presented

algorithms in various features,

datasets in two test scenarios:

WFS and WoFS

Computational complexity Datasets

Time (s) Drebin Contagio Genome

Algorithms File type WoFS WFS WoFS WFS WoFS WFS

Attack

SCLFA Permission 140.09 4.04 87.66 3.56 130.10 3.11

API 7.14 4.71 4.84 3.88 4.21 3.74

Intents 150.99 3.83 209.89 2.87 106.07 2.92

Defenses

LSD Permission 385.79 101.16 417.62 107.81 348.62 106.02

API 123.91 114.64 117.35 112.75 109.87 105.38

Intents 963.97 105.17 747.98 96.81 501.85 108.10

CSD Permission 148.15 11.50 118.77 9.51 123.45 9.16

API 21.76 15.77 17.22 13.27 14.56 12.77

Intents 281.83 11.26 235.24 9.21 198.63 11.42

KSSD [26] Permission 95.90 5.20 83.91 4.15 90.83 5.16

API 9.95 7.59 8.53 6.46 8.41 6.42

Intents 210.99 5.17 206.77 4.12 146.55 5.12

GAN [30] Permission 425.13 211.64 471.33 194.55 394.65 176.38

API 94.23 67.45 86.56 64.75 75.34 57.14

Intents 515.41 276.54 495.32 209.21 436.97 196.45

WFS With feature selection, WoFS without feature selection

14796 Neural Computing and Applications (2020) 32:14781–14800

123



point in the proposed methods is the need for more cal-

culations. Notably, the use of a CNN in the LSD method

increases the computational complexity of this method.

Secondly, the proposed malware detection algorithms

implement static features, and the features are binary and

are in the sparse matrix. Hence, it is easier to calculate

clustering measures. However, for other applications, it

may not be possible to perform calculations of the clus-

tering measures efficiently.

Another limitation of our defense methods is the clas-

sification algorithm used in this paper. Formally speaking,

in this work, we design a three-layer CNN, which has high

accuracy, and use CNN to investigate the results of the

proposed algorithms. The classification accuracy with other

classification algorithms is another issue that needs to be

addressed. The accuracy and FPR in the comparison fig-

ures indicate that when the feature selection applied (sec-

ond scenario), the proposed methods still have

acceptable values for these two measurements, but LSD

and CSD algorithms running faster than the case that

testing of the full features are employed (as expected and

visible).

7 Conclusions and future work

In this paper, we design an attack and two defense algo-

rithms which target Android malware detection system,

namely a Silhouette-based Label Flipping Attack

(SCLFA), a label-based semi-supervised defense algorithm

(LSD), and a clustering-based semi-supervised defense

(CSD) algorithm. We compare our defense algorithms

against the KNN-based label flipping attack on Android

mobile dataset using three public datasets, i.e., the Drebin,

Genome, and Contagio datasets, using different API, intent

and permission features. We test our models on a CNN

classification algorithm. The comparison of proposed CSD

and LSD methods against the KSSD method reveals that

the proposed methods have higher accuracy than the

KSSD, while the KSSD algorithm is faster. To be precise,

the CSD algorithm is slightly slower than the KSSD

algorithm, but since in many cases, it has approximately

19% higher accuracy than the KSSD and has about 15%

lower FPR compared to the KSSD. For future work, we

suggest using semi-supervised methods based on deep

learning techniques, such as autoencoder and various types

of GAN networks. They can be used along with clustering

techniques. Using these methods as an ensemble learning

can provide excellent results against label flipping attacks.
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Appendix

In this section, we explain why we select CNN classifier as

the main classification algorithm applied in the paper. To

this end, we tested our attack and defense algorithms

against the KSSD [26] and GANX [30] defense algorithms

on present various classifications algorithms, namely RF,

SVM, DR, NN and CNN, and compute accuracy and FPR

metrics for different features to study on different datasets.

