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1  Introduction

Contemporary machine learning has to deal with escalat-
ing complexity of problems appearing with the increasing 
prevalence of data. Standard classification methods are often 
unable to capture complex patterns or cannot maintain their 
generalization capabilities, leading to either under- or over-
fitting. Therefore, models that can capture multi-dimensional 
data properties while avoiding mentioned pitfalls are very 
desirable. Classifier ensemble, known also as multiple clas-
sifier system or classifier committee [37], is an example of 
such an approach. By combining predictions of a number 
of simpler models, the classifier ensembles can produce a 
more efficient and flexible recognition systems, at the same 
time benefiting from the high generality of the base classi-
fiers [17].

To ensure a satisfactory performance, several require-
ments have to be met by an ensemble. Perhaps the most 
important one is the need to supply a pool of a diverse 
classifiers [34]. This could be achieved in a various ways, 
e.g., by training every learner on the basis of a different 
features. The motivation behind this approach is twofold: 
firstly, to simplify the training procedure by reducing the 
number of features used by each learner and at the same 
time allowing the learner to explore different properties of 
the supplied subspaces [11]. The most notable examples of 
techniques relying on partitioning features into subspaces 
include Random Subspace (RS) [15] and Random Forest 
(RF) [5] methods. While simple and computationally effi-
cient, such approaches have a major drawback. Due to the 
random nature of the feature subset construction process, 
they are inherently unstable, prone to producing models 
of a poor quality in the worst-case scenarios. Additionally, 
for each run of these algorithms one will obtain different 
feature subsets and thus different base classifiers. It should 
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be underlined that in the real-life applications the stability 
is often a necessary component, which significantly limits 
the use of the mentioned methods, particularly the Random 
Subspace approach.

To overcome this limitation, we consider how the fea-
ture subspaces can be constructed in a guided way, in order 
to make the resulting classifier ensemble more stable and 
less prone to producing under-performing base learners. As 
a result of our investigation, we present a novel approach, 
which allows to form feature subspaces in a fully determin-
istic manner. It is based on the same idea as the previously 
mentioned methods, namely creating an ensemble of a 
simpler, diverse classifiers, each trained on a feature sub-
set. However, instead of a stochastic subspace generation 
procedure, the proposed approach employs a guided search 
strategy. It assigns the new features greedily in a round-robin 
fashion, based on the defined feature quality and the sub-
space diversity measures. The final decision of the ensemble 
is made using the majority voting rule. Proposed method 
is as flexible as the Random Subspace approach and can 
work with any type of base learners. However, the created 
ensemble is more stable and uses the information about the 
predictive power of individual features.

The main contributions of the work are as follows:

•	 Proposition of the new classifier ensemble learning algo-
rithm, Deterministic Subspace (DS), which allows form-
ing a set of diverse classifiers trained on selected features, 
where the attributes used by the base classifiers are being 
chosen by a guided search strategy.

•	 Improvement over random subspace selection, leading to 
stable ensemble forming procedure.

•	 Extensive experimental results on a set of benchmark 
datasets, which evaluate the dependency among the qual-
ity of DS algorithm, its parameters and chosen model of 
base classifiers.

•	 Proving the high usefulness of the proposed DS approach 
for specific classifiers that take advantage of creating less 
correlated subspaces.

The rest of this paper is organized as follows. Section 2 pre-
sents related works on the subject of ensemble classification. 
In Sect. 3, Deterministic Subspace method is discussed. Sec-
tion 4 describes conducted experimental study and obtained 
results. Finally, Sect. 5 summarizes our findings.

2 � Related work

Ensemble classification methods have several proper-
ties that make them one of the most prevalent techniques 
in supervised learning domain. Perhaps most importantly, 
models produced using this paradigm tend to be capable of 

approximating complex decision boundaries while remain-
ing resilient to overfitting. Performance gain is possible by 
exploiting local competencies of base learners. At the same 
time, ensembles incorporate mechanisms that prevent from 
choosing the worst learner from the pool [20]. Additionally, 
this approach is highly flexible. The parameters of learners 
are often easily adjustable, and the training procedure can 
be parallelized without much effort.

Even though ensembles solve some of the issues related 
to the classification problems, at the same time they intro-
duce several new challenges related to their design. Neces-
sity of providing a diverse pool of learners while preserv-
ing their individual accuracies [36] is the one on which we 
will focus in this paper. This issue is especially severe due 
to the ambiguity of this term. Proposing an agreed upon 
definition of diversity remains an important open question 
[6], particularly in context of classification task. Existing 
diversity measures are therefore only approximations. The 
exact extent of diversity influence on ensemble performance 
remains unclear [12]. At the same time, it is hard to argue 
that learners should display some differing characteristics, 
since adding identical models would not contribute to effi-
cacy of formed ensemble.

Diversity may be introduced to the ensemble on many 
different levels, often as a combination of factors. Main 
approaches include:

•	 Varying learning models by using either completely dif-
ferent classification algorithms or the same algorithms 
with modified hyperparameters.

•	 Varying outputs of learners by decomposing classifica-
tion task, for instance into binary problems.

•	 Varying inputs of learners by supplying different par-
titions of dataset or different feature subspaces during 
training.

In the case of heterogeneous ensembles, one assumes that 
using different learners will be sufficient to ensure diver-
sity. Indeed, in many situations modifying learning para-
digm may lead to obtaining significantly different decision 
boundaries. Selection process is crucial when applying this 
approach, to reduce the chance of using similar outputs pro-
duced by different models. Entire family of dynamic clas-
sifier selection methods is worth mentioning, as they offer 
a flexible ensemble line-up for each incoming sample [33].

Alternatively, instead of using entirely different models 
one may rather train them using different set of hyperpa-
rameters or initial conditions. This approach is based on the 
assumption of existence of complex search space during 
the training, which could lead to reaching different local 
extrema. Most notable examples of this method include 
ensembles of neural networks with early stopping condition 
[35] or Support Vector Machines with varying kernels [32].
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Another approach is based on manipulating the classifier 
outputs. Common techniques rely on a multi-class decompo-
sition, after which specialized learners, trained to recognize 
reduced number of classes, are obtained. Dedicated combina-
tion method, such as Error-Correcting Output Codes [25], 
is being used to reconstruct original multi-class task. Most 
notable examples of this type of technique include binari-
zation [13], hierarchical decomposition [27] and classifier 
chains [22].

Diversity may be also induced by input manipulation in 
either data or feature space. The former approach relies on 
assumption that variance is being introduced into the train-
ing instances, which enables learners to capture properties of 
different subsets of objects [29]. Bagging [30] and Boosting 
[2] are most significant realizations of this approach, but 
ensembles may also be trained on the basis of clusters to 
preserve spatial relations among instances [10].

Finally, one may increase the diversity by manipulating 
the feature space. This could be done in either randomized 
[21] or guided manner, using feature selection [8] or global 
optimization methods [7, 24]. The most notable techniques 
based on this paradigm are previously mentioned Random 
Subspace and Random Forest methods. Both of them rely on 
randomly created feature subspaces to increase the diversity 
of the ensemble.

Despite its simplicity, the Random Subspace method has 
gained a popularity in the machine learning community. Its 
main advantage over Random Forest lies in flexibility, as it 
can be used with an any type of base learners [31]. There are 
several interesting variations of this approach that appeared 
in recent years. Polikar et al. [28] proposed Learn++.MF, 
a modification of popular Learn++ algorithm that utilized 
Random Subspaces in order to handle missing values in 
classified instances. In case of incomplete information, only 
classifiers trained on available features were used for the 
classification phase. Li et al. [18] used Random Subspaces 
together with distance-based lazy learners and combined 
them using Dempster’s rule. Mert et al. [23] developed a 
weighted combination of Random Subspaces, where weight 
assigned to each of them was based on their ability to pro-
vide a good class separability. Random Subspaces have also 
been successfully used for semi-supervised learning. Yaslan 
and Cataltepe [39] used randomized set of features for co-
training an ensemble of classifiers, while Yu et al. [40] used 
them for a semi-supervised dimensional reduction using 
graphs. Recent work by Carbonneau et al. [9] proved that 
this method offers very good performance in multi-instance 
learning. Another reason behind popularity of Random Sub-
spaces approach lies in many successful applications of this 
technique to solving real-life problems. Plumpton et al. [26] 
used it for real-time classification of fMRI data, Xia et al. 
[38] for hyperspectral image analysis, while Zhu and Xue 
[41] combined it with tensor analysis for face recognition.