Table 4 presents the results. As the results presented in this

table, with the change of the classification algorithm, there

is no significant difference in the superiority of one method

to another. However, from this table, we conclude that the

accuracy of CNN classification method for all the attack

and defense algorithms compared to other classification

methods in all datasets for all features is higher. Similarly,

the FPR rate of CNN method is lower compared with other

classification methods. As a result, we select CNN method

to design our ML model for attack and defense algorithms.
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Table 4 Testing the proposed methods (attacks and defenses) using training classification algorithms tested on API, permission and intent

features in various datasets

Algs. RF SVM DT NN CNN

Acc FPR Acc FPR Acc FPR Acc FPR Acc FPR

Drebin

API

No-A 98.00 3.81 98.40 2.08 97.85 2.25 97.78 4.58 98.45 2.70

SCLFA 83.03 28.81 83.37 27.58 82.24 27.63 82.75 29.92 83.42 28.08

LSD 90.92 17.91 91.29 16.46 90.74 16.56 90.67 18.87 91.34 17.01

CSD 97.39 3.63 97.78 1.90 97.23 2.07 97.16 4.40 97.83 2.52

KSSD [26] 82.27 31.56 82.61 30.38 82.06 30.42 81.99 32.70 82.66 30.87

GANX [30] 82.82 28.31 82.90 28.38 82.54 27.72 84.67 25.79 83.30 29.07

Permission

No-A 86.61 39.86 87.02 38.31 87.71 39.02 87.23 38.36 87.07 38.76

SCLFA 74.97 59.97 75.38 58.52 76.23 58.44 75.59 58.88 75.42 58.88

LSD 85.85 45.10 86.26 43.59 85.90 43.04 86.47 43.71 86.30 44.01

CSD 86.59 40.03 87.00 38.49 87.52 39.46 87.21 38.54 87.04 38.93

KSSD [26] 79.31 44.41 79.72 42.88 80.70 42.78 79.93 43.00 79.77 43.31

GANX [30] 79.86 45.69 80.00 40.89 83.23 43.22 82.46 39.68 80.34 43.03

Intents

No-A 78.26 85.81 78.53 85.37 77.76 86.39 77.93 85.62 78.38 86.10

SCLFA 68.75 87.04 69.01 86.68 68.25 87.54 68.41 86.87 68.86 87.30

LSD 75.50 87.32 75.76 86.93 74.99 87.85 75.16 87.13 75.61 87.59

CSD 77.98 86.18 78.24 85.74 77.48 86.76 77.64 85.98 78.10 86.47

KSSD [26] 70.68 88.66 70.94 88.28 70.17 89.20 70.34 98.94 70.79 88.94

GANX [30] 70.53 92.07 71.22 86.13 72.56 88.16 67.96 98.90 72.82 89.21

Contagio

API

No-A 98.45 2.70 98.45 6.72 98.27 6.38 97.11 10.36 97.95 12.90

SCLFA 75.97 9.52 75.79 9.28 74.98 11.17 75.48 15.84 75.62 12.32

LSD 89.28 7.84 89.10 7.54 88.60 8.02 88.78 14.08 88.92 10.60

CSD 98.39 12.61 98.21 12.46 97.42 14.08 97.89 19.06 98.04 15.47

KSSD [26] 78.44 7.28 78.25 6.96 77.67 8.31 77.94 99.72 78.08 10.03

GANX [30] 79.11 9.27 78.60 0.86 80.49 9.46 80.72 99.67 80.43 7.84

Permission

No-A 98.30 12.02 98.30 8.61 98.87 10.73 97.60 18.10 97.95 15.02

SCLFA 72.09 65.40 72.09 62.61 72.15 68.14 71.39 73.93 71.74 69.67

LSD 92.83 65.40 92.83 62.61 93.29 68.14 92.13 73.93 92.48 69.67

CSD 98.07 12.61 98.07 9.20 98.63 11.36 97.37 18.71 97.72 15.62

KSSD [26] 70.89 64.81 82.30 8.22 72.43 42.89 70.19 73.31 70.54 69.07

GANX [30] 70.86 74.68 82.52 7.38 75.11 43.89 73.93 56.29 70.54 68.69

Intents

No-A 90.43 92.81 90.43 92.81 91.75 75.07 90.37 85.87 96.84 29.13

SCLFA 80.49 98.11 80.49 98.11 81.80 87.50 80.51 93.75 86.89 61.55

LSD 89.06 93.24 89.06 93.24 90.43 77.00 89.01 86.90 95.47 35.77

CSD 90.11 94.03 90.11 94.03 91.43 76.27 90.05 87.02 96.52 30.54

KSSD [26] 81.92 96.98 81.92 96.98 83.24 86.06 81.93 92.53 88.33 59.18

GANX [30] 82.09 90.09 82.27 92.58 81.51 89.36 84.16 75.34 91.49 49.46
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