However, significant drawback of Random Subspace 
approach (as well as of Random Forest) lies in its purely 
random nature. Therefore, it lacks any deterministic element 
that would allow to maintain stability or ensure that the same 
model will be trained for given data in every repetition. This 
is especially crucial for real-life applications, where a final 
model is required for some purposes, e.g., being embedded 
in a hardware unit. Some researchers tried to improve the 
stability of this method [19]; however, no fully deterministic 
solution was proposed so far.

3 � Deterministic subspace method

Due to the random subspace creation procedure, RS and 
RF are conceptually simple and computationally efficient 
methods. However, there is a probability that due to their 
stochastic components, the produced subspaces may lack the 
discriminative power necessary for a proper separation of 
classes. Additionally, even if individually strong subspaces 
are created, the lack of diversity among them may deteriorate 
performance of the ensemble. In that sense, these methods 
may be viewed as unstable. Furthermore, random techniques 
could be somewhat unsatisfying: Even if they produce highly 
accurate models, it might be unclear what make them good.

To overcome these limitations, we propose an alternative 
to the RS method, a Deterministic Subspace (DS) approach. 
Our main goal here is to offer a stable and deterministic sub-
stitute for the RS method. In this section, a detailed descrip-
tion of the algorithm will be given, along with a discussion 
of several feature quality and subspace diversity measures 
that may be used as its components.

3.1 � Algorithm

The proposed algorithm is based on the idea of creating sub-
spaces incrementally, in a manner guided by both the qual-
ity of individual subspaces and the diversity of the whole 
ensemble. The preference toward either quality or diversity 
can be adjusted by modifying the algorithms hyperparam-
eter �. For the approach to be computationally feasible, we 
had to make several simplifications. Firstly, we create the 
subspaces in a greedy manner based on a round-robin strat-
egy, which may produce a non-optimal solution. Secondly, 
we make a strong assumption that a subspace consisting of 
individually strong features is itself of a high quality. This 
assumption does not have to hold in practice; in fact, it can 
be easily shown that two weak features can together have a 
high discriminant power [14]. However, it was necessary to 
make training on a highly dimensional data feasible. The 
proposed algorithm has three parameters:
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•	 the number of subspaces to be created k,
•	 the number of features selected for every subspace n,
•	 the weight coefficient �, indicating preference toward either 

the feature quality or the diversity.

Lower values of � lead to creation of more diverse subspaces, 
with features allocated close to evenly among them. On the 
other hand, by choosing a higher value we force the algorithm 
to pick the individually strong features more often. Setting � 
to 0 would make the algorithm disregard feature quality com-
pletely, whereas setting it to 1 would result in creation of a 
single subspace, consisting of individually strongest features.

Smaller number of features per subspace n should, in prin-
ciple, result in producing weaker base learners. Additionally, 
the subspaces created in that case are more diverse, since there 
is less overlap between their features. Larger number of sub-
spaces k leads to creation of bigger ensemble, at the same time 
decreasing the diversity of the subspaces.

3.2 � Diversity measure

It is intuitive that increasing the classifier ensemble diversity 
should lead to a better accuracy, but on the other hand there 
is no formal proof of this dependency [4]. Several different 
approaches to measuring the diversity of classifier ensemble 
have been proposed in the existing literature. However, most 
of them rely on predictions made by classifiers [3] and as a 
result are computationally expensive. We propose a naive, 
yet fast approach based on measuring evenness of the feature 
spread among the subspaces.

Let S denote the set of the existing subspaces and Sj stand 
for the jth subspace. Let  be a set of the available features 
 = {x(1), x(2),… , x(d)}. Consider inserting additional feature 
x(c) into the currently considered subspace Sj. We define a 
diversity metric div_m(S, Sj, x(c)) as an average of two compo-
nents: the proportion of existing subspaces already containing 
the considered feature div_mx(S, x

(c)) and the distance to the 
most similar subspace div_ms(S, Sj):

where:

and:

By minimizing the proposed metric, we ensure that the fea-
tures are spread evenly among the subspaces, which should 

(1)div_m
(
S, Sj, x

(c)
)
=

div_mx

(
S, x(c)

)
+ div_ms(S, Sj)

2
,

(2)div_mx

(
S, x(c)

)
= 1 −

|||
{
Sj ∶ x(c) ∈ Sj

}|||
|S| ,

(3)div_ms(S, Sj) = 1 −max
j≠l

|||Sj ∩ Sl
|||

|Sj| .

contribute toward creation of a diverse set of learners. We 
make an underlying assumption that large groups of features 
are not highly correlated, in which case the proposed dissimi-
larity would be too simplistic. In practice, the situations that 
would lead to a complete failure of the proposed metric are 
very rare.

3.3 � Quality measures

As mentioned before, the estimation of subspace quality is 
based on the strength of the individual predictors. Using 
only the individually strong features not necessarily will 
improve the discriminative power of the subspace, or even 
more so of the whole ensemble. However, we claim that 
reducing frequency of the occurrence of the weak predic-
tors will, on average, result in an increased performance.

Table 1   Details of datasets used throughout the experiment

No. Name Features Objects Classes

1 winequality 11 6497 11
2 vowel 13 990 11
3 vehicle 18 846 4
4 segment 19 2310 7
5 ring 20 7400 2
6 thyroid 21 7200 3
7 mushroom 22 5644 2
8 chronic kidney 24 157 2
9 wdbc 30 569 2
10 ionosphere 33 351 2
11 dermatology 34 358 6
12 texture 40 5500 11
13 biodegradation 41 1055 2
14 spectfheart 44 267 2
15 spambase 57 4597 2
16 sonar 60 208 2
17 splice 60 3190 3
18 optdigits 64 5620 10
19 mice protein 80 552 8
20 coil2000 85 9822 2
21 movement libras 90 360 15

Table 2   Values of base classifiers hyperparameters

Classifier Parameters

kNN k = 5
SVM kernel = linear, C = 1.0
ParzenKDE window size = 1.0
NNKDE kernel = Gaussian, bandwidth = 1.0
GMM covariance = diagonal, iterations = 100
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Let us denote the ith class label, encoded as an integer, as 
i ∈  = {1, 2,… ,M}. Furthermore, let  = {(x1, i1),

(x2, i2),… , (x
n
, i
n
)} be the learning set consisting of n obser-

vations, x(c) = [x
(c)

1
, x

(c)

2
,… , x(c)

n
] be the vector of observations 

of feature x(c), and i = [i1, i2,… , in] be the vector of class 

labels associated with observations. We define the classifica-
tion accuracy on kth fold, obtained by using a single feature 
x(c), as Acc(x(c), k). Marginal probabilities of x(c) and  as 
p(x

(c)

j
) and p(i), respectively, and their joint probability as 

p(x
(c)

j
, i). Covariance of x(c) and i as cov(x(c), i), and standard 

deviation as �
x
(c) and �

i
. We propose three different measures. 

First and foremost, a twofold cross-validation accuracy on 
the training data qual_macc(xc) was obtained while training 
on the individual features:

It provides a conceptually simple metric with an important 
property of being adaptable to the type of chosen learner. 
However, depending on the dimensionality of the data it 
might require training a large number of classifiers. Because 
of that, we propose two alternative measures.

The first one is the mutual information between the feature 
and the target qual_mmi(xc):

(4)qual_macc(xc) =
1

2

2∑
k=1

Acc(xc, k).

(5)qual_mmi(xc) =

M�
i=1

n�
j=1

p(x
(c)

j
, i) log

⎛
⎜⎜⎝

p(x
(c)

j
, i)

p(x
(c)

j
) p(i)

⎞
⎟⎟⎠
,

while the second one is the population Pearson correlation 
between the cth feature and the labels:

Because the probability characteristics of the classification 
tasks are usually unknown, therefore we use the appropriate 
estimators as the sample correlation coefficient, which is 
used to estimate the population Pearson correlation.

The idea behind using the proposed measures is to accelerate 
the learning process without a significant loss of the accuracy.

The pseudocode of the Deterministic Subspace algorithm 
is presented in Algorithm 1.

Algorithm 1 Deterministic Subspace algorithm
1: Input: set of features X = {x(1), x(2), ..., x(d)}
2: Parameters: number of subspaces k, number of features

per subspace n, weight coefficient α, feature quality mea-
sure qual m(x(c))

3: Output: feature subspaces S
4: for i = 1 to k do
5: Si ←− ∅
6: end for
7: repeat
8: for i = 1 to k do
9: for c = 1 to d do
10: if xc /∈ Si then
11: fscore(x(c)) ←− α× qual m(x(c)) + (1− α)×

div m(S, Si, x(c))
12: end if
13: end for
14: xbest ←− argmaxx(c) fscore(x(c))
15: Si ←− Si ∪ xbest

16: end for
17: until every subspace consists of n features
18: return S

(6)qual_mcorr(xc) =
cov(x

(c)
, i)

�
x
(c)�

i

.

Fig. 1   Correct classification rates (CCR) averaged over all datasets 
and examined number of subspaces for Random Subspace and Deter-
ministic Subspace algorithms. Three different feature quality meas-

ures were considered in combination with Deterministic Subspace 
method, namely accuracy, mutual information and correlation
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Fig. 2   Correct classification rates for specific datasets and base learners. The accuracy was used as a feature quality measure
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4 � Experimental study

In this section, we present a detailed description of the con-
ducted experimental study and perform an analysis of the 
obtained results. The main goal was to evaluate whether 
proposed deterministic approach is capable of achieving at 
least as high accuracy as the RS method. Secondly, we tried 
to establish whether, and if so under what conditions, DS can 
actually outperform the RS method. Finally, we compared 
the both approaches with another popular method relying on 
the creation of a random feature subspaces, Random Forest.

4.1 � Set‑up

All experiments were implemented in Python programming 
language; code sufficient to repeat them was made publicly 
available at.1 Whenever possible, the existing implementa-
tions of the classification algorithms from the scikit-learn 
machine learning library2 were used to limit the possibility 
of a programming errors.

Performance of the considered algorithms was evaluated 
on the basis of 21 benchmark datasets with varying number 
of objects and features. All of them were taken from the 
UCI3 and the KEEL4 repositories and, as such, are publicly 
available. The detailed parameters of the datasets are pre-
sented in Table 1. For every dataset, 5 × 2-fold partitions 
were randomly created and used during the experiments. 
These partitions are available together with the code.

Seven classifiers were evaluated during the experiments, 
namely CART, k-nearest neighbors (kNN), linear support 
vector machine (SVM), Naïve Bayes, Parzen window kernel 
density estimation (ParzenKDE), nearest neighbor kernel 
density estimation (NNKDE) and Gaussian mixture model 
(GMM). First four were tested in the initial stage of the 
experiment, with partial results published in [16], and were 
chosen to cover different types of algorithms. After obtain-
ing the results, the remaining three classifiers were evalu-
ated to establish whether trends observable for Naïve Bayes 
extend to other types of nonparametric classifiers.

The hyperparameters specific for the particular classifi-
cation methods were constant throughout the experiments. 
Whenever possible, their default values provided in the cor-
responding scikit-learn modules were used. The most sig-
nificant parameters are presented in Table 2. Different num-
bers of subspaces k ∈ {5, 10,… , 50} were evaluated in all 
cases. Number of features per subspace used by RS and DS 
methods was fixed at half the total number of the features. 

Additionally, the quality coefficients � ∈ {0.0, 0.1,… , 1.0} 
and three different quality metrics, namely twofold cross-
validation accuracy on training set, mutual information 
between the features and the labels, and absolute value of 
correlation between the two were tested for the DS approach. 
Finally, varying number of trees ∈ {5, 10, ..., 50} was used in 
combination with the Random Forest method.

4.2 � Results

Average accuracy of proposed method for different classifi-
cation algorithms, quality measures and quality coefficients 
� is presented in Fig. 1. Only selection of � parameters was 
shown to improve the clarity of the presentation. Most sig-
nificant changes in the algorithms behavior were observed 
for the selected values. The classification accuracy of the RS 
method is used as a baseline. The average scores for specific 
base learners and datasets are to be found in Fig. 2, where 
accuracy was used as a feature quality metric. Results of 
the combined 5 × 2 cross-validation F test [1] are depicted 
in Fig. 3. It presents, for all k and � parameters, difference 
between the number of datasets on which proposed method 
achieved statistically significantly better and worse results 
than its random counterpart. Finally, the average rankings 
obtained from Friedman N × N test are given in Table 3. 
Once again, only a subset of considered � parameters and a 
single quality measure, twofold cross-validation accuracy, 
was presented for clarity. In addition to deterministic and 
random feature subspace methods, performance of Random 
Forest classifier was also reported in this step. The complete 
results of the experimental study can be found at.5

4.3 � Discussion

Presented results indicate that DS can achieve not only sim-
ilar performance as random methods but also, depending 
on the type of classifier used, significantly outperform it. 
Observed accuracy gain was especially high with certain 
types of nonparametric classifiers, namely Naïve Bayes, 
Gaussian mixture models and Parzen kernel density esti-
mation. In all of these cases, large values of � returned the 
best performance, which corresponds to favoring individu-
ally strong features over higher diversity. This may be caused 
by the nature of considered classifiers that assume low or no 
correlation among features and thus directly benefit from 
the way DS algorithm creates feature subspaces for its base 
learners.

In the second group of classifiers consisting of CART, 
k-nearest neighbors, SVM and nearest neighbors kernel 
density estimation choosing large values of � actually led to 

5  mkoziarski.com/deterministic-feature-subspace-method.

1  github.com/michalkoziarski/DeterministicSubspace.
2  scikit-learn.org/stable.
3  archive.ics.uci.edu/ml/datasets.html.
4  sci2s.ugr.es/keel/datasets.php.

http://mkoziarski.com/deterministic-feature-subspace-method
http://github.com/michalkoziarski/DeterministicSubspace
http://scikit-learn.org/stable
http://archive.ics.uci.edu/ml/datasets.html
http://sci2s.ugr.es/keel/datasets.php
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performance drop. Behavior of proposed method was more 
stable with small values of �: For all tested classifiers, aver-
age rank was slightly higher than with RS method in that 
setting. Most notably, when combined with decision tree, 
proposed method achieved highest average rank for a par-
ticular choice of �, higher than Random Forest classifier.

Despite lower computational complexity, alternative 
measures of feature quality, namely mutual information 
and correlation, resulted on average in degradation of 
performance.

Overall, the proposed method operated in two distin-
guishable modes. The first one, in which small values of 
� parameter were applied, presents comparable alternative 
to RS approach offering slightly higher performance and 
sought-after stability. The second one, with setting � to 
higher values, requires greater care but can lead to signifi-
cantly better results when combined with particular types 
of classifiers.

5 � Conclusions and future work

The novel classification method Deterministic Subspace 
based on the feature subspaces was proposed and evaluated 
throughout this study. During the experiments, we estab-
lished that it presents stable alternative to the Random Sub-
space approach, also capable of outperforming the Random 
Forest method with a proper choice of classifiers. How-
ever, in contrast to the random methods, the Deterministic 

Subspace algorithm always returns the same model for a 
given learning dataset. Additionally, we observed that the 
proposed method can significantly outperform the random 
approach when used in combination with some types of 
classifiers.

The main limitation of the proposed algorithm lies in 
its high computational complexity. Subspace creation pro-
cedure can take significantly greater amount of time com-
pared to random approaches, especially when the number 
of features is large. In the future, we plan to improve the 
computational efficiency of our method in order to offer a 
speedup of the training process. Additionally, two less com-
putationally expensive feature quality metrics were proposed 
in the course of this paper to try to remedy that issue, but 
at the expense of the classification accuracy. Finding better 
estimators of the feature quality could significantly improve 
practical usefulness of the proposed method. Furthermore, 
the possibility of parallelization of the algorithm could be 
investigated to make the algorithm more suitable for larger 
datasets.

Additionally, the exact conditions under which Deter-
ministic Subspace method is capable of achieving signifi-
cantly higher performance remain unknown. Determining 
what types of classifiers benefit more from individual feature 
quality than the diversity of produced subspaces was done 
partially in this paper; more extensive evaluation would be, 
however, necessary. This remains for the further study.

Fig. 3   Differences between the number of datasets on which the Deterministic Subspace algorithm achieved statistically significantly better 
(positive values) and worse (negative values) results than the Random Subspace algorithm
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